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BACKGROUND: The available evidence for positive associations between urban trees and human health is mixed, partly because the assessment of ex-
posure to trees is often imprecise because of, for instance, exclusion of trees in private areas and the lack of three-dimensional (3D) exposure indica-
tors (e.g., crown volume).

OBJECTIVES: We aimed to quantify all trees and relevant 3D structural traits in Brussels (Belgium) and to investigate associations between the number
of trees, tree traits, and sales of medication commonly prescribed for mood disorders and cardiovascular disease.

METHODS: We developed a workflow to automatically isolate all individual trees from airborne light detection and ranging (LiDAR) data collected in
2012. Trait data were subsequently extracted for 309,757 trees in 604 census tracts. We used the average annual age-standardized rate of medication
sales in Brussels for the period 2006 to 2014, calculated from reimbursement information on medication prescribed to adults (19-64 years of age).
The medication sales data were provided by sex at the census tract level. Generalized log-linear models were used to investigate associations between
the number of trees, the crown volume, tree structural variation, and medication sales. Models were run separately for mood disorder and cardiovascu-
lar medication and for men and women. All models were adjusted for indicators of area-level socioeconomic status.

RESULTS: Single-factor models showed that higher stem densities and higher crown volumes are both associated with lower medication sales, but
opposing associations emerged in multifactor models. Higher crown volume [an increase by one interquartile range (IQR) of 1.4 x 10* m? /ha] was
associated with 34% lower mood disorder medication sales [women, = —0.341 (95% CIL: —0.379, —0.303); men, = —0.340 (95% CI. —0.378,
—0.303)] and with 21-25% lower cardiovascular medication sales [women, B= —0.214 (95% CI: —0.246, —0.182); men, f= —0.252 (95% CIL
—0.285, —0.219)]. Conversely, a higher stem density (an increase by one IQR of 21.8 trees/ha) was associated with 28-32% higher mood disorder
medication sales [women, 3 =0.322 (95% CI: 0.284, 0.361); men, f=0.281 (95% CI: 0.243, 0.319)] and with 20-24% higher cardiovascular medica-
tion sales [women, §=0.202 (95% CI: 0.169, 0.236); men, § =0.240 (95% CI: 0.206, 0.273)].

DiscussioN: We found a trade-off between the number of trees and the crown volumes of those trees for human health benefits in an urban environ-
ment. Our results demonstrate that conserving large trees in urban environments may not only support conservation of biodiversity but also human

health. https://doi.org/10.1289/EHP9924

Introduction

Urban green spaces, and especially urban trees, have been asso-
ciated with numerous human health benefits through a number
of regulating and cultural ecosystem services (Aerts et al. 2021;
Chen et al. 2019). Exposure to trees has been associated with
better mental health (Marselle et al. 2020), improved respira-
tory health (Rao et al. 2014), lower rates of cardiovascular dis-
ease (Donovan et al. 2015; Knobel et al. 2021), lower odds of
diabetes and hypertension (Astell-Burt and Feng 2019), lower
odds of sleep disorders (Astell-Burt and Feng 2020a), improved
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health via improved physical activity (Ulmer et al. 2016), and
decreased mortality (Barboza et al. 2021).

A recent scoping review of 18 studies on green space inter-
ventions and cortisol outcomes demonstrated the potential for a
positive association between active and passive exposure to green
space and stress reduction (Jones et al. 2021). For instance, in a
study in 1,027 children included in the Dutch Prevention and
Incidence of Asthma and Mite Allergy (PIAMA) birth cohort,
residential exposure to green space in a buffer of 3,000 m, meas-
ured as average normalized difference vegetation index (NDVI;
an indicator of greenness, computed as the difference between
near-infrared and red reflectance divided by their sum) and total
relative cover of green space, was associated with lower stress
levels as indicated by larger diurnal decreases in saliva cortisol
levels (Bloemsma et al. 2021). Psychological, physiological, and
environmental stress relief may be the common mechanism
behind the beneficial effects of trees and urban green space on
various aspects of human health, in particular, stress-mediated
conditions, such as cardiovascular disease and mental disorders
(Honold et al. 2016; Lanki et al. 2017; Markevych et al. 2017,
Nieuwenhuijsen et al. 2017; Zhang et al. 2021).

Trees may reduce heat stress, relieving the urban heat island
effect, through leaf evapotranspiration and shading (Speak et al.
2020), and tree crowns may help to reduce stress caused by noise
from traffic and other urban activities (Tashakor and Chamani
2021). Some reports suggest that trees with some species-specific
traits may help to reduce air pollution by uptake and capture of
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air pollutants, thus helping reduce oxidative stress (Grote et al.
2016; Roy et al. 2012; Salmond et al. 2016). Therefore, tree
crown volume can play a large role in the magnitude of stress
relief, given that it indicates the area of ground that can be shaded
and the total leaf area that determines the magnitude of leaf evap-
oration, transpiration, and interception (Kong et al. 2016; Lin and
Lin 2010; Pretzsch et al. 2015; Rafiee et al. 2016; Shahidan et al.
2010; Speak et al. 2020; Yin et al. 2011).

Previous studies on the impacts of urban trees on human health
have used satellite imagery derived greenness (NDVI), satellite im-
agery derived land use and land cover (LULC) maps (Aerts et al.
2020; Browning and Rigolon 2018; Dzhambov et al. 2018), inven-
tories of street trees and trees in parks and other public spaces
(Kardan et al. 2015; Marselle et al. 2020; Rugel et al. 2017; Taylor
et al. 2015), or street photography (Helbich et al. 2019; Li and
Ghosh 2018; Liu et al. 2020; Nguyen et al. 2018; Villeneuve et al.
2018) to quantify residential exposure to urban trees. These studies
have found mixed effects of urban trees on human health, and this
may be related to the varying quality of the exposure assessment.
NDVI is not optimal to quantify exposure to trees because it does
not differentiate trees from other vegetation efficiently. LULC maps
such as the CLC (CORINE Land Cover) (EEA 2019) data set may
have been too coarse (1:100,000), with small green spaces and
individual trees masked in mixed or nongreen land use pixels
(Aerts et al. 2020; Labib et al. 2020). Nevertheless, small green
spaces and trees have been demonstrated to have significant asso-
ciations with human health improvement (Wood et al. 2017), and
therefore their omission may affect exposure—health outcome
studies. Although more detailed LULC data (e.g., 1:2,000;
Hooper et al. 2018) could be used to identify smaller greenspa-
ces, some individual trees might still not be registered. Studies
based on inventories of street trees and trees in other public
spaces have excluded trees in private spaces (Marselle et al.
2020), and seasonality may have had a substantial impact on
greenness derived from street photographs (Pelgrims et al.
2021). As a consequence, exposure to urban trees may have been
underestimated or biased (e.g., misclassification between trees
and other vegetation types) in these studies. In addition, most of
the exposure indicators derived from different data sources were
two-dimensional (2D) in their representations (e.g., tree canopy
cover), whereas 3D representations (e.g., tree crown volume)
remain less explored, possibly leading to inaccurate indication of
associations between urban trees and human health (Jiang et al.
2017).

Airborne light detection and ranging (LiDAR) imagery, com-
prising a dense 3D point cloud with precise height information of
the targets, has enabled more accurate isolation of urban trees
from grass, shrubs, and other vegetation types and has been used
in studies on the impacts of urban trees on human health (Jarvis
et al. 2020; Reid et al. 2017; Ulmer et al. 2016). LiDAR also
facilitates individual tree crown delineation by using existing seg-
mentation algorithms, something that is critical for automatic in-
ventory of tree density in all public and private areas (Alonzo
et al. 2014; Kwong and Fung 2020). Individual tree crown delin-
eation is also the basis for estimation of 3D tree traits such as
height, crown base height, and crown volume using remote sens-
ing. These tree traits, together with tree density, can provide a
more comprehensive and reliable quantification of exposure to
urban trees compared with 2D tree cover data (Zhao et al. 2021),
but they have not been explored in previous studies on the impact
of urban trees on human health.

Therefore, the first aim of this study was to use high-
resolution airborne LiDAR data to improve the assessment of ex-
posure to urban trees and a number of 3D traits related to their
potential health effects. Second, we aimed to investigate the
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associations between reliable residential urban tree exposure and
indicators of stress-related disease by analyzing sales data of
medication commonly prescribed for cardiovascular disease and
mood disorders.

Methods

Study Design and Population

The present study is part of the GRESP-HEALTH (Impact of green/
blue spaces on specific morbidity and cause-specific mortality in
Belgium) project (Casas et al. 2015), which is a nationwide ecologi-
cal study on the association between residential exposure to green
spaces and specific morbidity in Belgium. The present study
focusses on the Brussels Capital Region (161 kmz), the administra-
tive region and urban agglomeration encompassing 19 municipal-
ities, including the capital of Belgium, the City of Brussels (hereafter
Brussels). Data in this study were analyzed at the census tract level.
Census tracts are the official and the smallest administrative spatial
units for statistical purposes at higher resolution than the municipal-
ity (“statistical sectors”), defined by the Belgian Statistical Office
(Statbel). The total number of census tracts in Brussels is 722, with
an average census tract surface area of 22.5 ha (median=14.7;
range: 1.4-754.6 ha) and an average of 11,616 inhabitants/ha
(median = 10,696; range: 0-45,854 inhabitants /ha) (Statbel 2021).

Medication Sales Data

This study used health care data from the Belgian social security
agency InterMutualistisch Agentschap-L’Agence InterMutualiste
(IMA-AIM). The IMA-AIM manages health care data collected
by the seven Belgian health insurance funds. In Belgium, health
insurance is mandatory and the population in the IMA-AIM data-
base corresponds to about 98% of the Belgian population (as reg-
istered in the national register). The IMA-AIM provided data on
reimbursed medication sales delivered by pharmacies for cardio-
vascular disease and mood disorders, both yearly, from 2006 to
2014. The data represented the number of adults (19-64 years of
age) per census tract and per year for whom at least one refund-
able medication was prescribed at least once during the study pe-
riod (“prescription—patients”). The data were provided by sex.
General cardiovascular medication was defined as all reimbursed
drugs included in the Anatomical Therapeutic Chemical (ATC;
https://www.whocc.no/atc) codes BO1A (antithrombotic agents),
CO1 (cardiac therapy, including cardiac glycosides, antiarrhyth-
mics, cardiac stimulants, and vasodilators), C02 (antihyperten-
sives), C0O3 (diuretics), CO7 (beta blocking agents), CO8 (calcium
channel blockers), and C09 (agents acting on the renin—angiotensin
system) (see also Aerts et al. 2020). Medication for mood disorders
was defined as all reimbursed drugs included in the ATC codes
NO5 (psycholectics) and NO6 (psychoanaleptics) (see also Aerts
et al. 2022). The aggregated data did not contain information on
the frequency of use. Census tracts with no more than five reim-
bursed persons or registered inhabitants in at least 1 y during
the study period were excluded by the IMA-AIM because of
privacy reasons (Figure 1). All health data were used under the
license of the IMA-AIM. The protocol for this study did not
require ethics approval or consent to participate.

Exposure to Urban Trees

Lidar data collection and preprocessing. Airborne LiDAR data,
with an average point density of 35 points/m?, were acquired in
winter 2012 and provided by the Brussels Regional Informatics
Center (CIRB; Degerickx et al. 2018). After removing noise points
(i.e., isolated points) using LAStools (version 171215; Rapidlasso
GmbH) software, a digital surface model (DSM) with a spatial
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Figure 1. Flow diagram of the census tracts in Brussels, Belgium, included
and excluded in the study. Note: ASMR, age-standardized medication sales
ratio; Ncr, number of census tracts; Nk, minimum number of reimburse-
ments between 2006 and 2014 (at the level of the census tract, unstandar-
dized); POP, population (number of inhabitants).

resolution of 0.25 m was derived from the highest LIDAR point in
each pixel. A canopy height model (CHM), further used for indi-
vidual tree delineation, was generated using the difference between
DSM and a digital terrain model (DTM; provided by the CIRB).
The CHM was further smoothed (i.e., median filtering) to fill in
small gaps. A normalized LiDAR point cloud, further used for esti-
mation of tree structural traits, was obtained by calculating the
height difference between the LiDAR point cloud and the DTM.
The processing of the LIDAR data was conducted in OPALS soft-
ware (version 2.4.0; Otepka et al. 2012).

Tree crown identification and delineation. A workflow that
included object-based classification, individual tree delineation,
and screening incorrect trees was adapted from Degerickx et al.
(2018) and Chi et al. (2020) to obtain individual tree crown poly-
gons in the study area. In the object-based classification, a tree
index image with a spatial resolution of 0.25 m was generated
from the normalized LiDAR point cloud by calculating the height
difference between the first and last return in each pixel (O’Neil-
Dunne et al. 2014). This index is based on the fact that LIDAR
pulses can penetrate tree crowns but not buildings, enabling the
differentiation of tree objects from building objects. Objects with
a tree index >1 and a height >3 m (identified from the CHM)
were initially labeled as trees. Individual tree delineation was
then conducted on large tree objects using a watershed segmenta-
tion algorithm (Wang et al. 2004). The object-based classification
and individual tree delineation was performed in eCognition (ver-
sion 9.4; http://www.ecognition.com/).

The resulting tree crown polygons contained misclassified
trees, such as building edges, that could have a high tree index
value. Degerickx et al. (2018) used an NDVI image with a spatial
resolution of 2 m to remove misclassified trees. However, because
of a slight geometric mismatch between their NDVI image and
LiDAR data, quite a number of nontree objects were still retained
in the resulting individual tree crown data set. In addition to height
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information, LiDAR also provides intensity information that
reflects the material characteristics of objects and which has been
used for urban land cover classification (Zhou 2013). To find the
threshold for the intensity that can differentiate trees from building
edges, we randomly selected 2,000 tree crown polygons and 2,000
building edge polygons based on the CHM and calculated the aver-
age intensity value for the LIDAR points within each polygon. We
found that 98% of selected tree crowns were retained and 84% of
the selected building edges were removed when using an intensity
threshold value of 250 digital numbers (DNs). By applying this
threshold to all delineated trees in the 722 census tracts, 616,379
(76% of all the delineated trees) correctly delineated trees were
identified and used for further analysis. The screening of incorrect
trees was conducted in Python (version 3.8.5; Python).

A field-measured tree database, including street trees and
trees in parks with the coordinates of tree stems, was used to
assess the tree delineation accuracy. We randomly selected 2,000
trees from the database and the proportion of field-measured tree
stems contained exactly in one delineated tree crown polygon
was calculated.

Derivation of indicators of exposure to trees. Tree height,
crown base height, and crown volume were derived from the nor-
malized LiDAR point cloud for each tree. Tree height (H) was
defined as the height of the highest point in the tree point cloud. We
developed an index (Pp;,) to estimate crown base height and extract
crown points. The Py;, index was based on the fact that when a tree
point cloud is sliced into bins with a same height (e.g., 1 m) along
the z-axis, bins from tree crowns contain more points than those
from tree trunks. The index was thereby calculated as a quotient of
the number of LiDAR points in a bin and the number of all points
from the tree. We again relied on the 2,000 correctly delineated
trees (see the section “Tree crown identification and delineation”)
to determine the threshold for Py, that separates crown points and
noncrown points. First, LIDAR points with a height >2/3 H were
extracted for the 2,000 trees. We assumed that these extracted
points were from tree crowns. Next, for each of the 2,000 trees, the
average Pp;, for the extracted crown points (Pp;,_.) was calculated
using Ppin_c =N./(H/3)/N,. N, was the number of LIDAR points
with a height >2/3 H and N; was the number of all LIDAR points.
The threshold for Py;, that separates crown points and noncrown
points was finally set as the mean Pp;,_. for the 2,000 trees (mean
Ppin_c=5%) and applied to all the 616,379 correctly delineated
trees. Briefly, starting with the bin with the height of 1-2 m
(excluding the lowest bin containing ground points), the height of
the first bin with a Py;, > 5% was regarded as crown base height
(H.p). LIDAR points with a height >H,, were labeled as crown
points and used to calculate crown volume using a 3D convex hull
algorithm in package scipy in Python (Figure 2). For each tree point
cloud, the algorithm identifies the outmost points, which are then
triangulated with Delaunay triangulation and meshed for surface
generation. The LiDAR data used in the present study had a high
point density and were able to record detailed crown structure in
winter. Standard deviations (SDs) of H and H,,, indicating the vari-
ation in tree structure, were also calculated because recent studies
have suggested that human health may be associated with tree
(structural) diversity (Aerts et al. 2018; Marselle et al. 2021).

Potential Confounders

An earlier study in Belgium found that socioeconomic deprivation
is a strong predictor for cardiovascular medication sales (Aerts et al.
2020), which was consistent with other studies that have reported
that socioeconomic confounders may have a higher impact on (car-
diovascular) health than exposure to urban green space (Kabisch
2019). Therefore, we included sociodemographic characteristics as
potential confounders in the analyses. Sociodemographic data were
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Figure 2. Estimation of tree crown volume using LiDAR data and 3D convex hull algorithm: (A) LiDAR points for a delineated tree and (B) the reconstructed
tree crown surface. 3D convex hull algorithm identifies the outmost points (in black), which are triangulated with Delaunay triangulation and meshed for sur-
face generation. Note: 3D, three dimensional; LiDAR, airborne light detection and ranging.

provided by Statbel. Data were derived from the 2001 census. We
included three indicators of socioeconomic status (SES) that are
related to socioeconomic deprivation (as in Aerts et al. 2020):
the percentage of foreign-born inhabitants from lower- and mid-
income countries (LMICs; defined as those countries that did not
belong to the World Bank classification of “high-income econo-
mies” in 2000), the percentage of unemployed inhabitants (employ-
ment deprivation), and the percentage of primary educated or lower
among the 25- to 64-year-old inhabitants (education skills and train-
ing deprivation). Census tracts with missing SES data (i.e., not pro-
vided by Statbel) were not included in the analyses (91 census
tracts) (Figure 1).

Statistical Analyses

Age-standardization of the medication sales data was essential to
produce comparable measures of prescription behavior because
the number of prescriptions in a given area depends on the age
structure of the area (Aerts et al. 2020, 2022). The number of
observed prescription—patients in an area was divided by the
expected number of prescription—patients in that area if the pre-
scription behavior were the same as that of the overall Belgian pop-
ulation, taking into account the age- and sex-specific structure of
the area. This standard medication sales ratio was then adjusted
with the crude rate of prescriptions (Aerts et al. 2020, 2022). The
age-standardized medication sales were expressed as the number
of reimbursed prescription—patients per 1,000 inhabitants (as a pos-
itive integer). We used the mean annual rate of medication sales for
the period 2006 to 2014 as the outcome variable (the overall mean
for exploratory analyses, and for women and men and for both
medication types separately for our detailed analyses).

Preliminary analyses demonstrated that the privacy-restricted
census tracts (<5 reimbursed persons in at least 1 y) had consid-
erably higher tree crown volumes (mean + SD) than the initially
included census tracts (included tracts: 1.1+0.9 x 10°m?/ha vs.
privacy-restricted tracts: 2.3 +2.0 x 10*m? /ha; independent sam-
ples t-test t= —6.301, p <0.001). To avoid the introduction of
sampling bias by excluding census tracts with few medication
sales and high exposure to urban trees, we assigned 40 prescrip-
tions/1,000 inhabitants per year to privacy-restricted census tracts
with inhabitants (120 census tracts with a total of ~ 13,000
inhabitants). Census tracts without inhabitants (among others,
forests, parks, railway infrastructure, cemeteries, and industrial
areas without inhabitants) were excluded from the analysis (27
census tracts) (Figure 1). The value assigned to restricted tracts
with inhabitants was close to the threshold value for privacy
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restriction given that the lowest age-standardized medication
sales ratio (ASMR) reported in the IMA data of medication for
cardiovascular disease and mood disorders was 42 prescriptions/
1,000 inhabitants per year. If the true rate of prescriptions would
have been higher, these census tracts would not have been pri-
vacy restricted. The assigned value was thus an estimation of the
maximum rate that could have been observed in the restricted
tracts, and this approach is therefore conservative.

Generalized linear models based on the Poisson distribution with
a log-link function were used to investigate the associations between
exposure to urban trees and medication sales. First, we explored
single-factor models with the overall average medication sales (both
medication types for men and women pooled) as dependent data and
stem density and crown volume separately as independent variables.
Then we obtained estimates for a two-factor model (crown volume
and tree density in the same model) and for a SES-adjusted model for
the overall average medication sales. In our main models, all tree ex-
posure variables (i.e., stem density, crown volume, and structural
variation) were included in the same model along with the SES fac-
tors, but separately for men and women and medication types.
Models were fit for men and women independently because medica-
tion sales for men and women at the level of the census tract were
separate response variables (see also Aerts et al. 2022). Because the
medication sales data were aggregated at the census tract level and
there was no information on subject-level medication use, we were
not able to study combined medication sales. The number of included
census tracts was 604 (Figure 1). Because SES variables have consis-
tently been found to be significant in explaining associations between
green space and human health in our study area (Aerts et al. 2020;
Pelgrims et al. 2021; Trabelsi et al. 2019), only fully adjusted models
(i.e., all SES variables included in the same model) were evaluated
for our main models. Tree density and tree crown volume were
entered as increments in interquartile ranges (IQRs) to obtain com-
parable parameter estimates. In addition to the main models, we
also calculated estimates stratified by population density and SES
factors, using for each stratification variable the median as the
threshold for creating the strata. Statistical analyses were per-
formed with IBM SPSS Statistics Subscription (version 11-2018)
software.

Results

Census Tract Characteristics

The characteristics of the census tracts that were included in
the study are presented in Table 1. Average percentages =+ SD
of foreign-born inhabitants from LMICs (%LMIC), unemployed
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Table 1. Characteristics of the census tracts in Brussels, Belgium, included in the study (N = 604) stratified by quartiles of crown volume (x 10* m? /ha).

All census tracts

Tree crown volume quartile (X 10* m? /ha)

Mean + SD Mean + SD Mean + SD Mean + SD
Categories Characteristics Mean + SD Range (Q1: 0-0.47) (Q2: 0.48-0.89) (Q3:0.90-1.63) (Q4: 1.64-5.65)
SES %LMIC 16.3+9.8 2.4-48.9 24.7+10.2 17.5+8.8 12.4+6.2 10.5+6.5
%Unemployed 19.7+10.3 4.4-56.3 282+11.0 20.4+8.5 162+7.8 14.0+7.5
%Low education 165+11.3 1.0-48.9 26.6+11.6 17.3+9.5 12.8+8.3 92+72
Trees” Trees (n) 513+919 5-14,227 134.6 +186.2 279.5+164.3 474.5+557.3 1,162.7 +1,547.3
Trees (n)/ha 24+ 14 0-91 9.1+4.1 17.6 +4.3 26.1+5.6 43.0+10.7
Crown volume (x 10* m? /ha) 1.2+1.0 0-5.6 0.3+0.1 0.7+0.1 1.2+0.2 2.5+0.8
Height variation (SD) 55+13 1.4-10.7 47+13 51+1.1 57«10 64+1.1
Crown base height variation (SD) 35+1.7 0.6-10.2 26+1.5 30+14 3.6+1.3 48+1.5
ASMR? Mood disorders, women 118 £33 40-221 119.3+27.6 121.9+26.0 121.0+33.8 110.1+40.0
Mood disorders, men 122 +34 40-241 129.0+29.8 126.8 +£26.9 1243+32.4 109.2+42.6
Cardiovascular disease, women 160 +45 40-349 176.4 +44.2 166.8 +39.0 155.0+44.9 142.4+45.8
Cardiovascular disease, men 151 +£40 40-334 152.7+33.5 156.2 +33.3 152.7+41.8 142.4 +47.7

Note: %LMIC, percentage foreign-born inhabitants from low- and middle-income countries; %Low education, percentage primary-educated-or-lower inhabitants; %Unemployed, per-
centage unemployed inhabitants; ASMR, age-standardized medication sales rate (prescriptions per 1,000 inhabitants); LiDAR, airborne light detection and ranging; Q, quartile; SD,

standard deviation; SES, socioeconomic status.
“The tree characteristics were derived from the 2012 winter airborne LiDAR data.
bThe ASMR data were collected between 2006 and 2014.

inhabitants (%Unemployed), and primary-educated-or-lower
inhabitants (%Low education) were 16.3 +9.8, 19.7 +10.3, and
16.5 +11.3, respectively.

The accuracy of individual crown delineation was high: 91% of
the delineated tree crown polygons contained a single tree stem,
indicating a good agreement (Figure 3). In the 604 census tracts,
309,757 trees were included for the analysis. The average number of
trees+SD was 513+919 in total and 24 + 14/ha (IQR: 21.8)
and the average crown volume was 1.2+ 1 X 10*m3/ha (IQR: 1.4).
Variation for tree height (expressed by SD) averaged 5.5 + 1.3 m and
for crown base height 3.5 + 1.7 m. The geographical distribution of
the number of trees and crown volume are presented in Figures S1
and S2, with the lowest numbers and the smallest volumes (lower 10

percentile values being 8 trees and 0.3 x 10*m>/ha, respectively)
found in the city center and along the canal and railway zone that
bisects the city from northeast to southwest. The highest densities
(85-142/ha) and crown volumes (5.5-7.7 x 10*m?/ha) were recorded
in Sonien Forest along the southern edge of the region, but these
census tracts are uninhabited and did not contribute to our models.
The highest densities and crown volumes of inhabited census tracts
were found along the perimeter of the study area (upper 10 percen-
tile values being 50 trees and 3.1 x 10*m>/ha, respectively).
Average + SD medication sales for mood disorders were
118 + 33 sales/1,000 inhabitants for women and 122 + 34 for men.
For cardiovascular medication, average sales were 160 +45/1,000
inhabitants for women and 151 +40 for men. The geographical

Field-measured trees
(3]

0 30 60 90 120
m

Height (m)

1 2 3 4 5
Stems in segment
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Figure 3. Subset of individual tree delineation results and LiDAR canopy height model and accuracy of individual tree segmentation. Note: LiDAR, airborne

light detection and ranging.
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Figure 4. Associations between the number of trees, tree traits, and annual sales of medication commonly prescribed for cardiovascular disease and mood dis-
orders in adults 19-64 years of age in Brussels, Belgium, at the level of census tracts (CTs, N =604). Parameter estimates 3 and 95% confidence intervals
(CIs) are from generalized log-linear models for age-standardized rates of medication sales in Brussels for the years 2006 to 2014. Models were adjusted for
socioeconomic status at census tract level (percentage immigrants from low- and middle-income countries, percentage unemployed inhabitants, percentage

inhabitants with only primary education).

distribution of the medication sales for mood disorders and cardiovas-
cular disease are presented in Figures S3-S6.

Associations between Urban Trees and Health

In unadjusted, single-factor models, both tree density and crown
volume were associated with lower overall average medication
sales. Higher tree density (an increase by one IQR of 21.8 trees/ha)
was associated with 12.9% lower overall average medication
sales [(B= —0.129) and 95% confidence interval (CI): —0.137,
—0.120)] and higher canopy volume (an increase by one
IQR of 1.4 x 10*m? /ha) with 16.3% lower overall average medi-
cation sales [B= —0.163 (95% CIL: —0.172, —0.155)]. Higher tree
densities were strongly correlated to higher crown volumes
(Pearson r=0.949, p <0.001). In a two-factor model for overall
mean medication sales, higher crown volume was associated with
lower medication sales [B= —0.505 (95% CI: —0.532, —0.478)]
and higher tree density with higher medication sales [ =0.380
(95% CI: 0.351, 0.408)]. These contrasting associations were con-
served after adjusting for SES: higher crown volume (an increase
by one IQR of 1.4 x 10*m?/ha) was associated with 27.7% lower
medication sales [B= —0.277 (95% CI. —0.310, —0.244)] and
higher tree density (an increase by one IQR of 21.8 trees/ha) with
26.3% higher medication sales [B=0.263 (95% CI: 0.228, 0.298)].

The results of the detailed models for both medication types and
sex groups separately are presented in Figure 4, and the parameter
estimates for these associations are presented in Table S1 for mood
disorder medication and in Table S2 for cardiovascular medication.
Higher canopy volume (an increase by one IQR of 1.4 X 10*m? /ha)
was associated with 34% lower mood disorder medication sales
[women, B = —0.341 (95% CI: —0.379, —0.303); men, B = — 0.340
(95% CI: —0.378, —0.303)] and with 21-25% lower cardiovascular
medication sales [women, B = —0.214 (95% CI: —0.246, —0.182);
men, B= —0.252 (—0.285, —0.219)]. Conversely, higher stem den-
sity (an increase by one IQR of 21.8 trees /ha) was associated with
28-32% higher mood disorder medication sales [women, 3 =0.322
(95% CI: 0.284, 0.361); men, B =0.281 (95% CI: 0.243, 0.319)] and
with 20-24% higher cardiovascular medication sales [women,
B=10.202 (95% CI: 0.169, 0.236); men, B = 0.240 (0.206, 0.274)]. In
addition, we found consistent but weak associations of crown struc-
tural variation (SD of crown base height) with medication sales for
both medication and sex groups. For tree height variation, the associa-
tions were inverse but weak for all groups except for mood disorder
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medication sales among women, where no association was detected.
Apart from minor variations in the magnitudes of the associations, no
differences between men and women were found in the associations
between tree exposure and medication sales.

In all stratified models, the associations of tree density and crown
volume with medication sales were conserved (Tables S3-S6).
In the analyses stratified by population density, the positive
associations with stem density and the negative associations
with crown volumes were stronger in less densely populated
census tracts (population density <P50), both for mood disor-
der and cardiovascular medication sales (Table S3). In the anal-
yses stratified by unemployment and low education, associations
were stronger in census tracts with low SES (unemployment >P50,
low education >P50) for mood disorder medication; for cardiovas-
cular medication, associations were stronger in census tracts with
high SES (unemployment <P50, low education <P50) (Tables S4
and S5). In the analyses stratified by the proportion of inhabitants
from LMIC, the estimates were comparable to those of the main
models (Table S6).

Discussion
Main Findings

We investigated the association of sales of medication commonly
prescribed for cardiovascular disease and mood disorders in
Brussels, Belgium, with residential exposure to urban trees, adjust-
ing for SES. Single-factor models using aggregated medication
sales and exposure data showed that higher stem densities and
higher crown volumes are both associated with lower medication
sales. However, results from models that simultaneously included
crown volume and tree density suggest that living in areas with
high crown volumes and low stem densities may be more beneficial
to adult cardiovascular health and mood disorders than living in
areas with a higher amount of trees with smaller crowns.

Comparison with Other Studies

Previous studies using LULC data or street photography-derived
tree canopy cover or inventory of street trees have found associa-
tions between urban trees and better cardiovascular and mental
health (Akpinar et al. 2016; Astell-Burt and Feng 2019, 2020b;
Donovan et al. 2013; Dzhambov et al. 2019; Egorov et al. 2020;
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Wang et al. 2020). Our findings that larger crown volumes were
associated with lower mood disorder and cardiovascular medica-
tion sales are consistent with these earlier studies. Other studies,
however, did not report such associations (Browning and Rigolon
2018; Jarvis et al. 2020). In addition, two earlier studies conducted
in Brussels did not observe the expected benefits of tree/green
space exposure on cardiovascular and mental health. Using the
CORINE Land Cover data set and medication sales data, Aerts
et al. (2020) observed an inverse association between reimbursed
cardiovascular medication sales and tree/forest cover at the levels
of census tracts in the entire country (n = 11,575 census tracts) but
not in a separate model for Brussels (n =601 census tracts), most
likely because the resolution of the land cover data set was too
coarse to adequately capture green space exposure in the heavily
urbanized region of Brussels. In their study on the impacts of
urban greenness on self-reported mental health (n = 1,325 partici-
pants) in Brussels, Pelgrims et al. (2021) quantified three more
detailed indicators of urban greenness exposure: a) vegetation cov-
erage derived from Google Street View panorama at the residence
level; b) street tree density and vegetation cover (10 m on each
side) from inventory data sets at the street level; and ¢) NDVI val-
ues at the neighborhood level. However, only street tree density
was found to be inversely associated with sleeping disorders,
whereas other urban green exposure indicators were not associated
with any of the investigated mental health indicators. The individ-
ual trees in private areas, such as backyards and gardens, are most
likely to be regularly experienced by urban residents (Cox et al.
2019) but are hard to represent in LULC maps in densely built
zones where buildings still dominate the landscape as seen from
2D imagery (Becker et al. 2019). Moreover, the 2D tree cover
derived from the LULC maps and street photography are less com-
prehensive for the actual exposure to trees than 3D indicators
(Jiang et al. 2017). The lack of the associations in these two stud-
ies may thus be caused by the coarse representations of exposure
to urban trees/green spaces, inadequately capturing numerous
small green spaces and individual trees that are present in the
study area and providing inaccurate information on tree dimen-
sions. By identifying all trees in the study area and estimating
crown volumes, our study improved the quantification of tree ex-
posure and was able to observe health benefits of trees.

However, in two-factor models that included both crown vol-
ume and tree density, tree density was positively associated with
medication sales. This is in contradiction with earlier observed
associations between tree density per linear kilometer of street
and antidepressant prescription rates reported by Taylor et al.
(2015) and between street tree density within 100 m around the
home and antidepressant prescriptions reported by Marselle et al.
(2020). In addition, the indicators of structural variation in the
present study show inconsistent associations with medication
sales (Figure 4; Tables S1 and S2). Although the importance of
tree diversity to human health is increasingly recognized, the
findings on the associations between tree diversity and human
health/well-being are still mixed (Aerts et al. 2018; Methorst et al.
2021; Sandifer et al. 2015). By including tree density, tree struc-
tural diversity indicators, and crown volume in the same model,
our results reveal that there may be trade-offs between several
tree traits with respect to their impact on human health. Our
results suggest that larger crown volumes concentrated in fewer
stems may be more beneficial for cardiovascular and mental
health than similar crown volumes divided over more stems, de-
spite the strong association between stem density and total
crown volume. Large and well-developed crowns are one of
the key attributes that distinguish large, old trees from young
trees (Lindenmayer and Laurance 2017). The beneficial stress-
reducing effects of large trees may be enhanced by psychological
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pathways toward restoration, including restoration of attention
(Collins et al. 2020; Marselle et al. 2020; Taylor et al. 2015). In a
study on the restorative effects of different forests, participants
experienced significantly higher restorative effects when visiting
old-growth and mature commercial forests than when visiting
urban recreation and young commercial forests (Simkin et al.
2020). In urban environments, large trees may therefore help to
reduce stress-related conditions, such as mood disorders and cardi-
ovascular disease by, for instance, contributing more to indirect
nature experiences than smaller trees (Cox et al. 2019) or by pro-
viding keystone habitat for birds (Le Roux et al. 2014; Pena et al.
2017; Stagoll et al. 2012), which in turn improve well-being via
bird sightings and sounds (Buxton et al. 2021).

Strengths and Limitations

A major strength of this study is that we have retrieved 3D tree
characteristics (most importantly, accurate tree crown volumes)
for all the trees in the study area using very precise remote sens-
ing—based data to determine accurate residential exposure to
urban trees, which is a major improvement compared with previ-
ous research (e.g., Egorov et al. 2020; Marselle et al. 2020; Wang
et al. 2020). The present study is also, to our knowledge, the first
to specifically demonstrate health benefits of large trees in urban
environments, indicated by the associations between crown vol-
umes, stem densities, and medication sales data. This is of global
conservation importance, because large, old trees in urban envi-
ronments are expected to decline globally under current manage-
ment practices (Le Roux et al. 2014). Nevertheless, our research
may have a number of limitations.

The ecological study design is prone to ecological fallacy.
Health effects of green space observed at the aggregated (census
tract) level may not be observed at the individual level (Bixby
et al. 2015; Mitchell et al. 2011; Richardson et al. 2012). Besides
exposure to trees and SES (included as confounders in our mod-
els), other factors such as age, chronic conditions, and changes in
prescription over time could also be strong predictors of medica-
tion sales (Webster 2007). The observed associations between ex-
posure to trees and medication sales may be mediated by
intergroup variations in age structure and incidence of chronic
diseases, leading to inconsistent associations observed at the
aggregated level and at the individual level. However, by using
census tracts as the level of aggregation, we believe these inter-
group variations have been minimized.

In addition, there may be a mismatch between the timing of ex-
posure and medication use because of, for instance, seasonality.
Seasonality of urban green has been recognized to affect participa-
tion in recreational physical activities (Villeneuve et al. 2018) and
this may result in seasonal variations in associations between expo-
sure to trees, human health, and therefore medication sales. We
were not able to analyze the associations by season because infor-
mation on the timing of medication use was not available in our
data set and because our assessment of exposure to trees did not
take into account potential seasonal variations in tree crown vol-
umes. Future research might explore how the frequency and the
timing of medication use would affect the tree—health associations.

The exposure measurements may contain uncertainties.
Residential exposure to green space may differ from true exposure
because it ignores dynamic time—activity patterns that include home
time, school or working hours, recreation, and time in traffic and
which may significantly impact health outcomes (Stas et al. 2021).
The imperfect temporal match between the LIDAR data (2012) and
medication sales data (2006-2014) may also lead to exposure mea-
surement error owing to the changes in trees over time. One of the
solutions to this issue is using multi-temporal LiDAR data, which is
increasingly promising given that LIiDAR data costs are decreasing
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and data processing is becoming more standardized (Zhao et al.
2018). In addition, like other tree identification and delineation algo-
rithms, our algorithm was inevitably accompanied by issues, such
as the misidentification of trees (e.g., building edges) and the over-
and undersegmentation of tree crowns (Zhen et al. 2016). In addi-
tion, although the estimated crown volume using a 3D convex hull
algorithm largely relies on the amount and distribution of branches
that does not change much between summer and winter, for decidu-
ous trees it may be underestimated owing to the use of winter (or
leaf-off) LIDAR data (@rka et al. 2010). We acknowledge that these
issues may affect the tree characteristics aggregated at the census
tract level. However, the building edge objects had a relatively small
volume; the segmentation errors may slightly over- or underesti-
mate the amount of trees (Figure 3) but did not bias the aggregated
tree crown volume; and a recent study has shown that leaf-off
LiDAR data were more successful in describing crown size diver-
sity (Davison et al. 2020). Therefore, we believe these uncertainties
did not meaningfully affect the tree—health associations observed in
the present study. In addition, perfect identification and segmenta-
tion of individual trees in a highly heterogeneous environment with
diverse tree species and local contexts (e.g., urban areas) is challeng-
ing and beyond the scope of this study. We acknowledge the fact
that timing mismatch between medication sales data (2006-2014)
and socioeconomic background data (2001) may have caused addi-
tional bias, but at the time of analysis this was the best possible
match based on the availability of group-level socioeconomic and
medication sales data sets.

Finally, it is important to note that lower medication sales
may be associated with higher mortality. This may be the result
of untreated cardiovascular disease and mood disorders, leading
to higher mortality by cardiovascular disease and suicide.
However, in a study on the associations between residential green
space and mortality for residents in the five largest cities in
Belgium (including Brussels), higher exposure to residential
green space was associated with decreased nonaccidental mortal-
ity (Bauwelinck et al. 2021). Therefore, we argue that the lower
medication sales in areas with higher exposure to green space in
this study was most likely associated with the lower incidence of
cardiovascular disease and mental disorders.

Conclusions

Based on aggregated health data and comprehensive 3D tree
data, we found that both tree density and tree crown volume are
inversely associated with medication sales for cardiovascular dis-
ease and mood disorders. However, results of models that evalu-
ate several tree trait exposures simultaneously suggest that living
in areas with large tree crown volumes divided over relatively
fewer stems may be more beneficial for adult cardiovascular and
mental health than living in areas with a similar crown volume di-
vided over a higher number of trees with smaller crowns. Large
tree crowns may reduce physical and mental stress more effi-
ciently because the reduction of both heat and air pollution
depend on leaf area, which is higher in large tree crowns.
Psychological effects and indirect nature experiences provided by
large trees, which are often old trees, may further strengthen the
health impacts of these trees. Our results demonstrate that con-
serving large, old trees in urban environments supports not only
the conservation of biodiversity but also human health.
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