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A B S T R A C T

Dysregulated inflammation underlies various diseases. Specialized pro-resolving mediators (SPMs) like Resolvin
D1 (RvD1) have been shown to resolve inflammation and halt disease progression. Macrophages, key immune
cells that drive inflammation, respond to the presence of RvD1 by polarizing to an anti-inflammatory type
(𝑀2). However, RvD1’s mechanisms, roles, and utility are not fully understood.

This paper introduces a gene-regulatory network (GRN) model that contains pathways for RvD1 and
other SPMs and proinflammatory molecules like lipopolysaccharides. We couple this GRN model to a
partial differential equation–agent-based hybrid model using a multiscale framework to simulate an acute
inflammatory response with and without the presence of RvD1. We calibrate and validate the model using
experimental data from two animal models.

The model reproduces the dynamics of key immune components and the effects of RvD1 during acute
inflammation. Our results suggest RvD1 can drive macrophage polarization through the G protein-coupled
receptor 32 (GRP32) pathway. The presence of RvD1 leads to an earlier and increased 𝑀2 polarization, reduced
neutrophil recruitment, and faster apoptotic neutrophil clearance.

These results support a body of literature that suggests that RvD1 is a promising candidate for promoting
the resolution of acute inflammation. We conclude that once calibrated and validated on human data, the
model can identify critical sources of uncertainty, which could be further elucidated in biological experiments
and assessed for clinical use.
1. Introduction

Dysregulated resolution of inflammation underlies the development
and progression of various chronic and acute diseases. Lifestyle inter-
ventions related to sleep [1], physical exercise [2], and diet [3] have
been proposed to reduce inflammation. Omega-3 polyunsaturated fatty
acids (PUFAs), specifically eicosapentaenoic acid and docosahexaenoic

Abbreviations: RvD1, Resolvin D1; GRN, Gene-regulatory network; ABM, Agent-based model; PUFA, Polyunsaturated fatty acid; SPM, Specialized
pro-resolution lipid mediator; PDE, Partial differential equation
∗ Corresponding author at: Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen

K, Denmark
E-mail address: jeroen.uleman@sund.ku.dk (J.F. Uleman).

acid (DHA) are dietary supplements that have favorable effects on
cardiovascular outcomes [4,5]. PUFAs are naturally present in fish and
spices such as turmeric [6].

One PUFA metabolite of particular interest is Resolvin D1 (RvD1).
RvD1 is a specialized pro-resolution lipid mediator (SPM) derived from
DHA that shows potent anti-inflammatory effects in several animal
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models of inflammation, including acute lung injury [7], renal injury
in heart failure [8], and sepsis-induced cardiac injury [9]. Additionally,
the protective role of RvD1 extends to adverse tissue remodeling. In a
mouse model of aortic dissection, RvD1 prevented aortic disintegration
and increased the survival rate of treated versus untreated rats [10],
illustrating its ability to resolve inflammation and halt fibrotic pro-
cesses. These studies report that RvD1 administration attenuated the
infiltration of inflammatory macrophages.

Macrophages are phagocytic leukocytes that are ubiquitously
present and have remarkable plasticity that allows them to respond
to environmental cues. Aberrant macrophage responses contribute to
the pathogenesis of chronic inflammatory diseases [11,12]. SPMs like
RvD1 can promote the resolution of inflammation by stimulating these
activated cells to undergo a phenotypic switch from a pro- (M1) to an
anti-inflammatory (M2) phenotype [13].

While pre-clinical data have shown promising results, clinical trials
have yielded conflicting results. For example, even though RvD1 pre-
vented atrial fibrillation-promoting electrical and structural remodeling
in a rat model of right heart disease, omega-3 supplementation appears
to increase the risk for atrial fibrillation in humans [14]. Furthermore,
PUFA supplementation after myocardial infarction was associated with
a lower risk of major cardiovascular events but a higher risk for atrial
fibrillation onset [15]. These complex effects suggest that a deeper
mechanistic understanding of specific SPMs is necessary for their utility
in clinical practice. Computational models can be used to this end.

Computational modeling can complement experimental studies by
addressing questions that either cost too much time or money or
cannot be studied using in vitro experiments [16,17]. Computational
models may suggest new hypotheses and support or disprove previously
formulated ones [18]. Multiscale models are particularly promising
as they transcend space–time scales of biological organization and,
in some instances, embed microscopic mechanisms into mesoscopic-
or macroscopic-level descriptions [19]. In Appendix A, we provide a
quick panoramic view of the computational methods used to model the
phenomena of immune system inflammation. In this paper, we describe
the development of a multiscale model for studying the effects of RvD1
on macrophage differentiation in the resolution of acute inflammation.

2. Materials and methods

Our multiscale model simulates a portion of acutely inflamed tissue
containing white blood cells and several molecules involved in the
inflammatory process. It consists of three sub-models. Firstly, an agent-
based model describes the dynamics of macrophages, neutrophils,
and T-helper lymphocytes. Secondly, a partial differential equation
model describes the kinetics of the concentration of pro- and anti-
inflammatory cytokines, one chemokine, and RvD1 over space and
time. These two coupled models describe the extracellular dynam-
ics of an innate immune response to an antigen, together with the
recruitment of immune cells into the simulated space. Finally, a gene-
regulatory network model represents the main genes involved in the
differentiation/polarization of macrophages and determines how they
respond to stimuli from other cell types. The role of the gene-regulatory
network is to represent the intracellular mechanisms triggered within
the macrophages that lead to the expression of different genes in
response to the state of the extracellular space around each cell. Specif-
ically, the triggers we account for in this model are the concentration
of various cytokines in the same grid point occupied by a specific
macrophage, the antigen concentration, and the cell–cell interactions
that drive the innate immune response. The coupling of these three
models at two levels of description (intra- and extracellular) allows
for insights into how RvD1 affects the acute inflammatory response
through macrophage differentiation. In Sections 2.1–2.2, we provide a
mathematical description for these sub-models before describing how
the multiscale model was calibrated and validated in Section 2.3 and
detailing the simulation experiment we conducted involving RvD1 in
Section 2.4.
 i

2

2.1. Gene-regulatory network model

We started by extending a previously developed Boolean gene-
regulatory network (GRN) model based on a network by Castiglione
et al. [20], which described a network of 18 nodes representing ex-
tracellular stimuli, membrane receptors, intracellular transducers, tran-
scription factors, and target genes in a macrophage. The configuration
of nodes in this undirected graph determines whether a cell will be
polarized to the proinflammatory M1 or anti-inflammatory M2. We con-
ducted a literature review to extend the GRN by Castiglione et al. [20]
with additional nodes that allow for modeling the effects of SPM.
A description of the edges with corresponding references from the
scientific literature is provided in Appendix B. The edges are either
inhibitory or excitatory, which means that they repress or stimulate the
activation, respectively. A schematic overview of the GRN model we
developed is given in Fig. 1. Black arrows (edges) represent excitatory
relationships among nodes, whereas red arrows represent inhibitions.

The network state is updated at each time step (t) given the adja-
cency matrix (Eq. (1)). This equation states that each node (𝑥𝑖) is active
f and only if it receives at least one excitatory signal (𝐸𝑖+ ) (i.e., at least
ne node with an excitatory edge impinging on 𝑥𝑖 has an activation

level equal to 1) and no inhibitory signals (𝐸−
𝑖 ) at all (i.e., none of the

nodes that have an inhibitory edge to 𝑥𝑖 has an activation level of 1). At
each time step, all nodes are updated simultaneously so that the value
of a node at time t + 1 only depends on the value of the nodes that
impinge upon it at time t.

∀𝑖 = 1,… , 𝑁

𝑥𝑡+1𝑖 = 𝐹
(

𝑥𝑡𝑖,… , 𝑥𝑡𝑁
)

(1)
=

⋁

𝑗∈𝐸+
𝑖

𝑥𝑡𝑗 ∧ ¬
⋁

𝑗∈𝐸−
𝑖

𝑥𝑡𝑗

Stable states of the network dynamics define the polarization state
of a cell [20]. A stable state is reached at time 𝑡′ when ∀𝑡 > 𝑡′,∀𝑖 𝑥𝑖 (𝑡)
= 𝑥𝑖

(

𝑡′
)

. Theoretically, the system can also reach a limit cycle (i.e., a
repeated sequence of states), but this GRN has only stable states [20].
While in general, 𝑡′ can be very large (yet 𝑡′ < ∞), in our case, it is
relatively small, namely ten. Within ten update steps, a macrophage
can thus progress to a differentiated (stable) state or not. If it does
not, the macrophage polarization state is undefined and considered
undifferentiated (M0).

Macrophage polarization towards M1 is defined as a stable state in
which the activation of Arg1 gene is 0 and iNOS gene 1. Conversely, in
a stable state where activation of Arg1 1 and iNOS is 0, the macrophage
is defined to have polarized towards M2. Polarization towards M0 has
been defined as any stable state where Arg1 and iNOS are both inactive,
with an activation of 0. Due to mutual inhibition by their activating
nodes, Arg1 and iNOS are never simultaneously active.

At every time step of the hybrid agent-based–partial differential
equation model (Section 2.2), a GRN model is updated for each macro-
phage until a stable state of each GRN’s dynamics is reached. The stable
state reached depends on the concentration of the different molecules
(corresponding to the input nodes in Fig. 1) in the grid point where the
specific macrophage resides at that instant of time. If the concentration
of a molecule is high enough, the corresponding input node will be
activated.

The stable state that is ultimately reached is not affected by the
initial activation state of the network (including the macrophage’s
previous polarization state) and thus solely depends on the activation
of the input nodes. In this GRN model, IL4 and RvD1 have strong anti-
inflammatory effects that inhibit the proinflammatory effects of the
DLL4, IFN𝛾, and LPS. For instance, in the presence of high concentra-
tions of IFN𝛾 and LPS, the network reaches a stable configuration that

e interpret as the M1 polarization state of the macrophage, whereas a
igh concentration of IFN𝛾 and LPS in the presence of RvD1 or IL4
ould result in polarization to the M2 phenotype. In contrast, IL10
nhibits only the proinflammatory effect of LPS but not DLL4 and IFN𝛾.
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Fig. 1. The gene-regulatory network model of macrophage polarization. The blue nodes represent the inputs to external stimuli triggering the gene-regulation programs culminating
in the polarization of the macrophage to an M1 (red) or M2 (green) state.
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2.2. Hybrid agent-based–partial differential equation model

Besides a gene-regulatory network that determines the state of a
macrophage, our model incorporates both an agent and an environment
layer [21] at the tissue level. In particular, we utilize the agent-based
modeling (ABM) paradigm to represent agents interacting at the tissue
level (agent layer) coupled with a set of partial differential equations to
describe the diffusion of molecules over a grid (environment layer).

The hybrid model described in this manuscript leans on the earlier
work by Su et al. [22], who developed an extensive partial differen-
tial equation (PDE) inflammatory response model to model acute and
chronic inflammation over space and time. Su et al. [22] accounted
for neutrophils (N), apoptotic neutrophils (ND), activated (MA) and
resting macrophages (MR), immature and mature dendritic cells, and
effector (T) and regulatory (TR) T-cells. They also modeled a generic
antigen and cytokines that T, TR, and MA secreted. All these cells
and molecules diffuse in a discretized space on one or two dimen-
sions. Their model enables a chronic or acute infection simulation,
defined by a source function for the antigen. While the model does
not include potentially relevant factors like B cells, NK cells, and CB8
T-cells, it accounts for core immune processes such as antigen recog-
nition, inter-cell communication, movement, and effector functions
(i.e., activation vs. inhibition). As such, the detailed description of the
inflammatory response in Su et al. [22] was used as a reference for
constructing the multiscale hybrid model presented here. In addition,
we incorporated stochastic, agent-based interactions between cells,
diffusion of molecules by partial differential equations, and polarization
of macrophages through the gene-regulation machinery of a gene-
regulatory network model (GRN). Each of these model components is
described below.

2.2.1. The environment layer
The different molecules incorporated in our model are provided

in Table 1. In agreement with Su et al. [22], our model includes a
chemo-attractant or generic chemokine (CH). Examples of chemokines
are CCL5 and CXCL1, secreted by macrophages and attract T-cells and
neutrophils [23]. Additionally, our model contains anti-inflammatory
 (

3

Table 1
The different molecules in the model, their sources and sinks, and whether they have a
pro- or anti-inflammatory effect. LPS = Lipopolysaccharides; IFN𝛾 = Interferon gamma;
IL10 = Interleukin 10; IL4 = Interleukin 4; CH = Chemokines; CM = Cytokine secreted
by M2 polarized macrophages.

Molecule Source Sink Proinflammatory Anti-inflammatory

LPS – N, M1, M2 Yes No
IFN𝛾 T – Yes No
IL10 TR – No Yes
IL4 TR – No Yes
CH M1, M2, N – No No
CM M2 – No Yes

cytokines secreted by M2 macrophages (CM), which prevent neu-
trophil recruitment. Our model also includes antigens which we call
lipopolysaccharides (LPS) but yield an equivalent function. Impor-
tantly, our model introduces RvD1, diffused over the grid, and assumed
to be exogenously introduced. We also include DLL4, activated through
interactions between proximal macrophages, expressing DLL4 on their
cell wall when activated [24].

We use the model to simulate a portion of tissue of 0.05 μl exposed
o an exogenous insult consisting of a dose of LPS molecules at time

(𝑡0). This volume is subdivided into a 2-dimensional layer of 20-by-
0 voxels. The lattice has a von Neumann neighborhood with periodic
oundary conditions (toroidal boundaries) as we assume the lattice to
e an open piece of tissue rather than a contained space such as a
etri dish. Neutrophils and undifferentiated macrophages are the only
ellular entities that populate the space initially. No T-cells are present
t time zero as their recruitment from the periphery is consequential in
nitiating the inflammatory state [22].

Cells are sensitive to the local concentration of specific molecules
hrough their membrane receptors. In the same way, the activation/
ifferentiation state of macrophages is triggered by membrane recep-
ors that bind molecules in the surrounding. The binding occurrence is
odeled as a Boolean event whose probability is a function of the local

oncentration of specific molecules. Thus, the activation of a receptor

i.e., the input) node of the GRN is modeled as a sigmoid or Hill



J.F. Uleman, E. Mancini, R.F.M. Al-Shama et al. Mathematical Biosciences 359 (2023) 108997

𝑃
a
m

I
t
m
𝛽
m
n

w
d
T
𝜆
p

l
o
r
l
e
o

a
p
p

a
a

M

i
i
s

𝑝

f
t

C

𝑑
a
g

function [25] of the concentration x of the receptor–ligand molecule
(1|𝜃, 𝑥) =

(

1 + (𝜃∕𝑥)𝑛
)−1, with 𝑛 = 4, which was selected to obtain

steep activation curve, and threshold 𝜃 given in Table 2 for each
olecule.

The PDEs describing the time evolution of LPS, IFN𝛾, IL10, and
L4 are given by Eqs. (2)–(7), respectively. In these equations, 𝐷𝑥 is
he diffusion coefficient of molecule x, 𝜇𝑥 is the degradation rate of
olecule x, 𝜆𝑥|𝑦 is the uptake rate of molecule x by agent y, and
𝑥 is the secretion rate of molecule x. The concentration of each
olecule diffused over the grid is assessed at each time step. Initially,
o cytokines are present in the simulated volume.
𝜕𝖫𝖯𝖲
𝜕t

= D𝖫𝖯𝖲𝛥𝖫𝖯𝖲 − 𝜇𝖫𝖯𝖲𝖫𝖯𝖲

−
(

𝜆𝖫𝖯𝖲|𝖬0
𝖬0 + 𝜆𝖫𝖯𝖲|𝖬𝖠

(

𝖬1 +𝖬2
)

+ 𝜆𝖫𝖯𝖲|𝖭𝖭
)

𝖫𝖯𝖲 (2)
𝜕𝖨𝖥𝖭𝛾
𝜕t

= D𝖨𝖥𝖭𝛾𝛥𝖨𝖥𝖭𝛾 − 𝜇𝖨𝖥𝖭𝛾 𝖨𝖥𝖭𝛾 + 𝛽𝖨𝖥𝖭𝛾|𝖳𝖳 (3)

𝜕𝖨𝖫10
𝜕t

= D𝖨𝖫10𝛥𝖨𝖫10 − 𝜇𝖨𝖫10𝖨𝖫10 + 𝛽𝖨𝖫10|𝖳𝖱𝖳𝖱 (4)

𝜕𝖨𝖫4
𝜕t

= D𝖨𝖫4𝛥𝖨𝖫4 − 𝜇𝖨𝖫4𝖨𝖫4 + 𝛽𝖨𝖫4|𝖳𝖱𝖳𝖱 (5)

𝜕𝖢𝖧
𝜕t

= D𝖢𝖧𝛥𝖢𝖧 − 𝜇𝖢𝖧𝖢𝖧 +
(

𝛽𝖢𝖧|𝖬𝖠

(

𝖬1 +𝖬2
)

+ 𝛽𝖢𝖧|𝖭𝖭
)

𝖫𝖯𝖲 (6)

𝜕𝖱𝗏𝖣1
𝜕𝑡

= D𝖱𝗏𝖣1𝛥𝖱𝗏𝖣1 − 𝜇𝖱𝗏𝖣1𝖱𝗏𝖣1 (7)

In these equations D𝖫𝖯𝖲𝛥𝖫𝖯𝖲 = D𝖫𝖯𝖲∇2𝖫𝖯𝖲 = D𝖫𝖯𝖲

[

𝜕2𝖫𝖯𝖲
𝜕x2 , 𝜕

2𝖫𝖯𝖲
𝜕y2

]

,

hich is the two-dimensional heat equation for conventional Fick
iffusion. The numerical PDE solver used is detailed in Appendix C.
he rates of M1 and M2 macrophages are assumed to be the same,
A|MA, where MA stands for ‘‘active macrophage’’. The values of the
arameters in these equations are reported in Table 2.

While we simulate the diffusion of cytokines in the environment
ayer, the agent layer simulates the movement of the cells included in
ur model: macrophages, T-cells, and neutrophils. Several parameters
ule their movement: the diffusion coefficient of each type 𝐷cell, the
inear size of a voxel (i.e., lattice point) 𝛥x, and the time step 𝛥t. 𝛥t
quals 60 min of real life, and the 𝛥x is 50 μm. Fig. 2 provides an
verview of the dimensions of the grid.

Initially, in the absence of the chemokine CH, the agents follow
random walk over the grid. Without CH, the agents choose any

ossible direction with an equal probability: (1−𝑝∗)
4 , where 𝑝∗ is the

robability of remaining in the same position in a time step (𝛥t).
This probability was estimated numerically to minimize the difference
between the theoretical mean square displacement: MSD𝑡 = 2𝑑𝐷cell ⋅

𝑡
𝛥𝑥 ,

nd the simulated mean square displacement, which was calculated by
veraging over a large number (N) of simulations:

SD𝑠 (𝑡, 𝑝) =
⟨

|

|

𝑥𝑛 (𝑡, 𝑝) − 𝑥𝑛 (0, 𝑝)||
2
⟩

= (1∕𝑁) ⋅
𝑁
∑

𝑛=1

|

|

𝑥𝑛 (𝑡, 𝑝) − 𝑥𝑛 (0, 𝑝)||
2 ,

n which d is the number of physical dimensions (i.e., 𝑑 = 2) and 𝑥𝑛(t,p)
s the position after t steps with probability p of not moving at each time
tep 𝛥t. As such, 𝑝∗ is calculated according to Eq. (8).
∗ = 𝑚𝑖𝑛

𝑝

{

|

|

MSD𝑠 (𝑡, 𝑝) − MSD𝑡
|

|

}

(8)

The obtained values of 𝑝∗ are cell-specific since the diffusion coef-
icients are generally different (Table 3). In the following, we use 𝑝∗𝑇
o indicate the probability of T and 𝑇𝑅 remaining still and 𝑝∗M for each

macrophage type. The PDEs in Su et al. [22] model the chemotaxis of
cells through a convection equation. In our ABM, this drifted motion
is modeled as a biased random walk by modifying the uniform dis-
tribution of the random walk with jump probabilities proportional to
the concentration of the chemokine CH in the neighboring grid points
(i.e., pseudo-chemotaxis). Formally, once a cell decides to move with
probability 1-𝑝∗, the probability of moving to one of its four neighbors
is in {𝑝1, . . . ,p4}, with 𝑝𝑖 =

𝑐𝑖
∑

𝑗=1..4 𝑐𝑗
, in which 𝑐𝑖 is the concentration of

H in the neighbor i.
4

Table 2
Parameter values for the environment layer. All values from Su et al. [22] are scaled
to minutes and are within biological range unless annotated by ∗, in which case the
values are estimates.

Parameter Value Unit Reference

Secretion parameters

𝛽IL4|TR
4.2 × 10−5 pg cell−1 min−1 [22]

𝛽IL10|TR
4.2 × 10−5 pg cell−1 min−1 [22]

𝛽IFN𝛾|T 4.2 × 10−5 pg cell−1 min−1 [22]
𝛽CM|MA 2.1 × 10−3 pg cell−1 min−1 [22]
𝛽CH|MA 6.9 × 10−5 pg cell−1 min−1 [22]
𝛽CH|N 3.8 × 10−4 pg cell−1 min−1 [22]*
𝛽RvD1 1.85 × 10−4 pm cell−1 min−1 Estimate

Uptake parameters

𝜆A|M0 1.7 × 10−4 pg cell−1 min−1 [22]
𝜆A|MA

5.5 × 10−4 pg cell−1 min−1 [22]
𝜆A|N 3.8 × 10−4 pg cell−1 min−1 [22]*

Diffusion coefficients

DLPS 5.0 × 10−3 μm2 min−1 [22]
DCH 60 μm2 min−1 [22]
DIL4 6.4 μm2 min−1 [22]
DIL10 6.4 μm2 min−1 [22]
DIFN𝛾 6.4 μm2 min−1 [22]
DRvD1 6.4 μm2 min−1 Estimate

Degradation parameters

𝜇LPS 7.2 × 10−8 min−1 [22]*
𝜇IL4 2.6 × 10−3 min−1 [22]
𝜇IL10 2.6 × 10−3 min−1 [22]
𝜇IFN𝛾 1.5 × 10−3 min−1 [22]
𝜇CH 2.0 × 10−2 min−1 [22]*
𝜇RvD1 3.0 × 10−4 min−1 Estimate
𝜇CM 1.5 × 10−3 min−1 [22]

Threshold parameters

𝜃LPS 3.94 × 10−3 pg μl−1 Estimate
𝜃IL10 3.32 × 10−3 pg μl−1 Estimate
𝜃IL4 2.26 × 10−4 pg μl−1 Estimate
𝜃IFN𝛾 1.78 × 10−1 pg μl−1 Estimate
𝜃RvD1 6.00 × 10−3 pg μl−1 Estimate

The lattice contains 20 × 20 = 400 grid points. Since macrophages,
T-cells, and neutrophils have approximate diameters of 𝑑M, 𝑑T, and
N of 21, 10, and 12 μm, respectively [26], we can compute the
pproximate maximum number of cells that can be contained in one
rid point. For instance, for macrophages: Napga = (𝛥x)3 ⋅

(

1
6𝜋d

3
𝖬

)−1
.

This means that 503
(

𝜋
6 ⋅ 213

)−1
≃ 25 macrophages can be contained in

one grid point, which is in line with Tong et al. [27].
Parameters such as secretion and death rates from Su et al. [22]

were turned into probabilities per 𝛥t according to Eq. (9), in which
r indicates the rate. The resulting probabilities are found in Table 3,
along with the other pertinent parameters.

𝑝 = 1 − 𝑒−𝑟𝛥𝑡 (9)

At 𝑡0, the model is initialized with 400 undifferentiated macropha-
ges, 5000 neutrophils, and no T-cells at random locations throughout
the grid. Consecutively, undifferentiated macrophages, neutrophils, and
effector T-cells are recruited based on the number of available agents
outside the boundary: M0𝑏, N𝑏, T𝑏 (Table 3). These parameters are
based on white blood cell counts [28]. For every N𝑏, M0𝑏, or T𝑏, a
number between 0 and 1 is drawn, leading to recruitment (i.e., ap-
pearance on the boundary of the grid) if the number is lower than
recruitment probabilities 𝜁𝑇 , 𝜁𝑀, and 𝜁𝑁 . Whether a particular type of
cell should be recruited or not depends on threshold parameters 𝜖N,
𝜖TR, 𝜖T, and 𝜖M0. These parameters specify the condition for which the
agents will be recruited and introduce a smoothing step between the
agent-based and partial differential equation models. The neutrophils,
N, are exclusively recruited if the total sum of CM is lower than 𝜖N

(Eq. (11)). Effector T-cells (T) and undifferentiated macrophages (𝑀0)
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Fig. 2. Dimensions of the grid used in the agent-based and partial differential equation
models. A single voxel dimension translates to 50 μm of actual space. At the center of
the grid, the Von Neumann neighborhood is shown. The grid has periodic boundary
conditions, which map the grid onto a torus.

are recruited as long as the integral of LPS is higher than 𝜖T and 𝜖M0,
respectively (Eqs. (12)–(13)). The former (𝜖T) replaces the recruitment
mechanism by the dendritic cells in Su et al. [22], and the latter (𝜖M0)
accounts for the decreased macrophage density after a few days of acute
inflammation that can be seen in experiments. The recruitment for 𝑇R
cells is dependent on the T-cells at the boundary (𝛿𝛺) [29], which
are thought to boost TR expression through physical contact, and also
on the number of T-cells on the entire grid (𝛺). For every T on the
boundary elements of the grid (∑𝛿𝛺 𝖳), a TR is added to a random
boundary element of the grid with probability 𝜁TR(Eq. (13)). TR cells
are typically recruited when LPS is low, and IFN𝛾 is high.

𝜁𝖳𝖱 =

⎧

⎪

⎨

⎪

⎩

𝜁𝖳
∑

𝛺
𝖳 if ∫𝛺

𝖨𝖥𝖭𝛾 > 𝜖𝖳𝖱 ∫𝛺
𝖫𝖯𝖲

0 otherwise
(10)

𝜁𝖭 =

⎧

⎪

⎨

⎪

⎩

𝜁𝖭 if ∫𝛺
𝖢𝖬 < 𝜖𝖭

0 otherwise
(11)

𝖬0
=

⎧

⎪

⎨

⎪

⎩

𝜁𝖬0
if ∫𝛺

𝖫𝖯𝖲 > 𝜖𝖬0

0 otherwise
(12)

𝜁𝖳 =

⎧

⎪

⎨

⎪

⎩

𝜁𝖳 if ∫𝛺
𝖫𝖯𝖲 > 𝜖𝖳

0 otherwise
(13)

The model uses two rules for the interaction among agents. First,
LL4 is turned on with probability p(DLL4 = 1|MA) when a macrophage
eets one or more MA (i.e., M1 or M2) macrophages on a grid point.

or each MA on the same grid point, the DLL4 receptor in its gene-
egulatory network will turn on with probability p(DLL4 = 1|MA). The
econd interaction rule states that if an M2 macrophage is on the same
rid point as an ND, the macrophage will engulf it via phagocyto-

is with probability p(𝜆ND|M2). Every time an ND is eliminated, the

5

Table 3
Parameter values for the agent layer, with all the probabilities per 𝛥t of 60 min
and conditional probabilities per the molecule concentration or the number of agents
present in the same grid point. All cited values are within biological range unless
annotated by ∗, in which case the values are model-specific estimates.

Parameter Value Reference

Boundary distributions

N𝑏 5000 cells μl−1 [28]
M0𝑏 400 cells μl−1 [28]
T𝑏 1600 cells μl−1 [28]

Probability of not moving

p∗T 0.34 [22], Eq. (8)
p∗N 0.18 [22], Eq. (8)
p∗ND 0.97 [22]*, Eq. (8)
p∗M 0.65 [22], Eq. (8)

Termination probability

p(𝜇N→ND) 5.63 × 10−2 [22], Eq. (9)
p(𝜇T) 1.36 × 10−2 [22], Eq. (9)
p(𝜇M0) 1.37 × 10−4 [22], Eq. (9)
p(𝜇MA) 2.91 × 10−3 [22], Eq. (9)
p(𝜇ND) 2.08 × 10−3 [22]*, Eq. (9)
p(𝜆N|LPS) 2.27 × 10−2 [22]*, Eq. (9)
p(𝛿N|CH) 1.24 × 10−2 [22]*, Eq. (9)
p(𝜆T|TR) 2.06 × 10−2 [22], Eq. (9)

Recruitment parameters

𝜖TR
𝜖T

0.45 pg μl−1

0.2 pg μl−1
Estimate
Estimate

𝜖N 2.0 × 10−4 pg μl−1 Estimate
𝜖M0
𝜁T

20 pg μl−1

8.5 × 10−5
Estimate
Estimate

𝜁M 1.4 × 10−3 Estimate
𝜁N 4.0 × 10−3 Estimate

Interaction parameters

p(𝜆ND|M2) 1.0 Estimate
p(DLL4 = 1|MA) 1.0 Estimate

M2 macrophage secretes cytokine (CM), according to 𝛽CM|MA. Since
CM only determines the recruitment of neutrophils through the total
amount of CM present on the grid (Eq. (11)) and does not interact with
other cells, CM is not diffused and only degrades over time according
to μCM. Recruitment is implemented as initializing a new agent at a
random location on the outermost grid points. This means that for every
agent outside the grid (i.e., M00, T0, and N0), the corresponding agent
will be initialized on the boundary with probabilities 𝜁M0, 𝜁T, or 𝜁N,
respectively. Our model was implemented in Python 3.6 [30] using a
package for ABMs called MESA [31].

2.3. Parameter calibration and qualitative validation

At first, we tested the GRN and diffusion models separately to ensure
each worked correctly. Next, we combined the two models and fine-
tuned the parameters that remained to be estimated (Tables 2 and 3).
We did this by evaluating the dynamics of the cells and molecules using
experimental data. RvD1 was not part of the conducted experiments in
either study. As such, the RvD1-associated parameters (e.g., secretion
and degradation) were set in our model such that the RvD1 profile
matches the qualitative profile of eosinophils [32] (see Section 2.4).

Lacking accurate data on humans, we used data from two animal
studies. We used one dataset to calibrate the model and the other
dataset to validate it. Firstly, for calibration, we used canine data by
Frangogiannis et al. [33] and adjusted our free parameters to match
the global dynamics of inflammation of T-cells and macrophages. Since
this study only contained six data points (less than the number of free
parameters), the parameters were iteratively tuned manually rather
than through a parameter optimization method. Afterward, to validate
the calibrated model, we used rodent data by Yang et al. [34], which
contained neutrophil data in addition to T-cells and macrophages.
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Fig. 3. Temporal dynamics of (A) all macrophages (cells/μl), (B) all neutrophils (cells/μl), and (C) all T cells (cells/μl) compared to data for simulations with and without RvD1.
The data points are extracted from Frangogiannis et al. [33] (used for model calibration) and Yang et al. [34] (used for validation only). The bars are 95% confidence intervals.
Fig. 4. Temporal dynamics of (A) M1 and M2 macrophages (cells/μl), (B) N and ND (cells/μl), and (C) T and T𝑅 (cells/μl) for simulations with and without RvD1. The bars are
95% confidence intervals.
Finally, we conducted a global sensitivity analysis to determine the
model’s behavior based on the free parameters. The results from this
analysis are provided in Appendix D.

The experimental data from these studies were obtained as fol-
lows. Except for the exact values specified in the articles, all values
were carefully extracted manually from the figures. We assumed that
the experimental conditions in the model and the lab experiment
were comparable. In particular, we assumed that the data, reported in
cells mm−2 in both papers, has the same depth as our grid, i.e., 50 μm.
We also assumed that the error bars in both publications reported the
standard error of the mean specified in Yang et al. [34] but not in
Frangogiannis et al. [33]. Also, the data by Yang et al. [34] was re-
scaled to match our simulation results (which were fitted to the canine
data) since the experiments were performed on mice. Mice have a
different immune-cell distribution than humans, while dogs are more
similar [35]. The scaling factors were identified by maximizing the
error bar overlap to our simulation results by visual inspection and set
to 0.3125, 0.5714, and 0.0625 for the macrophages, neutrophils, and
T-cells, respectively.

2.4. In silico experiment

We simulated the acute immune response with and without the
presence of RvD1. We performed N = 75 runs for each scenario to
obtain summary statistics. In these two scenarios, 8 pg of LPS (160
pg μl−1) was injected into the center of the simulated volume at 𝑡0. In
the scenario with RvD1 administration, we made several assumptions.
RvD1 is the metabolic product of omega 3 PUFAs, which may be
secreted by different cell types, like eosinophils, which we do not
model explicitly. Since eosinophils get into action when neutrophil
6

count peaks [32] at approximately four days, RvD1 is secreted from
that point onwards. RvD1 is secreted from 10% randomly selected grid
points, after which it diffuses. RvD1 continues to be secreted until 10
pm μl−1 (the experimental value) is reached within approximately four
days (i.e., eight days after the start of the simulation), after which the
production of RvD1 stops.

To quantify the differences between simulations that included RvD1
and those that did not, we defined an output metric to characterize
the behavior of the macrophages. M2 > M1 is defined as the last
moment in time (days) when the density of M2 becomes greater than
M1 macrophages and stays greater for more than 5 hours straight. We
chose this metric because we are more interested in the resolution
of inflammation caused by macrophage polarization, and it is more
informative than, for instance, the ratio of densities (M2∕M1).

3. Results

The simulated dynamics of the cells and molecules are shown in
Figs. 3–5, reporting cell counts and molecular concentrations on the
grid as a function of time. As expected, RvD1 triggers a different behav-
ior in the macrophage differentiation fate, neutrophils dynamics, and
CM concentrations (this is the only cytokine profile that appeared to
differ in the two scenarios). Fig. 3a and c compare the total number of
macrophages and T-cells against experimental data from Frangogiannis
et al. [33] and Yang et al. [34]. Moreover, Fig. 3b compares the total
number of non-apoptotic neutrophils to data from Yang et al. [34].
Fig. 4 shows the dynamics of the specific cell types, namely M1 and M2
macrophages, neutrophils and apoptotic neutrophils, and T cells and
regulatory T cells. As can be seen, the neutrophils and macrophages are

most affected by the presence of RvD1. In particular, fewer neutrophils
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Fig. 5. Plots with temporal dynamics of the total concentrations of (A) LPS, (B) IFN𝛾, (C) IL10/IL4, and (D) CM (pg/μl) for simulations with and without RvD1. The bars are
95% confidence intervals. CM = cytokine.
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Fig. 6. Boxplot with M2 > M1 for the simulations with and without RvD1.

are recruited, and apoptotic neutrophils are cleared faster than the
control. Furthermore, Fig. 6 shows that when RvD1 is added, M2 > M1
ccurs sooner (after 4.5 days instead of 5.4 days on average) and with
uch lower variation between the simulations.

. Discussion

In this paper, we introduced a multiscale hybrid model for acute
nflammation to describe the role of RvD1 on macrophage polarization
uring acute inflammation. It includes a comprehensive GRN model
7

that describes the intracellular mechanisms driving macrophage po-
larization. The model reproduced the qualitative dynamics of crucial
immune cells and the effect of RvD1 during acute inflammation. Our
results suggest that RvD1 can drive M2 macrophage polarization to-
wards an M2 state faster, reduces neutrophil recruitment, and results
in faster apoptotic neutrophil clearance.

Our results agree with several previous modeling studies, including
the work by Su et al. [22], on which our model was based. In particular,
macrophages in their model peak at about five to six days and T-cells
around eight days, which agrees with our results in Fig. 3a and c.
However, the neutrophils peak slightly earlier than in our model at
about two to three days, which the difference in CM secretion can
explain. An important finding from our model, which we could not
verify with any experimental data, is M2 > M1. This happens at around
ix days in the model by Wang et al. [36]. Our results match this finding
ell when RvD1 is not added. Moreover, when RvD1 is added, M2

polarization takes over faster, which is to be expected [37].
We also compared our model to experimental data based on animal

models. In particular, we compared our results to historical time-
series data of animal models, including the reperfused myocardium
in dogs [33], which was also used to calibrate the model. The total
number of macrophages and T-cells was compared to Frangogiannis
et al. [33] in Fig. 3a and 3c, in which only the first data point of
the T-cell results does not match our results because our simulations
are initialized without any T-cells present in the tissue. Additionally,
Fig. 3 shows the (re-scaled) data points of rodents Yang et al. [34].
The data by Yang et al. [34] were not used to calibrate the model
but still qualitatively matched our results well, even for the neu-

trophils (Fig. 3b), which were not present in the data by Frangogiannis
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et al. [33]. Together, these figures suggest that the model captures the
global qualitative dynamics of the acute immune response. The initial
macrophage recruitment starts earlier in our simulations compared to
Yang et al. [34] and agrees with Frangogiannis et al. [33], which is
more reliable as it involves a dog model, which is more physiologically
relevant to humans than rodents [35]. Also, neutrophils in our model
peak slightly later and decline more rapidly. This suggests that a more
elaborate recruitment scheme might be needed than the all-or-nothing
recruitment (Eq. (11)) or that the neutrophil degradation rate should
be lower.

Simulation results of RvD1 administration also agree with other
studies. This includes the study by Wang et al. [38], who found that ad-
ministering 100 ng of RvD1 to mice 30 min before inducing acute lung
injury with LPS reduced lung damage. Specifically, Wang et al. [38]
found that RvD1 decreased neutrophil recruitment while stimulating
neutrophil apoptosis and the expression of IL10. These findings are
further supported by Hsiao et al. [37], who also noted an increase in
phagocytosis of apoptotic neutrophils and polarization of macrophages
to M2 after RvD1 intake. Our simulation results are in good agreement
with these experiments.

Limitations of the model include the lack of human data for cal-
ibration and validation of the model and the limited availability of
experimental data in animals. Furthermore, several modeled mecha-
nisms may not be realistic. For instance, the absence of IL10 early
on in the simulation is unrealistic as a concentration of 0.6 pg μl−1

IL10 could already be found after about 24 h of inflammation [39].
Frangogiannis et al. [33] also showed that IL10 levels increase within
a few hours after the onset of inflammation. This means that TR cells
hould appear sooner in the model, or another type of cell should be
ecreting IL10 in our model, such as the macrophages or dendritic cells.
enerally, TR cells can take several days to be expressed after infection
nd, depending on the tissue, take about seven days to peak [40], which
grees with our findings. Therefore, it is more likely that other immune
ells need to secrete IL10 to get the correct cytokine profiles. This is
mportant because anti-inflammatory cytokines (secreted by cells other
han TR) early in the simulations could affect the macrophage dynamics
n our model.

Another limitation is that the kinetics of the molecules in our
odel have been validated to a lesser extent than the cells. Lacking
ore detailed information, we used the same parameter values as Su

t al. [22], even though we specify the type of cytokine secreted by
and TR cells in more detail so that they can function in the GRN
odel. Nevertheless, these values may be a reasonable approximation.

or example, IFN𝛾 secretion by CD4+ T-cells ranged to 50 pg μl−1 in
timulated human control tissue [41]. This agrees with our IFN𝛾 values
n Fig. 5b. Also, the values of IL10 in Fig. 5c fall within the range of
L10 serum levels in dogs, which range from 31 to 2630 pg.μl−1 [42].
onetheless, additional evidence is needed to assess whether these
odeled cytokines behave as they do in vivo.

Avenues for future work are suggested by the parametric sensitivity
nalysis (Appendix D), which found that the recruitment probability
f T-cells (𝜁T), the activation threshold of RvD1 (𝜃RvD1), and the re-
ruitment threshold of regulatory T-cells (𝜖𝑇𝑅) had the most significant
mpact on the moment that M2 polarized macrophages overtake M1 (M2

M1), resulting in the resolution of acute inflammation. This makes
ense because 𝜖TR dictates when TR cells are recruited, being the only
ells to secrete anti-inflammatory cytokines in our model. Furthermore,
T determines how many T-cells are recruited, resulting in more and
ifferently distributed cytokines. Finally, RvD1 has a very strong anti-
nflammatory effect in the GRN model, so if its threshold (𝜃RvD1) is
ower, RvD1 will steer macrophage polarization towards M2. Obtaining
ccurate estimates for these three parameters could be an important
ocus for experimental research that aims to improve and validate the
nderstanding of the role of RvD1 in macrophage polarization.

Furthermore, extensions of our model could aim to expand on the

echanisms described by these parameters. One improvement could

8

e in the recruitment limit threshold of T (𝜖T), which is currently
ependent on the total LPS concentration in the system. This may be
ealistic for macrophages, which can be recruited by pathogens [43],
ut is likely overly simplistic for T-cells. Although our results in Fig. 3a
nd c indicate that 𝜖M and 𝜖T sufficiently explain the experimental
ata, these limits are artificial values that, at least for 𝜖T, cannot

be easily translated into an actual biological mechanism. Given the
sensitivity of our results to 𝜖T, an additional mechanism could be added
n the future. For instance, TR cells might inhibit the recruitment of T-
ells, and consequently their own, which they indeed appear to do via
L10 secretion [44]. Furthermore, TR cells might be recruited by M2

cells [23]. Implementing such a mechanism into future versions of our
model could result in a more realistic description of acute inflammation
and, consequently, the mechanistic underpinnings of the effect of SPMs.

Finally, it is recommended that future studies include biological
targets not present in our model. The PUFA metabolite RvD1 and
other derivatives have been shown to modulate ion channels, such as
TRPV1 and TRPA1, which are involved in peripheral nociception and
inflammation [45]. Incorporating the effects of PUFA derivatives on
various cardiac ion channels [46] and other targets in an extended
model may help resolve conflicting clinical data. Those effects include
but are not limited to antiarrhythmic activation of potassium chan-
nels [47] and inhibition of NHE-1 activity [48]. Moreover, our model
can be employed in future simulations to assess the effects of NF-kB
inhibitors (e.g., resveratrol and metformin) and JAK/STAT inhibitors
(e.g., ruxolitinib and tofacitinib) [49].

5. Conclusion

We developed a multiscale model of an acute inflammatory response
and its resolution that integrates two spatial scales of biological orga-
nization, intracellular gene regulation, and cell-to-cell interactions at a
tissue level. In addition to this integration, we add to previous modeling
efforts a combined partial differential equation–agent-based modeling
approach, which stochastically describes macrophage activation and
M1 to M2 polarization.

We applied the model by investigating an SPM of recent interest:
RvD1. The model allowed us to run a preliminary in silico experiment
to assess the dynamic effect of RvD1 on macrophage polarization. The
results from these in silico experiments support a body of literature
in which dietary supplementation of SPMs emerges as a feasible and
effective candidate in acute and chronic inflammatory disease preven-
tion. Moreover, the model could identify parameters of interest that
should be further explored in experimental studies or expanded on in
future modeling efforts. This is especially important given the apparent
SPM-specific outcomes in clinical trials.

Given that many other in silico experiments are possible, the model
could be used as an adaptable framework for studying the effect of
various SPMs on acute inflammation, which can become increasingly
realistic. Once calibrated and validated on human data, future variants
of the model could potentially guide experiments by synthesizing ob-
tained knowledge and identifying critical sources of uncertainty that
require further elucidation. This scientific cycle might ultimately result
in a deeper understanding of the role of SPMs in macrophage polariza-
tion and, hopefully, contribute to developing non-invasive treatments
for patients suffering from inflammation-related ailments.
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Appendix A. Computational methods for modeling inflammation

In systems biology, genetic regulatory networks are used to assem-
ble knowledge of intracellular mechanisms. They include regulators
such as DNA, RNA, proteins, and their interactions. However, since it
is often impossible to measure all these molecular quantities through
wet-lab experiments, reverse engineering biochemical interactions and
dynamics through computational modeling is often vital [50]. A dis-
tinction can be made between models where the regulators’ state takes
on a discrete value and continuous models that describe continuous
nodes [51]. Although continuous models contain greater detail, dis-
creteness can often be desirable because it enables to use of qualitative
data when real-valued data are lacking [51]. Hence, qualitative infor-
mation about interactions between entities can suffice to develop these
models [52].

Computational models have been applied to many biological regula-
tory systems [53–55]. The simplest among these models is the Boolean
network. Network models consist of nodes and edges representing crit-
ical regulators of intracellular signaling pathways and their relations.
The nodes take values corresponding to activation levels based on the
activation of subsets of all other nodes. In the Boolean network case,
two activation levels are used: high activity of a particular node and
low or absent activity [51]. Network models are typically initialized
with a configuration for each node, updated according to specific
logical rules at each time step [53]. These updates are based on the
activation values of all connected nodes and connections between these
nodes. This time evolution of the state of the network can be used as a
basis for developing more comprehensive computational models [53].

One such model is the agent-based model (ABM), which discretizes
space and time, and uses several rules to describe how the agents inter-
act with an environment. There are several benefits of using the ABM
paradigm to represent biological systems. Firstly, ABMs incorporate
space, allowing the model dynamics to be driven by local interactions
between agents [56]. Agents in the model are also processed in parallel,
which allows relatively simple rules on the level of individual agents
to result in complex behavior at the global level [56]. Furthermore,
ABMs are often stochastic, which is in line with the randomness ob-
served in the behavior of many biological systems [56]. Finally, AMBs
have a modular structure, which allows the modeler to easily add
new information by changing the agent definition or the interaction
rules [56].

Another approach to modeling inflammation is via differential equa-
tions, which deterministically describe how one or more quantities
change over time. Ordinary differential equations (ODEs) have been
used to describe acute inflammation, successfully capturing important
qualitative features of macrophage differentiation [36,57]. However,
9

ODEs assume a spatially homogeneous system [58], making them less
applicable to situations where spatial effects are important [59]. Partial
differential equations (PDEs) explicitly include a spatial component,
allowing for spatial heterogeneity [60]. PDEs have also been used
to describe macrophage differentiation [22,61]. However, a differen-
tial equation approach typically lacks stochasticity, which may not
be a realistic way of describing natural systems (although note that
deterministic approaches are also often adequate, e.g., in modeling
seemingly chaotic behaviors [62]). One way of addressing this short-
coming is to use stochastic differential equations [52]. An alternative
approach is hybrid ABM-PDE modeling, an emerging paradigm that is
both stochastic and spatially heterogeneous [63–65].

Appendix B. Gene-regulatory network extension

Our gene-regulatory network model (GRN) is an extension of the
GRN by Castiglione et al. [20]. The resulting GRN has eight input
nodes to sense extracellular stimuli such as cytokines or ligands. These
nodes are connected to the corresponding receptors. In addition to
the network by Castiglione et al. (2016), our GRN has the Resolvin
D1 (RvD1) input signal and corresponding receptor, which is an SPM
derived from PUFAs [66]. Furthermore, a DLL4 pathway was added
to handle the effects of Notch signaling [67]. Both networks contain
inputs and receptors for LPS and cytokines IFN𝛾, IL10, and IL4. In terms
of genes, only Gsk3b has been added. Both models contain iNOS and
Arg1, genes that drive polarization between M1 and M2 macrophages.
Both models also contain pro-inflammation-associated genes STAT1
and NFkB, anti-inflammation-associated genes STAT3, PPARg, KLF4,
and STAT6, and genes SOCS3 and SOCS1 that connect them.

Below we provided the additional edges with a corresponding ref-
erence to peer-review literature. In particular, we added the Delta-like
ligand 4 and Resolvin D1 input signals and corresponding receptors.
Additionally, GSK3ß was added as a mediator that affects STAT3.

Delta like ligand 4 (DLL4)
Receptor: Notch1

• (Excitation) Notch1 → NFkB [68]
• (Excitation) Notch1 → STAT1 [69]
• (Excitation) Notch1 → SOCS3 [70]

esolvin D1 (RvD1)
Receptor: G protein-coupled receptor 32 (GPR32)

• (Inhibition) GPR32 → GSK3ß [71]
• (Inhibition) GPR32 → STAT1 [72]
• (Inhibition) GPR32 → NFkB [73]
• (Excitation) GPR32 → STAT6 [74]

ipopolysaccharide (LPS)
Receptor: Toll-like receptor 4 (TLR4)

• (Excitation) TLR4 → GSK3ß [75]
• (Excitation) TLR4 → Notch1 [76]

lycogen synthase kappa B (GSK3ß)

• (Excitation) GSK3ß→ STAT3 [77]

ppendix C. Finite volume method

The Finite Volume Method (FVM), as implemented in the FiPy
ackage, is a subset of the Finite Element Method (FEM) and divides
he solution domain into discrete finite volumes over which the state
ariables are approximated with linear or higher-order interpolations.
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Fig. D.1. Example of global sensitivity analysis for simulations without RvD1 in blue (𝑁 = 500) and with RvD1 in green (N = 300) with M2 > M1 as a function of threshold
parameters 𝜃RvD1,𝜃IL4, and 𝜃IFN𝛾

for simulations with RvD1, and 𝜖TR, 𝜁(M) and 𝜁(T) for simulations without RvD1. The rank correlation coefficients and corresponding p-values for
ach of the plotted parameters are (A) 𝜃RvD1with 𝜌 = 0.65, p = 4.11 × 10−37, (B) 𝜃IL4with 𝜌 = 0.17, p = 2.75 × 10−3, (C) 𝜃IFN𝛾

with 𝜌 = −0.17, p = 2.75 × 10−3, (D) 𝜖TRwith
= 0.58, p = 8.01 × 10−46, (E) 𝜁(T) with 𝜌 = −0.71, p = 1.01 × 10−76, (F) 𝜁(M) with 𝜌 = −0.17, p = 1.65 × 10−4.
m
T
d
s
b

he derivatives in each term of the equation are satisfied with simple
pproximate interpolations in a process known as discretization [78].
ore specifically, FiPy uses Cell Centered (CC)-FVM, in which every

ontrol volume (CV) defined by the cells has an average value stored.
ells on the FiPy mesh correspond to grid points in the ABM and are
apped back and forth at every 𝛥t. The CC-FVM method on a Cartesian
 i

10
esh with cells, faces, and vertices works according to Demirdzic [79].
he face is the divider between two cells for all dimensions. The
iffusion equations are approximated by Eq. (14), where 𝜙 is the
olution variable, 𝐴𝑓 is the area of face f, and 𝑑𝐴𝑃 is the distance
etween neighboring cell centers A and P. The first step transforms the
ntegral over the CV volume (V) into an integral over the CV surface
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(S) using the divergence theorem [78].

∫V
∇ ⋅ (D𝜙∇𝜙) dV = ∫𝐒

𝐷𝜙
(

𝑛 ⋅ ∇𝜙
)

dS (14)

≈
∑

f
D𝜙

(

𝑛 ⋅ ∇𝜙
)

f Af

≈
∑

𝑓
𝐷𝜙

𝜙𝐴 − 𝜙𝑃
𝑑𝐴𝑃

𝐴𝑓

The solution to these PDEs can be approximated through several
ethods. For this particular problem, a Finite Volume PDE Solver pack-

ge (FiPy) [78] for Python [30] was used. While the straightforward
mplementation of an explicit numerical scheme to solve the PDEs
s generally recommended [21], an implicit scheme is used in our
odel because it allows for large time steps. In principle, an implicit

pproach allows for finding direct steady-state solutions to the above
quations. We are, however, interested in the intermediate time steps
ynchronized with the length of the time steps in the ABM (𝛥t).

ppendix D. Sensitivity analysis

In order to determine the sensitivity of the free parameters in our
odel, a global sensitivity analysis was performed. The parameter

pace was sampled using the Latin hypercube method, which was
elected for its efficiency compared to completely random sampling
ethods [80]. Sensitivity analyses were performed for simulations with

N = 300) and without (N = 500) RvD1 in the system.
In the simulations with RvD1, the free parameters that were varied

re 𝜃LPS, 𝜃IFN𝛾
, 𝜃IL10, 𝜃IL4, 𝜃RvD1, p(DLL4=1|MA), p(𝜆ND|M2), 𝜖TR, 𝜁M, and

T. In the simulations without RvD1, the same parameters were varied
xcept for RvD1, which was irrelevant. For each free parameter, a range
f values was selected, one order of magnitude above and below the
alues used in our simulations, which for the thresholds and 𝜖𝑇𝑅 is
.05 times the reported values in Table 3. The only exceptions were
(𝜆ND|M2) and p(DLL4=1|MA), which ranged between 0.1 and 1.0, and
M, which ranged between 50% below and above the used value. The
elected ranges were then subdivided into N intervals, each sampled
sing a uniform distribution. This array of N values was then shuffled
andomly and placed inside a matrix with the arrays for the remaining
ree parameters, giving us a total of N samples from the whole parame-
er space. Finally, simulations were run using these sets of parameters,
fter which an output metric, M2 > M1, was calculated and compared
etween parameter sets.

With M2 > M1 used as an outcome measure, a non-parametric
pearman’s 𝜌 rank correlation coefficient was computed for each free
arameter and model output. The rank correlation coefficient measures
he strength of monotonic associations [81]. Similar approaches were
sed by Teodoro et al. [82] and Bankhead et al. [83]. Furthermore, a
andom balance design Fourier Amplitude Sensitivity Test (RBD-FAST),
ith inference parameter M = 10 harmonics summed in the Fourier

eries decomposition, was used to calculate first-order sensitivity in-
ices [84]. The RBD-FAST method with Latin hypercube sampling was
elected for its computational efficiency and reduced error compared to
AST with random sampling [85]. These first-order sensitivity indices
re informative as they yield the exact fraction of the output variance
ccounted for by any input parameter [86]. Therefore, ideally, rank
orrelation and variance decomposition are both calculated [87]. Time-
arying sensitivity indices could not be calculated because M2 > M1
ields only a single value per simulation.

Some of the sensitivity analysis results can be found in Fig. D.1,
here M2 > M1 is plotted for several free parameters for which the

ank correlation coefficient had a 𝑝-value lower than 0.05. A locally
eighted least-squares regression line is drawn in each plot to indicate
onotonic trends in the data. The non-parametric Spearman’s 𝜌 rank

orrelation coefficients for the plotted parameters are reported in the
aption. Except for 𝜖TR in the simulations with RvD1, for which we
ound 𝜌 = 0.33 with a 𝑝 = 4.81 × 10−9, none of the parameters not
11
lotted in Fig. D.1 correlated significantly to the output. These results
re supported by the first-order sensitivity indices (𝑆𝑖) calculated with
he RBD-FAST method. The ranking of the most important effects is
lmost entirely preserved between the two methods. In simulations
ithout RvD1, we find 𝑆𝑖 values of 0.596 for 𝜁(T), 0.307 for 𝜖TR, 0.028

or 𝜁(M), and 0.014 for 𝜃IL4. The other 𝑆𝑖 values are even smaller. In
imulations with RvD1, we find 𝑆𝑖 values of 0.537 for 𝜃RvD1, 0.247 for
TR, 0.072 for 𝜃IL4, 0.024 for p(DLL4=1|MA), and a very small 𝑆𝑖 for IFN𝛾
nd the other parameters.
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