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Purpose: Standard automatedperimetry is thegold standard tomonitor visual field (VF)
loss in glaucomamanagement, but it is prone to intrasubject variability. We trained and
validated a customized deep learning (DL) regression model with Xception backbone
that estimates pointwise andoverall VF sensitivity fromunsegmentedoptical coherence
tomography (OCT) scans.

Methods: DL regression models have been trained with four imaging modalities
(circumpapillary OCT at 3.5 mm, 4.1 mm, and 4.7 mm diameter) and scanning laser
ophthalmoscopy en face images to estimate mean deviation (MD) and 52 threshold
values. This retrospective study used data from patients who underwent a complete
glaucoma examination, including a reliable Humphrey Field Analyzer (HFA) 24-2 SITA
Standard (SS) VF exam and a SPECTRALIS OCT.

Results: For MD estimation, weighted prediction averaging of all four individuals
yielded amean absolute error (MAE) of 2.89 dB (2.50–3.30) on 186 test images, reducing
the baseline by 54% (MAEdecr%). For 52 VF threshold values’ estimation, the weighted
ensemblemodel resulted in anMAEof 4.82dB (4.45–5.22), representing anMAEdecr%of
38% from baseline when predicting the pointwise mean value. DL managed to explain
75% and 58% of the variance (R2) in MD and pointwise sensitivity estimation, respec-
tively.

Conclusions: Deep learning can estimate global and pointwise VF sensitivities that fall
almost entirely within the 90% test–retest confidence intervals of the 24-2 SS test.

Translational Relevance: Fast and consistent VF prediction from unsegmented OCT
scans could become a solution for visual function estimation in patients unable to
perform reliable VF exams.

Introduction

Glaucoma causes retinal ganglion cell (RGC) loss,
resulting in structural and functional changes in the
visual system. Standard automated perimetry (SAP) is

the reference technique to follow functional visual field
(VF) loss during glaucoma management.1,2 Current
SAP devices such as the Humphrey Field Analyzer
(HFA; Carl Zeiss Meditec, Dublin, CA, USA) have
high intrasubject variability and a lengthy examina-
tion time.3,4 Retinal nerve fiber layer (RNFL) thickness
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measurements in circumpapillary optical coherence
tomography (OCT) scans are a widely accepted surro-
gate for quantitatively assessing structural retinal
damage in patients with glaucoma.5 However, OCT-
measured retinal layer thinning is still far from being
an exact quantification of RGC loss.

In a quest for enhanced glaucoma management, the
structure–function relationship has been and still is an
intensively studied topic.6–9 Reproducible functional
damage typically only becomes noticeable with current
SAPwhen extensiveRGC loss has occurred due to SAP
measurement limitations.10 Meanwhile, in advanced
disease, SAP tends to detect progressive damage better
than RNFL thickness values due to a measure-
ment floor.11 Machine learning studies that use linear
approaches andRNFL thickness to estimate VF values
reported limited correspondence, with most proposed
regression models relying on assumptions such as log
transformation to predict decibel (dB) VF values.12–14
Deep learning (DL) approaches overcome the need for
data transformation because they can model nonlin-
ear functions.15–19 Initial DL on structure–function
focused on the estimation of global VF indices such as
mean deviation (MD)15,16 from OCT-derived informa-
tion such as RNFL thickness maps.17–19 OCT-derived
layer thinning presents only part of the rich informa-
tion on retinal structure that raw OCT scans contain.
Recent work has shown that unsegmented OCT as an
input to DL models has merits in predicting glaucoma
detection and VF damage.20–22

This study wanted to assess the potential of DL
regression models to predict VF information from
raw OCT scans collected in a real-life glaucoma
clinic population. To achieve this goal, unsegmented
SPECTRALIS OCT (Heidelberg Engineering, Heidel-
berg, Germany) scans were used to train and evaluate
customized DL models that estimate both the visual
field sensitivity threshold at each location (52 thresh-
old values) and MD as measured by the HFA. A
thorough analysis of factors that influence modeling
performance is presented.

Methods

Data initially extracted comprised 1643 matched
OCT–VF pairs corresponding to 998 eyes of 542
patients who visited the University Hospitals Leuven’s
glaucoma clinic between 2015 and 2019. This work
is part of the larger study on “automated glaucoma
detection with deep learning” (study number S60649),
approved by the Ethics Committee Research UZ/KU
Leuven in November 2017. Informed consent was

waived because of the retrospective nature and because
patient reidentification was impossible because the link
between patient ID and study ID was removed upon
data export. The research adhered to the tenets of
the Declaration of Helsinki. Inclusion criteria were
(1) the availability of a SPECTRALIS OCT (Heidel-
berg Engineering) scan using the Glaucoma Module
Premium Edition (GMPE), containing one scanning
laser ophthalmoscopy (SLO) en face image, 24 radial
scans, and three circumpapillary rings, and (2) the
results of an HFA3 exam with the strategy 24-2
SITA Standard (SS; 52 test points) obtained with the
Humphrey Field Analyzer (model 850 v1.3.1.2; Carl
Zeiss Meditec, Dublin, CA, USA). Multiple OCT–VF
pairs per eye were allowed on the condition that they
were generated at unique visits. We used the circum-
papillary rings as these scans cover all nerve fibers
that pass through the optic nerve, unlike the radial
scans. The GMPE protocol generates the circumpap-
illary rings by averaging over 16 consecutive B-scans,
resulting in high-quality scans. The SLO image served
as an intrastudy benchmark to quantify the improved
modeling performance using circumpapillary rings.

The 1643 OCT–VF pairs of 542 patients were
allocated to train, validation, and test sets, account-
ing for 60%, 20%, and 20% of the patients, respec-
tively. We took care that all data from a single patient
were stored in the same partition to avoid overesti-
mating performance. To achieve this, random split-
ting was performed on anonymized patient ID instead
of individual data points. Subsequently, subsets of
the VF data of the validation and test data were
selected on standard HFA reliability indices limits set
by the manufacturer, with false positives (FPs) and
fixation losses not exceeding 15% and 20%, respec-
tively.23 OCT–VF pairs were not excluded based on
false negatives, as this is intrinsically linked with the
level of glaucomatous VF damage.24 We did not
exclude unreliable visual field data in the training set
but used them as data augmentation (OCT images with
noisy visual field labels). Statistical group differences
between train, validation, and test sets were tested using
a χ2 test at an α of 0.05.25 Unlike related work, eyes
featuring conditions like cataracts and retinal diseases
that could influence VF testing were not excluded from
the data set. The rationale behind this is to develop a
VF estimation system that thrives in all cases encoun-
tered at a tertiary glaucoma clinic. We assessed the
influence of including these cases in a post hoc sensi-
tivity analysis.

OCT data were extracted in RAW format using
Heyex v6.12.1 software (Heidelberg Engineering).
The binary files were subsequently processed with
heyexReader v0.1.3, a Python package for reading
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Figure 1. Top panel: Overview of imaging modalities, the spatial relationship between structure and analyzed VF points, allocated to
Garway-Heath sectors. The 30° SLO covers less than half of VF test locations, still considerably more than the three circumpapillary OCT
scans (white circles) displayed on the right. Bottom panel: Four cases of the independent test set. Each case features (1) an ONH zoom of the
original 30° SLO image, (2) measured VF map and MD, and (3) the corresponding predicted VF map and MD. The displayed cases include an
example of early glaucoma (top left), moderate glaucoma with loss in the superior hemifield (bottom left), a myopic eye with severe glauco-
matous loss in the inferior hemifield (top right), and severe glaucoma with only a small central island remaining (bottom right).

Heyex OCT files. The three circumpapillary RNFL
rings (3.5 mm, 4.1 mm, and 4.7 mm) and SLO were
extracted as lossless image files with dimensions 768
× 496 and 1536 × 1536, respectively. We obtained
VF data with HFA3 that were analyzed in PeriData
v3.5.7 (PeriData Software GmbH, Hürth, Germany).
Pointwise sensitivity threshold values were extracted
from the individual patients’ printouts using an optical
character recognition (OCR) tool developed for this
task. OCR output was manually verified on 10% of the
data, matching perfectly with actual threshold values.
These values were paired with global indices such as
MD that were exported as a comma-separated value
text file by PeriData. TwoVF test points were discarded
in all analyses, as these are on the anatomical blind spot
(see Fig. 1), resulting in 52 threshold values to model.

Four DL models were trained using the 3.5 mm,
4.1 mm, and 4.7 mm circumpapillary rings and SLO
images for MD estimation and an additional four

DL models for 52 threshold values’ estimation. We
compared the single models with ensemble (weighted
averaged) predictions. The optimal weights of the
ensemble strategy were retrieved using a grid search
strategy with a step size of 0.05. A total of 80
(4 models, 20 possible weight values) combinations
were assessed on the validation set. We selected the
Xception26 architecture pretrained on ImageNet,27 as
this is a well-established convolutional neural network
(CNN) that outperforms most ResNets while featur-
ing fewer parameters. This study did not rely on trans-
fer learning, with no model layers frozen throughout
the whole training process. Publicly available standard
CNN frameworks are typically trained on ImageNet
for classification of 1000 classes and need to be
altered for custom regression purposes. The Xception
encoder was followed by a global average pooling and
convolution operation, avoiding any fully connected
layers to minimize overfitting.28 The final convolution
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operation had either 1 or 52 filters, depending on
the target (MD or 52 threshold values), featuring
a linear activation to allow for regression. Models
were trained using mean squared error (MSE) loss,
optimized using Adam29 with a starting learning rate
of 1e−4. The latter was reduced to 75% of its value after
10 epochs without improving the validation loss. Each
epoch featured 300 training steps of batches contain-
ing four preprocessed and augmented images. This
configuration struck a balance between computing
memory constraints and ensuring the model encoun-
tered all training OCT–VF pairs in a single epoch
(1200 data pairs per epoch). Single-channel circumpap-
illary rings were slightly upscaled to 768 × 512, adding
12 pixels in image height, to obtain image dimen-
sions that are a multiple of 32 for optimal conver-
gence. SLO images were downscaled to 512 × 512, as
the original image dimensions were too memory inten-
sive. The pixel intensity values were rescaled between
0 and 1 by a simple division operation. Augmentation
included horizontal flipping, elastic deformation, and
random erasing.30 Model training and evaluation were
performed using Keras31 v2.2.4, Tensorflow32 v1.12.0,
in a Python 3.6.7 environment running on a server with
six GTX 1080 Ti and two TITAN V graphics process-
ing units.

The coefficient of determination (R2), Pearson’s r
(r), mean absolute error (MAE), and MSE were calcu-
lated to evaluate model performances. R2, MAE, and
MSE were computed using the scikit-learn library33
and r using the NumPy library.34 The best model
configurations (one for MD, one for threshold values)
were selected on the highest R2 metric and evaluated
with the independent test set. We computed a baseline
MAE for validation and test sets by predicting the
mean MD or threshold value, equivalent to a model
that obtains an R2 score of zero. A fourth evaluation
metric was defined as the reduction (if any) of theMAE
baseline by theDLmodel, denoted asMAEdecr%. The
latter represents a more interpretable value as opposed
to MAE for interstudy comparison. The 95% confi-
dence intervals (CIs) were obtained through bootstrap
sampling (5000 iterations). The model trained on SLO
images offered a way to assess the added value of OCT
(with complete retinal layer information) over en face
retinal imaging.

We analyzed MAEdecr% per individual VF point
location and VF sector (Garway-Heath et al.35) to
verifywhichVF regions are bettermodeled than others.
In addition, MAE was also reported on the sector
level, stratified by VF loss severity.36 In an attempt
to compare model performance with two previous
studies on pointwise structure–function modeling,12,14
the 90% CI VF sensitivity threshold predictions were

compared against empirically established HFA 24-2
SS test–retest variability published by Artes et al.3
Finally, we performed a sensitivity analysis to reveal
what factors affected performance. Examined factors
included OCT scan quality, history of retinal disease,
signs of cataracts, VF reliability indices, and high
myopia.

Results

Study Sample

Study sample characteristics are presented in
Table 1. The average MD was −7.58 dB (ranging from
−33.8 to +2.0 dB), which is expected considering the
data from a tertiary glaucoma clinic. After filtering on
standard reliability indices, 1390 OCT–VF pairs were
eligible for model training and evaluation. All charac-
teristics were similar between train, validation, and
test sets, except for spherical equivalent (P = 0.0468).
The baseline MAE values for MD and 52 pointwise
sensitivity threshold estimation were 7.20 dB and 8.31
dB for the validation set and slightly lower for the
test set (6.32 dB and 7.76 dB, respectively; see the last
column of Table 2).

MD Estimation

The customized CNNmodel featuring an Xception
encoder explained up to 72% (95% CI, 0.63–0.78) of
the variance (= R2) in the validation set of 198 OCT–
VF pairs. The MAE of 3.40 dB obtained using the
CNN trained on 3.5-mm (inner) scans reduced the
baseline MAE by 53%. The performances of single
models were similar between circumpapillary scan
diameters (R2 from 0.66 to 0.72, MAE from 3.76 to
3.40, P > 0.05). These OCT-trained models signif-
icantly outperformed the model trained with SLO
images (P< 0.05), with the latter explaining 47% (0.33–
0.58) of the variance and decreasing the MAE baseline
by 34%. Normalized ensembling weights were 0.41,
0.12, 0.32, and 0.15. The weighted averaging of predic-
tions of the four single models resulted in improved
evaluationmetrics:R2 = 0.75 (+0.03), r= 0.87 (+0.02),
MAE = 3.25 dB (−0.15), and MAEdecr% = 55%
(+0.02). This ensemble model had similar results on
the independent test set of 186 OCT–VF pairs (R2

= 0.75, r = 0.87, MAE = 2.89 dB, MAEdecr% =
54%). Table 2 (second row of each cell) gives a detailed
overview of MD estimation results. Figure 1 contains
HFA-measured labels and CNN-predicted MD values
of four cases of the test set spanning a variety of VF
severity levels.
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Table 1. Study Sample Characteristics

Characteristic Train Val Test Total

OCT–VF pairs, n 1006 198 186 1390
Eyes, n 598 137 131 866
Patients, n 325 84 88 497
Age, y 55.6 ± 20 57.1 ± 17 58.5 ± 17 55.8 ± 19
Sex, F/M 0.51/0.49 0.43/0.57 0.53/0.47 0.50/0.50
MD data available 1006/1006 (100) 198/198 (100) 186/186 (100) 1390/1390 (100)
MD, dB –7.55 ± 7.55 –7.95 ± 8.92 –7.37 ± 7.93 –7.58 ± 7.80
MD ≥ –6 dB 600 (60) 121 (61) 108 (58) 829 (60)
–6 dB > MD > –12 dB 181 (18) 29 (15) 31 (17) 241 (17)
MD ≤ –12 dB 225 (22) 48 (24) 47 (25) 320 (23)
SphEq data available 799/1006 (79) 152/198 (77) 152/186 (84) 1103/1390 (79)
SphEq, D –2.17 ± 2.73 –2.52 ± 2.72 –2.42 ± 3.17 –2.25 ± 2.79
+1 D ≤ SphEq 85 (11) 19 (13) 19 (13) 123 (11)
+1 D > SphEq > –1 D 190 (24) 13 (9) 36 (24) 239 (22)
–1 D ≥ SphEq > –6 D 441 (55) 105 (69) 74 (49) 620 (56)
–6 D ≥ SphEq 83 (10) 15 (10) 23 (15) 121 (11)
IOP data available 638/1006 (63) 119/198 (60) 125/186 (67) 882/1390 (63)
Max IOP, mm Hg 24.08 ± 8.25 24.16 ± 7.71 22.98 ± 7.57 23.94 ± 8.09
vCDR data available 882/1006 (88) 173/198 (87) 166/186 (91) 1221/1390 (88)
vCDR estimate 0.69 ± 0.22 0.69 ± 0.20 0.69 ± 0.20 0.69 ± 0.21
OCT scan quality 23.55 ± 4.36 23.82 ± 4.37 23.63 ± 4.22 23.60 ± 4.34

Values are presented as number (%) or mean± SD unless otherwise indicated. D, diopters; IOP, intraocular pressure; SphEq,
spherical equivalent; vCDR, vertical cup-disc ratio.

Pointwise Sensitivity Threshold Estimation

The model trained using 4.7-mm scans (outer)
resulted in the best results on the validation set, explain-
ing 57% (0.48–0.63) of the variance (R2) across the

52 points. The models’ performances were similar (R2

from 0.54 to 0.57, MAE from 4.98 to 5.10, P >

0.05) among circumpapillary rings. The best single-
scanmodel (4.7 mm) lowered theMAE baseline to 5.10

Table 2. Quantitative Results for All Models Trained for the Estimation of 52 Threshold Values (First Row of Each
Cell) and MD (Second Row of Each Cell)

Modality Target R2 (95% CI) Pearson r (95% CI) MSE (95% CI)
MAE (dB) (95% CI)

(MAEdecr%)

Baseline (validation) 52 points
MD

0.00
0.00

0.00
0.00

109.57 (93.29–127.23)
79.09 (62.25–97.50)

8.31 (7.67–8.99)
7.20 (6.49–7.96)

Inner, 3.5 mm 52 points
MD

0.55 (0.46–0.62)
0.72 (0.63–0.78)

0.75 (0.70–0.80)
0.85 (0.80–0.89)

49.26 (41.49–57.52)
22.24 (17.09–27.85)

4.98 (4.53–5.45) (40)
3.40 (2.95–3.86) (53)

Middle, 4.1 mm 52 points
MD

0.54 (0.45–0.61)
0.66 (0.54–0.75)

0.75 (0.70–0.80)
0.83 (0.77–0.89)

49.38 (41.96–57.40)
26.61 (20.24–33.50)

5.12 (4.68–5.57) (38)
3.76 (3.28–4.27) (48)

Outer, 4.7 mm 52 points
MD

0.57 (0.48–0.63)
0.70 (0.60–0.78)

0.77 (0.72–0.82)
0.84 (0.78–0.89)

49.02 (39.83–54.41)
23.54 (17.18–30.69)

5.10 (4.72–5.51) (39)
3.42 (2.96–3.90) (53)

SLO 52 points
MD

0.39 (0.31–0.46)
0.47 (0.33–0.58)

0.66 (0.59–0.71)
0.70 (0.59–0.79)

66.36 (55.52–77.50)
41.52 (31.58–52.49)

5.82 (5.28–6.39) (30)
4.77 (4.19–5.37) (34)

Circle scans
(weighted average)

52 points
MD

0.59 (0.51–0.65)
0.74 (0.65–0.80)

0.79 (0.74–0.83)
0.86 (0.81–0.90)

44.50 (37.62–51.87)
20.72 (15.57–26.53)

4.89 (4.48–5.30) (41)
3.27 (2.84–3.72) (55)

Circle scans, SLO
(weighted average)

52 points
MD

0.59 (0.52–0.65)
0.75 (0.67–0.80)

0.79 (0.75–0.83)
0.87 (0.82–0.91)

44.02 (37.30–51.33)
20.12 (15.07–25.39)

4.88 (4.47–5.30) (41)
3.25 (2.83–3.70) (55)

Baseline (test) 52 points
MD

0.00
0.00

0.00
0.00

101.59 (84.97–119.91)
62.48 (48.98–77.32)

7.76 (7.12–8.43)
6.32 (5.66–7.01)

Test set (186 images) 52 points
MD

0.58 (0.51–0.63)
0.75 (0.67–0.81)

0.79 (0.75–0.82)
0.87 (0.83–0.91)

42.35 (36.21–49.93)
15.73 (11.35–21.06)

4.82 (4.45–5.22) (38)
2.89 (2.50–3.30) (54)

The first section features results on the validation set (198 images), for which the best results are set in bold. Best model
setup on validation data was subsequently used to obtain results on the independent test set (186 images), selected on best
R2. MAE and MSE baseline for validation and test data were computed through the constant prediction of the mean value
(threshold value, MD).
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Figure 2. (A) MAEdecr% values for 52 VF threshold values obtained using the model trained on 4.7 mm (outer) OCT scans. MAEdecr% is
the decrease in percentage from the baselineMAE, with the latter obtainedwhen always predicting the pointwisemean. (B) Similar to panel
A, but model trained using en face SLO images, to compare with as a baseline. (C) Final MAEdecr% values obtained on the test set, using
the weighted averaged predictions of the four CNNs trained using OCT scans and SLO images. (D) The difference between panels A and B,
indicating the superior VF modeling performance of OCT scans across the majority of VF test locations.

dB, representing a reduction of 39% (MAEdecr%).
Similar to what was observed in the MD estimation
experiments, the SLO-trained model reports signifi-
cantly lower metrics (R2 = 0.39, [0.31–0.46], P < 0.05).
Normalized ensembling weights were 0.24, 0.17, 0.45,
and 0.14. The weighted average of the predictions of
the models scored R2 = 0.59 (+0.02), r = 0.79 (+0.02),
MAE = 4.88 dB (−0.10), and MAEdecr% = 41%
(+0.01). Results on the test set were similar, with R2

= 0.58, r = 0.79, MAE = 4.82 dB, and MAEdecr% =
38%.

Noticeable differences can be observed in Figure 2A
when inspecting the individual threshold values. The
model trained on 4.7-mm circle scans reached high
MAEdecr% values (range, 19%–46%) for all 52 VF test
points, with the highest values recorded in superior
and inferior nasal VF sectors, corresponding to nasal
step locations, and the lowest in the temporal VF,
corresponding to the temporal wedge location. The
SLO-trained model yielded lower MAEdecr% values

(range, 12%–30%), especially in the inferior VF area
(Fig. 2B). Figure 2D illustrates this contrast, with
differences up to 22% recorded between the two
models. The best model using the weighted averaged
predictions of four models equivalently reached high
MAEdecr% values on all 52 test points (range, 25%–
45%; Fig. 2C). The lowest and highest values were
recorded in the central and inferior nasal VF, respec-
tively. These findings corroborate the sectoral analysis
in Table 3. The MAE baseline was the most elevated
in both inferior nasal and superior nasal VF sectors,
indicating more variance in those locations. The model
explained most of the variance in those sectors with
R2 equal to 0.64 and 0.60, respectively. Superior VF
sector obtained the highest MAEdecr% (51%). The
lowest variance was explained in the central sector
(R2 = 0.52).

Figure 3 visualizes the individual threshold predic-
tion performance in the same boxplot style as Zhu
et al.12 and Guo et al.14 The graph plots the
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Table 3. Metrics on the Six Visual Field Sectors as Described by Garway-Heath et al.,35 Computed on the Test Set
Using the Weighted Ensemble Model

Sector R2 Pearson r MAE (dB) MAE Baseline (MAEdecr %)

Central 0.52 (0.46–0.57) 0.77 (0.72–0.81) 4.84 (4.33–5.39) 7.50 (35)
Temporal 0.55 (0.44–0.62) 0.77 (0.69–0.83) 4.41 (4.01–4.85) 6.30 (30)
Inferior 0.56 (0.46–0.63) 0.77 (0.70–0.82) 5.09 (4.66–5.55) 7.99 (36)
Inferior nasal 0.64 (0.57–0.70) 0.83 (0.78–0.87) 4.67 (4.20–5.17) 8.11 (42)
Superior 0.54 (0.45–0.62) 0.76 (0.70–0.81) 4.89 (4.48–5.32) 7.37 (51)
Superior nasal 0.60 (0.52–0.67) 0.80 (0.75–0.84) 4.79 (4.32–5.28) 8.09 (41)

MAE baseline was obtained by always predicting the sector threshold mean.

Figure 3. Comparative overview of three original studies (current, Guo et al.,14 and Zhu et al.12) that report on the relationship between
measured andpredictedVF threshold values, stratifiedby sensitivity (step size of 2dB). The error ranges obtainedbyour approach leveraging
DL are smaller than previous non-DL studies. Thirty-three of 38 whiskers are located within the 90% CI test–retest limits reported by Artes
et al.3

SAP-measured dB values against the predicted dB
values at an interval of 2 dB. The largest prediction
errors occurred in VF points with low sensitivity values
in all three studies. However, the variability of predic-
tions by our CNN was significantly more consistent
with test–retest CI: 33 of 38 boxplot whiskers fall
within the 90% CI determined by Artes et al.3 Using
a two-sample z-test for proportions yields a P-value
of 0.00256, showing significant improvement over the
previous result of 58% of whiskers within the shaded
region.

TheGarway-Heath VF sector with the largestMAE
differed with VF severity level, as can be deducted
from Table 4. AverageMAE was largest in the superior
VF sector (4.01 dB) for individuals with mild VF

loss. The largest MAE can be found in the opposite
inferior sector (5.19 dB)withmoderateVF loss. Finally,
advanced VF loss resulted in the central sector having
the largest MAE (8.89 dB).

The sensitivity analysis presented in Table 5 reveals
that the MAEdecr% remained mostly stable across
subsets of the test set compared to theMAE value. The
exclusion of examined factors did not lead to signifi-
cant improvements in MAEdecr% values. MAEdecr%
for MD improved the most when excluding high
myopia or OCT data with scan quality inferior to 20
(MAEdecr% from 54% to 57%). For pointwise VF
estimation, the highestMAEdecr% was obtained when
filtering out OCT–VF pairs that feature an FP value of
more than 10% (MAEdecr% from 38% to 39%).
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Table 4. Pointwise MAE Aggregated on the Global Level and Six Visual Field Sectors as Described by Garway-
Heath et al.,35 Stratified by Three VF Severity Groups in the Test Set

MAE

Sector
Early VF Loss
(MD ≥ −6 dB)

Moderate VF Loss
(−6 dB > MD > −12 dB)

Advanced VF Loss
(MD ≤ −12 dB)

All 3.582 4.561 7.849
Central 3.126 4.640 8.927
Temporal 3.597 3.246 7.059
Inferior 3.762 5.226 8.047
Inferior nasal 3.235 3.850 8.512
Superior 4.210 4.576 6.672
Superior nasal 3.517 4.905 7.640

The largest MAE per severity group is highlighted in bold, indicating the best modeling performance by the ensembled
CNN.

Table 5. Post HocOne-at-a-Time Sensitivity Analysis to Assess Influence of Certain Input Factors on the Error Term
for the Test Set

Subset
No. of OCT–VF

Pairs
MDMAE,

dB / MAEdecr%
52 Points MAE,
dB / MAEdecr%

All (FL ≤20, FP ≤15) 186 2.89/54 4.82/38
Effect of other ocular disease
Excluding high myopia (≤–6 D)a 125 2.69/57 4.65/38
Excluding history of cataract 130 2.63/46 4.49/23
Excluding other types of glaucoma
(other than POAG, NTG)

173 2.75/56 4.70/38

Excluding history of retinal diseases 161 2.88/53 4.95/34
Effect of OCT scan quality
Excluding scans with quality <20 149 2.65/57 4.64/38
Excluding scans with quality <15 181 2.82/55 4.74/38

Effect of visual field reliability indices
Excluding HFA FL <10 135 2.70/55 4.51/38
Excluding HFA FP <10 179 2.79/56 4.74/39
Excluding HFA FN <10 148 2.74/55 4.67/37

The best performance (largest MAEdecr%) per column is highlighted in bold. Baseline error is the MAE obtained when
predicting the mean MD or pointwise value. FL, fixation loss; FN, false negative; FP, false positive; NTG, normal tension
glaucoma; POAG, primary open angle glaucoma.

aNot all OCT–VF pairs have a SphEq label assigned; hence, omission of pairs might be due to missing values.

Discussion

This study is the first to regress all 24-2 VF sensitiv-
ity threshold values and MD from unsegmented OCT
images of a real-life glaucoma clinic population. The
weighted ensemble managed to explain 75% of the
variance in MD estimation, on par with the current
state of the art.15,20 Pointwise 24-2 VF predictions fell
almost completely (87% of whiskers) within the empir-
ically determined 90% CIs of test–retest setups. Our

data-drivenmodeling approach overcomes the need for
retinal layer segmentation and prior assumptions on
the structure–function relationship. Furthermore, the
model displayed robustness against challenging cases
that feature other conditions than glaucoma.

The advantages of omitting a mandatory retinal
layer segmentation processing step are twofold. First,
it alleviates potential segmentation errors because of
bad scan quality37,38 or critically thinned RNFL (floor
effect) in severe glaucoma cases. Second, the models
allow the extraction of relevant information from
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other RNFL parameters and retinal layers besides the
commonly usedRNFL thickness values. Previous work
hinted that OCT reflectance data might be more infor-
mative for glaucoma than conventional RNFL thick-
ness values.39,40 Christopher et al.15 verified that origi-
nal voxel information from the RNFL layer resulted in
CNNmodels with higher MD estimation performance
than models trained using RNFL thickness values
(0.70 and 0.63 in R2 score, respectively). Our SLO-
trainedmodel forMDestimation gave similar results to
the SLOmodel in Christopher et al.15 (R2 = 0.48 [0.41–
0.54] vs. our R2 = 0.47 [0.33–0.58]). Our best model
(weighted ensemble of four models trained on three
types of circumpapillary rings and SLO) explains 75%
(0.67–0.81) of the MD variance in the test set, whereas
the best setup from Christopher et al.15 using average
RNFL OCT voxel intensity explains 70% (0.64–0.74).
A formal interstudy comparison is not possible because
the evaluation metrics depend on data set character-
istics such as sample MD (−7.6 vs. −5.2 dB in their
glaucoma subset).

Another recent study by Yu et al.16 describes
the prediction of global VF indices using a three-
dimensional (3D) CNN that takes the complete
volumetric OCT scans of the ONH (optic nerve head)
and macula as inputs. The authors report a Pearson
correlation coefficient of 0.86 (0.83–0.89) for MD,
which is comparable to the correlation of 0.87 (0.83–
0.91) of our ensemble model. Again, direct compari-
son is difficult because of different data (sample MD
of −2.1 dB in their study). Furthermore, the use of
correlation metrics provides no indication of predic-
tion error but aims to quantify the linearity between the
VF measurements and predictions. The high memory
demands of 3D CNNs forced the authors to compro-
mise on OCT scan resolution: the original cubes were
downsized to 32% of their original size. By doing
so, they introduced a risk of unintentionally remov-
ing fine-grain structural features. Our two-dimensional
CNN setup preserved the original image width of all
OCT scans (768 A-scans).

Wong et al.41 compared several machine learning
approaches for the estimation of MD from RNFL
thickness. They obtain MAEdecr% rates up to 26%
using gradient-boosted trees in an external test set,
which is half of theMAEdecr% reported in the current
study (54%). Of note, their baseline MAE is 4.09 dB,
whereas the test set described here features a baseline
MAE of 6.32 dB.

We report a competitive R2 of 58% on individ-
ual threshold values of HFA 24-2 SITA Standard
VF exams from OCT data. Similar to MD analy-
ses, OCT-trained models on threshold values signifi-
cantly outperformed their SLO counterpart. Although

not significant, the circumpapillary scans with a larger
diameter explained more variance in the validation
data, with R2 increasing from 0.54 to 0.57. This is
plausible because OCT data at 16° intersection poten-
tially offer more information on individual RGC axons
as they lie further apart from each other with increas-
ing distance from the ONH. Combining the four
models through weighted prediction averaging gave
a correlation of five percentage points higher than
the 0.74 reported by Guo et al.14 The latter authors
had their results using nine-field OCT data covering
60° of the retina, whereas an area of 16° around
the ONH was sufficient in our case. The three main
differences between our approach and that of Guo et
al.14 are (1) the use of CNNs versus support vector
machines (SVMs), (2) raw OCT scans versus thickness
values of RGC complex layers, and (3) a larger study
sample (863 vs. 86 eyes). The recent study by Park
et al.18 describes a similar approach featuring RGC
complex layer segmentation. However, they employed
an Inception-v3 CNN instead of an SVM to predict
the 24-2 VF map, reporting a root mean squared error
(RMSE) of 4.79 dB across the 24-2 map. A follow-up
study by Shin and colleagues42 investigated the advan-
tage of thickness maps generated by swept-source OCT
(SS-OCT) versus spectral domain OCT (SD-OCT).
RMSE was significantly lower at 4.51 dB for SS-
OCT when compared to 5.29 dB for SD-OCT. Finally,
Lazaridis et al.43 recently developed an ensemblemodel
for VF estimation that features both a CNN as well as
a variational autoencoder. In their study, incorporation
of a downsized raw circumpapillary ring, in addition to
RNFL thickness information, decreased the MAE by
22%. This adds further evidence that raw OCT infor-
mation holds unique information relevant to pointwise
VF estimation.

The ensemble model could model specific VF points
and sectors better than others. We recorded three out
of the five lowest MAEdecr% values in the tempo-
ral VF sector in the validation set, while the five
best were all in the superior nasal VF sector. These
findingsmatch the superior nasal step scotoma location
that is typically affected early in glaucoma devel-
opment.44 Lower performance in both central and
temporal VF sectors could be due to damage that
occurs solely in later disease stages. This result is in
line with the findings regarding the sectors featuring
the lowest MAE baseline (Table 3), showing lower
variance in ground-truth threshold values. Christo-
pher et al.15 predicted sectoral pattern deviation
(which is derived from threshold values) using DL
approaches, equally getting the best performance in
superior nasal VF (R2 = 0.67) and inferior nasal VF
(R2 = 0.60).
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This study did not exclude eyes with nonglauco-
matous conditions that could influence VF results.
The main application was to construct a model that
can be used in the glaucoma clinic, complementary
to existing perimetry solutions. In our view, the best
way to assess its feasibility is by using real-life hospital
data that impose several challenges next to glaucoma.
We exposed the CNN to training data that contain
VF loss potentially resulting from nonglaucomatous
conditions such as cataracts and retinal disease. This
is different from related work, in which nonglauco-
matous VF loss is typically excluded from analysis.
Even with these additional challenges presented in our
work, model performance is extremely high (R2 of
0.75 and 0.59 for MD and 52 threshold values, respec-
tively), adding proof that the combination of raw OCT
data and data-driven CNNs fosters good potential
in automated VF estimation. The sensitivity analysis
given in Table 5 revealed the robustness of the CNN
in challenging cases.

VF testing suffers from intrasubject variability,
complicating the diagnosis of glaucoma progression.45
The best way of assessing VF reliability is through test–
retest setups. In the Ocular Hypertension Treatment
Study, VF abnormalities were not confirmed in 86% of
the original reliable VF exams.46 AsGuo et al.14 state, it
becomes harder to assess actual performance improve-
ments in VF modeling from OCT, given that the
ground-truth VF is noisy. Lazaridis and colleagues43
reported an R2 of 88% between single VF sensitivity
values and a median VF sensitivity computed over up
to 10 visits within 3 months. Artes et al.3 computed
repeat VFon 49 glaucomatous eyes, and they published
5th and 95th limits for VF threshold values. Their
confidence intervals provide additional evidence that
VF points with lower recorded dB values hold more
variability than those with higher dB values. Two
studies on 24-2 VF estimation from OCT provide a
comparison of measured versus predicted VF thresh-
old values, which can be placed next to the empiri-
cal 90% CI of Artes et al.3 The recent DL study by
Lazaridis et al.43 was not included in the comparison
as their boxplots from Figure 2D used an α level of
0.05. Figure 3 showcases the prediction variability for
all three studies (current, Guo et al.,14 and Zhu et al.12).
The 90% CI in the current study shows that no system-
atic overprediction of dB values occurred, with 33 of
38 whiskers (87%) falling within the shaded area. This
represents a significant improvement over the previ-
ous result of 58% by Guo et al.14 (P = 0.00256).
The interquartile ranges of the boxplots for threshold
values smaller than 10 dB seem larger in the current
study than the ones in Guo et al.,14 which is most likely
because of the challenging sample in our study. These

results confirm that future performance improvement
in the current model will be hard to detect, as almost all
predictions fall within the empirically determined VF
ranges. In such a context of noisy ground truth, it is
preferable to adhere to the empirically determined CI
instead of focusing on MAE.

This study comes with strengths and limitations.
We have trained and validated our method on data
sourced from the same hospital, a single type of OCT
device for a single type of VF exam. We should further
validate our trained models on external OCT–VF data
available in the public domain. We envisage this will
soon be possible considering the widespread interest in
DL in glaucoma management.47 In this study, we have
taken all precautionary measures to prevent overfit-
ting: no fully connected layers in CNN and a single
use of the independent test set. Next to unknown
generalizability, we provide no analysis on explainabil-
ity. The move from OCT segmentation parameters to
complete data-driven modeling eliminates the risk of
segmentation errors but comes at the cost of model
decision transparency. Our one-at-a-time sensitivity
analysis provided additional insights on the importance
of study sample data but did not allow for interac-
tion between factors. Finally, we did not automatically
estimate pattern standard deviation (PSD), a map that
highlights localized scotomas by accounting for gener-
alized VF loss. PSD is deemed extremely relevant in
glaucoma management, as clinicians can focus on VF
loss related to the neurodegenerative disease. PSD was
not explicitlymodeled in the current study, as this infor-
mation can be obtained using the patient’s predicted
raw sensitivities and age, comparable to current perime-
try solutions.

Deep learning can estimate global and pointwise
VF sensitivities that fall almost entirely within the 90%
test–retest confidence intervals of the 24-2 SS test. Fast
and consistent VF prediction from unsegmented OCT
could become a surrogate solution for visual function
estimation in patients who cannot perform reliable VF
exams.
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