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Abstract

This article investigates a new autonomous mobile fog computing (MFC) sys-
tem empowered by multiple unmanned aerial vehicles (UAVs) in order to serve
medical Internet of Things devices (MIoTDs) efficiently. The aim of this article
is to reduce the energy consumption of the UAVs-empowered MFC system by
designing UAVs’ trajectories. To construct the trajectories of UAVs, we need
to consider not only the order of SPs but also the association among UAVs,
SPs, and MIoTDs. The above-mentioned problem is very complicated and is
difficult to be handled via applying traditional techniques, as it is NP-hard,
nonlinear, non-convex, and mixed-integer. To handle this problem, we propose
a novel simulated annealing trajectory optimization algorithm (SATOA), which
handles the problem in three phases. First, the deployment (i.e., number and
locations) of stop points (SPs) is updated and produced randomly using vari-
able population sizes. Accordingly, MIoTDs are associated with SPs and extra
SPs are removed. Finally, a novel simulated annealing algorithm is proposed to
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optimize UAVs’ association with SPs as well as their trajectories. The perfor-
mance of SATOA is demonstrated by performing various experiments on nine
instances with 40 to 200 MIoTDs. The simulation results show that the pro-
posed SATOA outperforms other compared state-of-the-art algorithms in terms
of saving energy consumption.

Keywords: Mobile fog computing, simulated annealing algorithm,

unmanned aerial vehicle, meta-heuristic algorithm.

LIST OF ACRONYMS

UAV Unmanned Aerial Vehicle
QoS Quality of Service
ACO Ant Colony Optimization
MFC Mobile Fog Computing
TSP Travelling Salesman Problem
MIoTD Medical Internet of Things Devices
SATOA SA Trajectory Optimization Algorithm
EC Energy Consumption

MEC Mobile Edge Computing
IoT Internet of Things
SA Simulated Annealing
ISA Improved SA
DEC Differential Evolution Clustering
SATOA-W SATOA without Remove Operator
TS Tabu Search
GA Genetic Algorithm

1. Introduction

The number of resource-intensive and latency-sensitive applications in E-
health care are growing day by day due to the advancement of mobile commu-
nication systems and health informatics [1][2]. These applications are usually
latency-sensitive which require huge-computation resources. Since medical In-
ternet of Things devices (MIoTDs) have some limitations like limited battery
and computation resources, therefore, they are not capable of executing and
processing these tasks [3].

To handle the above-listed issues, mobile fog computing (MFC) has been
introduced for providing services with low latency near to users’ end. It pro-
cesses and executes MIoTDs’ tasks at the nearby MFC server and returns the
results to MIoTDs quickly [4][5]. Since MFC servers are close to MIoTDs, there-
fore, it can respond to MIoTDs’ requests quickly with less energy consumption
(EC) [6][7][8]. However, it is still limited to fulfill the MIoTDs requirements
due to the fixed position of MFC servers, that cannot be adjusted according to
MIoTDs’ requirements. Therefore, it faces issues in providing timely services
during natural disasters.

To satisfy the quality of service (QoS) requirements of MIoTDs, the integra-
tion of unmanned aerial vehicle (UAV) in MFC systems is esteemed as a promis-
ing technologies. UAVs-empowered MFC can handle the above-mentioned issues
in MFC. Compared to the conventional MFC systems, UAVs-empowered MFC
systems can attain a better QoS due to their flexibility and controllable mobility.
In fact, the MFC system performance can be significantly improved with the
assistance of UAVs, that can establish the better line-of-sight communication
links between MIoTDs and MFC servers.
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Recently, UAVs have been integrated and deployed in many fields, for exam-
ple wireless communication [9] [10][11], military [12] [13], E-Health care [14], and
rescue operations [15] [16]. They have also been integrated into MFC systems
aiming to enhance their capabilities. For example, Zhang et al. [17] proposed a
UAV-empowered mobile edge computing (MEC) for efficient multitask schedul-
ing with aim of minimizing completion time of the system. Chen et al. [18]
established a multilevel MFC offloading model, where UAV and fog node un-
dertakes relay nodes and offloading computing nodes for computation-intensive
and latency-critical tasks. Liu et al. [19] investigated the task offloading opti-
mization problem of cruising UAV with fixed trajectory, where UAV provides
limited-time task offloading services for multi-user nodes and multi-server nodes.
Wang et al. [20] proposed a UAV-assisted computation offloading scheme based
on deep reinforcement learning in a MEC framework. Lu et al. [21] proposed
a secure communication scheme for the Dual-UAV-MEC system, where UAV
server assists ground users in calculating the offloading tasks. Han et al. [22]
proposed an optimized iterative algorithm to improve the secrecy performance
of an UAV-assisted MEC system and assure secrecy transmit. Michailidis et
al. [23] presented a novel UAV-aided MEC architecture for vehicular networks,
where a hovering UAV can serve as an aerial road side units for task processing.
Xu et al. [24] investigated a UAV-assisted relaying and MEC network. They
used UAV as a MEC server to assist computation for the computation-hungry
terminal devices, and also as a relay to deliver the sub-tasks to a ground access
point for execution. Yang et al. [25] designed a multi-UAV deployment for MEC
enhanced Internet of Things (IoT) architecture. They deployed multiple UAVs
with computing offloading services for ground IoT devices.

Moreover, some researchers have investigated the trajectory planning and
designing problem of UAVs in order to fully utilized their capabilities in MFC
systems. For instance, Huang et al. [26] proposed an energy-efficient trajec-
tory planning algorithm in a multi-UAV-empowered MEC system with the aim
of minimizing EC of the system. Zeng et al. [27] studied a UAV-empowered
wireless communication system. They optimized the trajectory of UAV, includ-
ing the hovering locations and duration by proposing an efficient algorithm.
Asim et al. [28] presented a novel algorithm called ETCTMA in order to
design UAVs’ trajectories in a UAVs-aided MEC system. Li et al. [29] inves-
tigated a UAV-assisted multi-task MEC networks by considering the quality of
experience requirement of time-sensitive tasks of ground nodes. They jointly
optimized the trajectory, resource allocation of UAV, and offloading decisions
of ground nodes to minimize the total EC of them. Asim et al. [3] presented a
new multi-UAV-aided MEC system by deploying several UAVs to provide ser-
vices to users. They aimed to save the EC of the system via proposing a genetic
trajectory planning algorithm. Sun et al. [30] presented a new UAV-assisted
MEC framework. They jointly optimized the trajectory and CPU frequency
of a fixed-wing UAV, and the offloading schedule to minimize the MEC of the
UAV. Qin et al. [31] studied a UAV-assisted Fog-RAN network. They used
UAV as mobile remote radio head to help base station forwards signals to the
multiple users in the downlink transmissions. They jointly optimized the user
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scheduling and the UAVs trajectory in order to minimize the maximum trans-
mission delay for all terrestrial users in downlink communication. Zhang et
al. [32] studied the interference management problem by optimizing the power
control and trajectory planning in a UAV-assisted wireless sensor network with
the aim of maximizing the sum throughput of the target sensor. Asim et al.
[33] presented a novel trajectory planning algorithm based on evolutionary al-
gorithms in a MEC system assisted by multiple UAVs. Asim and Abd El-Latif
[34] investigated a multi-UAV-empowered MEC system to save the system EC
by designing UAVs’ trajectories.

From the above-given introduction and related work, we came to know that
the deployment of variable number of UAVs is still lacking in the current studies.
In addition, the optimization of the number of UAVs and their association
with SPs simultaneously have rarely been considered. This article considers the
UAVs’ trajectories planning problem in a MFC system empowered by multiple
UAVs with the aim of minimizing the system EC including the EC of MIoTDs
and UAVs at the same time.

The core contributions of this article are given as:

� A new UAVs-empowered MFC system is investigated and formulated in
order to reduce EC of the studied systems via planning UAVs’ trajectories.

� A novel simulated annealing (SA) trajectory optimization algorithm (SATOA)
is proposed, that solves the problem in three phases. First, SPs are gen-
erated and updated randomly by varying population sizes. Accordingly,
first, MIoTDs are associated with SPs and then extra SPs are ignored via
applying a remove operator. Finally, an improved SA (ISA) is proposed
to jointly handle UAVs’ association with SPs and SPs’ order for all UAVs.

� The performance of the proposed SATOA has been validated by per-
forming extensive experiments on a set of nine instances with up to 200
MIoTDs.

The rest of the article is organized as follows. In Section 2, we introduce the
system model and its problem formulation. Section 3 discusses our proposed
algorithm SATOA. Section 4 and Section 5 present the experimental studies
and conclusion this article, respectively.

2. System Model

As depicted in Fig. 1, we have u ∈ U = {1, 2, ..., U} MIoTDs and l ∈ L =
{1, 2, ..., L} UAVs. All UAVs flyover on the MIoTDs to communicate and collect
their data. The UAVs will hover over on some SPs for some time so that the
MIoTDs can send their data to UAVs. We suppose that UAVs will stop over
tl ∈ Tl = {1, 2, ..., Tl} SPs. Thus, one can have

aul[tl] = {0, 1},∀u ∈ U ,∀tl ∈ Tl,∀l ∈ L, (1)
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Figure 1: Multi-UAV-empowered MFC system with U MIoTDs and L UAVs
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where aul[tl] = 1 shows that the uth user/MIoTD intends to send its data to
lth UAV in the tth time slot, while aul[tl] = 0 denotes otherwise.

Also, we have
Tl∑
t=1

L∑
l=1

aul[tl] = 1, u ∈ U (2)

Eq. 2 shows that one user/MIoTD can choose one UAV in one time slot. This
means that all tasks of users/MIoTDs are indivisible and can not be divided
into subtasks.

Assume that at each time slot, lth UAV may communicate with at most ul

MIoTDs, Therefore, we have

U∑
u=1

aul[tl] ≤ ul, tl ∈ Tl, l ∈ L (3)

It is assumed that uth user/MIoTD sends Du amount of data to UAV l. The
UAV may hover at Tl SPs, where each SP tl lasts for maximum Tmax seconds,
where Tmax is a constant value.

Then, the transmission time of sending data from user/MIoTD to UAV in
the tlth time slot is as

TTr
u [tl] =

Du

rul[tl]
, ∀l ∈ L, tl ∈ Tl (4)

where rul[tl] is the data rate defined in (11).
Also, if Fu is the CPU cycles needed to process a task. Then, the process

time of processing a task of user/MIoTD at SP tl by UAV l is given as:

TC
u [tl] =

Fu

ful[tl]
, ∀l ∈ L,∀tl ∈ Tl (5)

where ful[tl] denotes the computation capacity of the UAV.
Also, we have

Tu[tl] = TC
u [tl] + TTr

u [tl], u ∈ U , tl ∈ Tl (6)

Then, one can have

TH
l [tl] = max

u∈U
{TC

u [tl] + TTr
u [tl], l ∈ L, tl ∈ Tl}, (7)

The coordinates of u-th user/MIoTD and l-th UAV are assumed to be
(xu, yu) and (Xl[tl], Yl[tl], H), respectively. We also assume that the UAV’s
trajectory is characterized by a sequence of location q[t] = [Xl[tl], Yl[tl], H]T ,
where the height H of all UAVs is constant. Also, we have

||ql[tl + 1]− ql[tl]||2 ≤ D2
max, tl = 0, ..., Tl (8)

where Dmax = Vmax · Tmax is the maximum horizontal distance of the UAV.
Vmax shows the maximum velocity of the UAV.
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The distance of uth user/MIoTD from lth UAV at tlth SP is defined as:

dul[tl] =
√
(Xl[tl]− xu)2 + (Yl[tl]− yu)2 +H2,∀u ∈ U ,∀tl ∈ Tl (9)

Then, the channel power gain can be given as

hul[tl] =
β0

dul[tl]
2 (10)

where β0 represents the channel power gain at the reference distance 1 m.
The data rate of offloading a task from MIoTDs to the UAVs can be defined

as:

rul[tl] = Blog2

(
1 +

puhul[tl]

σ2

)
(11)

where σ2 denotes noise power and pu presents transmission power.
The EC for offloading a task of the u-th user/MIoTD to the l-th UAV at SP

tl is defined as

ETr
ul [tl] = puTTr

u [tl] =
puDu

rul[tl]
, ∀l ∈ L, tl ∈ Tl (12)

The total EC of all MIoTDs is given as

EU =

U∑
u=1

L∑
l=1

Tl∑
tl=1

aul[tl]E
Tr
ul [tl] (13)

Since the flying EC of UAVs are directly proportional to their flying dis-
tances, thus one can calculate flying EC as

EF
l = PF

Tl−1∑
tl=1

||ql[tl + 1]− ql[tl]||2 (14)

Also, the hovering EC can be calculated as

EH
l = PH

Tl−1∑
tl=1

TH
l [tl], (15)

where PH represents UAV’s hovering power.
The total EC of UAVs is expressed as

EUAV =

L∑
l=1

(EF
l + EH

l ) (16)

The total EC denoted by E can be calculated as

E = EUAV + αEU (17)
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where α is a weighted coefficient between the EC of UAVs and MIoTDs.
Then, the problem formulation is given as.

P : min
aul[tl],Tl,ql[tl],M

E (18a)

subject to:

aul[tl] = {0, 1},∀u ∈ U ,∀tl ∈ Tl,∀l ∈ L, (18b)

Tl∑
tl=1

L∑
l=1

aul[tl] = 1, u ∈ U , (18c)

U∑
u=1

aul[tl] ≤ Ul, tl ∈ Tl, l ∈ L, (18d)

||ql[tl + 1]− ql[tl]||2 ≤ D2
max, tl = 0, ..., Tl, (18e)

Xmin ≤ Xl[tl] ≤ Xmax, ∀l ∈ L, tl ∈ Tl, (18f)

Ymin ≤ Yl[tl] ≤ Ymax, ∀l ∈ L, tl ∈ Tl. (18g)

Where (18f) and (18g) denote the boundaries of X-axis and Y-axis, respectively.

3. The Proposed Algorithm and Challenges

3.1. Challenges

When solving (18(a)), one has to consider the following challenges.

� To solve P, one has to take for the deployment updation of SPs, their
association with UAVs, and their order for UAVs, which are strongly cou-
pled with heach other as well. Therefore, it is a complex problem to be
handled by traditional optimization techniques.

� P is a mixed-decision variables problem containing various decision vari-
ables, like integer variables (L and Tl), binary decision variable aul[tl], and
continuous decision variables (Xl[tl] and Yl[tl]). Therefore, it is hard/challenging
to be handled via applying traditional optimization techniques.

In this article, we presented a novel algorithm named as SATOA to construct
the trajectories of UAVs. SATOA solve P in three phases: 1) the optimization
of of SPs’ deployment, 2) optimization of the association between MIoTDs and
SPs and ignoring extra SPs, and 3) the optimization of the association between
SPs and UAVs and the trajectories’ construction of UAVs.

3.2. SATOA

Algorithm 1 presents the SATOA’ pseudo-code. Firstly, the initial popula-
tion POP consisting of SPs is generated randomly which is given as POP =
(X1, Y1), (X2, Y2),...,(Xmax, Ymax). Subsequently, MIoTDs are associated with
SPs by Eq. 19 and extra SPs are ignored via Algorithm 5. Accordingly, a novel
ISA is proposed to group SPs to associate SPs with UAVs and construct their
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Algorithm 1 Psuedocode of SATOA
1: FEs = 0;
2: repeat
3: Initialize the population POP containing SPs randomly;
4: Associate MIoTDs with SPs in POP using 19 and remove extra SPs by Algorithm 5.
5: Jointly group SPs of POP into various clusters and construct the trajectories in each

cluster using ISA in Algorithm 4;
6: Evaluate population POP using P;
7: FEs = FEs+ 1;
8: while FEs < FEsmax do
9: Generate random SPs which form population POPO;
10: for i = 1 : |POPO| do
11: Construct POP1, POP2, and POP3 by using Algorithm 2;
12: for l = 1 : 3 do
13: Associate MIoTDs with SPs in POPl using 19 and remove extra SPs by Algorithm

5.
14: Jointly group SPs in POPl into different clusters and construct their order for

UAVs via ISA in Algorithm 4;
15: end for
16: Evaluate all three populations POP1, POP2, and POP3 using P;
17: FEs = FEs+ 3;
18: Replace population POP with a best feasible population among all three populations

POP1, POP2, and POP3.
19: end for
20: end while
21: Output: Best Solution i.e., Best POP.

Algorithm 2 Generating Three New Populations
1: POP1 ← add an individual i ∈ POPO to POP;
2: POP2 ← replace a random individual in POP with i ∈ POPO;
3: POP3 ← remove a random individual from POP;
4: Output: POP1, POP2, POP3

order for UAVs. Afterward, POP is evaluated via P. If POP is feasible, it is
accepted; otherwise, it is regenerated until it becomes feasible or the stopping
criteria does not meet. Accordingly, a new population POPO is first generated
randomly during the evolution. By adopting individuals of POPO, we construct
three new populations POP1, POP2, and POP3 using insertion, deletion, and
replacement. Then, the SPs in each POP1, POP2, and POP3 are associated
with MIoTDs by using Eq. 19. Afterward, the extra SPs in them are removed
using Algorithm 5. Accordingly, the SPs in POP1, POP2, and POP3 are clus-
tered into various clusters as well as designed the trajectories of UAVs in them
via ISA in Algorithm 4. Then, POP1, POP2, and POP3 are evaluated using
P. Finally, POP is replaced with the best feasible population among POP1,
POP2, and POP3. The process continues until the stopping criteria is satisfied
i.e., FEs ≥ FEsmax.

3.3. Optimization of the SPs’ Deployment

The optimization of the deployment of SPs is optimized via inserting, re-
placing, or removing an individual randomly in/from POP. The individuals
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Algorithm 3 ISA
1: Initialize: POPSize, minimum tour Mint, maximum Dmax, MaxIt, MaxIt-Inner,

Initial temperature T0, and Damping rate of Temperature α0.
2: numbrks ← Initialize the number of break points randomly;
3: poprte = zeros(POPSize,n);
4: popbrk = zeros(POPSize,numbrks);
5: for k = 1:POP − Size do
6: poprte(k, :) = randperm(n)+1;
7: popbrk(k, :) = randbreaks();
8: end for
9: BestCost ← Evaluate POP by using local optimizer in Algorithm 4;
10: BestSol← Best solution for BestCost;
11: for It = 1 : MaxIt do
12: for It2 = 1:MaxIt-Inner do
13: New-Sol ← Create Neighbor solution by applying Swap, Reversion, and Insertion

operators;
14: NewCost ← Evaluate New-Sol by using local optimizer in Algorithm 4;
15: if NewCost ≤ Cost then
16: Sol ← New-Sol;
17: else
18: δ=NewCost-Cost;

19: p = e
−δ
T ;

20: if rand ≤ p then
21: Sol ← New-Sol;
22: end if
23: end if
24: if Cost ≤ BestCost then
25: BestSol← Sol;
26: end if
27: end for
28: T = α0 × T ;
29: end for
30: OUTPUT: NEW POP POPN

used to replace and insert in POP are taken from a randomly produced pop-
ulation called POPO. That is the individuals of POPO are used to update
the parent population POP using Algorithm 2. Since each individual in POP
denotes a location of SP. Therefore, the whole population POP denotes a sin-
gle deployment of SPs. Hence, the size of population is equal to the number of
SPs. Three new population POP1, POP2, and POP3 are constructing using
Algorithm 2. One can see from Algorithm 2 that the population sizes of all
three populations POP1, POP2, and POP3 are different from one another.
As a result, the population sizes are kept variable during the optimization of
SPs’ deployment. Hence, the SPs’ locations and their number are optimized via
repeating the above process.

3.4. Optimization of the Association between MIoTDs and SPs

This subsection is devoted to associate MIoTDs with SPs and then based on
it we remove extra/redundant SPs in order to minimize the EC of the system.
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Algorithm 4 TSP Optimizer Algorithm
1: for p = 1:POPSize do
2: Ip ← POP(p)
3: for r = 1:|Ip| do
4: uavr = Ip(r);
5: if uavr ̸= ∅ then
6: d2 = d2 + dmat(1, uavr(1))/Para.V + Th(uavr(1));
7: for k = 1 : length(uavr)− 1 do
8: d2 = d2 + dmat(uavr(k), uavr(k + 1))/Para.V + Th(uavr(k + 1));
9: end for
10: d2 = d2 + dmat(uavr(end), 1)/Para.V ;
11: if d2 > Dmax then
12: d2 = d2 + (d2−maxtour) * penalty-rate;
13: end if
14: end if
15: D(r) ← d2;
16: d ← d + d2;
17: end for
18: end for
19: BestCost = d;

Algorithm 5 Remove Extra SPs
1: Uassoc ← Unique association between MIoTDs and SPs;
2: SD ← The set difference of the index set of SPs/POP and Uassoc;
3: POPU ← Update POP via ignoring/deleting SPs having indexes in set SD;

We associate MIoTDs with SPs by the following equation.

aul[tl] =

1, if(u, l, tl) = argmin
u∈U,l∈L

(dul[tl]),

0, otherwise.
(19)

Which shows that MIoTDs always communicate and exchange their data with
UAVs at the nearest SPs.

After associating MIoTDs with SPs, one can see that there are some SPs
having no user/MIoTD to served. Such SPs are called extra/redundant SPs,
which need to be removed to avoid extra EC. We remove extra/redundant SPs
by an operator given in Algorithm 5. As described in Algorithm 5, we first find
the unique association between MIoTDs and SPs. After that, we calculate the
set difference SD between the index set of SPs/POP and unique association set
Uassoc. Finally, we remove SPs with indexes in SD from POP to get an updated
population POPU . Hence, by using remove operator, we remove all redundant
SPs from POP .

3.5. ISA for handling Clustering of SPs and the trajectories construction of
UAVs

SPs are associated with UAVs by clustering SPs into clusters along with their
optimal order in clusters in this subsection. Inspired from [35] [36], in SATOA,
we proposed a novel improved ISA to jointly handle the optimization of the
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association between UAVs and SPs and designing of optimal trajectories for all
UAVs. In addition, the proposed algorithm can also predict the appropriate
number of UAVs. We borrowed the idea of [35] and [36] to handle the multi-
UAVs routing problem.

Evolutionary algorithms are population-based algorithms mainly inspired by
biological evolution. Recently, various EAs were proposed under the umbrella
of evolutionary computing [37] [38]. EC is one of the emerging sub field of
artificial intelligence and soft computing have had tackled various benchmark
functions and real-world problems. Evolutionary algorithms, SA, and Tabu
Search (TS) are general iterative algorithms for combinatorial optimization. SA
is a probabilistic meta-heuristic algorithm which is first proposed in [39] [40]. It
starts with an initial solution and then search in solution space iteratively for
improving the initial solution. Quality of solutions in SA is improved during the
search concerning a given measure of quality. It has been used for the solution
of various optimization problems.

As described in Algorithm 3, ISA works on the following three inputs, the
set of SPs, the matrix of UAVs flying times, and the matrix of their hover-
ing time. In addition, it requires some other inputs, like population size, the
maximum-iterations MaxIt, the maximum inner-iterations MaxIt-Inner, the
tour constraints (i.e., minimum and maximum flight times) for UAVs, initial
temperature T0, and damping rate of temperature α0.

First, the initial population is initialized via generating UAVs routes ran-
domly. Then, the overall time/fitness values for UAVs are calculated via using
a local UAV/TSP solver given in Algorithm 4, where the fitness function can be
defined as the sum of flying times and hovering times of UAVs. Subsequently,
ISA operators i.e., swap, reversion, and insertion are applied to generate a new
solution New-Sol. Accordingly, the new solution New-Sol is evaluated by the
local UAV/TSP solver in Algorithm 4. The new solution is compared with the
old solution and the best between them is selected for the next iteration.

The TSP or UAV solver which is also known as local optimizer is described
by Algorithm 4. This algorithm optimizes the routes of UAVs independently.
Further details of TSP/UAV solver can be fund in [36, 41]. The long routes
that exceed the constraint (18d) are realized as uncommonly. Such routes get
a penalty and are split into shorter routes by the route/chromosome partition
operator. Thus, all UAVs’ routes do not exceed the constraint (18d), but the
splitting of routes may lead to increase the number of UAVs. As there exists
a constraint for the number of UAVs and ISA tries to minimize the number of
UAVs, therefore this penalty may have a great impact on the fitness function
while solving P in (18).

4. Simulation Results

Table 1 presents the parameter settings of the studied UAVs-empowered
MFC system. In this article, we have tested nine instances range from 40 to 200
MIoTDs to evaluate the effectiveness of SATOA. Similar to [3], it is assumed
that the UEs locations are randomly generated in a 1000× 1000 m2 region [3]. In
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Table 1: Parameters Setting

Parameter Value Parameter Value
Du; (u ∈ U) [1, 103]MB P 0.1 W

PH 1000 Vmax 20 m/s
PF 1000 σ2 -174 dBm
B 1 MHz α0 0.98
α -30 dB L 4
λ 1 d λ/2
β 2.8 HU 200

Xmax 1000 Ymax 1000
ql[0] [0 0 200]

SATOA, parameters were set as: T0=100, α0 = 0.98, Mint = 1, MaxIt=100,
MaxIt-Inner=50, and maximum tour Dmax = 10000 m. Maximum fitness
evaluations (FEsmax) was set to 5000 and 20 runs were applied independently
on all algorithms. To further validate the effectiveness, we have carried out the
Wilcoxon rank-sum test at significant level of 0.05. We have used ≊, +, and −
in order to show that SATOA performs similar to, better than, and worse than
the compared algorithms, respectively. All the simulations were implemented in
MATLAB R2016a on a PC with an Intel(R) Core(TM) i7-8700 CPU @3.20 GHz
and 16 GB RAM. Furthermore, the better mean EC obtained by TPaPBA and
its competitor are highlighted bold in the tables for the sack of fare comparison
and differentiation among SATOA and each compared algorithm in this paper.

In order to validate the performance and effectiveness of SATOA, we de-
sign two variants called Kmeans-SATOA and DEC-SATOA. Kmeans-SATOA
adopts K-means algorithm [42] for the association between UAVs and SPs and
a greedy algorithm for the construction of trajectories of UAVs, while DEC-
SATOA adopts a clustering algorithm based on differential evolution denoted
by DEC [43] to associate UAVs and SPs and a greedy algorithm for construct-
ing the trajectory of each UAV. K-means requires a predefined clusters num-
ber which is assumed to be 6 here, while DEC can clusters SPs without any
initialization. The population size is set to 10 and the maximum number of
iterations to 50 for DEC in DEC-SATOA. Table 2 lists the mean EC and
standard-deviation (STD) obtained by SATOA, Kmeans-SATOA, and DEC-
SATOA . Moreover, Figure 2 plots mean EC of SATOA, Kmeans-SATOA, and
DEC-SATOA against FEs on nine instances. Table 2 and Figure 2 show that
SATOA outperforms Kmeans-SATOA and DEC-SATOA in reducing the sys-
tem mean EC. Furthermore, SATOA produces better statistical results than
Kmeans-SATOA and DEC-SATOA, as can be seen in the last row of Table 2.

To ignore redundant SPs serving no MIoTDs, a remove operator in Algo-
rithm 5 was designed. The effectiveness of this operator is investigated by
testing SATOA with and without this operator, where SATOA without remove
operator is named as SATOA-W. Figure 3 depicts the evolution of mean EC
of SATOA and SATOA-W on nine instances: N = 40, 60,.., 200, which shows
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Table 2: Simulation results of SATOA, Kmeans-SATOA, and DEC-SATOA

N SATOA Kmeans-SATOA DEC-SATOA
Mean EC (STD) Mean EC (STD) Mean EC (STD)

40 6.51E+05 (3.25E+04) 7.09E+06 (8.67E+05) + 8.32E+06 (1.13E+06) +
60 1.24E+06 (9.85E+04) 8.84E+06 (9.38E+05) + 1.30E+07 (8.70E+05) +
80 1.64E+06 (5.56E+04) 1.04E+06 (7.10E+05) + 1.54E+07 (1.34E+06) +
100 2.37E+06 (1.61E+05) 1.22E+06 (7.50E+05) + 2.04E+07 (1.12E+06) +
120 2.58E+06 (1.21E+05) 1.18E+07 (9.37E+05) + 2.17E+07 (1.24E+06) +
140 3.36E+06 (1.30E+05) 1.26E+07 (1.13E+06) + 2.44E+07 (1.04E+06) +
160 4.07E+06 (1.44E+05) 1.37E+07 (1.44E+06) + 2.91E+07 (1.46E+06) +
180 4.67E+06 (9.54E+04) 1.49E+07 (1.33E+06) + 3.07E+07 (1.26E+06) +
200 5.42E+06 (1.30E+05) 1.58E+07 (1.75E+06) + 3.43E+07 (9.18E+05) +

+, −, ≊ 10/0/0 10/0/0
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Figure 2: Mean EC comparison of SATOA, Kmeans-SATOA, and DEC-SATOA. Where FEs
shows fitness evaluations
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Figure 3: Mean EC comparison of SATOA and SATOA-W
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that the SATOA converges faster than SATOA-W in early stages and provides
better results. SATOA performs better than SATOA-W due to the following
reason: the remove operator restricts UAVs to ignore unnecessary SPs serving
no MIoTDs, therefore saving the system EC.

Table 3: Simulation results of SATOA, Kmeans-GA, and DEC-GA

N SATOA Kmeans-GA DEC-GA
Mean EC (STD) Mean EC (STD) Mean EC (STD)

40 6.51E+05 (3.25E+04) 1.20E+06 (7.20E+05) + 3.01E+06 (4.89E+05) +
60 1.24E+06 (9.85E+04) 3.72E+06 (1.23E+06) + 5.49E+06 (4.62E+05) +
80 1.64E+06 (5.56E+04) 4.67E+06 (9.16E+05) + 6.12E+06 (3.89E+05) +
100 2.37E+06 (1.61E+05) 6.33E+06 (1.13E+06) + 8.13E+06 (3.04E+05) +
120 2.58E+06 (1.21E+05) 8.45E+06 (7.67E+05) + 8.90E+06 (2.60E+05) +
140 3.36E+06 (1.30E+05) 9.95E+06 (3.82E+05) + 1.01E+07 (4.60E+05) +
160 4.07E+06 (1.44E+05) 1.16E+07 (4.58E+05) + 1.14E+07 (3.36E+05) +
180 4.67E+06 (9.54E+04) 1.27E+07 (3.88E+05) + 1.24E+07 (3.73E+05) +
200 5.42E+06 (1.30E+05) 1.49E+07 (3.77E+05) + 1.41E+07 (3.66E+05) +

+, −, ≊ 10/0/0 10/0/0

To further validate the effectiveness of the order of SPs in the proposed
SATOA, we compare SATOA with other algorithms called Kmeans-GA and
DEC-GA. Kmeans-GA and DEC-GA are constructed by replacing greedy algo-
rithm with genetic algorithm (GA) in Kmeans-Greedy and DEC-Greedy, respec-
tively [44]. That is both Kmeans-GA and DEC-GA use GA for the construction
of trajectories of UAVs. The mean EC and STD of SATOA, Kmeans-GA, and
DEC-GA are listed in Table 3. Table 3 shows that the proposed SATOA outper-
forms Kmeans-GA and DEC-GA in terms of mean EC. The statistical results of
SATOA, Kmeans-GA, and DEC-GA are listed in the last row of Table 3, which
reveals that SATOA produces better statistical results compare with Kmeans-
GA and DEC-GA. Moreover, Figure 4 depicts mean EC’s evolution obtained
by SATOA, KMeans-GA, and DEC-GA on nine instances over 20 runs. Figure
4 shows that the SATOA converges faster and provides better results compared
with KMeans-GA and DEC-GA. Furthermore, Figure 5 presents the mean run-
ning time of SATOA, KMeans-GA, and DEC-GA for all nine instances, which
shows that the mean running time of the proposed SATOA is much smaller than
that of the compared algorithms.

Overall, the proposed SATOA provides average percentage improvements in
mean EC on all instances upto 36.96%, 30.46%, 57.67%, and 12.25% compared
with Kmeans-SATOA, DEC-SATOA, Kmeans-SATOA, and DEC-SATOA, re-
spectively. The superiority and better performance of SATOA against Kmeans-
SATOA, DEC-SATOA, Kmeans-SATOA, and DEC-SATOA can be attributed
to the following aspect: in SATOA-GA, the association problem between SPs
and UAVs and UAVs’ trajectories problem are jointly solved that leads to
better performance. However, in other compared algorithms, they are ad-
dressed/optimized independently.
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Figure 4: Mean EC comparison of SATOA, KMeans-GA, and DEC-GA.

Figure 5: Mean running time of SATOA, KMeans-GA, and DEC-GA.
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5. Conclusions

This article has presented an autonomous UAVs-empowered MFC system,
where several UAVs have been integrated as MFC servers to provide services
MIoTDs. We have formulated the system model as an optimization problem to
minimize the system’s EC. We proposed a novel simulated annealing trajectory
optimization algorithm (SATOA) that consisted of three phases. First, the SPs’
deployment was generated and updated randomly with variable population sizes.
Accordingly, MIoTDs were associated with SPs and extra SPs were removed via
the remove operator. Finally, a novel improved simulated annealing algorithm
called ISA was adopted to address association between SPs and UAVs and
design UAVs’ trajectories aiming to reduce their hovering and flying EC. The
simulation results on different numbers of MIoTDs have validated that SATOA
provides better results than the compared variants in terms of reducing the
mean EC. In the future, we will study some hardware implementations of the
proposed algorithm in UAV-assisted MFC systems.
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