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ABSTRACT
Assessing media streaming performance traditionally requires the
presence of reproducible network conditions and a heterogeneous
dataset of media materials. Setting up such experiments represents
a complex challenge in itself. This challenge becomes even more
complex whenwe consider the newQUIC transport protocol, which
has many tunable features, yet is difficult to analyze due to its
inherent encrypted nature. In this paper, we introduce Vegvisir,
which aims to solve these aforementioned challenges by providing
an open-source automated testing framework for orchestrating
media streaming experiments over HTTP/3. We describe how users
can steer the behavior of Vegvisir through its configuration system.
We provide a high-level overview of its inner workings and its broad
applicability by describing two use cases: one covering sizeable
experiments spanning multiple days and another covering HAS
evaluation scenarios.

CCS CONCEPTS
• Networks → Transport protocols; Application layer proto-
cols; • Information systems→Multimedia streaming.
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1 INTRODUCTION
Facilitatingmedia streaming over the Internet has traditionally been
accomplished by using RTMP, RTP/RTSP and the newer WebRTC
if real-time performance was critical. When scalability became the
main focus, the combination of HTTP and TCP was to be pre-
ferred, which led to HTTP Adaptive Streaming (HAS) protocols,
such as MPEG-DASH and HLS. However, HAS over TCP is not
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a perfect solution and suffers from flaws inherited from the TCP-
HTTP setting. Most HAS traffic is bursty by nature – due to the
stream segmentation mechanism and playout buffer management
– typically referred to as the ON-OFF cycle, which leads to poor
bandwidth utilization and fairness issues [4–6]. For this and other
reasons, the media streaming community is looking at QUIC as a
possible replacement for TCP.

With the first stable version of QUIC having been standard-
ized [14], we are at a key moment in time where significant inno-
vation within the media streaming landscape can take place. The
recently established Media over QUIC (MoQ) group – comprising
key players such as Twitch, Cisco, Meta and several large CDNs – is
working on a low-latency media delivery solution for ingesting and
sharing media over QUIC [10]. Meanwhile, extensions to the QUIC
protocol are being developed and deployed at scale, such as the
Deadline-aware-Transport Protocol [8], the Unreliable Datagram
Extension [22], the WebTransport API [9, 28], HTTP Datagrams
and the Capsule Protocol [26]. Besides exploring novel ways to em-
ploy QUIC, others are already deploying existing media streaming
implementations over QUIC without specific adaptations. Many
of the major online platforms like Youtube and Facebook [25] use
QUIC and HTTP/3 [7] – the successor to HTTP/2 to be used over
QUIC – as their underlying protocols of choice for HAS. Undeniably,
QUIC is here to stay and change the future landscape of Internet
applications [25].

However, while media streaming over QUIC presents new op-
portunities, it also introduces new challenges. As Marx et al. posit,
considerable heterogeneity exists between the available QUIC pro-
tocol implementations, resulting in measurable differences in per-
formance [15]. Presently, 25 open-source QUIC implementations
are available, most of them supporting HTTP3 [1]. Out of many
factors influencing application performance, the specific choice of
congestion control and flow control approaches are prime candi-
dates to optimize. Regarding evaluating media performance over
QUIC, we recognize that our experiments need to embrace this
heterogeneity and look at the differences between existing QUIC
implementations.

Profiling or debugging media streaming applications can be time-
consuming for developers. The time required to establish a repro-
ducible streaming experiment is composed of more factors than just
manual labor for the analysis. A single test typically covers media
playback of live media or some dataset, ranging from a few minutes
to several hours. Considering the fact that a complete experiment,
consisting of multiple tests, can span up to several days. Setting up
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such an environment for each experiment is prone to human error
as time progresses, directly impacting the experiments’ results and
reproducibility. Furthermore, analyzing media streaming over ideal
network conditions tells very little about its behavior in real-world
conditions. Establishing representative and reproducible network
conditions to be used in these experiments can be cumbersome.
Combine this with the QUIC implementation heterogeneity, and
we achieve vast experiment sizes that preclude manual testing as a
valid option.

To address the challenges mentioned in the paragraph above, we
present Vegvisir [13]. Vegvisir is an automated testing framework
that orchestrates client-server-based media streaming experiments
over simulated network conditions. Because the media streaming
domain is broad and we cannot inventory all potential use cases
in advance, Vegvisir is designed to be broadly applicable. The ver-
sion released alongside this paper is tested and specialized towards
media streaming over HTTP/3. Nonetheless, due to careful design
choices, Vegvisir does not enforce this use case in any way, also
making it applicable for future use cases related to e.g. protocols pro-
posed by the MoQ group and QUIC extensions in development. Our
proposed framework makes it easy to define and set up experiments
involving multiple QUIC implementations and different network
scenarios. Vegvisir collects all output produced by an experiment
in a human-interpretable structured folder format. Additionally,
Vegvisir provides an extensible mechanism to allow users to pro-
gram custom behavior to analyze the collected output. To help with
adoption, our framework is compatible with existing Docker images
from the QuicInteropRunner (QIR) project [27] (see Section 3), so
out-of-the-box, Vegvisir always provides up-to-date QUIC-HTTP/3
client and server configurations. At the time of writing, this applies
to 15 of out the 25 existing QUIC implementations [1, 3].

2 DESIGN GOALS
The concrete needs we identified when designing the proposed
framework were transformed into the following five goals. We will
mark the remainder of this paper with ➀, ➁, ➂, ➃ and ➄ whenever
they describe an element that adheres to that design goal.

➀ Repeatable and shareable experiments: Experiments should
be performed under controlled conditions. Users wishing to repli-
cate the results of shared experiments should be able to do so
without a deep understanding of the experiment configuration.

➁ Scalability: The scalability goal covers two domains. Firstly, the
framework should provide a high-level interface for defining size-
able experiments without verbosely writing down every single
composing test. Users should be able to define their experiments
through the use of parameters. Secondly, experiments spanning
multiple hours or even days should be able to complete without
human intervention.

➂ Broad applicability and future proof: The primary focus of
the framework is to facilitate experiments in any way or form
and gather their output. The framework should be designed to
integrate current and future QUIC-based protocols without sig-
nificant changes to its underlying architecture.

➃ Extensible behavior: The framework should provide hooks to
allow users to program its behavior and go beyond its intended
scope. Users should be able to extend the behavior such that

the framework serves as a highly-specialized testing framework
(i.e., a test framework that knows what output the experiments
produce with the capability of analyzing it).

➄ Human interpretable results: The framework should make
experiment output easy to navigate so that configurations and
results do not require intimate knowledge about the framework.

3 RELATEDWORK
Mahimahi [20] is a highly-specialized testing framework for HTTP
client-server interactions. By capturing HTTP-based interactions
and storing them in a structured format, it can later replay these
interactions using simulated network conditions. This enables its
users to test the performance of HTTP-based applications under
controlled conditions. Mahimahi fits our predefined goals ➀ and ➁.
The biggest downside, however, is that Mahimahi’s current imple-
mentation lacks QUIC and HTTP/3 support. Constantin et al. tried
using Mahimahi to analyze the influence of resource prioritization
on HTTP/3 Head Of Line blocking. However, they ran into prob-
lems, resulting in them having to set up their own system, which
was limited to a single QUIC implementation [24].

The Speeder framework [19] aims to evaluate sizeable input sets
across multiple software implementations over various network
conditions. However, while similar to our situation ➀ ➁, Speeder
focuses on amassing predefined web performance measurements,
thus making it a highly-specialized testing framework. The authors
have chosen to automate its experiments and facilitate client-server
communication through TC NETEM’s network emulation software.
Nonetheless, due to the lack of flexibility in their setup, they have
decided not to open-source their framework.

On the other hand, QuicInteropRunner (QIR) [27] is a recent
open-sourced interoperability testing framework for QUIC imple-
mentations. The creators of QIR recognized that for QUIC develop-
ment to advance more efficiently, testing the interaction of QUIC
implementations against each other was paramount. Testing is
done by running a batch of test cases to test protocol specifics be-
tween all participating QUIC implementation combinations. The
framework then decides whether a test succeeded using a simple
pass/fail mechanism to indicate the interoperability status between
two implementations. Even though QIR is a highly-specialized test-
ing framework that does not meet our predefined goals, we have
decided to use it as the foundation for Vegvisir. QIR’s core concept
comprises QUIC-based client-server communication over a simu-
lated network, which is an opportune starting point for our design
goals ➀, ➁, ➂ and ➄. A secondary motivation for expanding upon
QIR lies in how QIR delegates its maintenance to the QUIC imple-
menters participating in interoperability testing. Internally, QIR’s
architecture makes use of Docker. Each implementer provides a
Docker image via the Docker Hub and updates it according to their
schedule. Most of these support an HTTP3 web server setup, fully
equipped to serve requests by QUIC-compatible clients. In other
words, Vegvisir is out-of-the-box compatible with QIR’s Docker im-
ages and thus provides support for 15 out of the 25 QUIC-HTTP/3
implementations. By expanding upon QIR, we profit from already
existing community efforts which in turn aids with the adoption of
Vegvisir.

goDASH [21, 23] is an open-source headless DASH player writ-
ten in golang, with an emphasis on being a validation framework
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for HAS algorithms and QoE models. Under the hood, goDASH
supports TCP- and QUIC-based streaming, comes equipped with
numerous HAS adaptation algorithms and is designed to be eas-
ily customized to enable rapid testing of new HAS logic. When
combined with goDASHBed, a testbed framework that emulates
network behavior using Mininet, users can set up scalable experi-
ments mimicking real-life scenarios. Although similar to Vegvisir,
goDASH with goDASHBed is considered a highly-specialized test
framework. Both are additionally, by design, limited to only work
with the quic-go QUIC implementation. These downsides are prob-
lematic because they strongly hinder our design goal ➂.

4 FRAMEWORK COMPONENTS
This section describes the different components that make up Veg-
visir. We explain the configuration system, extensibility through
customization, the engine for running experiments and how it en-
ables reproducibility.

4.1 Setting up Experiments
Automated testing frameworks are typically associatedwith a single
repository or configuration file containing test cases or conditions.
Introducing changes to the involved software requires redefining
test cases. Even worse, duplicate test definitions are required if
multiple versions of the same software are used. This approach,
however, does not meet our predetermined design goals ➀ and ➁.

Therefore, we have designed Vegvisir to operate on two types of
configurations, the implementation and experiment configurations,
respectively. These define what software is available and how it is
used. Their composition is explained in more detail below. We have
chosen JSON➀ as the data format because it is easy to interpret, edit
and share with others. The experiment execution engine (explained
in Section 4.3) operates on a three-tuple of entities that Vegvisir
refers to as the server, the shaper and the client. The client and the
server represent network endpoints and assume their prototypical
roles. The shaper defines the characteristics of the network over
which the client and server communicate.

The rationale behind splitting up the implementation configu-
ration from the experiment configuration is to achieve loose cou-
pling of software and experiments ➀ ➁. For example, multiple
implementation configurations can define the same client chrome
entry, each addressing a different version. This way, the experiment
configuration requires no changes – provided the implementation
entry works the same way – so experiments can easily swap im-
plementation versions or behavior. Section 4.4 further explains
how Vegvisir utilizes this mechanism for sharing by freezing im-
plementation configurations. Furthermore, splitting up these two
configurations allows multiple experiments to use the same imple-
mentations without explicit duplication. These abilities drastically
reduce the amount of configuration work while providing increased
flexibility.

The implementation configuration defines the available server,
shaper and client software to the experiment execution engine. To
satisfy constraints ➀ and ➂, we have chosen to represent these enti-
ties with the Docker container technology. The benefit of spinning
up Docker containers is that entities are self-contained units that
are easy to exchange through existing platforms such as the Docker

hub or via traditional file sharing. However, we also recognize that
container technology is not always a good fit for client entities. For
example, wrapping a GUI-based client – such as the chrome browser
entry in Listing 1 – in a container does not achieve the same results
as executing it natively on the host machine. With that in mind, we
have designed Vegvisir to allow client entries to be represented by
both Docker images and locally compiled or installed binaries.
{
"clients": {
"chrome": {
"command": "chrome␣--origin -to-force -quic -on=!{ ORIGIN }:!{

↩→ ORIGIN_PORT}␣!{ REQUEST_URL}",
"parameters": {"REQUEST_URL": true},
"construct": [{"root_required": false , "command": "python␣./

↩→ util/chrome -set -downloads -folder.py␣~/. config/google -
↩→ chrome/Default/Preferences␣\"!{ CLIENT_DOWNLOAD_DIR }\""}
↩→ ]

}
},
"shapers": {
"tc-netem": {
"image": "tc-netem",
"scenarios": {
"simple": {"command": "simple␣!{ LATENCY}␣!{ THROUGHPUT}", "

↩→ parameters": ["THROUGHPUT", "LATENCY"]}
}

}
},
"servers": {"aioquic": {"image": "aiortc/aioquic -qns"}}

}

Listing 1: An implementation configuration showcasing one
entity for each category. The client entity, chrome, defines how
to use start the chrome browser via the command key together
with its parameter set. The tc-netem shaper entry contains
one scenario for introducing latency and rate limiting. The
aioquic server entry is one of QIR’s interoperability images
that works out-of-the-box with Vegvisir.

Listing 1 showcases a simplified implementation configuration
example. An implementation configuration always contains three
root dictionaries that define the clients, shapers and servers en-
tities. A name uniquely identifies each entity entry (e.g., chrome,
tc-netem and aioquic1 in Listing 1), which contains a dictionary
that provides information on how to run it to the experiment execu-
tion engine. Server, shaper and client entities reference Docker Hub
images or locally built images with the image key. Client entries
can additionally reference a local binary via the command key. The
value of this key consists of a standard command-line interface
(CLI) command. Docker images can contain scripts that manage the
entity setup and dismantling. To allow for similar behavior with
command-based clients, the optional construct and destruct keys
can be populated with a list of commands to be executed before
and after the client command. The chrome client entity in Listing 1
showcases an example of one such construct command to set the
download folder to one provided by Vegvisir.

The vision for server and client entities is to reference a single
software unit. For example, a client entry could represent a browser
with a specific set of options. Shaper entities, on the contrary, are
less atomic and define a collection of network scenarios via the
scenarios key. Similar to entity entries, a name uniquely identifies
scenario entries within a shaper entry.

We have incorporated a parametric system into the implementation
configuration to aid with ➁ and ➂. Server and client entities, as
well as shaper scenarios, can define these via the parameters key.
Parameter entries for servers and clients can specify whether they
are required or optional through an associated boolean value (e.g.,

1aioquic is one of the existing open-source QUIC-HTTP/3 implementations.
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the REQUEST_URL parameter in the chrome client of Listing 1 is re-
quired). Shaper scenario parameters are always required. Within
the implementation configuration, command-based client entities and
shaper scenario commands use these parameters via the syntax
!{NAME}. Our parametric system is powerful enough that parameter-
provided values can, in turn, also contain references to other param-
eters (e.g., the parameter value provided to REQUEST_URL in Listing 2
references another parameter called ORIGIN). Vegvisir additionally
provides system-specific parameters, such as logging paths, host-
names and ports to more dynamically describe implementations
and experiments. For example, in Listing 1, Vegvisir will popu-
late the ORIGIN and ORIGIN_PORT parameters referenced by chrome’s
command with the correct hostname and port during an experiment.

{
"clients": [
{
"name": "chrome",
"arguments": {"REQUEST_URL": "https ://!{ ORIGIN }/video.mp4"}

}
],
"shapers": [{"name": "tc-netem", "scenario": "simple␣15␣10"}],
"servers": [{"name": "aioquic"}],
"environment": {
"name": "webserver -basic",
"sensors": [{"name": "timeout", "timeout": 30}]

},
"settings": {"label": "paper_example"}

}

Listing 2: An experiment configuration showcasing a setup
using the chrome, tc-netem and aioquic entities from the
implementation configuration in Listing 1.

Howan experiment should behave is finally defined in the experiment
configuration. Listing 2 shows a simple example of such a config-
uration. Similar to the implementation configuration, the experi-
ment configuration contains three root keys: servers, shapers and
clients. Each contains a list of at least one object describing the
entity involved in the experiment. Entities present in the experi-
ment that define parameters in the implementation configuration
must provide arguments for them in the experiment configuration.
Using the !{NAME} syntax, as mentioned earlier, the experiment can
dynamically steer its entities ➁ ➂. The experiment execution en-
gine will create all possible combinations from the three provided
sets of entities ➁. One such combination constitutes a single test
within the experiment. The total amount of tests is, therefore, equal
to the number of entries of each set multiplied by each other.

The experiment configuration root also contains the environment
and settings object. The environment name is linked directly to the
environment system explained in Section 4.2 ➃. It also specifies op-
tional sensors that monitor client entities during the different tests
of an experiment. A test can end in either of two ways. Typically,
the client’s Docker container or command, monitored by Vegvisir,
would simply finish its execution (thus implicitly indicating the
end of a test). Alternatively, configured sensors can detect a specific
state, signaling the end of a test, resulting in Vegvisir terminating
the test. Vegvisir presently includes two sensors. The timeout sen-
sor is a simple timer mechanism that halts a test after a specified
amount of seconds. The browser-file-watchdog sensor is explicitly
designed for browser clients to signal the end of a test if one of the
provided filenames appears in Vegvisir’s test download folder. Due
to their sandboxed nature, extracting application metrics from a
browser context is complex, and no mechanism exists to close a
browser from within a webpage. However, browsers can download

files, and JavaScript can automate such behavior, which we can use
to pass through gathered information and signal the end of the test.

4.2 Custom Behavior with Hooks and Sensors
Due to ➂, knowing the output of an experiment in advance would
limit Vegvisir’s scope. This is why we decided to make Vegvisir’s
primary goal to gather output from experiments ➂ and make them
as interpretable as possible ➄. A side-effect of ➄ is that users can
automate the output analysis with scripts. It is precisely this feature
that makes a testing framework a highly-specialized testing frame-
work. We optionally allow users to program this behavior through
hooks to bridge this gap ➃. By extending the BaseEnvironment avail-
able in the environments module within Vegvisir’s codebase, users
can populate the pre_run_hook and post_run_hook callbacks with
custom behavior. Even though our codebase is written in Python,
users wishing to use existing scripts or programs written in other
languages can also opt to call these from the hook callbacks us-
ing Python’s subprocess module. The benefit of using our hooks is
that they receive all download and logging paths pertaining to a
test. This eliminates the need to crawl through the output folders
manually.

While we provide some generic sensors that cover many use
cases, we recognize that theywill not cover everything or be specific
enough for other use cases due to➂. As such, similar to hooks, users
can program custom sensors by extending the ABCSensor2 available
in the environments module. This allows for a powerful mechanism
to govern experiments. For example, a browser-based HAS client
could send decoding metrics to an HTTP endpoint set up by a
custom sensor. If this example sensor detects dropped frames, it
can decide to preliminarily end the test and output its reason for
doing so in the output log collected by Vegvisir. In cases where an
experiment needs to process many tests that take a long time, such
a mechanism is very beneficial.

4.3 Experiment Execution Engine
Since Vegvisir can host experiments that can span from a few min-
utes to even days, we have designed the experiment execution
engine to dry-run the provided configurations before performing
the actual tests. The dry-run phase will primarily catch missing
parameters for entities involved in the experiment and check if the
provided sensor configurations can be loaded. It is important to
note that while – similar to a compiler – we can catch missing pa-
rameters, there is no system in place to check whether the provided
values are in fact correct. If, for example, an experiment config-
uration provides a wrong URL in a client configuration, Vegvisir
will quietly perform this test and collect its results. It is up to the
implementer to confirm the validity of provided values.

After passing the dry-run phase, Vegvisir commences the exper-
iment by sequentially running all test combinations as computed
from the experiment configuration. Each test goes through 11 steps.
Steps prefixed with a dagger (†) only take place when the respective
test involves a client using a CLI command. A double-dagger (‡)
indicates that the step happens if the specified environment hook
behavior is populated.

2ABC stands for Abstract Base Class
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(1) Log collection setup: Vegvisir creates the necessary logging
structures to capture all output produced by the entities in-
volved with the test. Server, shaper and client Docker containers
directly mount their respective logging folder to which they can
output anything they produce. For clients using CLI commands,
Vegvisir provides system parameters containing the current
logging paths3.

(2) Parameter setup: The parameters for each entity are associ-
ated with the provided arguments from the experiment configu-
ration. For Docker containers, the parameters are accessible via
environment variables within the container. For client CLI com-
mands, the parameters get directly substituted for the respective
arguments.

(3) ‡Activate environment pre-hook: The environment pre-
hook is called and provided with the current test’s log paths.

(4) Start server and shaper: Vegvisir boots the server and shaper
configuration beforehand. The experiment execution engine is
now at a branching point where clients using CLI commands
require extra steps.

(5) †Routing configuration: Vegvisir reconfigures system routes,
so traffic from a command-based client to the server passes
through the shaper container. If all involved entities make use
of Docker, Docker Compose automatically takes care of routing.

(6) Gather system information: To aid with ➀ and ➄, Vegvisir
will, during this step, execute a number of CLI commands to
gather the following information: all kernel parameters and
their values, current IP and route information (including that of
the server and shaper container), Docker version and Docker
compose version. Since certain system settings can influence
the test, logging these for post-experiment analysis are essential
to correctly replicate behavior.

(7) †Sequentially perform client construct commands
(8) Start client and sensors: Configured sensors are activated

and monitor the client output as necessary. Manual termination
of the test is also possible by sending an abort to the terminal.

(9) Teardown: After a client exit or sensor trigger, Vegvisir will
halt all entities.

(10) †Sequentially perform client destruct commands
(11) ‡Activate environment post-hooks: The post-hook is called

and provided with all log paths involved with the current test.

4.4 Sharing Experiments and Results
Repeatability and reproducibility are essential aspects when we
apply Vegvisir to research-oriented experiments. Therefore Veg-
visir provides a mechanism to freeze experiments ➀. Freezing
entails archiving Docker image versions specified in a provided
implementations file. Freezing clients using CLI commands is not
supported because there is no unified mechanism to support this in
an easy-to-use way. We recommend that users manually create an
archive of the locally compiled or installed program or its codebase
as an alternative.

The output of the freezing process is an archive containing all
Docker images referenced by the implementation configuration and

3For people wishing to use Google Chrome and/or Firefox, we provide utility scripts
to set the download paths to the folder created by Vegvisir.

a new implementation configuration in which the original image ref-
erences are replaced with the frozen ones. The original and frozen
implementation configurations provide the same functionality and
are, at this point, provided that no changes were made to the cur-
rent Docker images, completely interchangeable. More importantly,
users can exchange these archives to replicate the experiments on
other machines.

The logging output collected by the experiment execution en-
gine can be interpreted without having any knowledge about Veg-
visir. Output is organized using a hierarchical folder structure with
readable names based on the unique names provided in the imple-
mentation configurations ➀ ➄. Vegvisir automatically copies the
configurations to the logging folders for each experiment. This way,
users can reproduce the setup at a later point in time. Addition-
ally, should the configurations irrecoverably change or get lost, no
reverse engineering from the logs is required.

5 USE CASES
The following subsections illustrate two media streaming-related
use cases for which Vegvisir has proven to be an invaluable re-
search tool. The first use case comprises Vegvisir being deployed
to efficiently discover transport-related issues in HAS streaming.
Our second use case comprised finding the most suitable 3D mesh
compression parameters for the Draco gLTF extension.

5.1 Evaluating HAS over HTTP/3
Evaluating browser-based HAS performance over HTTP/3 was our
initial use case for creating Vegvisir. Having a way to manage an
array of HTTP3 server implementations that have many tunable pa-
rameters, e.g., different congestion control algorithms, has allowed
us to efficiently and rapidly prototype our ideas.

To evaluate HAS performance, we must compare it to a baseline
set of measurements. To facilitate this process, we can depend on
the qlog [17] unified logging format, which most QUIC implemen-
tations support. Tools like qvis4 allow us to examine these qlogs
using interactive visualizations. However, qlog only defines logging
events for QUIC and HTTP/3 [16, 18]. No official event definitions
for HAS currently exist.We therefore include our earlywork on qlog
event definitions for HAS named qlog-has [11]. The idea behind
qlog-has is to have a unified way to represent streaming metrics
and events so that they can be used for performance evaluation and
debugging. Additionally, we include a dash.js wrapper [12] that
produces qlog-has logs for MPEG-DASH streams which we used
during this experiment.

In this use case, we look at streaming diverse video datasets
(e.g., constant bitrate encoding vs. variable bitrate encoding) over
multiple simulated network environments that trigger adaptive
bitrate algorithm logic using existing HTTP/3 server implementa-
tions. Vegvisir’s experiment configuration allows us to define the
above quickly and efficiently.

For example, in one of our experiments, we defined QIR’s 15
HTTP/3 server implementations using their default setup, 3 simple
constant throughput network scenarios that fell between bitrate lad-
der steps and 2 Firefox client configurations for two video datasets
of 3 minutes each. Vegvisir produced a total of 90 test cases (15
4https://qvis.quictools.info/

https://qvis.quictools.info/
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servers × 3 shapers × 2 clients) spanning a total time of approxi-
mately 4.5 running hours. The server implementations and Firefox
produced qlogs containing QUIC and HTTP/3 metrics. Our dash.js
wrapper produced qlog-has metrics for each test case.

Figure 1 illustrates the requested quality expressed in bitrate
for two test cases using the same network conditions and client
configuration, which we retrieved from our qlog-has output. Even
though the conditions were the same, we observed differences in the
requested qualities. Because Vegvisir captures QUIC and HTTP/3
server metrics with qlog, we can immediately examine this behavior
by looking at the respective server output. Figure 2 illustrates the
instantaneous throughput of the packets sent by the quic-go and
ngtcp2 implementations. A difference in burstiness and pacing is
observable between the two.

(a) ngtcp2 HTTP/3 server (b) quic-go HTTP/3 server

Figure 1: Quality changes during a HAS session.

(a) quic-go

(b) ngtcp2

Figure 2: Packets of aHAS session, points represent sent-time
and measured throughput.

5.2 Finding Suitable Encoding Parameters for
Virtual Environment Streaming

In this use case, we focus less on analyzing the heterogeneity be-
tween existing QUIC-HTTP/3 implementations for HAS but instead
showcase Vegvisir’s potential in managing sizeable experiments.
Our project aimed to find the most suitable Draco[2] compression
parameters for gLTF-encoded 3D-meshes to enable virtual environ-
ment streaming.

By default, gLTF does not apply any compression on its 3D-
meshes. This puts significant strain on the network to transfer this

kind of data. Extensions like Draco allow compressing the vertex at-
tributes, normals, colors and texture coordinates, resulting in faster
transmission rates. Choosing the correct glTF encoding parameters
for objects of the virtual scene is crucial. Different combinations of
various encoding techniques for meshes and textures have varying
performances based on the quality of the network. The highest
compression, for example, might not result in the best time-to-
interactive because of the overhead decompression introduces.

To find the best-fitting encoding parameters for our use case, we
created an experiment configuration containing multiple HTTP/3
servers and network conditions. All possible encoding parame-
ters were applied to our dataset and inserted as arguments for
our browser client to utilize during the experiment. This resulted
in a total of 8232 test combinations which Vegvisir robustly ran
during a period lasting 48 hours. All tests were completed success-
fully without human interaction. The experiment provided us with
enough log data to analyze and summarize quickly. No compres-
sion resulted in the worst time-to-interactive, while level 5 Draco
compression produced the best time-to-interactive across different
network scenarios. Vegvisir’s involvement in this elaborate experi-
ment saved many person-hours and ensured the project progressed
with substantiated choices.

6 CONCLUSION AND FUTUREWORK
In this paper, we have introduced Vegvisir [13], a Python-based
automated testing framework to aid researchers and developers in
addressing the challenges posed by setting up sizeable experiments
using the QUIC and HTTP/3 protocols. We hope this framework
will be helpful for others looking into automating their research
and development, whether QUIC-related or for other purposes.

Since Vegvisir is already rooted in our research and projects, de-
velopment shall continue steadily at its GitHub repository [13]. We
encourage everyone to play around with it, use it in their research,
report potential issues, and contribute features.

As for future work, we plan to extend the experiment configura-
tion to allow simultaneous multi-client setups. While it is already
possible to do this by starting a script that initiates multiple clients,
we want to create a more robust mechanism that allows a user to
describe the client arrival process. A second feature we wish to
implement is a playground mode that allows users to spin up a
client or server with a shaper indefinitely to aid in developing and
testing the other endpoint.
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