
The Visual Computer manuscript No.
(will be inserted by the editor)

Brush Up Your Painting Skills

Realistic Brush Design for Interactive Painting Applications

Tom Van Laerhoven, Frank Van Reeth

Hasselt University - Expertise Centre for Digital Media
transnationale Universiteit Limburg
Wetenschapspark 2, BE-3590 Diepenbeek, Belgium
e-mail: {tom.vanlaerhoven, frank.vanreeth}@uhasselt.be

Abstract Most present-day interactive paint applica-
tions lack the means of adequately capturing a user’s ges-
tures and translating them into realistic and predictable
strokes, despite the importance of such a mechanism. We
present a novel brush design that adopts constrained en-
ergy optimization to deform the brush tuft according to
the user’s input movement. It incorporates bidirectional
paint transfer and an anisotropic friction model. The
main advantage of our method is its ability to handle a
wide range of brush tuft shapes that are animated us-
ing a freeform deformation lattice, which is associated
with the tuft’s geometry. This way, almost no conditions
or limitations are placed upon the appearance of the
brush. Examples range from round brushes modeled as
polygon meshes, to flat brushes with individual bristles.
Less common deformable tools that are used to apply
or remove paint on the canvas, like sponges, can be cre-
ated as well. The model is integrated in our interactive
painting system for creating images with watery paint.

Key words I.3.4 [Graphics Utilities]: Paint systems
I.3.5 [Computational Geometry and Object Modeling]:
Physically based modeling G.1.6 [Optimization]: Con-
strained optimization

1 Introduction

The paint brush is the medium that communicates an
artist’s intentions onto the canvas. Its importance is poin-
ted out by an experienced artist by stating that “most

of the materials involved in painting are expendable. Just
about the only tools worth protecting are your paint brush-
es.” [24].

In digital paint applications the brush is equally im-
portant. As a subset of the “Artistic Rendering” research
domain, which focusses on the creation of “pleasing” art-
work, the interactive paint applications emphasize the
role of the user in creating painted images. In conse-
quence, a 3D virtual counterpart of a real paint brush
must be a able to capture a user’s gestures and translate
them to predictable strokes, while preserving a natural
look.

Literature has already brought forward several mod-
els that target these issues, for both Oriental and West-
ern paint styles. Most currently available commercial
paint programs, however, essentially ignore the nuances
in brush motion and still produce uniform, analytical
marks. Given the numerous advantages of a digital equiv-
alent of the real painting process, it is clear that an ap-
plication that combines a canvas model that can capture
complex paint behavior with an equally capable brush
model would be a valuable tool for even the experienced
traditional artist.

This paper presents a new brush model that comple-
ments our previously introduced canvas model [23]. It
features the following characteristics:

– An efficient and general applicable method to deform
the brush in real-time, using free-form deformation;

– Anisotropic friction;
– Bi-directional pigment and water transfer;
– Complex footprint generation;

2 Tom Van Laerhoven, Frank Van Reeth

– Integration in a real-time physically-based simulation
framework for painting with watery paint media.

Unlike previously proposed solutions, our method does
not use a skinning-based technique that concentrates on
a single tuft shape, but relies on deformation of the tuft’s
local coordinate system. This way, almost any geometry
can be used to define its appearance, as shown in the
example section.

The rest of this paper is organized as follows: after
discussing existing work on digital paint brushes in the
next section, we first look at important characteristics of
a real brush before introducing our own design. Different
brush constructions with accompanying stroke examples
are shown in section 4, followed by conclusions and sug-
gestions for future work in section 5.

2 Background

In this section we look at how virtual paint brushes have
evolved from being simple automated rubber stamp pro-
cedures, to versatile designs that generate realistic paint
strokes, and which genuinely respond to an artist’s ges-
tures. For extensive surveys on interactive paint applica-
tions, and non-photorealistic rendering research in gen-
eral, we refer to literature [11,19,2,8].

The work of both Greene [12] and Strassmann [22]
can be considered as the starting point of a long line of
attempts to create a more realistic means of input for
paint applications. Greene describes an input device for
turning a physical draw action into a digital stroke, com-
monly referred to as Greene’s drawing prism [12]. Rather
than trying to create a new brush model in software, this
special device processes input from real brushes.

Strassman is the first to present a physical model of
brush movement on a canvas with the purpose of cre-
ating traditional Japanese artwork using black ink [22].
The brush is modeled as a one-dimensional array of ide-
alized bristles, each carrying an amount of ink. The ac-
tual creation of a stroke involves the input of a number
of control points with position and pressure information
from which the final stroke is rendered.

Virtual brushes were considerably improved since the
drawing prism and Strassman’s one-dimensional version.
The first physically-based 3D brush model was given by
Lee, who adopted Hooke’s law to model a collection of
elastic bristles [13]. This is one of many advanced brush
models proposed in literature, all intended for either pro-
ducing paintings with Oriental ink or creating Chinese
calligraphy.

In fact, only the work of Baxter et al. explores the
use of virtual brushes in Western painting [4,1]. The de-
formable brush integrated in their dAb painting system
is the first to provide haptic feedback, enabling a user
to actually feel how the brush deforms and therefore en-
hancing the sense of realism. A linear spring between

the brush head and the canvas generates the forces that
form the input for a PHANToM haptic feedback device.
The dynamics of the brush head itself is handled by a
semi-implicit method that integrates linear spring forces.
These kind of time-stepping integration techniques, how-
ever, are less suitable to be used in a heavily damped sys-
tem that is required to simulate the stiff bristles. Further
limitations include the inability to handle bristle split-
ting.

Saito et al. introduce a more appropriate technique
based on energy optimization [17,18]. The function that
has to be minimized captures the total amount of en-
ergy in the system, a summation of bend energy from
joints, potential and kinetic energy from the tuft mass,
and frictional energy. The result is a very stiff dynami-
cal system where the static equilibrium is found almost
instantly, which is a good approximation of real bristle
behavior. The brush geometry is constructed by a single
spine that is traced by a circular disc.

Several authors extended this technique. Chu et al.
added anisotropic friction, lateral spine nodes to control
brush flattening and a bristle spreading technique based
on a static alpha map [6]. Their system also takes into
account “pore resistance”, which occurs when bristles
get stuck in irregularities of the canvas. Plasticity ac-
counts for shape deformations by internal friction of the
wet tuft, and is modeled by adjusting the target angle
with a small value. The brush surface is again deter-
mined by an elliptical cross section that is traced along
the spine. Therefore, this brush model is only suitable for
the round brushes found in Oriental ink painting. Lat-
eron, they improve the splitting procedure by enabling
the tuft to generate smaller child tufts along its spine
[7].

In more recent work of Baxter et al., a similar ap-
proach is generalized to a multi-spine architecture able
to also model brushes used in Western painting [3]. This
method, however, relies on two different implementa-
tions depending on the geometry: a subdivision surface
modeling an explicit surface, or thin polygonal strips rep-
resenting individual bristles.

A completely different approach is taken by Xu et al.,
who design the brush as a set of independent “writing
primitives” described by NURBS surfaces, each repre-
senting a collection of bristles [25].

Finally, Corel’s state of the art application Painter X
recently introduced the “RealBristle” technology, which
mimics individual bristle behavior for a wide range of
brush types [9]. Nevertheless, the resulting strokes still
look sterile and artificial due to simplified underlying
brush and canvas models.

Brush Up Your Painting Skills 3

Figure 1 The three components of a paint brush: A. the
tuft, B. the ferrule, C. the handle. Copyright c©1998 Smith
[20].

(a) (b) (c) (d) (e) (f)

Figure 2 Several commonly used real brushes, along with a
representative stroke. (a) Chinese calligraphy brush; (b) flat
brush; (c) round brush; (d) rigger brush; (e) fan brush; (f)
mop brush. Copyright c©1998 Smith [20].

3 Method

3.1 Analysis of a Real Paint Brush

Figure 1 shows the main components of a real paint
brush. Besides the handle and the ferrule, the most vital
brush component is the tuft, which carries and applies
the paint on the canvas. Its material, natural hair, bris-
tle or synthetic fiber, determines the quality (and value)
of the brush. Apart from its material, the effects a brush
can produce are also influenced by its shape and size at-
tributes, as depicted in figure 2. The figure lists a small
selection out of the wide range of available brush shapes,
each accompanied with a sample stroke.

Careful observation of the behavior of a round brush
in the hands of an artist reveals that movement always
occurs in a pull-motion. The bristles are almost never
pushed along the canvas, except for applying small de-
tails like dots. The “snappy” bristle behavior makes that
the brush almost instantaneously regains its shape when
it is lifted from the canvas. Furthermore, it is clear that
the brush is an extremely versatile tool that is able to
create shapes ranging from thin detailed lines to broad
strokes. Keeping these observations in mind, we outline
both behavior and appearance of the virtual paint brush
in the next sections.

(a) (b)

Figure 3 (a) kinematic representation of a bristle; (b) find-
ing the drag vector in a 2D scenario where the bristle tip
touches the canvas somewhere in the time interval [t0, t1].
The start point of the drag vector is calculated by interpola-
tion, while the end point is approximated by projecting the
joint position at t1 on the canvas surface.

3.2 Brush Dynamics

In our system, the dynamics that govern the behavior of
a single bristle match the approaches found in the work
of other authors, like Saito, Chu and Baxter [17,6,7,3],
using an energy optimization framework to compute the
static equilibrium of the system. This approach results
in very “snappy” bristle behavior we observed in the pre-
vious section. We will briefly revisit our interpretation
of the technique in this section.

Before deriving the kinematic equations we first briefly
describe the bristle representation. The notation used in
this section is derived from the work of Baxter et al. [2].

A single bristle is represented as a kinematic chain,
shown schematically in figure 3(a). Each segment in the
chain has a predefined length and two angles, θ and φ,
which determine the segment’s orientation. We express
the orientation in fixed XYZ angles representation, be-
cause it is intuitive to work with and because of its com-
pact form. We assume that the final rotation around the
global Z axis is always zero, which corresponds to a bris-
tle with zero twist.

With this representation, we can transform a vector
iv = (x, y, z) in the coordinate frame of segment i to its
parent coordinate frame i − 1, using the combined XY
rotation matrix i−1Ri:

i−1v = i−1Ri
iv

= RY(φ) RX(θ) iv

=

 cosφ sinφ sinθ sinφ cosθ
0 cosθ −sinθ

−sinφ cosφ sinθ cosφ cosθ

 x
y
z

 (1)

4 Tom Van Laerhoven, Frank Van Reeth

In this formula we adopted a notation that is used
by most kinematic literature [10,16].

The actual bend angle β, the angle between two adja-
cent segments, is now determined by β = cos−1(cosθcosφ).

Energy Analysis We take on a rather “unphysical” ap-
proach to simulate the dynamics of a deformable bristle,
by optimizing a behavior function C that captures the
total energy in the system. The result is a bristle that im-
mediately regains its shape, which actually closely mim-
ics the behavior of a real bristle as observed in section
3.1.

In comparison, the physically-based method would
convert the behavior function to a force equation that
models a generalized spring, “pulling” the system in the
desired state. Some explicit or implicit time-stepping al-
gorithm would be used to integrate the equations, but
most likely produce either inaccurate or unstable behav-
ior [4].

The total energy in a system containing a single bris-
tle is the sum of deformation energy (the potential en-
ergy stored in the angular springs) and frictional energy:

C = Etotal =
∑
joints

(Espring) + Efriction. (2)

The angular spring pulls the bend angle β between
two adjacent segments towards a rest angle. When as-
suming straight bristles, this rest angle is always 180◦.
An angular spring, modeled as a scalar potential energy
function, is based on Hooke’s law, Espring = k

2 (180◦−β)2,
where k is the spring constant for that particular spring.

The friction energy term captures the energy caused
by the bristle being dragged on the rough canvas surface.
Similar to the work of both Chu and Baxter, a simple but
efficient Coulomb friction model is used for this purpose:

Efriction = µ
∑

contact
joints

|N|‖d‖, (3)

with µ the kinetic friction coefficient, N the force normal
to the contact surface, and d the drag direction of the
joint projected onto the surface (figure 3(b)), accumu-
lated for every joint in contact with the surface.

Adding an anisotropic friction component to equa-
tion 3 accounts for the fact that the direction of minimal
resistance is the “pull” direction of the bristle, as op-
posed to sideway dragging or bristle pushing (when the
bristle becomes stuck in the canvas pores). An approach
inspired by the Blinn-Phong formula for calculating the
intensity of a specular highlight provides the desired re-
sult [3]:

Efriction = µ
∑

contact
joints

(1− η)|N|‖d‖, (4)

with η = Cη max
(
0,dp · d

‖d‖

)k

, and dp the preferred
drag direction. The anisotropic constants 0 ≤ Cη ≤ 1

and k determine the shape of the anisotropic cone. As
also 0 6 η 6 1, this addition to the equation effectively
scales the friction energy in favor of the preferred di-
rection, in which the anisotropic component removes all
friction.

An important advantage of equation 4 is that it has
C1 continuity, which is a requirement for the optimiza-
tion method described in the next section.

One assumption we make is that the normal force
N is a constant, and approximated at each time step.
This simplification is done because calculating the actual
normal force based on the configuration of all springs is
tedious and it does not noticeably improve results.

Constraints To model the impenetrable canvas surface,
an inequality constraint, for each joint, suffices: Planez−
(p)z ≥ 0. The constraints force each joint p to stay above
the surface described by z = Planez, with the Z-axis
pointing into the canvas.

In practice, we replace the constraint with an equal-
ity constraint for every joint that violates the non-penetration
constraint during the current time step: Planez − (p)z =
0. This avoids the scenario where the optimizer decides
that lifting the joint from the canvas is a solution that
requires less energy than undergoing the larger frictional
energy. In that case, the bristle would jump across the
canvas.

Energy Optimization Having modeled the system’s en-
ergy, we have enough information to find its equilibrium:
the state of balance in which all the forces acting on the
bristle are balanced. This state is defined at the energy
minimum.

For this purpose we rely on the “donlp2” optimiza-
tion framework [21]. This software package minimizes
a (in general nonlinear) differentiable real function f ,
which is subject to (in general nonlinear) inequality and
equality constraints g, h (equation 5). It accomplishes
this by using sequential quadratic programming (SQP),
an effective numerical method for nonlinearly constrained
optimization [14].

f(x) = min
x∈S

(5)

S = {x ∈ Rn : h(x) = 0, g(x) ≥ 0}.

Mapping these equations to our model, f is the en-
ergy function Etotal, and the constraint functions were
described in the previous section. Both the energy func-
tion and the constraint functions are non-linear in vari-
ables θ and φ.

3.3 Brush Geometry

Simulating every single bristle of a brush with the tech-
nique described above is not feasible, as a real paint

Brush Up Your Painting Skills 5

brush can contain hundreds of bristles. The established
modus operandi in this case is to simulate just a few bris-
tles that dictate the tuft behavior, traditionally using a
skinning-based technique.

Regarding this issue, Baxter et al. choose a Butterfly
subdivision scheme, and in later work a Catmull-Clark
surface to tie a monolithic geometric model to a single
spine. This requires a converter application that deter-
mines the subdivision control vertices. The brush geom-
etry in the work of Chu et al. is obtained by sweeping
an elliptical shape along a single spine.

We design a polygon mesh of a brush tuft in an unde-
formed state with an arbitrary 3D modeling application,
in our case the freely available open-source tool Blender
[5]. While painting, the tuft geometry is first embedded
in a tightly enclosed free-form deformation (FFD) lat-
tice described by a number of control points [16]. The
parallelepiped-shaped lattice imposes a local coordinate
system on the object, which is then deformed by ma-
nipulating the control points based on movement of the
kinematic chain from the previous section.

Free-form deformation can be a computationally ex-
pensive task when used in combination with a detailed
polygon model. For this reason, a vertex shader was cre-
ated in NVidia’s Cg language that deforms each polygon
vertex using programmable graphics hardware [15].

Single spine A first brush design uses a single kine-
matic chain that serves as the tuft’s spine, which maps
its movement on the lattice control points on all four ver-
tical sides of the parallelepiped. This setup is depicted in
figure 4. Note that the control points of the deformation
volume are allowed to penetrate the canvas. This is nec-
essary because the brush hovers slightly above the can-
vas surface, and only a small amount of tilt pushes the
control points below the surface. The polygon mesh of
the thin round brush design in figure 4 is defined closely
around the spine, so the small amount of penetration is
hardly noticeable.

Figure 4 A single-spine round brush model. A free-form
deformation grid, shown in blue, is associated with the tuft’s
polygon mesh (partially textured). The grid is manipulated
by the kinematic chain formed by the green joints.

Figure 5 A flat brush model with two spines. The spines
each manipulate one side of the free-form deformation grid.
The brush geometry itself consists of a few hundred polylines.

Although bristle spreading can not be achieved with
this single-spine design, it is versatile enough to allow
for various tuft shapes, like the deformable sponge from
figure 7(f).

Multiple spines The concept of associating a deformable
spine, represented by a kinematic chain, with a FFD lat-
tice can be extended to work with multiple spines. Figure
5 shows a flat brush design with two spines, each coupled
to one side of the deformation lattice. If the user applies
pressure to brush, the spines will spread the tuft’s ge-
ometry.

In this particular example the brush was modeled by
means of a procedurally generated polyline mesh, ren-
dered using a few hundred OpenGL line strips. Unfortu-
nately, the width of an OpenGL line strip can solely be
specified in screen space, as a (floating-point) number of
pixels. Bristle width will only be important when creat-
ing the brush’s footprint on the canvas, however, as this
directly influences the simulation (section 3.4). Based on
the dimensions of the orthographic view volume used in
this process, it is possible to calculate the necessary im-
age space width given a bristle width in object space.
The appearance of the brush as perceived by the user in
the painting environment (using a perspective view) is
of less importance, so in this case drawing the bristles in
image space does not disturb the simulation.

Continuing this approach, more spines could be added
and the resolution of deformation grid could be increased.
Multiple spines can easily be simulated without notice-
able performance drop. For the results in section 4, no
more than two spines were used, however, because that
particular configuration provides the desired spreading
and scratching effect. Adding more spines did not result
in noticeably better looking results.

6 Tom Van Laerhoven, Frank Van Reeth

Texture purpose Content

Active pigment set 1 [p1, p2, p3, p4]
Active pigment set 2 [p5, p6, p7, p8]
Water quantities [w, capacity, unused, unused]
Footprint [on/off, tx, ty, unused]

Table 1 Three floating point texture objects are used to
embody the brush’s paint reservoir. A fourth texture stores
the tuft footprint.

3.4 Bi-directional Paint Transfer

Paint consists of a mixture of pigment and water, and
is being transfered back and forward between the brush
and the canvas during painting.

Our canvas model for the simulation of complex wa-
tery paint media, like watercolor, gouache and Oriental
ink, was introduced in previous work [23]. It consists of
three layers, each modeled as a 2D grid of cells in which
different rules and algorithms govern paint behavior. The
fluid layer describes the movement of water and pigment
on top of the canvas using fluid dynamics algorithms.
The surface layer captures pigment particles that settle
in the canvas surface irregularities, while the capillary
layer embodies the internal canvas structure. The data
of each layer is stored in floating point texture objects.
Furthermore, the model features the Kubelka-Munk dif-
fuse reflectance model to composite each layer of paint,
and produce the final image. Every step of the simula-
tion relies entirely on programmable graphics hardware
to enable an interactive simulation rate. For detailed in-
formation on this topic, we refer to literature [23].

To represent the paint quantities inside the brush,
floating point texture objects are used, similar to the rep-
resentation of paint quantities on the canvas. Together
they form the brush’s paint reservoir. For this purpose
we use three texture objects, storing a maximum of eight
active pigment quantities p1...8, the amount of water w,
and the reservoir’s capacity at that point, as shown in
table 1. A fourth texture keeps the most recent footprint
of the brush tuft on the canvas.

Transferring paint, between the brush and the canvas
now requires four steps:

1. Determine tuft footprint.
2. Determine paint transfer between brush and canvas.
3. Update paint quantities on the canvas.
4. Update paint quantities in the reservoir.

Determining the area on the canvas surface that is
touched by the brush is straightforward. Rendering the
tuft on the stencil buffer from the canvas’ point-of-view,
using an orthographic projection results in the desired
footprint. The front clipping plane is set just below the
canvas surface (we allow the brush to slightly penetrate
the surface), while the back clipping plane is placed just
above the surface. All geometry that is contained in this
viewing volume contributes to the footprint. A fragment

for each contacting (reservoirCell , canvasCell) pair :
rq = reservoirCell .quantity();
cq = canvasCell.quantity();
toCanvas = downRate∗rq;
toReservoir = upRate∗cq;

// verify available space in canvas cell
if (toCanvas + cq > cellCapacity)

toCanvas = cellCapacity − cq;

// verify available space in reservoir cell
if (toReservoir + rq > reservoirCapacity)

toReservoir = reservoirCapacity − rq;

canvasCell.add(toCanvas − toReservoir);
reservoirCell .add(toReservoir − toCanvas);

end;

Table 2 Pseudo-code for determining bi-directional pigment
and water transfer between reservoir and canvas cells.

shader is used to retain the original 2D texture coordi-
nates (tx, ty) from the tuft’s reservoir in the footprint.
These identify the origin of a footprint cell, which is nec-
essary for the final update step.

Table 2 outlines the procedure for transferring pig-
ment and water amounts between brush reservoir and
the fluid layer of the canvas, while ensuring mass conser-
vation. Two parameters, downRate and upRate, govern
the net transfer rate.

The two last statements in table 2 execute steps three
and four respectively. The footprint resides in the reser-
voir’s projected space, which equals canvas space. To
update the reservoir quantities, however, each cell of the
footprint has to be projected backwards on the reser-
voir texture. This operation is performed using a vertex
shader that relies on the retained texture coordinate.

A stroke on the canvas can now be created by repeat-
edly executing these four paint transfer steps on each
position interpolated between coordinates sampled from
the input device.

4 Results

The techniques outlined in this work are implemented
in C++ and NVidia’s Cg on a Pentium D, 2.8 GHz,
equipped with a NVidia GeForce 6800. They were inte-
grated in our previously introduced system for interac-
tively creating images with watery paint, like watercolor,
gouache and Oriental ink [23]. The setup incudes a Wa-
com tablet interface that provides 5DOF and enables
a user to control the position, pressure and tilt of the
brush in an intuitive way.

The resulting application performs at an interactive
frame rate. It features an intuitive user interface that,

Brush Up Your Painting Skills 7

(a) (b)

Figure 6 A 3D view on the brush and canvas (a), and a
palette for interactive color mixing (b).

while painting, enables the choice between three different
views on the canvas: a 3D perspective view (figure 6(a)),
a 2D orthographic view, and a brush-following view that
attaches the camera to the brush itself. The latter is less
useful during painting and mainly used for demonstra-
tion purposes. A separate palette dialog enables mixing
paint and brush loading (figure 6(b)).

The efficient balance between CPU load, performing
energy optimization, and GPU load, deforming and ren-
dering the brush’s geometry, as well as the canvas simu-
lation, ensures an overall real-time painting simulation.

The sample strokes in figure 7 show the results of in-
teractive brush movement with various kinds of brushes,
using both watercolor paint and Oriental black ink. The
geometry of each brush consists of either a polygon mesh
modeled with the open-source tool Blender [5] and ex-
ported to the 3ds file format, or a procedurally gener-
ated OpenGL mesh of hundreds of polylines as individ-
ual bristles.

In both flat and round brush models, the spring con-
stants between consecutive segments decrease near the
tip. Each kinematic chain consists of at least four seg-
ments with decreasing lengths towards the tip. This makes
the tuft tip more flexible than the top, which is stiffer
because the bristles are tightly packed in the ferrule, and
enables a brush to draw fine strokes (figure 7(k)).

A fan-shaped flat brush was used to create the scratchy
strokes in images 7(d), 7(e) and 7(g). Finally, the sponge
features large reservoir capacity and upRate values, mak-
ing it possible to soak up wet paint from the canvas.

The process of painting with the virtual brushes was
evaluated by various users, among which several expe-
rienced artists. The close resemblance to the behavior
of a real brush made that almost no instructions were
needed, and within seconds natural looking strokes ap-
peared on the canvas, in accordance with the user’s in-
tentions. The sponge especially was rated very positive
for its ability to fill large areas quickly.

5 Conclusions and Future Work

We outlined the construction of a 3D deformable brush
that combines well with our previously introduced can-
vas model, supplying complex tuft footprints and bi-
directional paint transfer. The brush’s deformation de-
pends on one or more kinematic chains, which partic-
ipate in an optimization framework that computes the
system’s static equilibrium. The geometry of the brush
consists of a 3D model description, either polygons or
polylines. A free-form deformation lattice, which encloses
the geometry and which is deformed using the kinematic
chains, ensures the geometry of the brush inherits the
deformation. Additionally, canvas friction is taken into
account to enhance the realism of brush movement. Sev-
eral brush types were created using this approach, rang-
ing from a round and flat brush to a sponge. Strokes cre-
ated with these brushes show that, in combination with a
5DOF tablet interface, complex prints can be produced.
Furthermore, evaluation by several users indicated that
its expressiveness exceeds that of existing systems.

There is some room for improvement of this model.
The effects of plasticity and pore resistance are ignored
at the moment. For both these issues, however, adequate
solutions that can easily be incorporated in our model
already exist in literature.

Acknowledgements We gratefully express our gratitude to
the European Fund for Regional Development (EFRD), the
Flemish Government and the Flemish Interdisciplinary in-
stitute for Broadband Technology (IBBT), which are kindly
funding part of the research at the Expertise Centre for Dig-
ital Media. Many thanks also go to Marie-Anne Bonneterre
and Josee Xavier for their artistic contribution.

References

1. Baxter, W.V.: Notes on brush simulation with optimiza-
tion. Technical report, University of North Carolina at
Chapel Hill, Department of Computer Science (2004)

2. Baxter, W.V.: Physically-based modeling techniques for
interactive digital painting. Ph.D. thesis, University of
North Carolina at Chapel Hill, Department of Computer
Science (2004)

3. Baxter, W.V., Lin, M.C.: A versatile interactive 3D
brush model. In: Proceedings of the 12th Pacific Confer-
ence on Computer Graphics and Applications, pp. 319–
328. IEEE Computer Society Press, Seoul, Korea (2004)

4. Baxter, W.V., Scheib, V., Lin, M.C., Manocha, D.: dAb:
interactive haptic painting with 3D virtual brushes. In:
E. Fiume (ed.) Proceedings of ACM SIGGRAPH 2001,
pp. 461–468. ACM Press, NY, USA (2001). DOI
http://doi.acm.org/10.1145/383259.383313

5. Blender Foundation: Blender v2.41 (Software package).
Available at http://www.blender.org. Blender Founda-
tion (2006)

6. Chu, N.S., Tai, C.L.: An efficient brush model for
physically-based 3D painting. In: Proceedings of the 10th

8 Tom Van Laerhoven, Frank Van Reeth

(a) Smearing paint with a clean round brush. (b) Smearing paint with a
clean round brush.

(c) Scratchy brush strokes.

(d) Scratchy brush strokes. (e) Scratchy brush strokes. (f) A deformable sponge, using
a single spine.

(g) Using a sponge to deposit
paint.

(h) Mixing paint with a round
brush.

(i) Using a flat brush. (j) Bristle spreading with black
ink.

(k) Drawing a very fine stroke with the
flexible tip of a round brush.

Figure 7 Computer-generated sample strokes.

Pacific Conference on Computer Graphics and Applica-
tions, p. 413. IEEE Computer Society (2002)

7. Chu, N.S.H., Tai, C.L.: Real-time Painting with an Ex-
pressive Virtual Chinese Brush. IEEE Computer Graph-
ics and Applications 24(5), 76–85 (2004)

8. Colomosse, J.P.: Higher Level Techniques for the Artistic
Rendering of Images and Video. Ph.D. thesis, University
of Bath (2004)

9. Corel Painter X (Software package),
http://www.corel.com/painterx. Corel (2006)

10. Craig, J.C.: Robotics. Addison-Wesley, New York (1989)

11. Gooch, A., Gooch, B.: Non-photorealistic rendering. A
K Peters, Ltd. (2001)

12. Greene, R.: The drawing prism: a versatile graphic in-
put device. In: Proceedings of the 12th annual confer-
ence on Computer graphics and interactive techniques,

pp. 103–110. ACM Press, NY, USA (1985). DOI
http://doi.acm.org/10.1145/325334.325202

13. Lee, J.: Physically-based modeling of brush painting.
In: Proceedings of the fifth international conference on
computational graphics and visualization techniques on
Visualization and graphics on the World Wide Web,
pp. 1571–1576. Elsevier Science Inc. (1997). DOI
http://dx.doi.org/10.1016/S0169-7552(97)00073-1

14. Nocedal, J., Wright, S.J.: Numerical optimization.
Springer Science+Business Media (1999)

15. NVIDIA: Cg toolkit user’s manual, v1.4.1 (2006)

16. Parent, R.: Computer animation – algorithms and tech-
niques. Morgan Kaufmann, San Fransisco (2002)

17. Saito, S., Nakajima, M.: Physics-based brush model for
painting. In: Conference Abstracts and Applications of
ACM SIGGRAPH 1999, p. 226 (1999)

Brush Up Your Painting Skills 9

18. Saito, S., Nakajima, M.: 3D Physics-based brush model
for interactive painting (in Japanese). Jyouhou-Shori
Gakkai Ronbushi (Japanese journal) 41(3), 608–615
(2000)

19. Smith, A.R.: Digital paint systems: An anecdotal and
historical overview. IEEE Annals of the History of Com-
puting 23(2), 4–30 (2001)

20. Smith, S.: The complete watercolour course, second edn.
Collins & Brown (1998)

21. Spellucci, P.: DONLP2 Users guide. Technical University
at Darmstadt, Germany (2004)

22. Strassmann, S.: Hairy brushes. In: Proceedings of the
13th annual conference on Computer graphics and inter-
active techniques, pp. 225–232. ACM Press, NY, USA
(1986). DOI http://doi.acm.org/10.1145/15922.15911

23. Van Laerhoven, T., Van Reeth, F.: Real-time simulation
of watery paint. In: Journal of Computer Animation and
Virtual Worlds (Special Issue CASA 2005), vol. 16:3–4,
pp. 429–439. J. Wiley & Sons, Ltd. (2005)

24. Wenz-Denise, S.: The invaluable paintbrush. World Wide
Web, http://www.passionforpaint.com (2001)

25. Xu, S., Tang, M., Lau, F.M., Pan, Y.: A solid model
based virtual hairy brush. In: Proceedings of Computer
Graphics Forum, vol. 21 (2002)

dr. Tom Van Laerhoven
Tom Van Laerhoven is a senior
researcher in computer science
at Hasselt University (UHas-
selt) in Diepenbeek, Belgium.
He obtained a MS in computer
science in 2000 at UHasselt
(formerly LUC). In 2006, he
finished his PhD entitled “An
Extensible Simulation Frame-
work Supporting Physically-
based Interactive Painting” at
the Expertise centre for Digi-
tal Media (EDM), a research

institute of Hasselt Univer-
sity. His research activities are
concerned with computer an-

imation, physically-based modeling and animation, non-
photorealistic rendering and parallel and distributed algo-
rithms.

Prof. dr. Frank Van Reeth
Frank Van Reeth is Professor
of computer science at Has-
selt University (UHasselt) in
Diepenbeek, Belgium. He is
deputy managing director of
the Expertise centre for Dig-
ital Media (EDM) at UHas-
selt. He obtained a MS in
computer science in 1987 at
the Free University of Brussels,
and a PhD in computer science
at UHasselt (formerly LUC)
in 1993. His research inter-

ests include computer graph-
ics, computer animation, net-
worked virtual environments,

human computer interaction and multimedia technology. He
published over 100 scientific papers in the above domains. He
is a member of ACM, the Computer Graphics Society (CGS),
Eurographics and IEEE.

