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Abstract 

Introduction Africa was threatened by the coronavirus disease 2019 (COVID-19) due to the limited health care infra-
structure. Rwanda has consistently used non-pharmaceutical strategies, such as lockdown, curfew, and enforcement 
of prevention measures to control the spread of COVID-19. Despite the mitigation measures taken, the country has 
faced a series of outbreaks in 2020 and 2021.

In this paper, we investigate the nature of epidemic phenomena in Rwanda and the impact of imported cases on the 
spread of COVID-19 using endemic-epidemic spatio-temporal models. Our study provides a framework for under-
standing the dynamics of the epidemic in Rwanda and monitoring its phenomena to inform public health decision-
makers for timely and targeted interventions.

Results The findings provide insights into the effects of lockdown and imported infections in Rwanda’s COVID-19 
outbreaks. The findings showed that imported infections are dominated by locally transmitted cases. The high inci-
dence was predominant in urban areas and at the borders of Rwanda with its neighboring countries. The inter-district 
spread of COVID-19 was very limited due to mitigation measures taken in Rwanda.

Conclusion The study recommends using evidence-based decisions in the management of epidemics and integrat-
ing statistical models in the analytics component of the health information system.
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Introduction
Due to limited health care infrastructure in most Afri-
can countries, Africa was severely threatened by the 
coronavirus disease COVID-19 [1]. Worldwide, up to 
349 million COVID-19 cases were reported by December 

2021, with around 6 million reported in Africa. As of 
December 19th, 2021, in Rwanda the total number of 
COVID-19 cases in the population was 102,231, with 
females accounting for over 51% of the cases. The major-
ity of cases (80%) occurred in individuals under the age 
of fifty. On average, approximately 1000 PCR tests were 
conducted per day, with a COVID-19 recovery rate of 
98%. The case fatality rate was 1.1%, with 1125 recorded 
deaths, of which the majority were males (53%) [2]. 
Rwanda’s swift, methodical, and all-encompassing strat-
egy to combat the COVID-19 outbreak has been lauded 
for its effectiveness. Despite the inevitable economic 
consequences, the country’s GDP declined by 39.1% 
when compared to a hypothetical scenario in which the 
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pandemic did not occur during the same period. The 
pace and extent of Rwanda’s economic recovery will be 
contingent on various factors, including the resumption 
of international travel [3].

By the end of 2021, concerns were growing over a third 
and fourth wave of infections, with Africa’s COVID-
19 vaccine rollout advancing slower than the rest of 
the world. Fortunately, the continent also has particu-
lar experience in controlling pandemics using effective 
surveillance strategies to prevent the spread of diseases 
[4]. Even before any African country had reported a 
COVID-19 case, Rwanda had already established an early 
warning system in January 2020. This system included 
temperature screening at airports and recording travel-
ers at points of entry to enable public health tracing [5]. 
Strong measures such as imposing lockdown and system-
atic contact tracing to interrupt the chain of transmission 
were implemented [6]. We have provided in supplemen-
tary map of districts of Rwanda with names,location of 
airport and key point of entry. Rwanda uses cellphone 
tower data to augment contact tracing efforts [7], con-
ducts decentralized contact tracing at community level, 
and uses geospatial mapping to monitor the spread of the 
disease.

The spread of the disease naturally exhibits spatio-tem-
poral interaction, as an infectious individual may cause 
secondary cases by transmitting the infectious agent to 
nearby susceptible individuals [8]. Spatial and spatio-
temporal models have been evolving rapidly in the last 
two decades, and their application to the health field 
improved the response to the pandemic [9]. The impor-
tance of geography in the study of disease transmission, 
like all-natural phenomena, answers to the first law of 
geography, stating that everything is related to everything 
else, but near things are more related than distant things 
[10]. The study of the secondary transmission pattern of 
COVID-19 in Rwanda showed that the spatial compo-
nent is important to understand the spread of COVID-19 
[6]. Held and al. proposed a framework for the statisti-
cal analysis of the number of cases of infectious dis-
eases, describing the epidemic curve by an epidemic 
and endemic component. The model makes it possible 
to study the epidemic at a local scale and to investigate 
the spread amongst regions [11]. The epidemic-endemic 
model has been successfully applied for several infectious 
disease outbreaks, providing an adequate fit and reliable 
one-step-ahead predictions: e.g. dengue in China [12], 
measles in Cameroon [13], COVID-19 in Italy [10], UK 
[14] and Germany [15].

Despite several severely restrictive measures taken in 
Rwanda, local COVID-19 outbreaks continued to occur 
across the country. In the first quarter of the pandemic, 
imported cases were predominant. An imported case was 

defined as anyone who tested positive for COVID-19 at a 
point of entry into the country. All imported cases were 
quarantined and treated in government-supervised cent-
ers to reduce the transmission risk in the community. In 
addition, Rwanda imposed travel restrictions and closure 
of borders to limit imported cases. Despite those meas-
ures, more new cases resulted from local transmission 
compared with the amount of imported cases over time. 
Although the travel restrictions have clear benefits when 
there are no or few cases in a destination country, they 
are less effective once a country has a larger number of 
cases resulting from local community transmission [16].

The purpose of the present paper is to model the num-
ber of COVID-19 infections to understand the dynam-
ics of the epidemic in Rwanda and to monitor epidemic 
phenomena to inform public health decision-makers, 
as this gives them the time to intervene in local public 
health systems with timely, evidence-based and targeted 
interventions in small areas. We investigate the nature 
of epidemic phenomena in Rwanda and the impact of 
imported cases on the spread of COVID-19 cases.

The study findings will contribute to inform public 
health policies and strategies aimed at curbing the spread 
of COVID-19 in the country. The findings of this study 
can also be used to guide future research and provide 
insights on modeling approaches of COVID-19 infec-
tions to inform adequate interventions to control the 
epidemic.

Materials and methods
Data source
The Rwanda Biomedical Center started disseminating the 
daily number of COVID-19 infections since the detec-
tion of the first case on 14th March 2020. In this paper, 
we used data from 14th March 2020 until 19th December 
2021. Rwanda has a digitized COVID-19 data system, and 
everyone who tested positive from the laboratory system 
gets immediately reported to the public dashboard [6]. 
On 19th December 2021, Rwanda recorded a cumula-
tive total of 102,231 cases of COVID-19. The COVID-19 
cases were categorized into imported or locally transmit-
ted cases. The lockdown data was collected based on the 
date and the geographic area, which could be a sector or 
a district. Information regarding the population of each 
district and the district shapefile of Rwanda were pro-
vided by National institute of statistics. The data used 
were accessed from the Rwanda Biomedical Center data 
hub at the link: https:// gis. rbc. gov. rw/ portal.

Statistical analysis
The evolution of the number of daily infections is studied 
by means of a count model, which belongs to the fam-
ily of Spatial Generalised Linear Mixed Models. Let Yrt be 
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the number of reported cases in district r = 1, . . . ,R dur-
ing week t = 1, . . . ,T  . An endemic-epidemic multivari-
ate time-series model for infectious disease counts Yrt was 
proposed by Held, Höhle, and Hofmann [11] and later 
extended in a series of papers [8, 17, 18]. In its most com-
mon formulation, this model assumes that conditional on 
the past observations, the number of reported cases follows 
a negative binomial distribution with mean µr,t , where

and region-specific overdispersion parameters ψr . If ψr 
> 0 the conditional variance of Yr,t−1 is µr,t (1+ψrµr,t ), 
while if ψr = 0 the negative binomial distribution reduces 
to a Poisson distribution with mean and variance equal 
to µr,t . The three terms on the right-hand side of Eq. (1) 
correspond to the three components of the model: the 
epidemic within-region or auto-regressive component, 
the epidemic between-region or spatio-temporal compo-
nent, and the endemic component.

The first component models the contribution of the tem-
poral dynamics to the expected number of cases within 
region r. This component assumes a dependency on the 
number of cases observed in the previous week (t − 1) 
in the region, with the coefficient �r > 0 quantifying the 
strength of dependence. The second component is the 
epidemic between-region component that models the 
contagion between neighbouring regions by including the 
incidence in the neighbouring regions 

∑
r′ �=r ωr

′
,rYr′,t−1 , 

where ωr
′
,r is positive if districts r ′ and r share a border and 

ωr
′
,r is zero otherwise. The coefficient φr determines the 

magnitude of the effect of inter-district spread of conta-
gion, and changes amongst districts according to the popu-
lation. The third term is the endemic ( υ ) component that 
determines the district-specific contribution to the number 
of cases, once the epidemic effects are accounted for. The 
term er is the population proportion of district r, whereas 
the term υr,t consists of a national time trend component, 
a district-specific effect depending on the share of popula-
tion, and on a random effect which captures the heteroge-
neity due to unobserved factors.

Paul and Held (2011) suggested that the endemic and 
epidemic components can be modelled through the log-
linear specifications:

(1)µr,t = �rtYr,t−1 + φrt
∑

r′ �=r

ωr
′
,rYr′,t−1 + erυr,t ,

(2)log(�rt) = α(�)
r + β(�)⊤Z

(�)
r,t ,

(3)log(φrt) = α(φ)
r + β(φ)⊤Z

(φ)
r,t ,

(4)log(υrt) = α(υ)
r + β(υ)⊤Z

(υ)
r,t + log(er,t),

where the α(.)
r

 is an area-specific intercept r and er,t 
is the population fraction in area r at time t. The three 
main components in Eqs. (2)-(4) describe region-spe-
cific effects, incorporated via the use of region-specific 
random intercepts [18]. In particular, we assume the 
following normal distributions α

(�)
r ∼iid N (α(�), σ 2

(�)) , 
α
φ
r ∼iid N (α(φ), σ 2

φ ) , α
(υ)
r  and ∼iid N (α(υ), σ 2

υ ) . Given the 
regionally decentralized health system in Rwanda, non-
negligible differences in case reporting of COVID-19 
infections accross districts are very likely, making inclu-
sion of district-specific intercepts very important.

Both epidemic and endemic components also contain a 
term Z(.)

r,t , that represents observed covariates to account 
for the time trend and to account for the impact of the 
lockdown that can affect endemic occurrences of infec-
tions. More precisely, we fitted models that included lock-
down as a dummy variable. The linear Eqs. (5)-(7) show 
how the parameters were determined.

We assume that the parameter �r,t for the epidemic-
within-district component is determined by the following 
linear equation :

where α(�)
r  is the random effect intercept, allowed to vary 

across districts, and β�

lockdown is the regression parameter 
associated with the Lockdown covariate. The lockdown 
covariate is an indicator equal 1 when lockdown was in 
place at time t in district r, and 0 otherwise.

For the epidemic-between-districts component, the 
parameter φrc,t is determined by the linear equation:

where α(φ)
r  is the random effect intercept and β(φ)

lockdown are 
the regression parameters associated with the population 
proportion (pop) and lockdown covariates. This model 
explains the spread of diseases accross different districts. 
To account for the between-epidemic component three 
assumptions were tested. We first assumed that the dis-
ease transmission can only occur directly from adjacent 
districts wji = (j ∼ i) , and all districts can equally only 
have imported cases from neighboring districts. Sec-
ondly, we assumed that people travel mainly in urban 
areas. We adjusted the model to reflect commuter-driven 
spread in the model, by scaling the district’s susceptibil-
ity with respect to its population fraction by multiplying 
φ with eβpop . The last assumption was to consider spatial 
distance between districts. To account for long-range 
transmission of cases, we estimated the weights wji as a 
function of the adjacency order Oji between the districts. 
We used a power-law model, that assumes the form value 
of wji = O−d

ji  , for j  = i and wjj = 0 , where d > 0 is a 

(5)log(�r,t) = α(�)
r + β

(�)

LockdownI(Lockdownr,t),

(6)
log(�r,t ) = �(�)

r
+ �(�)

pop
(popr,t ) + �

(�)

Lockdown
I(Lockdownr,t ),
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decay parameter. The greater the d, the faster the decay-
ing of the power low function, and therefore, the less 
important is the difference between different levels of Oji

For the endemic component, the parameter υr,t is 
determined by the linear equation:

Note that the seasonality pattern is included via the sinu-
soidal wave with frequency ω = 2π/52.

This model (with normally distributed random 
effects) can be estimated through penalized likelihood 
approaches, implemented in the R package surveil-
lance [8]. We implemented the data analysis using the 
multivariate “hhh4” models in the surveillance package in 
R software version 4.1.0 [8].

We fitted a model on both all cases (imported and 
locally transmitted) and only the locally transmitted 
cases to identify the contribution of imported infections 
in the model. We compared the basic model (M1), which 
does not include any covariates. M2 which is the basic 
model with an added lockdown indicator as a covari-
ate. M3 which builds on M2 by adding population size 
to account for commuter-driven spread, and M4, which 
is M3 model adjusted with power-law to account for the 
long-range transmission of infections.

We introduced random effects to allow district-specific 
intercepts to improve the model fit. Hence, we updated 
model (M4) by assuming independent random effects to 
allow district-specific intercepts to improve the fit (model 
M5). However, (model M5) does not specify the corre-
lation between the three random effects. We therefore, 
used a conditional autoregressive formulation (model 
M6) to account for this correlation.

Model diagnostics and selection
For the model diagnostics and selection, we used Akaike 
information criteria (AIC) approaches [19], and predic-
tive model assessment using scoring rules for count data 
that measure the discrepancy between the predictive 
distribution from a fitted model and the later observed 
value. Lower scores correspond to better prediction [8]. 
The best model was chosen based on predictive model 
assessment between (model M5) and (model M6) since 
random effects invalidate comparison of AIC [8]. Table 1 
summarize different predictive scores recommended for 
count data [20].

Results
Exploratory data analysis
Rwanda recorded the first case of COVID-19 on 14th 
March 2020, which was an imported case from India 
that triggered the contact tracing efforts. Several 

(7)
log(�r,t ) = �(�)

r
+ �t + �sin(�t) + �cos(�t) + �

(�)

Lockdown
I(Lockdownr,t ) + log(er,t )

other imported cases were identified among travelers, 
mainly a cluster of business communities who trave-
led to Dubai and their close contacts in Rwanda [21]. 
Figure 1 (top panel) shows the trend of the number of 
COVID-19 reported cases per week for a period of 93 
weeks. The first epidemic week started on 15th March 
2020, and the last week of the epidemic ends on 19th 
December 2021 in this study. The total number of 
COVID-19 cases in this period was 102,231, includ-
ing 1,404 imported cases. The graph shows the trends 
of observed and the imported cases ones. The first 
wave peak was observed on week 24, the second wave 
in week 47, and the third wave on week 67. Figure  1 
(bottom panel) shows the trend of imported cases over 
time. There were 15 imported cases per week and 1084 
locally transmitted cases per week on average.

Rwanda has had four national lockdowns and several 
area-specific lockdowns as of December 2021. The first 
countrywide lockdown started during the period that 
imported cases were rising and lasted for six weeks 
(indicated by the grey vertical lines in both the top 
and bottom panel). The first and second countrywide 
lockdowns intended to control the rise of cases mainly 
driven by new imported cases. The third and fourth 
countrywide lockdowns intended to flatten the curves 
of the second and third waves. The locally transmitted 
infections dominated both the third and fourth waves.

Figure 2 shows the incidence rate per 100,000 inhab-
itants per district for all cases (left panel) and for 
imported cases only (right panel). We observe a high 
incidence rate of COVID-19 in the central part of 
Rwanda, mainly in the Gasabo, Kicukiro, and Nyu-
rugenge districts of Kigali city. Furthermore, the left 
panel of Fig. 2 shows high incidence rates in the South-
West (Rusizi) and the South-East (Kirehe) regions. The 
right panel of Fig. 2 shows high incidence at all points 
of entry, in the central region of Rwanda (International 
airport of Kigali), South-West and North-West at the 
border of Rwanda and Republic Democratic of Congo, 

Table 1 Predictive model assessment:

Notes:logarithmic score (“logs”), ranked probability score (“rps”), and squared 
error score (“ses”). M5 is full model but does not take into account correlation; 
M6 is full model that account for this correlation

Models logs rps ses

All Cases

   Model M5 18.76 36.41 15405.15

   Model M6 18.75 36.41 15391.88

Local cases

   Model M5 18.65 36.24 15470.41

   Model M6 17.38 34.51 15343.36
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Fig. 1 (A) Number of COVID-19 reported cases per week and national lockdown restrictions (grey vertical lines). Top panel: all infected cases in 
2020-2021. (B) Lower panel: number of imported COVID-19 cases per week. Notes: The first epidemic week started on 15th March 2020, and the last 
week of the epidemic ends on 19th December 2021 in this study
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and South-East (Kirehe) at the point of entry of Rwanda 
and the United Republic of Tanzania.

Main findings
Table  2 shows the distribution of cases by district. The 
imported cases contributed 1.37% (1,404) of all infected 
persons, while over 98% of all new infections in Rwanda 
were locally transmitted. The findings show Kigali City 
(Kigali city is composed of three districts:Gasabo,Kicukiro 
and Nyarugenge) and points of entry as the epicenters of 
COVID-19 in Rwanda. About 43,464 (42.5%) of all infec-
tions and 1,355 (96.5%) of imported were found in Kigali 
and at Rwanda’s borders(Districts at borders:Bugesera,Kir
ehe,Nyagatare,Rubavu,Rusizi). The city of Kigali contrib-
uted 29.48% (30,134) of all infected persons and 57% (803) 
of all imported infections in Rwanda. About 17% (235) 
of imported cases were from Tanzania, 12% (172) from 
Democratic Republic of Congo (DRC), and 7% (101) from 
Uganda. The results show that eight districts of Rwanda 
did not record any imported cases and yet contributed 
about 15% (16,062) of all infected persons in Rwanda. 
The 1404 imported cases were classified by origin: Asia 
200 (14%), Central Africa 138 (10%), East Africa 772 
(55%), Europe 87 (6%), Northern Africa 25 (%), Northern 
America 52 (4%), South Africa 62 (4%), and West Africa 
68 (5%).

The model M4 proved to be the best based on AIC as 
shown in Table 3.

The logarithmic score (logs) and the ranked prob-
ability score assess the whole predictive distribution for 
calibration and sharpness. Then the squared error score 
is the mean square error of averaged forecasts set. The 

lower scores correspond to better predictions [20]. The 
scores for Model M6 are lower as compared to M5 which 
implies a better model. Therefore the results presented 
and discussed are based on model M6.

Table  4 shows the parameter estimates for this 
model. The overall findings of the model show that 
in Rwanda, within epidemic (autoregressive) contrib-
utes 64.2% and 64% with and without imported infec-
tions respectively.The infections due to transmission 
between districts contributes 22.4% and 23% of total 
spread, correspondingly with and without imported 
infections. The endemic component contributes 
respectively 13.4% and 12.5%.

The results in Table  4 show that lockdown contrib-
uted to slowing the spread of new infections in both 
models with and without imported infections, espe-
cially with endemic and within spread.

Figure  3 represents seasonality-adjusted factor by 
which the basic endemic incidence increases per week 
and lockdown period. The seasonality patterns for 
both model with and without imported infections are 
included through sinusoidal wave. The seasonality 
adjusted factor of the model without imported infec-
tion is three times less as compared to model that 
included all infections. Indeed, the endemic incidence 
increases 3.5 times exp(1.23) per week due to imported 
infections as compared to an increase of 1.1 times 
exp(0.08) with only locally transmitted infections. The 
findings also showed that the amplitude of seasonal-
ity is 

√
γ + δ = 4.8 vs 3.7 without imported infections. 

This indicate that imported cases do have important 
influence on the further spread of COVID-19.

Fig. 2 COVID-19 incidence rate per 100,000 inhabitants in Rwanda’s districts. (A) Left: incidence of all cases (local and imported) after 93 weeks. (B) 
Right: Incidence of imported infected cases after 93 weeks
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We further assessed the degree of spatial heteroge-
neity in Fig.  4 for the all cases model (top panel) and 
for the local cases model (bottom panel). The maps 
shows the decomposition of the estimated expected 
number of infections into its three components: the 

within-epidemic, between-epidemic, and endemic con-
tributions by districts. For each district, the three fitted 
components are presented as proportions in 4.

Overall, the epidemic within districts (autoregres-
sive) component has the largest contribution in most 
districts both with and without imported cases, mainly 
in the three urban districts in central of Rwanda (Gas-
abo, Nyarugenge and Kicukiro), the district of Rusizi in 
the South-West, and the district of Kirehe in South East 
(Map left) and North West (Rubavu). The findings on the 
autoregressive model with and without imported infec-
tions do not show a strong difference. Spatio-temporal 
model component shows inter-districts transmissions, 
and the district of Gatsibo in North-East of Rwanda 
showed a high incidence as compared to other dis-
tricts. The transmission between neighboring districts 
is observed in both model with and without imported 
infections.

Table 2 Overall COVID-19 infected cases in Rwanda by Districts in 93 weeks

District n(C%) Imported n(R%) Imported n(C%) Local n(R%) Local

Bugesera 44(3.13) 44 (2.83) 1512 (1.50) 1556 (97.17)

Burera 3(0.21) 3 (0.13) 2317 (2.30) 2320 (99.87)

Gakenke 0(0) 0 (0) 2359 (2.34) 2359 (100)

Gasabo 105(7.48) 105 (0.93) 11206 (11.11) 11311(99.07)

Gatsibo 8(0.57) 8 (0.45) 1755 (1.74) 1763 (99.55)

Gicumbi 7(0.50) 7 (0.13) 5226 (5.18) 5233 (99.87)

Gisagara 0(0) 0 (0) 1738 (1.72) 1738 (100)

Huye 1(0.07) 1 (0.03) 3963 (3.93) 3964 (99.97)

Kamonyi 2(0.14) 2 (0.06) 3176 (3.15) 3178 (99.94)

Karongi 6(0.43) 6 (0.13) 4693 (4.65) 4699 (99.87)

Kayonza 2(0.14) 2 (0.07) 2852 (2.83) 2854 (99.93)

Kicukiro 644(45.87) 644 (7.11) 8416 (8.35) 9060 (92.89)

Kirehe 235(16.74) 235 (11.56) 1798 (1.78) 2033 (88.44)

Muhanga 1(0.07) 1 (0.03) 3412 (3.38) 3413 (99.97)

Musanze 3(0.21) 3 (0.07) 4536 (4.50) 4539 (99.93)

Ngoma 11(0.78) 11 (0.57) 1927 (1.91) 1938 (99.43)

Ngororero 0(0) 0 (0) 3347 (3.32) 3347 (100)

Nyabihu 2(0.14) 2 (0.15) 1310 (1.30) 1312 (99.85)

Nyagatare 101(7.19) 101 (3.56) 2738 (2.72) 2839 (96.44)

Nyamagabe 1(0.07) 1 (0.03) 3178 (3.15) 3179 (99.97)

Nyamasheke 0(0) 0 (0) 1525 (1.51) 1525 (100)

Nyanza 0(0) 0 (0) 2009 (1.99) 2009 (100)

Nyarugenge 54(3.85) 54 (0.55) 9709 (9.63) 9763 (99.45)

Nyaruguru 1(0.07) 1 (0.05) 2169 (99.95) 2170 (99.95)

Rubavu 118(8.40) 118 (3.45) 3303 (3.28) 3421(96.55)

Ruhango 0(0) 0 (0) 1512 (1.50) 1512 (100)

Rulindo 1(0.07) 1 (0.05) 2142 (2.12) 2143 (99.95)

Rusizi 54(3.85) 54 (1.55) 3427 (3.40) 3481 (98.45)

Rutsiro 0(0) 0 (0) 1255 (1.24) 1255 (100)

Rwamagana 0(0) 0 (0) 2317 (2.30) 2317 (100)

Overall 1404 (100) 1404 (1.37) 100827 (100) 100827 (98.63)

Table 3 Model comparison using AIC

Notes: M1 is Basic model no covariate; M2 is M1 added Lockdown; M3 is M2 
added population size; M4 is M3 update with power law

Model All cases Model Local cases
AIC AIC

M1 No covariates 59153.22 58440.21

M2 Lockdown covariate 58837.24 58122.04

M3 Population size and Lockdown 58695.52 57986.63

M4 Power law model 55626.96 55061.39
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Table 4 The parameter estimates for final model M6

All Local
Parameter Estimates(SD) 95% CI Estimates(SD) 95% CI
Autoregressive

α�
r

-0.50 (0.010) (-0.52, -0.48) -0.50 (0.011) (-0.52, -0.48)

βLockdown -0.36 (0.032) (-0.42, -0.29) -0.40 (0.032) (-0.46, -0.34)

Spatio-temporal

α
φ
r

-25.42 (7.154) (-39.44, -11.40) -21.93 (7.908) (-37.43, -6.43)

βpop 1.87 (0.561) (0.77, 2.96) 1.59 (0.620) (0.38, 2.88)

βLockdown 0.31 (0.044) (0.22, 0.39) 0.39 (0.041) (0.31, 0.47)

Endemic
αυ
r -107.35 (3.108) (-113.44, -101.25) -33.58 (0.500) (-0.52, -0.48)

βt 1.23 (0.039) (1.15, 1.31) 0.08 (0.002) (0.08, 0.081)

γ 17.70 (0.577) (16.57, 18.83) 18.53 (0.465) (17.61, 19.44)

δ 5.70 (0.237) (5.23, 6.16) -4.33(0.106) (-4.54, -4.12)

βLockdown -0.50(0.076) (-0.65, -0.35) -0.62(0.074) (-0.77, -0.48)

D 1.17 1.34

Random effect Variance Variance

σ 2

�
0.31 0.36

σ 2
φ

0.73 0.91

σ 2
υ

5.01 4.57

Contribution of components
Autoregressive 64.2% 64.0%

Spatio-temporal 22.4% 23.5%

Endemic 13.4% 12.5%

Fig. 3 Estimated multiplicative effect of seasonality on the endemic mean and lockdown restrictions(grey vertical dotted lines)
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Overall findings showed that imported cases have 
negligible effects due to high domestic transmissibility 
in Rwanda. The locally transmitted infections are more 
dominant compared to imported infections. Therefore, 
non-pharmaceutical interventions focusing on con-
trolling and minimizing the local spread of COVID-19 
should be the first priority. Particularly in high incidence 
parts of the country. A high COVID-19 incidence rate 
was observed in the central areas of Rwanda, mainly in 
the three districts of the city of Kigali (Gasabo, Kicukiro, 
and Nyarugenge), the capital of Rwanda and in districts 
of Rwanda bordering the United Republic of Tanza-
nia, in Southeast of Rwanda ( Kirehe district), as well as 
the Democratic Republic of Congo(RDC) in Southwest 
(Rusizi District) and North West (Rubavu district) as 
shown in the Fig. 2.”

Discussion
In this article, we modeled the trend of COVID-19 
epidemics accross time and space to understand the 
dynamics of COVID-19 and to identify the impact 
of imported cases in Rwanda. Non-pharmaceuti-
cal interventions in Rwanda contributed in delay-
ing outbreaks and reduction of new infections. The 
key Rwanda’s interventions were restricting travels 

through lockdowns, testing pre and post travels in/
out of Rwanda (three polymerase chain reaction (PCR) 
negatives to all arrivals within 72 hours pre-departure, 
a second PCR test at arrival, and a third test at the 
end of 3 or 7 days of quarantine), complete closure of 
land borders except transportation of goods and other 
essential travel. In addition to the mandatory policy of 
wearing the mask, hand washing and other hygienic 
measures such as sanitizing airport areas, and pub-
lic places. The transport of people and goods were 
restricted, except inter-countries truckers of goods. The 
travel restrictions contributed significantly to keep-
ing imported cases less than 1.5% of all infections in 
Rwanda. A similarly low number of imported cases 
were observed in countries with effective screening 
strategies at the point of entry, such as Beijing in China 
[22]. About 96.5% (1,355) of imported cases were in 
urban areas (Kigali City) and the districts at the borders 
of Rwanda at arrival or through contact tracing. The 
distribution of confirmed cases is unequal across the 
Districts. Mainly urban areas are more affected as com-
pared to rural areas [23]. The result showed that 42% of 
all infections in Rwanda were in Kigali City and areas at 
the borders of Rwanda and neighboring countries. The 
urban and the border areas are among the key locations 

Fig. 4 Maps of the fitted component contributions: within epidemic component (Autoregressive), between epidemic component 
(Spatio-temporal) and endemic component (right). (A) Top panel corresponds to the model for all cases, (B) bottom panel to the model for the local 
cases
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that require specific strategies to control the spread of 
COVID-19. The paper of Li et al. [22] suggested effec-
tive screening strategies at the airport. It is crucial to 
have effective screening strategies in the framework 
of preparedness and response to any unexpected pub-
lic event [24–26]. Unlikely, the paper of Samaan et  al. 
noted the ineffectiveness of screening measures at the 
point of entry in Australia [27]. Our findings identi-
fied the airports areas and the point of entry among 
hot-spot areas with a high incidence rate compared to 
the rest of other areas, which justifies the importance 
of having active Epidemic surveillance at the point of 
entry.

Appropriate interventions that minimize the spread of 
infectious diseases such as COVID-19 require a better 
understanding of epidemic dynamics. The fitted model 
for the Rwanda case showed that the transmission of dis-
ease within the district contributed 64.2% and 64% with 
and without imported cases. Inter-transmission between 
districts contributed 22.4% and 23.5% without imported 
cases. The evolution of the disease over time contrib-
uted 13.4% and 12.5% without imported cases. The find-
ings explain the implication of containment strategies 
applied to control the spread of COVID-19 in Rwanda. 
The spread of disease between districts was minimized 
by applying the lockdown strategy, which explains the 
low contribution (less than 24%) of inter-district trans-
mission. A similar model was used in Italy to under-
stand epidemic dynamics [10]. The non-pharmaceutical 
interventions, mainly restrictions on movement, border 
measures, quarantine of travelers arriving from affected 
countries, city lockdowns, restriction of mass gatherings, 
isolation and quarantine of confirmed cases and close 
contacts, social distancing measures, compulsory mask-
wearing, contact tracing, and testing, school closures and 
personal protective equipment use among health workers 
were effective not only in Rwanda but also in other coun-
tries [28][29].

For Rwanda’s situation, although the weekly increase 
in COVID-19 incidence is much higher with imported 
infections compared to locally transmitted ones, the 
impact of imported cases is minimal due to high domes-
tic transmissibility. Therefore, non-pharmaceutical inter-
ventions should focus on controlling and minimizing 
local transmission, especially in high-incidence areas. 
The study identified several districts with a high inci-
dence rate mainly in urban areas such as districts of 
the city of Kigali, and districts at point of entry (Kirehe, 
Rusizi, and Rubavu). Despite the fact that COVID-19 
has been spread globally due to international travel and 
countries have imposed restrictions on travel to curb the 
spread internally, but the number of new infections did 
not decrease [30]

The country initiated an in-depth epidemiological 
investigation, quarantining, testing of contacts, isola-
tion of confirmed cases, mass testing, and vaccine roll-
out in order to contain the disease [6]. The mitigation 
measures were informed by evidence-based decisions 
[21]. However, there was no available scientific evi-
dence on the effects of imported infections in Rwanda 
which would help in availing appropriate travel poli-
cies and restrictions. Some countries including Rwanda 
closed their land cross-borders completely, with strict 
COVID-19 travel restrictions/ban for almost 20 months 
to prevent imported infections as a mitigation strategy. 
However, any mitigation strategy should be informed by 
scientific evidence. Our study provides insight into the 
effects of imported infections and it reveals the scientific 
approaches that can be embedded in the existing Rwanda 
health information system to generate dynamic evidence 
in real-time. Our findings showed that imported infec-
tions have negligible effects on the spread of COVID-19 
in Rwanda which implies that re-opening borders and 
focusing on domestic strategies to control the spread of 
diseases would be a better strategy to enable the move-
ment of people. The study of Han et  al. on quantifying 
COVID-19 importation risk in a dynamic network of 
domestic cities and international countries showed that 
domestic transmissibility interventions are more impor-
tant than domestic travel flow control [31]. Some papers 
showed that both domestic and international travel 
restrictions helped to decrease the confirmed cases and 
delayed the time to outbreak in the countries with no 
domestic transmission [32–35]. However, mitigation 
strategies such as social distancing, testing, contact trac-
ing, and timely quarantine are more effective than travel 
restrictions in a country that already has community 
transmission [6, 36].

Managing a pandemic is a complex dynamic process 
that requires the country to have the ability to distinguish 
within and between areas of transmission to allow public 
health experts and policymakers to identify appropriate 
strategies to prevent the spread of COVID-19. There is 
no one size fits all, and each country should find the best 
strategy based on available data or scenario simulations 
[32]. Still, it is important to have global coordination to 
ensure the control of pandemics. Rwanda’s response 
strategies implemented effectively contributed to limit-
ing inter-district transmission and delayed the spread 
of COVID-19 in the community. Our findings showed 
that the spatio-temporal component contributes less 
than 24% in Rwanda’s COVID-19 transmission, which 
implies that the infection transmission is not neighbor 
driven. Rwanda adopted non-pharmaceutical interven-
tions such as national and localized lockdown measures 
with strict enforcement measures to regulate circulation 
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within and between districts to reduce the transmission 
rate [5]. The lockdown measures succeeded in contain-
ing COVID-19 spread in Rwanda, and those measures 
might be one of the other reasons that infection trans-
mission in Rwanda is not neighbor-driven or there is a 
low inter-district transmission. On the other hand, lock-
down and movement restrictions negatively affected the 
socio-economic and health sectors [37]. This led to the 
partial lifting of lockdowns and reluctance to re-imposing 
them when necessary due to protecting socioeconomic 
aspects. Therefore, an alternative trade-off strategy that 
enables early detection of new infections while allowing 
free movement of people in COVID-19 free environment 
is needed to maintain the gain from previous measures.

Though imported cases contributed to the spread of 
COVID-19 at the beginning of the pandemic, imported 
cases currently have little effect on the COVID-19 pan-
demic in Rwanda. This study showed that above 98% 
of infections in Rwanda are locally transmitted. We 
observed that 15% of all infections in Rwanda were iden-
tified in districts that have never recorded an imported 
case. Once case numbers within the country are suffi-
ciently large due to local transmission travel restriction 
becomes less effective [16]. Instead, effective screening 
and necessary isolation measures at the point of entry 
are crucial for preventing outbreaks that might be caused 
by imported cases. Countries including Rwanda have 
restricted international arrivals to prevent the spread of 
COVID-19. However, those measures carry a high eco-
nomic and social cost [16].

The paper of Timothy et  al. suggested that countries 
should consider local COVID-19 incidence, local epi-
demic growth, and travel volumes before implementing 
travel restrictions [16, 38]. It is helpful for public health 
decision-making and better planning of detailed public 
health interventions to understand the dynamics of the 
epidemic in their specific context.

Conclusion
In this article, we modeled the trend of the COVID-
19 epidemic accross time and space. our use of spatio-
temporal modelling enabled us to reproduce the history 
of the epidemic concerning past strategies put in place 
by the government of Rwanda to control the spread of 
COVID-19, allowing us to identify the dynamic evolution 
of the pandemic for public health guidance.

Our study provides a framework for understanding 
the dynamics of the epidemic in Rwanda and for moni-
toring its phenomena to inform timely and targeted 
interventions.

The findings provide insights into the effects of lock-
down and imported infections in Rwanda’s COVID-19 

outbreaks. We distinguished between case incidence 
arising from the local/imported within- or neighbor-
driven transmission of infection.

We found that the effect of imported cases was rel-
atively small compared to a sufficiently large local 
transmission in Rwanda. However, the basic endemic 
incidence increases triple times per week due to imported 
cases overtime. Distinguishing within- and between-dis-
trict transmission of cases allowed us to identify potential 
strategies for health policy intervention.

Our findings call for using evidence-based strategies 
to control the spread of COVID-19 and integrating the 
dynamic models in routine health information man-
agement to enable real-time evidence-based decision 
making.

Based on the results of the study, it is recommended 
that policymakers should rely on local evidence to 
develop policies that are tailored to the unique circum-
stances of their country, rather than adopting global 
strategies that may not accurately reflect the country’s 
situation. This approach will ensure that policies are 
more effective in addressing the specific challenges faced 
by the country, and will promote better outcomes for the 
population. These findings have important implications 
for the development of evidence-based policies that can 
effectively address the COVID-19 pandemic and other 
public health crises in a more targeted and efficient man-
ner. Therefore, policymakers are encouraged to consider 
these recommendations when developing strategies to 
manage the ongoing COVID-19 pandemic and other 
public health emergencies.
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