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A B S T R A C T

Cancer cell migration between different body parts is the driving force behind cancer metastasis, which is the
main cause of mortality of patients. Migration of cancer cells often proceeds by penetration through narrow
cavities in locally stiff, yet flexible tissues. In our previous work, we developed a model for cell geometry
evolution during invasion, which we extend here to investigate whether leader and follower (cancer) cells
that only interact mechanically can benefit from sequential transmigration through narrow micro-channels and
cavities. We consider two cases of cells sequentially migrating through a flexible channel: leader and follower
cells being closely adjacent or distant. Using Wilcoxon’s signed-rank test on the data collected from Monte Carlo
simulations, we conclude that the modelled transmigration speed for the follower cell is significantly larger
than for the leader cell when cells are distant, i.e. follower cells transmigrate after the leader has completed
the crossing. Furthermore, it appears that there exists an optimum with respect to the width of the channel
such that cell moves fastest. On the other hand, in the case of closely adjacent cells, effectively performing
collective migration, the leader cell moves 12% faster since the follower cell pushes it. This work shows that
mechanical interactions between cells can increase the net transmigration speed of cancer cells, resulting in
increased invasiveness. In other words, interaction between cancer cells can accelerate metastatic invasion.
1. Introduction

One of the main reasons of death in cancer patients is metas-
tasis (Massalha and Weihs, 2016). When the cell invades through
dense tissues, it often applies forces on its immediate surroundings to
migrate through narrow channels and cavities (Rappel and Edelstein-
Keshet, 2017). Cancer cells that are more invasive, tend to be very
pliable and dynamic, both internally (Gal and Weihs, 2012) and ex-
ternally (Cross et al., 2007; Guck et al., 2005; Paluch and Heisenberg,
2009; Swaminathan et al., 2011), and hence they are able to adjust
their cytoskeleton and geometry. In addition to that, cancer cells have
been shown to apply a significantly larger traction force on substrates,
compared to benign cells (Massalha and Weihs, 2016); Importantly, the
forceful, invasive interactions of tumour cells with their environments
have been used to provide rapid, clinically relevant cancer diagnosis
and prognosis (Kortam et al., 2021; Merkher et al., 2020).

Cells are complex viscoelastic objects, and their shapes are deter-
mined by a local balance between retraction and protrusion of its
boundaries (Ebata et al., 2018). The driving force for cell deformation
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is typically triggered by external stimuli, for example, cell-substrate ad-
hesion, biochemical signalling and forces exerted on the cell (Mogilner
and Keren, 2009; Paluch and Heisenberg, 2009). Furthermore, cell
adhesion and motility are affected by the mechanics of their envi-
ronment (Yeung et al., 2004) and, for example, cells appear to be
more rounded on a softer substrate and more elongated on a stiffer
substrate (Ladoux et al., 2016; Massalha and Weihs, 2016; Zemel et al.,
2010). In other words, cell shape is also an outcome of mechanical equi-
librium as a result of external forces (Paluch and Heisenberg, 2009).
However, the mechanisms that determine global cell morphology in
relation to its function remain poorly understood (Haupt and Minc,
2018; Keren et al., 2008; Mogilner and Keren, 2009).

Directed cell migration is an active process involving cell polariza-
tion that is often driven by chemotaxis or mechanotaxis (Haupt and
Minc, 2018). During single cell migration, the cell must first polarize
for all modes of migration (Ladoux et al., 2016; Llense and Etienne-
Manneville, 2015; Rappel and Edelstein-Keshet, 2017). Cell polariza-
tion into well-defined front (leading edge) and rear parts (Cusseddu
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et al., 2019; Haupt and Minc, 2018), is one of the most significant
responses of animal cells to their environment (Ladoux et al., 2016).
Indeed, there are many possible causes of cell polarization: external
forces (Verkhovsky et al., 1999), Rho family small guanosine triphos-
phate (GTP)-binding proteins (Rho GTPases) (Cusseddu et al., 2019;
Ladoux et al., 2016), chemokines and cytokines (Ji et al., 2008; Llense
and Etienne-Manneville, 2015) etc. Subsequently, the cell migrates in
the direction of the polarity axis, that is, the longitudinal axis of the
cell.

Regarding cell migration, laboratory observations suggest signifi-
cant differences between two-dimensional and three-dimensional situa-
tions. For instance, how the collagen bundles surround the cells and the
way that cells interact with their direct environment (Scott et al., 2021),
have a significant influence on the modes of cell migration in two
and three dimensions. Furthermore, cell migration in confined spaces,
such as apertures or thin channels, proceeds differently from cell mi-
gration in ’free spaces’. Nevertheless, the migration of cells through
confined spaces is very relevant. For instance, the study by Irimia
(2014) deals with migrating neutrophils through small channels. This
migration is triggered by inducing a gradient of a chemokine in an in-
itro experiment. In-vivo observations were done by Paul et al. (2016),
here cancer cells migrating in confined tracks were considered. A
athematical modelling study using cellular Potts principles was done

or cancer cells in confined regions by Preziosi and Scianna (2021).
nderstanding confined cell migration has proven to be very useful to

quantitatively) understand cancer metastasis.
Mathematical modelling has been acknowledged as an important

ool to help turn blurred concepts and ideas into testable, quantifiable
nd rigorous hypotheses and to reveal the correlations between various
actors, which are otherwise difficult to determine in complex biologi-
al phenomena and microscopic experiments. In general, mathematical
odels in biology can be categorized as agent-based models (for small-

cale materials) and continuum models (for large scale materials).
gent-based modelling is extremely beneficial to model cellular activi-

ies like cell division, differentiation and migration etc., since the model
reats every cell as an individual and hence, it is capable of tracking
ell positions and cell-substrate interactions. A further advantage of
gent-based models is that most input parameters are expressed in
erms of directly measurable quantities. However, as far as we know,
any input parameters in the model have never been measured. We

ven think that it is impossible to measure some of the parameters
irectly. Some examples of such parameters are the cell-extracellular
atrix force and intracellular stresses. One may obtain estimates of the

alues of these parameters through regression procedures on the model
n the basis of laboratory measurements. Since in this manuscript,
e will focus on cell geometry and single cell metastasis, we utilize
gent-based modelling. Agent-based models have been widely used
o investigate the evolution of cell geometry. Rens and Edelstein-
eshet (2019) developed an algorithm approach to model the impact
f cellular forces with the cellular Potts model, which is based on the
ssumption of minimizing the energy configuration; the work of Zhao
t al. (2017) mainly focuses on the intracellular environment where
he finite-element method is applied to describe the total energy of the
ell; the model in Cusseddu et al. (2019) emphasizes the impact of Rho
TPases. All the aforementioned works model the ECM as a continuous
nvironment, whereas Kim et al. (2015, 2022) developed computa-
ional models describing cell migration and cell geometry, where the
CM is modelled as a collection of fibre and collagen bundles. Further-
ore, there are other modelling studies regarding cell migration in a

onfined environment: in Hervas-Raluy et al. (2019), they developed
n actin-based model (including both F-actin and G-actin) to describe
ndividual cell migration in a confined environment; Leong et al. (2010)
ses a continuous model to describe the cell geometry in a microtube,
owever, the model is not able to describe the lamellipodia; the model
2

erived in Rejniak (2016) focuses on the crawling and rotation of the
cell on the vessel wall, and the deformation of the vessel wall is taken
into account.

The current work is an extension of our previous work (Peng et al.,
2021), where the Poisson effect, cell polarization and focal adhesion
were not considered, yet still provides a basic model to depict the
cell shape evolution under external stimuli and dynamic processes
that occur during cell invasion. We use the finite-element method to
approximate the solutions to all partial differential equations (PDEs)
in the bulk domain. As energy is consumed during cell migration and
deformation, energetic effects may also have an impact on the cell
migration and invasion; those aspects will be studied in future studies.
Furthermore, to the best of our knowledge there are currently no
in-vitro results for cells that are migrating through deformable chan-
nels, which makes impedes experimental validation of the model. Our
simulation study may therefore serve as a precursor for the develop-
ment of in-vitro experiments of cells transmigrating through deformable
channels.

The manuscript is structured as follows: The biological assumptions
and the resulting mathematical model are presented in Section 2. In
Section 3, numerical results from the simulations with one set of input
parameter values are displayed. Since the model contains randomness
and we aim at generalizing the conclusions in Section 3, Monte Carlo
simulations are presented in Section 4. Finally, in Section 5, we sum-
marize our findings and indicate the possible directions to further this
research.

2. Mathematical modelling

In this manuscript, we extend the phenomenological model in Peng
et al. (2021), where the Poisson effect was not taken into account in
the mechanics of the cell. In that study, we were only modelling the
interplay between the cell and its immediate extracellular environment.
The model that was developed in Peng et al. (2021) describes how
the cells adjust their geometry to respond to the mechanical and/or
chemical signals from the extracellular environments. As an example
we mention the polarization of the cell before the migration, the
mechanical contact with other objects, and the differentiation of cells
from one equilibrium shape to the other. Of course, these results are
preliminary, however, these outcomes demonstrate the flexibility of our
model that can be used to describe the interactions between the cell and
the extracellular environment.

We are aware that to simulate the Poisson effect, the intracellular
environment should be modelled as in Zhao et al. (2020, 2017). How-
ever, in the work of Zhao et al. (2017, 2020), the interaction between
the cell and the substrate, in particular, the traction forces exerted by
the cell to the substrate were not incorporated. On the other hand, from
a computational point of view, the model will be relatively complicated
if we model the intracellular and extracellular environment separately,
as well as the impact of the traction forces on the substrate. Hence,
we are interested in continuing the phenomenological model (Peng
et al., 2021) to depict the Poisson effect, in particular, when the cell
needs to transmigrate through a small pore or channel. In this problem,
we define the intracellular mechanics by means of a spring model
with nodal masses on the cell boundary that are connected to their
immediate neighbours and to the midpoint of the cell.

2.1. Biological assumptions

We are aware that it is impossible and infeasible to include all the
cellular activities of viable cells in the model. Hence we simplify reality
regarding cell polarization and migration. Cells need to be polarized
before migration, which results into leading edges and non-leading
edges of cells. According to Zhao et al. (2017), leading edges are
characterized by having a positive inner product of the outward unit

vector, 𝒏𝑐 , and velocity vector, 𝒗𝑐 , i.e. (𝒏𝑐 , 𝒗𝑐 ) > 0. Note that (⋅, ⋅)
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represents the inner product of two vectors. We consider the combina-
tion of cell migration and deformation by dividing the cell boundary
into a set of nodal points, of which the coordinates are represented
by 𝒙𝑗 . We consider a two-dimensional model, hence we consider the
projection of cells onto a substrate layer. The boundary segments are
line segments with two neighbouring nodal points as vertices. Since the
nodal points define the cell membrane, we use a weighted average to
approximate the outward normal unit vector at a nodal point by the
two line segments that contain the point as a vertex, hence,

𝒏𝑐 (𝒙𝑗 ) =
‖𝒆𝑗−1,𝑗‖𝒏𝑗−1,𝑗𝑐 + ‖𝒆𝑗,𝑗+1‖𝒏𝑗,𝑗+1𝑐

‖‖𝒆𝑗−1,𝑗‖𝒏𝑗−1,𝑗𝑐 + ‖𝒆𝑗,𝑗+1‖𝒏𝑗,𝑗+1𝑐 ‖

, (2.1)

where 𝒆𝑖,𝑗 stands for the line vector, that is, 𝒆𝑖,𝑗 = 𝒙𝑗 − 𝒙𝑖, which
onnects 𝒙𝑖 and 𝒙𝑗 , and 𝒏𝑖,𝑗𝑐 is the outward normal unit vector of the line
egment 𝒆𝑖,𝑗 , hence (𝒏𝑖,𝑗𝑐 , 𝒆𝑖,𝑗 ) = 0. We assume that the leading edges are
ore sensitive to the signalling molecules. Since the cytoplasm of cells

ontains water and polymers, one often models cells as visco-elastic
bjects. Therewith they are deformable and compressible only up to
certain extent. Therefore, we assume that the difference between the

rea of the equilibrium status and the area at time 𝑡 cannot exceed 10%,
hat is,
|

|

|

𝐴(𝛺𝐶 (𝑡)) − 𝐴(𝛺𝑒𝑞
𝐶 )||

|

𝐴(𝛺𝑒𝑞
𝐶 )

⩽ 10%, 𝑡 ⩾ 0,

here 𝐴(𝛺𝐶 (𝑡)) is the area of the cell at time 𝑡 and 𝐴(𝛺𝑒𝑞
𝐶 ) represents

he area of the cell when it is in its equilibrium shape. We realize
hat 10% is a somewhat academic value, however, since cells mainly
onsist of water, it is reasonable to assume a certain maximum degree
f compressibility of a cell. On the one hand, if this percentage is
oo small, then cells cannot or barely be compressed, which would
ontradict the compressibility of the solid (elastic) part of the cell;
n the other hand, when the percentage is too large, together with
relative large weight of chemotaxis/mechanotaxis (which is difficult

r even impossible to measure in-vivo or in-vitro), it will result into a
large degree of compression or expansion of the cell, which might be
unrealistic. We, further, note that cells may die if they are compressed
too much.

We introduce two indicators, namely circularity and aspect ratio to
evaluate the evolution of the cell shape quantitatively (Haupt and Minc,
2018; Massalha and Weihs, 2016). For the two-dimensional case, the
circularity is a measure of how circular a two dimensional object is.
The circularity is defined by

𝐶(𝛺𝐶 (𝑡)) =
4𝜋𝐴(𝛺𝐶 (𝑡))
𝑙2(𝜕𝛺𝐶 (𝑡))

, 𝛺𝐶 (𝑡) ⊂ R2, 𝑡 ⩾ 0, (2.2)

where 𝐴(𝛺𝐶 (𝑡)) represents the area of cell 𝛺𝐶 at time 𝑡 and 𝑙(𝜕𝛺𝐶 (𝑡))
is the circumference of the cell boundary. The circularity value ranges
0 and 1, and the circularity value of a circle is 1, objects degenerating
to lines and curves provide circularities tending to zero. Objects with
circularity value between 0 and 1 may have an elliptic shape, or have
n irregular shape that can contain many protrusions and lamellipodia.
he aspect ratio is defined by:

(𝛺𝐶 (𝑡)) = 𝑑1(𝛺𝐶 (𝑡))∕𝑑2(𝛺𝐶 (𝑡)), 𝛺𝐶 (𝑡) ⊂ R2, 𝑡 ⩾ 0, (2.3)

here 𝑑1(𝛺𝐶 ) and 𝑑2(𝛺𝐶 (𝑡)) represent the length and width of 𝛺𝐶 at
ime 𝑡, respectively. The aspect ratio indicates the internal polarity axes
f the cell, and illustrates how elongated a cell is; the aspect ratio of a
ircle is 1.

Due to inhomogeneities in the extracellular domain, the migration
f cells is subject to randomness. To model the random (uncertain) part
f cellular displacement, a memorized random walk is embedded in the
odel (Takagi et al., 2008), which is developed from the generalized

angevin model. Let 𝑑𝑾 (𝑡) represent a vector Wiener process in which
the contributions to the different coordinate directions are treated as
independent events, and a normal distribution with zero mean and
3

ariance 𝛿𝑡 for all components, with 𝛿𝑡 denoting a time interval. From
tatistical principles, we have the following link between random walk
escribed by the Wiener process for the particle position and the
volution of the probability density function of the position of the
article: 𝜎𝑟𝑤 =

√

2𝐷𝑐 , where 𝐷𝑐 represents the diffusivity of the cell
henotype in this extracellular matrix. This term models the random
isplacements caused by unpredictable localized microstructural in-
omogeneities. In Selmeczi et al. (2005), Takagi et al. (2008), it is
sserted that cells possess a ‘memory’ of its recent, past, velocities. This
ssertion has been experimentally confirmed by Skoge et al. (2014) for
ukaryotic cells. Then, the spontaneous velocity of the cell 𝒗𝑠(𝑡) and the
emory of the velocity 𝑽 𝑠(𝑡) are described by Selmeczi et al. (2005)

⎧

⎪

⎨

⎪

⎩

𝑑𝒗𝑠(𝑡) = −𝛽𝑠(𝒗𝑠(𝑡))𝒗𝑠(𝑡)𝑑𝑡 + 𝛼𝑠𝑽 𝑠(𝑡)𝑑𝑡 + 𝜎𝑟𝑤𝑑𝑾 (𝑡),

𝑑𝑽 𝑠(𝑡) = (𝛼𝑠𝒗𝑠(𝑡) − 𝛾𝑠𝑽 𝑠(𝑡))𝑑𝑡,

(2.4)

here 𝛽𝑠(𝒗𝑠(𝑡)) is the velocity decay rate with the velocity dependency,
𝑠 is the memory rate and 𝛾𝑠 is the memory decay rate. The first
rdinary differential equation explains how the current velocity is
etermined by velocities from the past and random walk. The second
quation describes how the memory velocity is constructed. Since Tak-
gi et al. (2008) suggested that 𝛽𝑠(𝒗𝑠(𝑡)) is proportional to ‖𝒗𝑠(𝑡)‖2, we
ssume that 𝛽𝑠(𝒗𝑠(𝑡)) = 1

𝑆(𝛺𝐶 (𝑡))
+ 𝛽0‖𝒗𝑠(𝑡)‖2, where 𝑆(𝛺𝐶 (𝑡)) is the

spect ratio of the cell defined in Eq. (2.3). The assumption is based
n an experimental observation that elongated cells migrate faster, and
herefore, we use inverse proportionality of the velocity decay rate on
he aspect ratio of the cell (Keren et al., 2008).

.2. Cellular traction forces

It has been documented that cancer cells exert forces on their
irect environment (Massalha and Weihs, 2016), which results in the
eformation of the extracellular environment, which, in turn, has an
mpact on the cell as well. Furthermore, cells, in particular cancer
ells, are known to be able to permanently change their immediate
nvironment. These permanent changes could give rise to shrinkage or
rowth processes, and to mechanical displacements as a result of forces
hat are exerted by the cells themselves. Similar to Peng et al. (2021),
e therefore use a morphoelastic approach to model passive convection
f the cell, and (permanent) displacements of the extracellular matrix.
orphoelasticity is commonly used to combine the modelling of me-

hanical stresses and processes like growth and shrinkage (Ben Amar
t al., 2015; Goriely and Moulton, 2011; Koppenol, 2017; Rudraraju
t al., 2019). Different from the classical elastic and viscoelastic model,
he morphoelastic model takes into account the combination of mi-
rostructural changes and mechanical deformation of the tissue. In this
ontext one may think of processes like degradation or growth of tissues
r any other deformations that are caused by chemical reactions or by
ery large deformations. In other words, the morphoelastic model is
apable of describing the permanent deformation of the tissue, which
ould be relevant if one studies the mechanics of the soft tissues. The
orphoelastic model reads as Koppenol (2017):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌[𝐷𝒗
𝐷𝑡

+ 𝒗(∇ ⋅ 𝒗)] − ∇ ⋅ 𝝈 = 𝒇 (𝒙; 𝑡) =
𝑁𝑐
∑

𝑖=1
𝒇 𝑖(𝒙; 𝑡), in 𝛺, 𝑡 > 0,

𝐷𝝐
𝐷𝑡

+ 𝝐 skw(𝑳) − skw(𝑳)𝝐 + [tr(𝝐) − 1] sym(𝑳) = −𝛼𝑚𝝐, in 𝛺, 𝑡 > 0,

𝒗(𝒙, 𝑡) = 𝟎, on 𝜕𝛺, 𝑡 > 0,
𝒗(𝒙, 0) = 𝟎, in 𝛺, 𝑡 = 0,

(2.5)

here 𝜌 is the density of the extracellular matrix, 𝑁𝑐 is the total number
of cells, 𝝐 is the local (Eulerian) effective strain tensor to be solved,
𝑳 = ∇𝒗 is the deformation rate gradient, sym(𝑳) is the symmetric part,
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which is defined by sym(𝑳) = 1
2
(𝑳 +𝑳𝑇 ), skw(𝑳) is the anti-symmetric

art, and defined by skw(𝑳) = 1
2
(𝑳−𝑳𝑇 ) and 𝛼𝑚 is a non-negative con-

stant that accounts for the amount of plastic deformation proportional
to local (Eulerian) effective strain. The first partial differential equation
in Eqs. (2.5) reflects the momentum balance. The first two terms on the
left-hand side represent the combination of inertia and the movement
of the mesh (the time-derivative being the material derivative). Let 𝑦
be a scalar function, then the material derivative is given by 𝐷𝑦

𝐷𝑡
=

𝜕𝑦
𝜕𝑡

+ 𝒗∇ ⋅ 𝑦 where 𝒗 is the migration velocity of any point within the
omain of computation. The third term in the left-hand side represents
he material forces resulting from stresses in the (visco-elastic) material.
he stresses are decomposed into two added parts: the viscosity part,
hich results from the presence of the interaction between solid and

iquid phases in the intracellular region and which physically provides a
amping mechanism; and the elastic part, which contains the stresses in
he solid part of the extracellular material. The right-hand side contains
he forces that are exerted by the cells. The morphoelastic formulation
ntails three different mechanical states, being coordinate systems, of
he solid material, namely: (1) the original coordinate system, which
epresents the coordinates in the initial domain at 𝑡 = 0; (2) the

current coordinate system, which represents the coordinates in the
current domain at time 𝑡; and finally (3) the current equilibrium system,
which represents the coordinates in the current equilibrium at time 𝑡,
which is the system that would be reached once all the forces would
not be there, that is, put to zero value. The effective Eulerian strain,
denoted by the tensor 𝝐, is the strain between the current state and the
current equilibrium state. It is derived in Hall (2008) that the strain
satisfies the second equation, under the assumption that the strains are
not too large. The second equation keeps track of permanent changes
(displacements and deformations) of the mechanical system, and this
equation is characteristic for the morphoelastic approach. The terms
with the skw(𝑳) contain the rotational (anti-symmetric) component
of the deformation rate tensor (related to the displacement velocity).
The morphoelastic framework is capable of modelling the interplay
between microstructural changes and mechanical deformations, which
may give rise to permanent deformations. This parameter 𝛼𝑚 could have
an electro-chemical origin, however, in the current study, we treat it
as a constant for the sake of simplicity. Note that if 𝛼𝑚 = 0, then as
soon as the force 𝒇 = 𝟎, the tissue will gradually recover to its original
shape and volume. In order to have a fixed boundary of computational
domain 𝛺, we use a homogeneous Dirichlet boundary condition for the
velocity. From a mechanical point of view, we treat the computational
domain 𝛺 as a linear and isotropic medium. Further, as a result of the
presence of liquid phases in the tissue, the mechanical balance is also
subject to viscous, that is friction, effects. Therefore, we use Kelvin–
Voigt’s viscoelastic dashpot model, of which the stress tensor reads as

𝝈 = 𝝈𝑒𝑙𝑎𝑠 + 𝜇𝑣𝑖𝑠𝑐𝑜𝝈𝑣𝑖𝑠𝑐𝑜

=
𝐸𝑠

1 + 𝜈𝑠
{𝝐 + tr(𝝐)[

𝜈𝑠
1 − 2𝜈𝑠

]𝑰} + 𝜇𝑣𝑖𝑠𝑐𝑜
(

𝜇1 sym(𝑳) + 𝜇2 tr(sym(𝑳))𝑰
)

,

(2.6)

where 𝐸𝑠 is the stiffness of the substrate, 𝜈𝑠 is the Poisson ratio of the
substrate, 𝝐 is the strain tensor, 𝜇𝑣𝑖𝑠𝑐𝑜 is the weight of the viscosity
in viscoelasticity, 𝜇1 and 𝜇2 are the dimensionless shear and bulk
viscosity, respectively. The morphoelasticity model provides a set of
nonlinear partial differential equations for the displacement velocity
and the strain tensor. Since the initial displacement is zero everywhere,
the displacement of the domain can be approximated by integrating the
velocity over time: 𝒖(𝒙(𝑡), 𝑡) = ∫ 𝑡

0 𝒗(𝒙(𝜏), 𝜏)𝑑𝜏.
We assume that the traction forces applied by the cell are modelled

by Dirac delta distributions. Let 𝛺 ⊂ R𝑑 be an open region, then the
4

Dirac delta distribution is given by p
1. 𝛿(𝒙) = 0, for all 𝒙 ∈ R𝑑∖{𝟎};
2. ∫𝛺 𝛿(𝒙)𝑑𝛺 = 1, if 𝟎 ∈ 𝛺.

We currently model (cancer) cells that are migrating through narrow
channels and we incorporate the pushing forces that are exerted by the
cancer cells on their immediate environment. These forces are directed
in the outward normal direction of the cell boundary and they are
only applied on the cell boundary segments that are in mechanical
contact with the extracellular obstacles. These obstacles can be other
cells or the wall of the narrow channel. Following the same form of
traction forces as in our previous work (Peng et al., 2021), we denote
𝑁 𝑖

𝑚 = {𝑗1,… , 𝑗𝑚} as the set of line segments of the cell membrane that
are in mechanical contact with the obstacles, then the traction forces
for cell 𝑖 are expressed as

𝒇 𝑖(𝒙(𝑡), 𝑡) =
∑

𝑗∈𝑁 𝑖
𝑚

𝑄(𝑑(𝒔𝑖𝑗 ), 𝑡)𝒏(𝒔
𝑖
𝑗 (𝑡))𝛿(𝒙(𝑡) − 𝒔𝑖𝑗 (𝑡))𝛥𝛤

𝑖,𝑗 , (2.7)

here 𝒏(𝒙(𝑡)) is the unit outward pointing normal vector at 𝒙(𝑡), 𝒔𝑖𝑗 (𝑡)
is the midpoint of line segment 𝑗 of cell 𝑖, and 𝛥𝛤 𝑖,𝑗 is the length of
line segment 𝑗. Note that the cell index is marked as a superscript in
the notations. Most of the time, for the simplification, we neglect it
unless we explicitly describe the case for multiple cells. Here, 𝑄(𝑑(𝒙), 𝑡)
is defined analogously as in Peng et al. (2021):

𝑄(𝑑(𝒙), 𝑡) = 𝜋
4
𝑑(𝒙)𝐸∗∕‖𝑙𝑚‖.

ere, 𝐸∗ is the total equivalent Young’s modulus defined by Popov
et al. (2019) as

1
𝐸∗ =

1 − 𝜈2𝑐
𝐸𝑐

+
1 − 𝜈2𝑠
𝐸𝑠

,

where 𝐸𝑐 and 𝐸𝑠 are the Young’s modulus of the cell and the ECM,
respectively, and 𝜈𝑐 and 𝜈𝑠 are the Poisson ratio of the cell and the
ECM, respectively. Furthermore, 𝑑(𝒙) is the invagination depth of the
ell due to the compression by the obstacle and ‖𝑙𝑚‖ is the total curve
ength of the portion of the membrane of the cell that is in mechanical
ontact with the obstacles. Note that the division by ‖𝑙𝑚‖ is necessary

for normalization since 𝑄 represents the force per unit of peripheral
length of the cell. The total force follows from integration of Q over
the boundary portion that is in physical contact with the obstacle.

2.3. Cell cytoskeleton

In Peng et al. (2021), the cell boundary is modelled by a set of
points on the cell boundary, where all the points are connected to the
cell centre by springs. In the current study, we extend this principle
by connecting adjacent cell boundary points by springs. Using this
formalism, it becomes possible to accommodate for surface tension.
Here, we assume that the elasticity of the springs that connect the
node to the centre and to its neighbouring nodes can have different
values. The cell cytoskeleton is schematically represented in Fig. 2.1.
Similar to Peng et al. (2021), Chen et al. (2018), Vermolen and Gefen
(2012), without any extracellular stimulus (i.e. here we only present the
elasticity part of the cell deformation; the spontaneous displacement of
the cell that is described in Eq. (2.4) will be incorporated later into
the equation of motion), the position of nodal point 𝒙𝑗 over the cell
boundary is determined by

𝑑𝒙𝑗 = 𝐶𝑐 (𝒙𝑐 (𝑡) + �̂�𝑗 − 𝒙𝑗 (𝑡))𝑑𝑡 + 𝐶𝑚(𝒙𝑗−1(𝑡) + �̂�𝑗,𝑗−1 − 𝒙𝑗 (𝑡))𝑑𝑡

+ 𝐶𝑚(𝒙𝑗+1(𝑡) + �̂�𝑗,𝑗+1 − 𝒙𝑗 (𝑡))𝑑𝑡,
(2.8)

here 𝐶𝑐 and 𝐶𝑚 represent the contraction forcing rate of the spring
onnecting 𝒙𝑗 to the centre point and neighbouring points respectively;
̂ 𝑗 = �̃�𝑗 (𝑡) − 𝒙𝑐 (𝑡), �̂�𝑗,𝑗±1 = �̃�𝑗 (𝑡) − �̃�𝑗±1(𝑡) are the vectors connecting the
odal point 𝑗 to the centre point and the neighbouring points when
he cell is in equilibrium shape, and �̃�𝑗 (𝑡) represents the equilibrium
osition of the nodal point 𝑗 relative to the centre 𝒙 (𝑡).
𝑐
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Fig. 2.1. A schematic of the cell cytoskeleton and the repelling (pushing) forces when the cell has mechanical contact with an obstacle. (a) Cell cytoskeleton is built up by a
series of elastic springs. For every nodal point on the cell boundary, it is connected to the cell centre and two neighbouring points by a elastic spring separately. Here, the arrows
indicate the vectors. (b) Repelling forces are exerted by the two cells when they collide with each other and they are compressed. Dashed curves represent the equilibrium shape
of the cells, and the black curve between two cells is the contacting surface. Note that the forces, indicated by the arrows, are perpendicular to the black curve.
To maintain the right orientation of the cell, we consider the rota-
tion matrix defined by

𝑩(𝜙) =
(

cos(𝜙) − sin(𝜙)
sin(𝜙) cos(𝜙)

)

, (2.9)

such that the angle of orientation, 𝜙, can be computed from

�̃� = arg min
𝜙∈[0,2𝜋)

( 𝑁
∑

𝑗=1
‖𝑩(𝜙)�̃�𝑗 (𝑡) − 𝒙𝑗 (𝑡)‖2

)

. (2.10)

The orientation of the cell is represented by the angle of the vector
connecting the ‘front and tail’ of the cell. The overall displacement
of the nodes of the cell boundary are determined by translation and
rotation. This matrix 𝑩(𝜙) monitors the angle of rotation of the cell with
respect to the cell position (and hence boundary nodes) at the previous
timestep. This angle of rotation is important for the determination of
the equilibrium points of the cell boundary nodes. The equilibrium
points reflect the position and shape to which the cell boundary nodes
will converge to if the cell is not subject to any external cue for
migration, that is, the cell no longer migrates. Without any external
cues, the cell will always return to its initial orientation. Subsequently,
Eq. (2.8) is rewritten as

𝑑𝒙𝑗 = 𝐶𝑐 (𝒙𝑐 (𝑡) + 𝑩(�̃�)�̂�𝑗 − 𝒙𝑗 (𝑡))𝑑𝑡 + 𝐶𝑚(𝒙𝑗−1(𝑡) + 𝑩(�̃�)�̂�𝑗,𝑗−1 − 𝒙𝑗 (𝑡))𝑑𝑡

+ 𝐶𝑚(𝒙𝑗+1(𝑡) + 𝑩(�̃�)�̂�𝑗,𝑗+1 − 𝒙𝑗 (𝑡))𝑑𝑡.

(2.11)

Note that here we have not yet incorporated the memorized random
walk of the cell that is described in Eq. (2.4). The memorized random
walk will be added to the equation of motion in the next section.

2.4. Concentration of generic signal

For cancer cells, examples of such cues for migration are oxygen and
nutrients (such as sugar-like chemicals) (Koumoutsakos et al., 2013;
Roussos et al., 2011). We consider a generic chemical, which originates
from an artificial point source. Since we only want to scrutinize the
model’s ability to predict collective cell migration that is impacted
by external mechanical factors, we keep this cue the same for all
cells (both leader cells and follower cells). Therefore, contrary to our
previous work, we use a steady-state diffusion equation (i.e. 𝜕𝑐

𝜕𝑡
= 0):

(2.12)
5

−∇ ⋅ (𝐷∇𝑐𝑠(𝒙)) = 𝑘𝛿(𝒙(𝑡) − 𝒙𝑠),𝒙 ∈ 𝛺, 𝑡 > 0,
where 𝑐𝑠(𝒙) is the concentration of the signalling molecule, 𝐷 is the
diffusion coefficient which has been taken constant in the current study,
𝑘 is the secretion rate of the signal source, 𝒙𝑠 is the position of the
source. Furthermore, 𝛺 is an open bounded simply connected subset
in R2 with boundary 𝜕𝛺. The steady-state problem is closed by the
following Robin condition
𝜕𝑐𝑠
𝜕𝒏

+ 𝜅𝑠𝑐𝑠 = 0, on 𝜕𝛺, 𝑡 > 0,

which deals with a balance between the diffusive flux across the
boundary and the flux between the boundary and the region far away
from the domain of computation. The symbol 𝜅𝑠, which is non-negative,
represents the mass transfer coefficient. Note that as 𝜅𝑠 → 0 then the
Robin condition tends to a homogeneous Neumann condition, which
represents no flux (hence isolation), which in the current steady-state
case, yields an ill-posed problem in terms of existence (and uniqueness).
Whereas 𝜅𝑠 → ∞ represents the case that 𝑐𝑠 → 0 on the boundary,
which, physically, is reminiscent to having an infinite mass flow rate at
the boundary into the surroundings. The Robin condition, also referred
to as a mixing boundary condition, is able to deal with both these
two limits and all cases between these limits. From a mathematical
perspective, the solution 𝑐𝑠 to Eq. (2.12) does not live in the right
finite element space (𝐻1(𝛺)) (Peng and Vermolen, 2022). Therefore
one observes issues regarding accuracy and convergence of the finite
element approximation in regions close to the point, where the Dirac
distribution is acting, that is, 𝐱𝑠. However, away from 𝒙𝑠, the accuracy
of the finite element solution is as good as the classical accuracy in the
𝐿2-norm of the solution (Köppl and Wohlmuth, 2014). We note that in
our application, we are only using the solution away from the point of
action 𝒙𝑠.

2.5. Focal adhesions

Focal adhesions play an important role in cell migration. The move-
ment of a cell is driven by continuous remodelling of the cytoskeleton
and is mediated by the lamellipodia. In general, a cell moves in three
steps: (1) Protrusion: the rear part of the cell is attached on the sub-
strate while the membrane of the front (leading) part is extended; (2)
Adhesion: new adhesion is generated at the newly extended membrane
of the front part; (3) De-adhesion and retraction: the rear part of the
cell is detached from the substrate and due to the cytoskeleton, the
rear part retracts to maintain the cell geometry. Once cell contraction
has completed, the cycle of movement turns back to Step (1). A more
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detailed description of cell migration, or crawling, over the substrate
can be found in Ananthakrishnan and Ehrlicher (2007), Bershadsky and
Kozlov (2011), Mitchison and Cramer (1996).

For the implementation, we simplified the aforementioned three
steps into two steps, that is, the leading part firstly detaches from the
substrate and moves forward while the non-leading part is attached,
then the leading part is attached to the substrate and the non-leading
part detaches and migrate due to cell contraction. For each nodal
point on the cell membrane, we consider a stochastic Markov Chain
model, such that the impact of the previous time step (i.e. the previous
status) is also accounted for. We assume that the probability that the
nodal point is detached from the substrate is related to the local shear
force and the local gradient of the concentration of the signalling
molecules. In other words, if there is larger local shear force and/or
higher gradient of concentration of the signalling molecules, then it is
more likely that the nodal point detaches from the substrate. Denoting 1
for the attached status and 0 for the detached status of the nodal point,
espectively, then the probability of the occurrence of status 𝑠 when the

previous status is 𝑠′ is given by

(𝑋𝑛 = 𝑠|𝑋𝑛−1 = 𝑠′) = 𝑠′(1 − exp{−𝜆1(𝒙)𝑑𝑡})

+ (1 − 𝑠′)(1 − exp{−𝜆2(𝒙)𝑑𝑡}),
(2.13)

where 𝑋𝑛 is the next status and 𝑋𝑛−1 is the present status; 𝜆1 =
𝜆1(𝝈12(𝒙, 𝑡), 𝑐𝑠(𝒙, 𝑡)) = |𝝈12(𝒙)|+ 100‖∇𝑐𝑠(𝒙)‖+𝜔0, and 𝜆2 = 𝜆2(𝝈12(𝒙)) =
|𝝈12(𝒙)|+𝜔0 respectively, and 𝝈12 is given by Eq. (2.6), where the matrix
is symmetric and the non-diagonal element is related to the shear
stress. Here, 𝜔0 is a predefined constant that gives the lower bound of
𝜆1,2, such that the simulation provides qualitatively reasonable results.
Note that the value of 𝜔0 is estimated in this study. Eq. (2.13) can be
rephrased as a Markov Chain matrix:

𝑷 (𝒙) =
(

1 − exp{−𝜆2(𝒙)𝑑𝑡} exp{−𝜆2(𝒙)𝑑𝑡}
1 − exp{−𝜆1(𝒙)𝑑𝑡} exp{−𝜆1(𝒙)𝑑𝑡}

)

. (2.14)

The initial status is randomly assigned to the nodal points on the cell
membrane. To determine the status of such a point, a random value
from a uniform distribution between 0 and 1 is drawn and tested with
the transition probabilities.

2.6. Cell geometry evolution

The cell shape is determined by the positions of the nodal points
on the cell boundary. The movement of the nodal points is determined
by various processes, which are the retraction towards the equilibrium
shape, fluid flow, spontaneous displacement (random walk), chemo-
taxis and possible external mechanical forces. In Section 2.5, the focal
adhesion part of cell migration was formulated in terms of a stochastic
model, where the front and rear parts of the cell detach and attach
onto the substrate by chance. Nodal points on the cell boundary that
adhere onto the solid substrate are only subject to movement that is
determined by the local displacement of the substrate. On the contrary,
if a nodal point on the cell boundary is detached, then its movement is
determined by all the other aforementioned processes, and hence

𝑑𝒙𝑗 = 𝜔𝑠(𝑆(𝛺𝐶 ),𝒙𝑗 )
∇𝑐𝑠(𝒙, 𝑡)

‖∇𝑐𝑠(𝒙, 𝑡)‖ + 𝛾
𝑑𝑡 + 𝐶𝑐 (𝒙𝑐 (𝑡) + 𝑩(�̃�)�̂�𝑗 − 𝒙𝑗 (𝑡))𝑑𝑡

+ 𝐶𝑚(𝒙𝑗−1(𝑡) + 𝑩(�̃�)�̂�𝑗,𝑗−1 − 𝒙𝑗 (𝑡))𝑑𝑡 + 𝐶𝑚(𝒙𝑗+1(𝑡) + 𝑩(�̃�)�̂�𝑗,𝑗+1
− 𝒙𝑗 (𝑡))𝑑𝑡 + 𝒗𝑑𝑡 + 𝒗𝑠𝑑𝑡,

(2.15)

where 𝛾 is a small positive constant to prevent the denominator being
zero and 𝒗 is the velocity of the substrate determined by Eq. (2.5).
Here, we take 𝐶𝑐 and 𝐶𝑚 as constant. Furthermore, 𝜔𝑠(𝑆(𝛺𝐶 ),𝒙𝑗 ) is
the weight of chemotaxis/mechanotaxis that is related to the aspect
ratio of the cell and whether the nodal point in on the leading part.
It has been found that the receptors are distributed differently of the
polarized cell, that is, the leading edges and non-leading edges have
6

a different response to the chemotaxis (Devreotes and Zigmond, 1988;
Wang, 2009). Hence, we assume 𝜔𝑠(𝑆(𝛺𝐶 ),𝒙) is defined by

𝜔𝑠(𝑆(𝛺𝐶 ),𝒙𝑗 ) = exp
{

4
(

𝒗𝑐
‖𝒗𝑐‖

,𝒏𝑐 (𝒙𝑗 )
)}

+ 1
𝑑1(𝛺𝐶 )

(

(𝒙𝑗 − 𝒙𝑐 ),
𝒗𝑐

‖𝒗𝑐‖

)

+ 𝑆(𝛺𝐶 ) + 𝜔0,
(2.16)

where 𝒗𝑐 is the cell velocity at time 𝑡 that is defined by the centre
position of the cell:

𝒗𝑐 (𝑡) ≈
𝒙𝑐 (𝑡) − 𝒙𝑐 (𝑡 − 𝑑𝑡)

𝑑𝑡
,

and here, 𝑑1(𝛺𝐶 ) is the length of the cell and the initial velocity is
zero. The first term in Eq. (2.16) indicates that the points on the
leading edge react more sensitively to the signalling molecules. Since
it is assumed that the cell migrates in the direction of its longitude-
axis,

(

(𝒙𝑗 − 𝒙𝑐 ),
𝒗𝑐

‖𝒗𝑐‖

)

in the second term computes the projection of
the vector (𝒙𝑗 − 𝒙𝑐 ) onto the cell velocity vector. We divide this by
he diameter of the cell for the sake of normalization. The second
erm in Eq. (2.16) is meant to emphasize that the more to the front
he point is located, the more sensitive it responses to the signalling
olecules. Furthermore, when a cell is elongated, it is more sensitive to

he signalling molecules. In summary, the cell geometry is obtained by
onnecting these nodal points on the cell membrane in the predefined
anti-)clockwise order.

Cells that penetrate through narrow channels and narrow blood
essels are subject to friction with the channel or vessel walls. This
riction causes a reduction of the migration speed. Denote 𝜕𝛺𝑜𝑏 as the
oundary of the obstacle (for a microtube, this represents the walls).
hen if a nodal point collides with an obstacle, then both the repelling
orce, exerted by the cell, and the force that results by the compression
f the springs are taken into account. Note that the repelling force does
ot contribute to the friction if the springs are stretched or in their
quilibrium length. For every nodal point on the cell membrane, there
re three springs connected with the centre and the two adjacent nodal
oints. Hence, the force that is caused by these springs are given by

𝑠(𝒙; 𝑡) =𝛼𝐶𝑐

(

(

𝒙𝑗 (𝑡) − 𝑩(�̃�)�̃�𝑗
)

,
𝑩(�̃�)�̂�𝑗

‖𝑩(�̃�)�̂�𝑗‖

)

𝑩(�̃�)�̂�𝑗
‖𝑩(�̃�)�̂�𝑗‖

+ 𝛼𝐶𝑚

(

(

𝒙𝑗 (𝑡) − 𝑩(�̃�)�̃�𝑗
)

,
𝑩(�̃�)�̂�𝑗,𝑗−1

‖𝑩(�̃�)�̂�𝑗,𝑗−1‖

)

𝑩(�̃�)�̂�𝑗,𝑗−1
‖𝑩(�̃�)�̂�𝑗,𝑗−1‖

+ 𝛼𝐶𝑚

(

(

𝒙𝑗 (𝑡) − 𝑩(�̃�)�̃�𝑗
)

,
𝑩(�̃�)�̂�𝑗,𝑗+1

‖𝑩(�̃�)�̂�𝑗,𝑗+1‖

)

𝑩(�̃�)�̂�𝑗,𝑗+1
‖𝑩(�̃�)�̂�𝑗,𝑗+1‖

,

(2.17)

here 𝑩(�̃�)�̃�𝑗 is the equilibrium position of 𝒙𝑗 if there is only orienta-

ion but no other mechanics,
𝑩(�̃�)�̂�𝑗

‖𝑩(�̃�)�̂�𝑗‖
,

𝑩(�̃�)�̂�𝑗,𝑗−1
‖𝑩(�̃�)�̂�𝑗,𝑗−1‖

and
𝑩(�̃�)�̂�𝑗,𝑗+1

‖𝑩(�̃�)�̂�𝑗,𝑗+1‖
represent the unit vector of the springs, respectively when they are
compressed. Furthermore, here 𝛼 is a constant with the dimension 𝑃𝑎⋅𝑠,
which is the same dimension as viscosity. In other words, the parameter
𝛼 describes the shearing resistance of the deformation of the cell. In
this modelling framework, we consider the force that is exerted by the
cell in order to retain the equilibrium shape configuration. One may
compare this spring force to the relaxation of skin after a force has been
applied. The model also considers a second force, which is the force that
the cell actively exerts in order to open the channel further so that the
cell can continue its migration. The current formalism superposes these
two forces. Then, the friction force orthogonal to the obstacle that has
an impact on the migration of the cell is determined by

𝒇𝑓 (𝒙; 𝑡) = ((𝒇 𝑠(𝒙; 𝑡) + 𝒇 (𝒙; 𝑡)),𝒏𝑜𝑏(𝒙(𝑡)))𝒏𝑜𝑏(𝒙(𝑡)), if 𝒙(𝑡) ∈ 𝜕𝛺𝑜𝑏, (2.18)

where 𝒇 𝑠(𝒙; 𝑡) is the force from the springs defined in Eq. (2.17) and
𝒇 (𝒙; 𝑡) is the repelling forces actively exerted by the cell that is defined

in Eqs. (2.5) and (2.7). It is assumed that the magnitude of the friction
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is proportional to the repelling force. Furthermore, 𝒏𝑜𝑏 is the unit
orthogonal vector pointing outward the cell centre, hence the vector
points into the substrate. In our model, we simply subtract a friction
part of the velocity in the tangential direction of the obstacle. Hence,
the displacement of the nodal point which collides the wall of the
microtube is given by

𝑑𝒙𝑗 (𝑡) ← 𝑑𝒙𝑗 (𝑡) − 𝜇𝑓‖𝒇𝑓 (𝒙𝑗 (𝑡))‖ × (𝑑𝒙𝑗 (𝑡), 𝝉𝑜𝑏(𝒙𝑗 (𝑡)))𝝉𝑜𝑏(𝒙𝑗 (𝑡)),

if 𝒙𝑗 (𝑡) ∈ 𝜕𝛺𝑜𝑏,
(2.19)

where 𝜇𝑓 is the cell friction coefficient, 𝒇 (𝒙𝑗 (𝑡)) is the repelling force
exerted by the cell and 𝝉𝑜𝑏(𝒙) is the tangential direction (also unit
vector) of the obstacle boundary 𝜕𝛺𝑜𝑏.

Furthermore, the cell is not allowed to penetrate into the wall itself
and hence velocity components normal to the wall are subtracted.
In other words, the displacement of the nodal point that collides the
obstacle is rephrased as

𝑑𝒙𝑗 (𝑡) ← 𝑑𝒙𝑗 (𝑡) − (𝑑𝒙𝑗 (𝑡),𝒏𝑜𝑏(𝒙𝑗 (𝑡)))𝒏𝑜𝑏(𝒙𝑗 (𝑡)), if 𝒙𝑗 (𝑡) ∈ 𝜕𝛺𝑜𝑏. (2.20)

3. Numerical results

In this section, we investigate how cells influence each other’s
migration when they migrate through a narrow pore or channel. In
the in-vitro experiments which contain microtubes, the width of the
microtube is often set a bit smaller than the cell diameter, which exper-
imentally models the transmigration of cells through narrow channels
in real tissues. However, as we mentioned earlier, in the in-vitro ex-
periments, the microtubes are undeformable (Mak and Erickson, 2013;
Mak et al., 2013; Zhang et al., 2021), which is contrary to real tissues,
where the immediate environment of cells, consists of deformable
material. Therefore, inspired by the microtube experiments, we adjust
the experimental setting such that the channel can deform due to the
forces exerted by cells in our simulations. In the above formulation, we
have used the plane stress model for the relation between the elastic
part of the stress versus strain. This formalism models a thin plate
where the stress components in the normal direction to the 2D plane
that is considered have been disregarded. We do not expect a large
qualitative difference if the computations would have been done on
the basis of the plane strain model. We also note that the use of the
above Hooke’s Law for the stress and strain relation is actually valid
for small strains. In fact, if one wants to include large strains, then
a different constitutive law should be used. We have not done this
since this addition would make the model more complex, also in terms
of the number of input parameters needed. This would increase the
unnecessarily in the modelling framework.

We consider two different settings, which are distinguished by how
many cells are migrating through the channel at the same time. In Case
(1) (see Fig. 3.1(a)), there is only one cell in the computational domain
penetrating through the channel. In other words, the next cell is only
allowed to enter the channel when the previous one has completely
exited. We are aware that this setting does not probably reflect reality
since cancer cells mostly migrate collectively. However, this setting
is helpful to determine and to quantify whether the follower cell
benefits from the leader cell, which possesses the ability to permanently
widen the channel. The permanent nature of the deformation has been
incorporated by the use of the morphoelastic component in the solid
mechanical part of the model. In Case (2) (see Fig. 3.3(a)), we consider
two cells that simultaneously migrate through the narrow channel. This
case reflects the mechanism of collective migration somewhat better. In
this case, we consider the forces that the cell exert in order to repel
and push each other. Note that here we assume that there is only
mechanical contact between the two cells, as likely occurs in cadherin
deficient cells, such as the commonly used metastatic, breast cancer cell
line MDA-MB-231 (Zhang et al., 2021).

In both cases, we have similar experimental settings and in this
7

manuscript, all the simulations are carried out in two dimensions.
In the computational domain 𝛺 = (−100, 100) × (50, 50), a sinusoidal
deformable channel that starts at 𝑋𝑙 = −64 and ends at 𝑋𝑟 = 60, is
given by the following top and bottom part of the channel walls

𝑦 = ±(𝑏 + 𝐴 sin(𝑤𝑥)), 𝑏, 𝐴,𝑤 > 0. (3.1)

Note that 2(𝑏 + 𝐴) is set to be smaller than the cell diameter to ensure
that the cell is confined in the channel. The advantages of a sinusoidal
channel are: (1) it is a well-defined geometry, where the channel width
ranged between 2(𝑏 − 𝐴) and 2(𝑏 + 𝐴); (2) it resembles the walls of a
channel in a tissue, where the wall is formed by cells (Heuzé et al.,
2011). We assume that the cells are located initially at the left side
of the channel and at the other side of the channel, there is a point
source of signalling molecule. The parameter values that are used in
the simulations in this section are shown in Table 3.1. We use 𝑁 =
40 for the number of nodal points on the cell boundary. This choice
was motivated by the study in Chen et al. (2018), where it was found
that the results were not significantly sensitive to the number of nodes
on the cell boundary if more than 30 nodes on the cell boundary
were used. Note that we also define the initial positions of the most
left and right point of the channel, since the channel will deform due
to the forces exerted by the cells. As a result, the position of the
channel is altering in the same time: we define {𝑿𝑐ℎ𝑎𝑛𝑛𝑒𝑙} as the set of
initial positions of the channel, then the new positions of the channel
{𝒙𝑐ℎ𝑎𝑛𝑛𝑒𝑙} can be tracked by

𝒙(𝑡) = 𝑿 + 𝒖(𝑿, 𝑡), ∀𝑿 ∈ {𝑿𝑐ℎ𝑎𝑛𝑛𝑒𝑙},

where 𝒖(𝑿, 𝑡) is the displacement of the computational domain, post
processed by solving the morphoelasticity model in Eq. (2.5), and 𝑿 is
the initial position. We say that the cell enters the channel when there
is more than one nodal point of the cell membrane in the channel (the
moment is denoted by 𝑡𝑖𝑖𝑛 for cell 𝑖) and the cell leaves the channel
completely when there is no nodal point of cell membrane in the
channel (the moment is denoted by 𝑡𝑖𝑜𝑢𝑡 for cell 𝑖). To rephrase it, the
entering time and exiting time are defined by

𝑡𝑖𝑖𝑛 = argmin
𝑡⩾0

{𝒙𝑖𝑗 ∈ 𝜕𝛺𝐶 𝑖 ∶ ∃𝒙𝑖𝑗 enters the channel};

𝑡𝑖𝑜𝑢𝑡 = argmin
𝑡>𝑡𝑖𝑖𝑛

{𝒙𝑖𝑗 ∈ 𝜕𝛺𝐶 𝑖 ∶ ∀𝒙𝑖𝑗 exits the channel},

for the cell 𝑖 and 𝜕𝛺𝐶 𝑖 , and we remind the reader that 𝒙𝑖𝑗 denotes the
cell membrane and 𝑗th nodal point on the cell membrane of the cell 𝑖.
Subsequently, the transmigration time of cell 𝑖 is given by

𝑇 𝑖 = 𝑡𝑖𝑜𝑢𝑡 − 𝑡𝑖𝑖𝑛,

and the (average) speed of the cell migration reads as

�̄�𝑖 =
‖𝒙𝑖𝑐 (𝑡

𝑖
𝑜𝑢𝑡) − 𝒙𝑖𝑐 (𝑡

𝑖
𝑖𝑛)‖

𝑇 𝑖 ,

where 𝒙𝑖𝑐 (𝑡) represents the central position of cell 𝑖 at time 𝑡.

3.1. Case (1): Single cell migration

The initial setting of the simulation is shown in Fig. 3.1(a). We
consider a deformable sinusoidal micro-channel that separates the left
and right parts of the domain. The cells can migrate through the
channel. To ensure most settings are the same for every cell, the initial
positions of cells are the same, that is, all the cells start moving from
location, where the centre position is (−75, 0).

Several snapshots at consecutive times of the simulation are shown
in Fig. 3.1. Furthermore, to have a better visualization of the sim-
ulation, a short animation is attached (see Supplementary Material
Video 1). Fig. 3.2(a) shows the cells’ speed when they are migrating
through the channel. Note that here 𝑡 = 0min in the figure is the
moment when the cell enters the channel. In general, it can be seen that
the curve of the first cell has the largest amplitude of the oscillation,
while the migration speed profiles of the other cells exhibit smaller
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Table 3.1
Parameter values of the cell invasion model used in Section 3.
Parameter Description Value Units Source

𝐸𝑠 Substrate elasticity 50 kg/(μm min2) Chen et al. (2017)
𝐸𝑐 Cell elasticity 5 kg∕(μm min2) Chen et al. (2017)
𝐶𝑐 Contraction force rate of the springs that connect the

cell centre and the nodal point on the cell membrane
5 1∕min Chen et al. (2017)

𝑅 Cell radius 5 μm Chen et al. (2017)
μ𝑓 Cell friction coefficient 0.03 – Angelini et al. (2012)
𝜈𝑠 Poisson ratio of the ECM 0.48 – Koppenol (2017)
𝜈𝑐 Poisson ratio of cells 0.38 – Trickey et al. (2006)
𝜅𝑠 Parameter in Robin’s boundary condition to solve

Eq. (2.12)
1 1∕μm Peng and Vermolen (2020)

μ𝑣𝑖𝑠𝑐𝑜 Weight of viscosity in viscoelasticity in Eq. (2.6) 1 – Peng et al. (2022)
μ1 Shear viscosity of the ECM 33.783 – Peng and Vermolen (2020)
μ2 Bulk viscosity of the ECM 22.523 – Peng and Vermolen (2020)
𝛼𝑠 Memory rate of spontaneous displacement in Eq. (2.4) 0.098 – Takagi et al. (2008)
𝛾𝑠 Decay rate of spontaneous displacement in Eq. (2.4) 0.098 – Takagi et al. (2008)
𝛽0 Coefficient in Eq. (2.4) 0.17 (min ∕μm)2 Takagi et al. (2008)

Estimated Parameter Value in this study

𝐶𝑚 Contraction force rate of the springs that connect the
neighbouring nodal points on the cell membrane

0.5 1∕min

𝛼 Shearing resistance of the springs in the cell
cytoskeleton

1 kg∕(μm min)

𝑘 Secrete rate of the signal 100 kg∕(μm3 min)
𝐷 Diffusion rate of the signal 233.2 μm2∕min
𝑁 Number of nodal points on the cell membrane 40 –
𝜎𝑟𝑤 Weight of random walk 1 –
𝛼𝑚 Degree of permanent deformation in Eq. (2.5) 1.5 –
𝜌 Density of ECM in Eq. (2.5) 1 kg∕μm3

𝑥0 Length of the computational domain in the
x-coordinate

200 μm

𝑦0 Length of the computational domain in the
y-coordinate

100 μm

𝑋𝑙 The x coordinate of the most left point of the channel −64 μm
𝑋𝑟 The x coordinate of the most right point of the

channel
60 μm

𝐴 Amplitude of the initial sinusoidal flexible channel in
Eq. (3.1)

1 –

𝑤 Angular frequency of the initial sinusoidal flexible
channel in Eq. (3.1)

0.7 –

𝑏 Midline of the initial sinusoidal flexible channel in
Eq. (3.1)

2.5 –

𝜔0 Lower bound of 𝜆1,2 in Eq. (2.13) and 𝜔𝑠(𝑆(𝛺𝐶 ),𝒙𝑗 ) in
Eq. (2.16)

5.0 –
amplitudes. Furthermore, it is clear that the first cell moves the slowest
and takes the longest time in the channel compared to the follower
cells. However, regarding the cell speed, it is hard to see the difference
between the second and the third cell, except that the third cell spends
less time in the channel (since the black curve disappears the earliest
in the figure). Furthermore, in Fig. 3.2(c) and 3.2(e), cells are in an
elongated shape when they migrate, as the circularity and the aspect
ratio never recover to 1, which is the case for the equilibrium (and
initial) shape. However, it seems that the difference in the circularity
is not that significant, while regarding the aspect ratio, the follower
cells are more elongated, which accelerated their velocity according to
our model assumptions.

For the sake of quantification, we show the transmigration time
and average speed of three cells in Table 3.2, and the change of the
width of the channel is shown in Table 3.3. Since cells are migrating
to the right-hand side, the channel is stretched to the right as well, as
it is seen in Fig. 3.1. Furthermore, we also noticed that the sinusoidal
channel becomes more and more flat after the transmigration of several
cells, which is mainly caused by the fact that the repulsion force is
proportional to the penetration depth of the cell. From Table 3.2, it
can be concluded that, in general, the follower cells move faster and
move over a shorter distance, compared to the leader cell. Furthermore,
every cell contributes to making the channel wider and after all three
cells penetrating through the channel, even the minimal width of the
8

channel is comparable with the cell size; see Table 3.3. As a result,
Table 3.2
Numerical results (i.e. transmigration time and average speed of three cells) of
the simulation shown in Fig. 3.1 for Case (1).
Cell Index 𝑖 Transmigra-

tion time 𝑇 𝑖

(min)

Average
Speed �̄�𝑖

(μm∕min)

Migration
Distance of
Cell Centre
(μm)

Cell 1 34.93 3.99 139.46
Cell 2 26.53 4.59 121.74
Cell 3 24.85 4.52 112.34

the follower cells benefit from the leader cell that widens the channel
such that the follower cells deform less and there is also less friction
from the wall of the channel. However, we observed that the speed of
Cell 3 is 1.53% smaller than the speed of Cell 2, which may imply an
optimum channel width to maximize the cell speed. Such an optimum
could easily exist since the wall is also expanded by the cell in order to
migrate. Furthermore, there is a significant difference of the cell aspect
ratio between Cell 2 and Cell 3, which results from the fact that before
Cell 3 enters the channel, the channel has been expanded significantly
such that Cell 3 is not required to change shape as much; hence, cell
polarization and the cell aspect ratio are less compared with Cell 2.
Consequently, Cell 3 transmigrates more slowly than Cell 2.
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Fig. 3.1. The screenshots of the simulation for Case (1), where the next cell appears only when the previous cell leaves the channel completely.
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Fig. 3.2. In each case, we ran 50 simulations in total and we take the average speed (subfigures (a) and (b)), circularity (subfigures (c) and (d)) and aspect ratio (subfigures (e)
and (f)) of every time step for all the cells to obtain the curves shown above. The 95% confidence interval is also indicated as an envelop in both figures with different colours
accordingly. Blue, red and black curves represent the first (leader cell), the second (follower cell) and the third cell (only existed in Case (1)), respectively.
Table 3.3
The maximal and minimal width of the channel after different cells exit the channel of the simulation shown in Fig. 3.1 for Case (1).
Description Minimal width of the channel

(μm)
Maximal width of the channel
(μm)

Initial Condition 3.00 7.00
After the first cell exits and before the second cell enters the channel 5.75 13.09
After the second cell exits and before the third cell enters the channel 6.81 14.08
After the third cell exits the channel 8.47 14.26
3.2. Case (2): Cell doublet migration

We consider the second case, where the follower cell follows the
leader cell immediately entering the channel. That is, there are more
than one cell in the computational domain at the same time, which
is so-called cell doublets in in-vitro experiments (Zhang et al., 2021).
The setting of cell doublets is a simplified type of collective migration.
Further, this experimental setting (see Fig. 3.3(a)) results into the pos-
sibility that cells collide against each other. We assume here that cells
can also exert force on the other cell as long as they are compressed. For
a better visualization, we refer to the Supplementary Material Video 2,
attached to this manuscript.
10
Fig. 3.3 shows several snapshots at consecutive times of the simu-
lation, and Fig. 3.2(b) illustrates the speed of the two cells inside the
channel. The results of the simulations are summarized in Tables 3.4
and 3.5. The difference between the average speeds of the follower cell
and the leader cell is very small, and due to the randomness involved
in the model, these differences are not significant from a statistical
point of view. Another, more important, effect that we see is that the
average speeds of both the follower and leader cells are about the same
as the average of the follower cell in Case (1), which has increased
compared to the average speed of the original leader cell. This fact
clearly shows that collective cell migration is beneficial for the cells.
This also demonstrates that cancer metastasis benefits from collective
cell migration. Similarly to the conclusion we drew in the previous
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Table 3.4
Numerical results (i.e. transmigration time and average speed of two
cells) of the simulation shown in Fig. 3.3 for Case (2).
Cell Index 𝑖 Transmigra-

tion time 𝑇 𝑖

(min)

Average
Speed �̄�𝑖

(μm∕min)

Migration
Distance of
Cell Centre
(μm)

Cell 1 30.87 4.48 138.21
Cell 2 30.73 4.46 137.12

Table 3.5
The maximal and minimal width of the channel after different cells exit
the channel of the simulation shown in Fig. 3.3 for Case (2).
Description Minimal width

of the channel
(μm)

Maximal
width of the
channel (μm)

Initial Condition 3.00 7.00
After cell doublets
exist the channel

5.82 13.72

section, Fig. 3.2(d) and 3.2(f) display the circularity and the aspect
ratio of both cells. Different from what we saw in Case (1), there is
a significant difference regarding the circularity and the aspect ratio
of the follower cell and the leader cell: the follower cell alters its
equilibrium shape much less than the leader cell, as both indices of the
follower cell are closer to 1 than for the leader cell. Although, we do
ot explicitly take energy into account in the current model, we expect
rom these simulations that the follower cell consumes less energy than
he leader cell.

.3. Comparison between the two cases

From Tables 3.2 and 3.4, we observe that there is a significant
ncrease in the average speed of Cell 1 in Case (2). To have a clearer
iew, we plot the average of the time series of the velocity of Cell 1

and Cell 2 that are collected from 50 simulations with the same input
parameters in Table 3.1; see Fig. 3.4 for the results. It can be concluded
that for the selected parameter set, the leader cell (Cell 1) is moving
faster in Case (2) than Case (1), as the follower cell in Case (2) exerts
the repelling force, while for the follower cell (Cell 2), there is hardly
any difference with respect to the speed, however, in Case (2), Cell 2
needs more time to transmigrate through the channel completely since
the leader cell is blocking the channel. However, the most important
conclusion so far is that in Case (2), both the leading and follower
cells transmigrate faster than the leader cell in Case (1). This shows
that collective cell movement can increase metastatic migration rates,
where we illustrated this behaviour for two cell-interaction modes: (1)
the leader cell ‘paves’ the way through for the follower cell (Case (1)),
and (2) the cells interact by pushing each other thereby producing a
net larger joint force onto the channel walls (Case (2)).

Regarding the invasiveness, we focus on the channel width after the
leader cell (Cell 1 in Case (1)) or the cell doublet (both Cell 1 and Cell
2 in Case (2)) have exited the channel completely. The results can be
found in Tables 3.3 and 3.5. Both minimal and maximal width of the
channel in Case (2) (5.82 and 13.72 μm, respectively) are wider than in
Case (1) (5.75 and 13.09 μm, respectively), since in Case (2), both cells
exert forces on the channel walls at the same time and within a certain
distance. This implies that cell doublets enhance the invasiveness and
increase its speed as compared with single cell, which is in line with
experimental observations by Merkher and Weihs (2017), Tulchinsky
and Weihs (2022).

The aforementioned observations hold for the current set of input
values. Next, we will vary the input parameters according to statistical
11

distributions and see whether the above conclusions are general. (
4. Monte Carlo simulations

In Section 3, we considered series of 50 simulations with the same
input parameters. To investigate whether the conclusions (the potential
existence of an optimal width of the channel that increases migration
speed under for interacting cells) from Section 3 hold in general,
Monte Carlo simulations are performed, where the input parameters
are subject to the statistical distributions that are given in Table 4.1
and the other constant parameters are the same as in Table 3.1. In this
section, we will show box-plots of the average cell speeds, and conduct
the Wilcoxon test to statistically investigate whether the follower cell
and leader cells benefit from each other for both Case (1) and Case
(2) for the parametric ranges that we use. Since the output parame-
ters do not necessarily follow normal distributions, we compute the
Spearman correlation coefficients (Weaver et al., 2017) to determine
the correlation between input-and output parameters.

In this section, we compute the Spearman correlation (Weaver et al.,
2017) as it does not request the data to obey the normal distribution.
Furthermore, we did the Shapiro test (Shapiro, 1990), which evidenced
that most output data does not follow a normal distribution.

4.1. Case (1): Single cell migration

In total, 1019 samples are collected with all the input and output
variables mentioned in Table 4.1. As the channel is deforming contin-
uously, the average speed of the cell during the penetration is more
appropriate to investigate. Fig. 4.1 illustrates the average speed of all
the cells and the scatter plot between the first and second cells. It
is hard to conclude from the box-plot (Fig. 4.1) whether there is a
significant difference between cells. Therefore, Wilcoxon’s test is used
and the results are shown in Table S1. As the leader cell, Cell 1 does
help the follower cells (Cell 2 and Cell 3) move faster since the 𝑝-
alue from the Wilcoxon’s test is almost 0. However, Cell 3 moves more
lowly than Cell 2, which can be explained by the energy consumption
nd the confinement: from Fig. 4.2, it can be seen that after Cell 2
as transmigrated through the channel, the channel is expanded more,
hich results in less confinement for the cell and then the aspect

atio of the cell is smaller; we speculate from the perspective of the
nergy consumption, that a cell may prefer to stay mostly in its original
quilibrium rather than migrate faster, to some extent. Furthermore, we
ee a relatively strong correlation between the speeds of each cell; see
ig. 4.1. As a result, to investigate how the properties of the substrate
nd the flexible channel influence the cell displacement, we will mainly
ocus on Cell 1.

In Fig. 4.2, we investigate how the width of the flexible channel be-
ore the cell enters, affects the average velocity of the cell respectively.
s it is expected, once every cell leaves the channel, it contributes to
idening the channel in general. In Figure S1(a)–(c), the correlation

or Cell 1 is opposite for the other two cells. Before Cell 1 enters the
hannel, the minimal width of the channel can be much smaller than
he cell size. According to our model assumptions that the cell area
an only alter at most 10%, the cell has to become more elongated,
hich results into a larger aspect ratio. Therefore, the cell should move

aster. However, in the meantime, a narrow channel also increases the
riction from the channel on the cell, and it requires more energy from
he cell to deform more, which actually slows down the cell — that is
hy Figure S1(b)S1(a) shows a parabolic behaviour and it shows an
pposite tendency compared to Figure S1(b) and (c). Once the leader
ell (Cell 1) expands the channel to a width that is comparable to the
ell size (see Fig. 4.2), the follower cells (Cell 2 and Cell 3) do not need
o deform as much as before, thus, they stay more akin the equilibrium
hape and less elongated since cells are not confined. Subsequently, a
ecreasing tendency appears in Figure S1(b) and (c). In other words,
here should exist an optimum of the width of the channel, such that
he cell moves fastest with a combination of a relatively large aspect
atio and a relatively small deformation — this is verified by the fact
hat Cell 2 moves significantly faster than Cell 3 in the Wilcoxon’s test
p-value = 8.28 × 10−47) in Table S1.
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Fig. 3.3. The screenshots of the simulation for Case (2), where cells follow each other to enter the channel together.
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Fig. 3.4. The time series of the average cell speed of Cell 1 and Cell 2 in Case (1) and Case (2). Black solid curve and green dashed curve represent Case (1) and Case (2),
respectively. The translucent envelops around the curves are the corresponding 95% confidence interval.
Table 4.1
Input parameters and outputs of the Monte Carlo simulations for both cases.

Input variables

Parameters Description Predefined distributions

𝐸𝑠 Substrate elasticity log-normal(log(50), 0.5)
𝐸𝑐 Cell elasticity log-normal(log(50), 0.5)
𝐶𝑐 Contraction force rate of the springs that connect the

cell centre and the nodal point on the cell membrane
log-normal(log(10), 0.1)

𝐶𝑚 Stiffness of the springs that connect the neighbouring
nodal points on the cell membrane

log-normal(log(5), 0.05)

𝜈𝑠 Poisson ratio of the ECM 𝑈 (0.4, 0.5)
𝜈𝑐 Poisson ratio of the cells 𝑈 (0.3, 0.4)
μ𝑓 Cell friction coefficient against the channel wall 𝑈 (0.03, 0.06)
𝑤 Angular frequency of the initial sinusoidal flexible

channel in Eq. (3.1)
𝑈 (0.3, 0.7)

𝑏 Midline of the initial sinusoidal flexible channel in
Eq. (3.1)

𝑈 (2, 4)

μ𝑣𝑖𝑠𝑐𝑜 Weight of viscosity in viscoelasticity in Eq. (2.6) 𝑈 (0, 1)
𝛼𝑚 Degree of permanent deformation in Eq. (2.5) 𝑈 (0, 2)

Outputs with respect to cell 𝑖, 𝑖 = 1, 2, 3a

𝑇 𝑖 The transmigration time of cell 𝑖 through the channel
�̄�𝑖 The average speed of cell 𝑖 penetrating through the channel
cell_dis(i) The length of the channel that cell 𝑖 has migrated, as the channel is

deformed due to the cellular traction forces
cell_max_as(i) The maximal aspect ratio of cell 𝑖 during the penetration
cell_min_c(i) The minimal circularity of cell 𝑖 during the penetration

Outputs with respect to width of the channel, where 𝑖 = 1, 2, 3a

min_width_0 The minimal width of the initial channel
min_width(i) The minimal width of the channel after cell 𝑖 completely exits the

channel, that is, before cell 𝑖 + 1 enters the channel
max_width_0 The maximal width of the initial channel
max_width(i) The maximal width of the channel after cell 𝑖 completely exits the

channel, that is, before cell 𝑖 + 1 enters the channel

ai = 3 is only applicable in Case (1) in the Monte Carlo simulations but not in Case(2).
4.2. Case (2): Cell doublet migration

For Case (2), since the leader cell (Cell 1) and the follower cell
(Cell 2) are entering the channel at about the same time, the data
regarding the channel width after the leader cell exits is less interesting.
There are 1044 samples collected from the Monte Carlo simulations of
Case (2) and similarly, we start with analysing the average speed of
the cells. From Fig. 4.3, there is hardly any difference between the
average speed of the cells, which is similar to the preliminary results
in the previous section. The Wilcoxon’s test verifies that two cells are
13
moving at more or less the same velocity with p-value = 0.9999; see
Table S2. In the meantime, there exists a strong positive correlation
between the average velocity of two cells (corr = 0.86). Two cells are
moving together through the channel and they will definitely collide,
since from Case (1), we have concluded that the follower cell benefits
from the expanded channel that is caused by the leader cell. Because
of the collisions, even though the follower cell is able to move faster,
the leader cell blocks the way, hence, the average velocity is more or
less the same between two cells.
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Fig. 4.1. The figure shows the Monte Carlo results of Case (1), in particular, the results of the average velocity of the three cells. The box-plot of the average velocity of the
two cells, where the median, 25% (Q1) and 75% (Q3) percentile (lower and upper bound of the box), the minimum and the maximum of the data excluding the outliers and the
outliers are shown.
Fig. 4.2. The figures show the Monte Carlo results of Case (1), in particular, the results regarding the maximal and the minimal width of the channel after each cell exits the
channel completely. The maximal and minimal width of the flexible channel are shown as orange and green boxes, respectively, at certain moments.
4.3. Cell doublets enhance cancer cell invasiveness and migration

As mentioned in Section 3, we are interested in knowing whether
the model predicts that the leader cell can also benefit from the follower
cell, and vice versa, or whether the follower cells is slowed down by the
leader cell. To this extent, we analyse the model setting in Case (2). To
achieve this, we collect the data from the Monte Carlo simulation such
that every dataset is paired, and each paired dataset has exactly the
same input parameters for the Monte Carlo simulations for both cases.
Subsequently, the results collected from the both cases are comparable.
The distributions of the input parameters are shown in Table 4.1,
whereas the main interesting outputs are the average velocities of Cell
1 and Cell 2 in the both cases. In this section, 1000 paired samples are
collected.
14
In Fig. 4.4(a), we show the box-plot of the average speeds of the two
cells in both cases. It is not straightforward to draw any conclusion for
Cell 1, while there is a dominant difference in Cell 2 for different cases,
that is, the average velocity of Cell 2 in Case (2) is less than the average
speed of Cell 2 in Case (1). We conduct the Wilcoxon’s test between
the paired samples and the results are shown in Table S3. As we have
expected and similar to the conclusion in Section 3, Cell 1 transmigrates
through the flexible channel significantly faster in Case (2) than in Case
(1) (with 𝑝-value 1.52 × 10−17) due to the cellular forces exerted by the
follower cell in Case (2). As a result, Cell 2 cannot pass through Cell 1 in
Case (2) even though Cell 2 is migrating faster thanks to the expanded
channel (otherwise, Cell 2 will no collide with Cell 1 when there is
distance between them initially), and Cell 1 also exerts the repelling
force on Cell 2, which also slows down the transmigration of Cell 2
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Fig. 4.3. The figure shows the Monte Carlo results of Case (2), in particular, the results of the average speed of the three cells. The box-plot of the average velocity of both cells,
where the median, 25% (Q1) and 75% (Q3) percentile (lower and upper bound of the box), the minimum and the maximum of the data excluding the outliers and the outliers
are shown.
Fig. 4.4. Using the same input values in the Monte Carlo simulations in both cases, the box-plot show cell speed and the channel width after the leader cell and the cell doublets
exit the channel in both cases. The orange and green box represent Case (1) and Case (2), respectively. 4.4(a) The average speed of Cell 1 and Cell 2 in different cases. 4.4(b)
The maximal and minimal width after the leader cell (Case (1)) and the cell doublet (Case (2)) exit the channel completely.
significantly (p-value = 4.81 × 10−154). In summary, under the setting
of collective migration, the leader cell also benefits from the follower
cell such that the leader cell transmigrates faster and easier through
the narrow channel. Hence, collective cell migration accelerates cell
migration and may be responsible for increased metastatic rate.

Fig. 4.4(b) shows the box-plot of the microchannel width after the
leader cell (Cell 1) exits the microchannel completely in Case (1) and
the cell doublet exits the microchannel completely in Case (2). As each
dataset is paired, we conduct the Wilcoxon’s test in Table S4 and we
conclude that both the minimal and maximal width in Case (2) are
significantly wider than in Case (1) when all the input parameter values
are the same.

5. Conclusions and discussions

In this manuscript, we attempt to answer the following research
questions:
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1. Can a follower cell benefit in transmigration speed through a
narrow flexible from a leading cell that may have widened the
channel?

2. Can cell doublets (i.e. a pair of cells that are migrating close to
each other) benefit in transmigration speed by the mechanical
repelling forces that they exert on each other?

We designed these questions as two categories of simulations, so-called
Case (1) and Case (2), respectively.

Case (1) answered the question that indeed, the follower cells
move significantly faster than the leader cell. However, there exists
an optimum regarding the confinement on the cell, such that the cell
moves fastest through the channel or the pore. On the one hand, if
the confinement is too small, there is barely any polarization of the
cell, hence, the cell would prioritize maintaining the equilibrium shape
instead of other cellular activities; on the other hand, if the confinement
is too large, besides the friction that burdens the migration, most energy
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is spent on the deformation of the cell, then the cell cannot migrate
optimally; furthermore, the cell is under a higher risk of death due to
the large mechanical stress (Gefen and Weihs, 2016). This behaviour
is verified in the experiment conducted by Mak et al. (2013), where
they show that cells take much longer time to transmigrate through
the constrictions and only part of the cell population survives. Another
possible explanation is from the perspective of minimizing the energy
configuration: to some extent, a smaller deformation costs less energy
to deform and to recover to its equilibrium shape, hence, most energy
can be spent in the migration; however, if there is hardly any con-
finement on the cell, the cell prefers to stay in its (nearly) equilibrium
shape rather than consume any energy on any cellular activities such
as migration or deformation. We remark that this energetic view is
speculative since energy is not considered in the current formalism.

Case (2) is developed to mimic collective migration of cells in a
simplified setting, where we simulate migration of cell doublets. As
we assumed that once a cell is compressed due to encountering any
obstacle, a cell exerts repelling forces on the obstacle to obtain more
spaces. Therefore, in the simulations, we observed that the leader cell
moves significantly faster than in Case (1), whereas the average velocity
of the follower cell is much smaller. In fact, the follower cell is moving
faster before it touches the leader cell, since the two cells are initially
distanced at the entrance of the channel. However, the leader cell
blocks the way of the follower cell, which results in a slower average
velocity of the follower cell. The experimental results of Merkher and
Weihs (2017), show that invasiveness of cancer cells increases when
in close proximity, which likely results from additive and synergistic
contributions, see Tulchinsky and Weihs (2022). This is qualitatively
reproduced by our model (see Fig. 4.4(b)). In summary, adjacent cells
do benefit from each other in various aspects.

There are many possibilities to extend our current model, in terms of
parameters considered in the model as well as in mathematical analysis
perspectives. The model can be extended, for instance, to include a
limit on deformation as large deformations may lead to irreversible
cell damage (Gefen and Weihs, 2016) and death. Specifically large
deformations may damage the cytoskeleton and the plasma membrane,
whereas the springs that maintain the cell intact break. With a smaller
deformation, cells may remain in a ‘‘softened’’ structure, which could
result in the experimentally observed increased cell speed. We would
like to attempt to answer the question in Mak and Erickson (2013),
that after the cell penetrates through the first constriction, why the
following-up constrictions cost less time for the cell when invading
serial constrictions. On the other hand, instead of splitting the cell
membrane into finite line segments, to keep the smoothness of the
cell boundary, we can convert it into a free boundary problem that
incorporates a PDE for the cell mechanics, which ensures no self-
intersecting of the cell membrane, and probably increases the accuracy
of the modelling framework for the fluid–structure interaction between
cell and fluid. To further consider limits in deformation, the mechanics
of the stiff nucleus can be implemented in the model, as it plays an
important role in the invasiveness (Tulchinsky and Weihs, 2022) and
the velocity of cells (Krause et al., 2019). In parallel, the material
properties of the channel walls, such as their stiffness, are likely to
affect cell migration and can be considered. In addition, to evaluate
combined effects of biomechanical and biochemical cell–matrix in-
teractions, biochemical degradation of the cell environment, e.g. by
the secretion of matrix metalloproteinase (MMP), can be added. An
example where degradation plays a role is when a cancer cell migrates
from an extracellular region into a (small) blood vessel. The cancer cell
chemically breaks down the tight junctions between the endothelial
cells through cleavage. Then the space between two neighbouring
endothelial cells can be seen as the channel through which the cell
migrates. The morphoelastic model is a formalism that combines me-
chanical displacements, stresses and deformations with microstructural
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changes such as growth or shrinkage. Processes like degradation may
be responsible for shrinkage. These processes were not incorporated
explicitly in the current modelling framework.

To summarize, the current manuscript attempts to quantify the bi-
directional interactions of cells with their environment and how cell
proximity impacts the efficacy of cells moving through deformable
channels. We have extended our earlier cell invasion model (Peng et al.,
2021) to describe transmigration of cells through narrow, flexible chan-
nels, such as those existing in various tissues. Furthermore, we have
described the bi-directional impact of cells interactions with adjacent
neighbours and with their direct environment through the forces that
are exerted by the cells. The cell environment may be a pore (through
the cross-linked fibrous structure in the extracellular matrix) or any
other narrow channel (a small blood vessel). In order to transmigrate,
cancer cells deform and exert forces to widen the channel, and two
closely adjacent cells are able to interact to accelerate this process. The
current model reveals mechanisms underlying the observations of in-
creased invasiveness and the cancer cell metastatic rate upon collective
cell migration, when the deformation of the immediate environment is
considered. A limitation in the current study is that the simulations can-
not yet be experimentally validated, as no such experiments currently
exist in-vitro, to the best of our knowledge. However, our previous
modelling study (Peng et al., 2021) where we considered rigid channels
has turned out to give a good agreement with laboratory measurements.
We have extended the model formalism to deformable channels, which,
we believe, are likely more realistic than strictly rigid channels for
transmigration of cells between different regions (organs) of the human
body. Despite the fact that there are no laboratory experiments, we
believe that the current study provides a way to quantify the impact
of deformability of channels on the transmigration behaviour, and the
modelling framework confirms that collective migration is preferable
and reveals the underlying mechanisms. More importantly, the current
modelling study provides guidelines to conduct laboratory experiments
with the use of deformable channels.
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