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A B S T R A C T

To monitor the COVID-19 epidemic in Cuba, data on several epidemiological indicators have been collected on
a daily basis for each municipality. Studying the spatio-temporal dynamics in these indicators, and how they
behave similarly, can help us better understand how COVID-19 spread across Cuba. Therefore, spatio-temporal
models can be used to analyze these indicators. Univariate spatio-temporal models have been thoroughly
studied, but when interest lies in studying the association between multiple outcomes, a joint model that
allows for association between the spatial and temporal patterns is necessary. The purpose of our study was to
develop a multivariate spatio-temporal model to study the association between the weekly number of COVID-
19 deaths and the weekly number of imported COVID-19 cases in Cuba during 2021. To allow for correlation
between the spatial patterns, a multivariate conditional autoregressive prior (MCAR) was used. Correlation
between the temporal patterns was taken into account by using two approaches; either a multivariate random
walk prior was used or a multivariate conditional autoregressive prior (MCAR) was used. All models were
fitted within a Bayesian framework.
1. Introduction

In March 2020, the World Health Organisation declared the coron-
avirus disease (COVID-19) to be a pandemic. COVID-19 is a respiratory
disease caused by an infection with the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). On March 11, 2020, three Italian
tourists in Cuba tested positive for the virus. These were the first
confirmed cases in Cuba, marking this date as the beginning of the
epidemic on the island (Galbán-García and Más-Bermejo, 2021). In
Cuba, the largest wave of COVID-19 infections took place in 2021,
peaking at the end of August 2021 (Dong et al., 2020). This wave was
most likely caused by the SARS-CoV-2 Delta variant, as this variant had
replaced the other variants by July 2021 and spread rapidly throughout
the country (Más-Bermejo et al., 2022). In order to monitor the COVID-
19 epidemic, data on several epidemiological indicators, such as the
number of cases, hospitalizations and deaths are being collected at
the municipal level throughout the island. The aim of this study is
to evaluate the spatio-temporal trend in the number of deaths due to
COVID-19 and the number of imported cases of COVID-19, as well as
the association between these two indicators.

∗ Correspondence to: L-BioStat, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium.
E-mail address: dries.dewitte@kuleuven.be (D. De Witte).

The monitoring of geographic and temporal trends in these indi-
cators is essential to the understanding of the epidemiology of the
disease throughout the region. In particular, simultaneously analyzing
such trends among different indicators allows researchers to gain in-
depth insight into how COVID-19 spread across the island and the
extent it affected Cuba’s population and healthcare system. This is often
done using spatio-temporal statistical models that take into account de-
pendencies in space and time. Univariate spatio-temporal models have
been extensively studied (see, for example, Lawson, 2021 and Haining
and Li, 2020 for an overview), but models that exploit the association
between the spatial and temporal patterns of multiple indicators have
been studied to a lesser extent. In this article, we propose a joint model
for multivariate spatio-temporal data to jointly analyze the number of
imported COVID-19 cases and the number of COVID-19 related deaths
across the municipalities in Cuba.

Multivariate models for two or more spatial outcomes have been
studied extensively. Most of the research that has been done extended
the univariate conditional autoregressive (CAR) models to the mul-
tivariate setting. The theoretical properties of multivariate Gaussian
vailable online 10 May 2023
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Markov Random Fields (GMRF) were first described by Mardia (1988).
His work extends the work of Besag (1974). However, in his models,
separable models are proposed and identical smoothing parameters for
all outcomes are assumed. Non-separable Multivariate Conditional Au-
toregressive (MCAR) models that allow for different spatial smoothing
parameters have been developed by Gelfand and Vounatsou (2003).
These multivariate CAR models have been further developed by Jin
et al. (2005) and Jin et al. (2007), the latter using an approach based
on a linear model of coregionalization. A comprehensive review of
multivariate conditional autoregressive models for multivariate spatial
count data can be found in MacNab (2018).

For spatio-temporal count data, some multivariate models have
been proposed recently. Lee et al. (2022) proposed a multivariate
spatio-temporal correlation model. In this model, the set of spatial,
temporal and spatio-temporal random effects is represented with a
single set of random effects that is modeled with a zero-mean multi-
variate Gaussian Markov random field, and the correlation between the
outcomes is captured by incorporating a between outcome covariance
matrix in the precision matrix. Thus, their model does not estimate
the correlation between the spatial and temporal trends separately,
but captures the association between the responses by estimating one
correlation parameter. Vicente et al. (2021) proposed a multivariate
spatio-temporal model based on P-splines in which correlation between
the coefficients of the spatial and temporal P-splines is induced. A
multivariate model for spatio-temporal areal data based on M-models
was recently proposed by Vicente et al. (2020).

In the joint model for multivariate spatio-temporal data that is
proposed in this paper, a multivariate CAR model is used to induce
correlation between spatial patterns. Correlation between temporal pat-
terns is incorporated by using a multivariate random walk prior for the
temporal random effects. We also argue that this multivariate random
walk prior can be modeled with a multivariate CAR prior, since CAR
priors can be used for the temporal random effects in the univariate
case (Fahrmeir and Lang, 2001). To the best of our knowledge, this is
the first time that a MCAR prior is used for the temporal random effects
in a multivariate spatio-temporal model.

The rest of this paper is organized as follows. In Section 2, the
data are described. In Section 3, we lay out the methodology and in
Section 4, the results of the analyses of the number of imported COVID-
19 cases and the number of COVID-19 deaths are presented. Finally, a
discussion is provided in Section 5.

2. Data

We obtained data from January 1, 2021 to October 31, 2021, given
that this time period includes the largest wave of COVID-19 infections
and deaths in Cuba. Beta and Delta variants circulated predominantly
in the territory during this period (Guzmán et al., 2022). High-quality
data are available on several COVID-19 indicators disaggregated at the
municipality level, the spatial unit used in the analysis. The country is
divided into 169 municipalities (Fig. 1), with an average population of
66,628 inhabitants per municipality, ranging from 10,319 to 509,841
people. Official daily COVID-19 deaths reported by the Ministry of
Public Health, MINSAP, were recorded in Cuba’s national COVID-19
database. Death due to COVID-19 was defined according to the WHO
definition: a person who died as a result of confirmed COVID-19, with
symptoms clinically compatible with the disease (WHO, 2021). All
cases confirmed by PCR testing were classified as imported or local.
Daily mortality and imported case data were extracted by municipality
for the study period and aggregated weekly to avoid excess null counts
in the daily data and to account for weekday and weekend effects (Sahu
and Böhning, 2022). Data on population size, used as an offset in the
Poisson models, and population density, used as a covariate in the
models, were provided by the Cuban National Statistical Office (ONE,
http://www.onei.gob.cu). The latitude and longitude of the centroid
and the cartographic data set with the boundaries of the municipalities
2

were provided by the Institute of Geography.
3. Methodology

Let 𝑦𝑖𝑗𝑘 be the observed number of imported COVID-19 cases (𝑘 = 1)
r the observed number of COVID-19 deaths (𝑘 = 2) in municipality 𝑖
𝑖 = 1,…, 𝐼 = 168) at week 𝑗 (𝑗 = 1,…, 𝐽 = 44). Instead of modeling

daily data, we modeled weekly data due to the excess of zero counts in
the daily data and to take into account weekday/weekend effects (Sahu
and Böhning, 2022). We assume that both the number of imported
COVID-19 cases and COVID-19 deaths follow a Poisson distribution
with mean 𝜇𝑖𝑗𝑘 (Lawson, 2018):

𝑦𝑖𝑗𝑘|𝜇𝑖𝑗𝑘 ∼ Pois(𝜇𝑖𝑗𝑘)
log(𝜇𝑖𝑗𝑘) = 𝑂𝑖𝑗𝑘 + log(𝜃𝑖𝑗𝑘),

where 𝑂𝑖𝑗𝑘 is the offset and 𝜃𝑖𝑗𝑘 is the relative risk. Often, the expected
counts are used as offsets. These expected counts can be obtained using
indirect or direct standardization based on age and sex demographics.
However, given that the appropriate data are not available for using
these methods, we used the logarithm of the population size (log(𝑝𝑖))
for the offset instead.

3.1. Univariate spatio-temporal models

First, we modeled the two outcomes separately. For this purpose,
we used the spatio-temporal models suggested by Knorr-Held (2000)
to model the log relative risks. In these models, the log relative risk is
defined in terms of random effects:

log(𝜃𝑖𝑗𝑘) = 𝛽0𝑘 + 𝛽1𝑘 ∗ 𝑃𝐷𝑖 + 𝑢𝑖𝑘 + 𝑣𝑖𝑘 + 𝑔𝑗𝑘 + 𝜓𝑖𝑗𝑘 with 𝑘 = 1, 2,

Here, the spatial component is modeled by including a convolution 𝑢𝑖𝑘+
𝑣𝑖𝑘, where 𝑢𝑖𝑘 is the correlated spatial component for outcome 𝑘, mod-
eling spatially correlated heterogeneity, while spatially uncorrelated
heterogeneity in outcome 𝑘 is modeled through 𝑣𝑖𝑘. Both components
are constant in time. The temporal component for each outcome is mod-
eled by including the random effect 𝑔𝑗𝑘, and a space–time interaction
term is also included (𝜓𝑖𝑗𝑘). In addition, we incorporated population
density (PD) in the model as a covariate. Population density is defined
as the number of inhabitants per square kilometers, scaled by a factor of
100 to improve model convergence. 𝛽1𝑘 is the corresponding regression
coefficient, and 𝛽0𝑘 the outcome-specific intercept.

For the spatially correlated random effects 𝑢𝑘 = (𝑢1𝑘,…, 𝑢168𝑘),
a Gaussian intrinsic conditional autoregressive (ICAR) prior was as-
sumed (Besag et al., 1991), which can be seen as a form of a Gaussian
Markov random-field model:

𝑢𝑘 ∼ 𝑁(0, [𝜏𝑘(𝐷 −𝑊 )]−1) with 𝑘 = 1, 2,

where the 168 × 168 matrix 𝐷 is diagonal with diagonal elements 𝑚𝑖
representing the number of neighbors of municipality 𝑖 and where 𝑊
is the adjacency matrix where 𝑊𝑖𝑖 = 0, 𝑊𝑖𝑗 = 1 if the municipalities
𝑖 and 𝑗 are adjacent, meaning that they share a common border, and
𝑊𝑖𝑗 = 0 if the municipalities are not adjacent. This results in queen
contiguity-based spatial weights. Note that since this will result in a
null vector for the island Isla de la Juventud, we considered Batabano
(Mayabeque) as a neighbor for the island, since Isla de la Juventud is
connected by ferries to this municipality. We will denote this ICAR prior
with 𝑢𝑖𝑘 ∼ 𝐼𝐶𝐴𝑅(𝜏−1𝑢𝑘 ), where 𝜏 corresponds to the precision (inverse
variance) parameter. For the uncorrelated spatial random effects, 𝑣𝑖𝑘,
an independent zero-mean Gaussian prior distribution was assumed:
𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 ) (Besag et al., 1991; Lawson, 2018; Jin et al., 2007).

For the temporal main effect 𝑔𝑗𝑘, a type of temporal random walk of
order one (RW(1)) was assumed. Two implementation approaches were
considered. In the first approach (Model 1), the RW(1) prior was imple-
mented with a Gaussian prior distribution: 𝑔𝑗𝑘 ∼ 𝑁(𝑔𝑗−1,𝑘, 𝜏−1𝑔𝑘 ) (Lawson,
2021). In a second approach (Model 2), we implemented the RW(1)
prior with a one-dimensional ICAR prior: 𝑔𝑗𝑘 ∼ 𝐼𝐶𝐴𝑅(𝜏−1𝑔𝑘 ). Indeed, it

has been shown that the intrinsic CAR distribution is equivalent to a



Spatial and Spatio-temporal Epidemiology 45 (2023) 100588D. De Witte et al.
Fig. 1. Map of the 168 municipalities in Cuba.
Gaussian random walk in one dimension when the temporal adjacency
matrix 𝑄 is appropriately specified (Fahrmeir and Lang, 2001; Thomas
et al., 2004). Let 𝑄ℎ𝑙 denote the entries of the temporal adjacency
matrix. Then 𝑄ℎ𝑙 = 1 if the two time points ℎ and 𝑙 are adjacent and
𝑄ℎ𝑙 = 0 if the two time points ℎ and 𝑙 are not adjacent. The type of
RW(1) prior that is implemented with the ICAR prior can be written as

𝑔𝑗𝑘 ∼ 𝑁(𝑔𝑗+1,𝑘, 𝜏−1𝑔𝑘 ) for 𝑗 = 1

𝑔𝑗𝑘 ∼ 𝑁((𝑔𝑗−1,𝑘 + 𝑔𝑗+1,𝑘)∕2, 𝜏−1𝑔𝑘 ∕2) for 𝑗 = 2,…, 𝐽 − 1

𝑔𝑗𝑘 ∼ 𝑁(𝑔𝑗−1,𝑘, 𝜏−1𝑔𝑘 ) for 𝑗 = 𝐽 .

Knorr-Held (2000) proposed four types of prior distributions for the
space–time interaction term 𝜓𝑖𝑗𝑘. In our model, a Type I interaction
was assumed by using an independent zero-mean Gaussian prior distri-
bution: 𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑖𝑗𝑘 ), because of the complexity of the multivariate
model that we fitted in a next step.

Finally, the two responses (𝑘 = 1, 2) were each modeled separately
using the following two models:

𝐌𝐨𝐝𝐞𝐥 𝟏

𝑦𝑖𝑗𝑘|𝜇𝑖𝑗𝑘 ∼ Pois(𝜇𝑖𝑗𝑘)
log(𝜇𝑖𝑗𝑘) = 𝑂𝑖𝑗𝑘 + log(𝜃𝑖𝑗𝑘)
log(𝜃𝑖𝑗𝑘) = 𝛽0𝑘 + 𝛽1𝑘 ∗ 𝑃𝐷𝑖+

𝑢𝑖𝑘 + 𝑣𝑖𝑘 + 𝑔𝑗𝑘 + 𝜓𝑖𝑗𝑘

𝑢𝑖𝑘 ∼ 𝐼𝐶𝐴𝑅(𝜏−1𝑢𝑘 )
𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 )
𝑔𝑗𝑘 ∼ 𝑁(𝑔𝑗−1,𝑘, 𝜏−1𝑔𝑘 )
𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑘 )

𝐌𝐨𝐝𝐞𝐥 𝟐

𝑦𝑖𝑗𝑘|𝜇𝑖𝑗𝑘 ∼ Pois(𝜇𝑖𝑗𝑘)
log(𝜇𝑖𝑗𝑘) = 𝑂𝑖𝑗𝑘 + log(𝜃𝑖𝑗𝑘)
log(𝜃𝑖𝑗𝑘) = 𝛽0𝑘 + 𝛽1𝑘 ∗ 𝑃𝐷𝑖+

𝑢𝑖𝑘 + 𝑣𝑖𝑘 + 𝑔𝑗𝑘 + 𝜓𝑖𝑗𝑘

𝑢𝑖𝑘 ∼ 𝐼𝐶𝐴𝑅(𝜏−1𝑢𝑘 )
𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 )
𝑔𝑗𝑘 ∼ 𝐼𝐶𝐴𝑅(𝜏−1𝑔𝑘 )
𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑘 )

(1)

3.2. Multivariate spatio-temporal models

When interest lies in studying the association between the spatial
trends and the temporal trends of the two responses, a joint model for
multivariate spatio-temporal data is necessary. Just as in the univariate
models, we assumed that both outcomes can be modeled with a Poisson
distribution where the log relative risk is modeled with a set of spatial
and temporal random effects:

𝐢𝐦𝐩𝐨𝐫𝐭𝐞𝐝 𝐂𝐎𝐕𝐈𝐃-𝟏𝟗 𝐜𝐚𝐬𝐞𝐬 (𝑘 = 1)

𝑦𝑖𝑗1|𝜇𝑖𝑗1 ∼ Pois(𝜇𝑖𝑗1)
log(𝜇𝑖𝑗1) = 𝑂𝑖𝑗1 + log(𝜃𝑖𝑗1)
log(𝜃𝑖𝑗1) = 𝛽01 + 𝛽11 ∗ 𝑃𝐷𝑖+

𝐂𝐎𝐕𝐈𝐃-𝟏𝟗 𝐝𝐞𝐚𝐭𝐡𝐬 (𝑘 = 2)

𝑦𝑖𝑗2|𝜇𝑖𝑗2 ∼ Pois(𝜇𝑖𝑗2)
log(𝜇𝑖𝑗2) = 𝑂𝑖𝑗2 + log(𝜃𝑖𝑗2)
log(𝜃𝑖𝑗2) = 𝛽02 + 𝛽12 ∗ 𝑃𝐷𝑖+
3

𝑢𝑖1 + 𝑣𝑖1 + 𝑔𝑗1 + 𝜓𝑖𝑗1 𝑢𝑖2 + 𝑣𝑖2 + 𝑔𝑗2 + 𝜓𝑖𝑗2
Here, the random effects 𝑢𝑖𝑘 and 𝑣𝑖𝑘 are again the correlated and
uncorrelated spatial components, respectively, 𝑔𝑗𝑘 is the temporal com-
ponent and 𝜓𝑖𝑗𝑘 is the space–time interaction. However, unlike in
the univariate models, we allow for correlation between the spatially
structured random effects and the temporal components by assuming a
multivariate distribution for 𝑢𝑖1 and 𝑢𝑖2 and for 𝑔𝑗1 and 𝑔𝑗2, respectively.

For the spatially structured random effects, a multivariate exten-
sion of the univariate CAR prior has been developed by Gelfand and
Vounatsou (2003). Jin et al. (2007, 2005) further developed these so-
called multivariate CAR (MCAR) distributions. Here, we focus on the
multivariate Intrinsic CAR model (MICAR). In the approach proposed
by Gelfand and Vounatsou (2003), a joint distribution is assumed
for the set of spatially structured effects, 𝑢 = (𝑢′1, 𝑢

′
2)

′, where 𝑢1 =
(𝑢11,…, 𝑢𝐼1)′ and 𝑢2 = (𝑢12,…, 𝑢𝐼2)′

𝑢 ∼ 𝑁(0, [𝛬𝑢 ⊗ (𝐷 −𝑊 )]−1)

in which 𝛬𝑢 is the 2 × 2 non-spatial positive definite precision matrix
between the two outcomes, and the matrices 𝐷 and 𝑊 are defined
as in Section 3.1. Note that (𝐷 − 𝑊 ) is the kernel of the spatial
univariate ICAR model (Lawson, 2021). Thus, the precision matrix is
the Kronecker product of 𝛬𝑢 and the univariate ICAR form (Jin et al.,
2005). In the remainder of this paper, we denoted this prior as 𝑢𝑖𝑘 ∼
𝑀𝐶𝐴𝑅(1, 𝛬𝑢).

For the implementation of the temporal random effects, we propose
two different approaches. In the first approach (Model 3), a multi-
variate extension of the RW(1) prior as implemented in Model 1 is
proposed by specifying a joint multivariate Gaussian distribution for
two temporal random effects:
(

𝑔𝑗1
𝑔𝑗2

)

∼ 𝑁
((

𝑔𝑗−1,1
𝑔𝑗−1,2

)

, 𝛴𝑔

)

.

The correlation of the two random effects can then be derived from the
variance–covariance matrix 𝛴𝑔 . However, as shown in Model 2 in Sec-
tion 3.1, in a univariate model, a RW(1) prior can also be implemented
by using an ICAR prior for the temporal random effects. Therefore, in
the second approach (Model 4), the temporal random effects of the two
outcomes were modeled jointly by using the multivariate extension of
the ICAR prior, 𝑔𝑗𝑘 ∼ 𝑀𝐶𝐴𝑅(1, 𝛬𝑔), where 𝑀𝐶𝐴𝑅(1, 𝛬𝑔) is defined
as 𝑁(0, [𝛬𝑔 ⊗ (𝐷𝑔 − 𝑄)]−1), like for the spatially structured effects.
Only now, 𝛬𝑔 is the 2 × 2 non-temporal precision matrix for the two
outcomes, 𝐷𝑔 is a diagonal matrix where the diagonal elements are
the number of adjacent time points, and 𝑄 is the temporal adjacency
matrix.

The spatially unstructured random effects, 𝑣𝑖1 and 𝑣𝑖2, and the
space–time interactions, 𝜓𝑖𝑗1 and 𝜓𝑖𝑗2, were modeled separately using
the same priors as in the univariate models (as in (1)). In summary, the
following two multivariate models were fitted to study the spatial and
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temporal associations between the two outcomes:

𝐌𝐨𝐝𝐞𝐥 𝟑

𝐢𝐦𝐩𝐨𝐫𝐭𝐞𝐝 𝐂𝐎𝐕𝐈𝐃-𝟏𝟗 𝐜𝐚𝐬𝐞𝐬 (𝑘 = 1)

𝑦𝑖𝑗1|𝜇𝑖𝑗1 ∼ Pois(𝜇𝑖𝑗1)
log(𝜇𝑖𝑗1) = 𝑂𝑖𝑗1 + log(𝜃𝑖𝑗1)
log(𝜃𝑖𝑗1) = 𝛽01 + 𝛽11 ∗ 𝑃𝐷𝑖+

𝑢𝑖1 + 𝑣𝑖1 + 𝑔𝑗1 + 𝜓𝑖𝑗1

𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 )
𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑘 )

𝐂𝐎𝐕𝐈𝐃-𝟏𝟗 𝐝𝐞𝐚𝐭𝐡𝐬 (𝑘 = 2)

𝑦𝑖𝑗2|𝜇𝑖𝑗2 ∼ Pois(𝜇𝑖𝑗2)
log(𝜇𝑖𝑗2) = 𝑂𝑖𝑗2 + 𝑙𝑜𝑔(𝜃𝑖𝑗2)
log(𝜃𝑖𝑗2) = 𝛽02 + 𝛽12 ∗ 𝑃𝐷𝑖+

𝑢𝑖2 + 𝑣𝑖2 + 𝑔𝑗2 + 𝜓𝑖𝑗2

𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 )
𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑘 )

(2)
(

𝑔𝑗1
𝑔𝑗2

)

∼ 𝑁
((

𝑔𝑗−1,1
𝑔𝑗−1,2

)

, 𝛴𝑔

)

𝑢𝑖𝑘 ∼ 𝑀𝐶𝐴𝑅(1, 𝛬𝑢)

𝐌𝐨𝐝𝐞𝐥 𝟒

𝐢𝐦𝐩𝐨𝐫𝐭𝐞𝐝 𝐂𝐎𝐕𝐈𝐃-𝟏𝟗 𝐜𝐚𝐬𝐞𝐬 (𝑘 = 1)

𝑦𝑖𝑗1|𝜇𝑖𝑗1 ∼ 𝑃𝑜𝑖𝑠(𝜇𝑖𝑗1)
log(𝜇𝑖𝑗1) = 𝑂𝑖𝑗1 + log(𝜃𝑖𝑗1)
log(𝜃𝑖𝑗1) = 𝛽01 + 𝛽11 ∗ 𝑃𝐷𝑖+

𝑢𝑖1 + 𝑣𝑖1 + 𝑔𝑗1 + 𝜓𝑖𝑗1

𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 )
𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑘 )

𝐂𝐎𝐕𝐈𝐃-𝟏𝟗 𝐝𝐞𝐚𝐭𝐡𝐬 (𝑘 = 2)

𝑦𝑖𝑗2|𝜇𝑖𝑗2 ∼ Pois(𝜇𝑖𝑗2)
log(𝜇𝑖𝑗2) = 𝑂𝑖𝑗2 + log(𝜃𝑖𝑗2)
log(𝜃𝑖𝑗2) = 𝛽02 + 𝛽12 ∗ 𝑃𝐷𝑖+

𝑢𝑖2 + 𝑣𝑖2 + 𝑔𝑗2 + 𝜓𝑖𝑗2

𝑣𝑖𝑘 ∼ 𝑁(0, 𝜏−1𝑣𝑘 )
𝜓𝑖𝑗𝑘 ∼ 𝑁(0, 𝜏−1𝜓𝑘 )

(3)
𝑔𝑗𝑘 ∼ 𝑀𝐶𝐴𝑅(1, 𝛬𝑔)

𝑢𝑖𝑘 ∼ 𝑀𝐶𝐴𝑅(1, 𝛬𝑢)

3.3. Model implementation

All models were fitted within the Bayesian framework, in which
Markov chain Monte Carlo (MCMC) methods are used to approximate
the posterior distributions. The MCMC methods were performed using
the NIMBLE package, version 0.12.2 (de Valpine et al., 2017), in R
4.2.0 (R Core Team, 2022). We ran four chains of 1,100,000 iterations
each. The first 100,000 iterations of each chain were discarded as burn-
in period, and a thinning factor of 1000 was used. The reason for this
high thinning factor and these long chains is the high autocorrelation
in the MCMC samples for the intercept parameters in Models 1 and
3. The remaining posterior samples were summarized by the posterior
means, standard deviations and 95% equal-tailed credible intervals.
Trace plots, effective sample size (ESS) and the Potential Scale Re-
duction factors (�̂�) were examined to assess convergence (Gelman and
Rubin, 1992). Convergence was assumed since all �̂� values were below
1.1. Different models were compared using the well known Watanabe–
Akaike information criterion (WAIC) (Watanabe and Opper, 2010) and
the mean squared predictive error (MSPE) defined as

𝑀𝑆𝑃𝐸𝑘 =
∑

𝑖𝑗

(𝑦𝑖𝑗𝑘 − �̂�𝑖𝑗𝑘)2

𝑛

(Lawson et al., 2017). All data and code used in this study are openly
available on Github: https://github.com/DriesDWitte/Multivariate_Spa
tio_Temporal_Model.

3.3.1. Prior distributions
Non-informative prior distributions were assumed. Flat prior distri-

butions were provided for the regression coefficients of the intercepts
𝛽01 and 𝛽02. For all standard deviations (𝜎𝛽0𝑘 , 𝜎𝑢𝑘 , 𝜎𝑣𝑘 , 𝜎𝑔𝑘 , 𝜎𝜓𝑘 ), defined
n terms of the precision as 𝜎 = 𝜏−1∕2, a uniform distribution was
4

b

assumed over the range (0,10) (Gelman, 2006; Lawson et al., 2017).
In NIMBLE, the ICAR prior is implemented as the dcar_normal
distribution. The MVCAR, however, is not directly implemented in
NIMBLE, but it is possible to fit this model using the linear model
of co-regionalization (LMC) approach of Jin et al. (2007). Code to fit
the MVCAR model in NIMBLE is provided by Lawson (2021). Inverse-
Wishart priors were assigned to 𝛬𝑔 and 𝛬𝑢 with two degrees of freedom
nd a 2 × 2 identity matrix as scale matrix.

.3.2. Sensitivity analyses
The impact of the assumed priors was examined through a sensitiv-

ty analysis where the regression coefficients were given a Normal prior
istribution with zero mean and a small precision of 0.001, and where
he inverse-gamma(0.001,0.001) prior distribution was assumed for the
ariance parameters. We compared the resulting posterior distributions
nd found no noticeable impact of the choice of prior distribution
n the posterior distributions of the parameters. Our overall conclu-
ions remained intact. In a second sensitivity analysis, a distance-based
eighborhood structure, where the k nearest municipalities are chosen
s neighbors, was considered to study the robustness of our results,
ith 𝑘 = 4. The different neighborhood structures are given in Figure

9 in the Supplemental Materials. The results remained very simi-
ar regardless of the neighborhood structure used, and the choice of
eighborhood structure did not affect our findings and conclusions.

. Results

.1. Exploratory data analysis

Before fitting the models, we explored the data by means of sum-
ary statistics and graphical displays. For this purpose, we compared

he number of deaths per 10,000 people and the number of imported
ases per 10,000 people across the different municipalities. For the
umber of deaths, this rate ranges from 0 to 7.0991, with a mean value
f 0.1638. The mean value for the rate of imported cases is 0.1340 and
anges from 0 to 15.8748. The median was zero for both rates. The
verage rate of death and rate of imported cases across all weeks for
ach municipality is plotted in Fig. 2. The average number of deaths per
0,000 inhabitants was the largest for Caimanera (0.5647), followed by
oron (0.5215) and San Cristobal (0.4752). For the average number

f imported cases per 10,000 inhabitants, we observed the largest
alue for Moron (1.6129), followed by Cardenas (1.1499) and Holguin
0.4909). To explore the temporal trend of the two rates, we plotted the
ates for the 44 weeks in our study for each municipality separately in
ig. 3.

.2. Results of the univariate models

After exploring the data, we started with analyzing the two out-
omes separately by fitting the two models described in (1).

.2.1. Deaths
We begin by describing the results of the fitted models for the

umber of deaths. The parameter estimates from Models 1 and 2 are
resented in Table 1. The population density was not found to be
ssociated with the number of deaths, as the 95% CI contains zero in
oth models. For Model 1, the value of the WAIC is equal to 12980.21
nd the MSPE is equal to 2.1918 [1.9836; 2.4284]. The WAIC and
he MSPE are, respectively, 12986.22 and 2.1942 [1.9757; 2.4398] for
odel 2. Both the WAIC and the MSPE are smaller for Model 1, but

ince the difference is so small, one may argue that both models are
qually supported by the data.

To explore the spatial trend, we plotted the posterior mean of
he municipality-specific spatial risks, calculated as exp(𝑢𝑖1), together
ith the exceedance probabilities, calculated as 𝑃 (exp(𝑢𝑖1) > 1), for
oth models in Fig. 4. The exceedance probabilities can be used to
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Fig. 2. Average rate across all weeks for each municipality.
Fig. 3. Temporal trend of the rates for the 44 weeks for each municipality separately.
Table 1
Parameter estimates of the univariate models for the number of deaths.

Mean SD 95%CI

Model 1

𝛽01 −14.4053 0.5427 [−15.4949; −13.3136]
𝛽11 0.0019 0.0011 [−0.0002; 0.0039]
𝜎𝑣1 0.1684 0.0816 [0.0101; 0.3135]
𝜎𝑢1 0.5011 0.1057 [0.2875; 0.6979]
𝜎𝑔1 0.3658 0.0515 [0.2781; 0.4759]
𝜎𝜓1

0.9412 0.0232 [0.8964; 0.9885]

Model 2

𝛽01 −12.3517 0.0374 [−12.426; −12.2794]
𝛽11 0.0019 0.0011 [−0.0002; 0.0042]
𝜎𝑣1 0.1959 0.0677 [0.0509; 0.3202]
𝜎𝑢1 0.4831 0.0973 [0.2910; 0.6719]
𝜎𝑔1 0.3632 0.0505 [0.2786; 0.4770]
𝜎𝜓1

0.9404 0.0232 [0.8951; 0.9867]

detect municipalities that have an elevated risk. The plots give identical
results for Models 1 and 2. From these plots, we noticed that the
largest exceedance probabilities can be observed in the middle and
Northern part of Cuba. The municipality with the largest estimated
posterior mean is Centro Habana, a densely populated area in Ciudad
de La Habana (Havana City), followed by Moron (Ciego de Avila), a
municipality with a direct connection to the touristic Keys in northern
Cuba and Chambas (Ciego de Avila).

The global temporal evolution of the number of deaths can be ex-
plored by looking at the posterior means of exp(𝑔𝑗1). These are displayed
in Fig. 5 together with the 95% credible intervals. The shape of the
global temporal trend is the same for both models. The trend shows
that the number of deaths starts to increase from week 25 onwards and
reaches its peak at week 36.

4.2.2. Imported cases
The parameter estimates from the fitted models for the number of

imported cases are given in Table 2. Also for the number of imported
cases, the density of the population was not found to have a significant
effect. The lowest value for the WAIC and MSPE is observed for Model
2; the value of the WAIC for Model 1 was equal to 13599.17, for
5

Table 2
Parameter estimates of the univariate models for the number of imported cases.

Mean SD 95%CI

Model 1

𝛽02 −10.6861 0.3568 [−11.2998; −9.9751]
𝛽02 0.0034 0.0019 [−0.0002; 0.0072]
𝜎𝑣2 0.5437 0.0802 [0.3630; 0.6857]
𝜎𝑢2 0.6693 0.1860 [0.3495; 1.0829]
𝜎𝑔2 0.3557 0.0465 [0.2776; 0.4594]
𝜎𝜓2

0.9097 0.0242 [0.8626; 0.9582]

Model 2

𝛽02 −12.2026 0.0549 [−12.3152; −12.1019]
𝛽12 0.0034 0.0019 [−0.0005; 0.0070]
𝜎𝑣2 0.5408 0.0853 [0.3480; 0.6911]
𝜎𝑢2 0.6809 0.1995 [0.3439; 1.1359]
𝜎𝑔2 0.3563 0.0470 [0.2752; 0.4590]
𝜎𝜓2

0.9099 0.0241 [0.8629; 0.9589]

Model 2 it was equal to 13598.48. The MSPE was equal to 2.4757
[2.2008; 2.8284] for Model 1 and 2.4734 [2.1998; 2.8236] for Model
2. However, the difference is again negligible, suggesting that the two
models fit equally well.

We explored the spatial trend by plotting the posterior mean of the
municipality-specific spatial risks (exp(𝑢𝑖2)) and the exceedance proba-
bilities (𝑃 exp(𝑢𝑖2 > 1)) for both models (Fig. 6). Again, these plots are
identical for both models. They show large exceedance probabilities in
the middle part of the country and in the area of Ciudad de La Habana.
The largest estimated posterior mean of the spatial risks was observed
for Moron (Ciego de Avila). The second and third largest posterior mean
of the spatial risks was observed for Plaza De La Revolución (Ciudad
de La Habana) and Playa (Ciudad de La Habana), respectively.

We also studied the global temporal evolution of the number of
imported cases. For this purpose, the posterior means of exp(𝑔𝑗2) and
the 95% credible intervals are displayed in Fig. 7. Again, we noticed
that the shape of the estimated trend is the same for both models. The
number of imported cases seems to increase from week 11 onwards,
reaching a first peak in week 20. After that, it decreases again until
week 22. A second peak in the temporal trend of the number of
imported cases was observed in week 26.
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Fig. 4. Posterior means of the spatial risks and exceedance probabilities for the number of deaths.
Fig. 5. Posterior means of the temporal risks for the number of deaths.
Fig. 6. Posterior means of the spatial risks and exceedance probabilities for the number of imported cases.
4.3. Results of the multivariate models

After modeling the two outcomes univariately, we fitted the two
models described in (2) and in (3). These models were fitted using
different time lags for the number of deaths. Indeed, the number of
deaths might be affected by the number of imported cases in the
previous weeks.

The results of Models 3 and 4 are summarized in Table 3. In this
table, the WAIC, MSPE and the temporal and spatial correlations are
6

given. The results of Model 3 and the results of Model 4 are similar,
again indicating that the two models give an equally good fit. The
correlation between the temporal random effects 𝑔𝑗1 and 𝑔𝑗2 was not
significant for any of the time lags, indicating that there might be some
events happening in time that affect both outcomes differently. The
estimated global temporal evolution for Model 4 with a time lag of
8 weeks are displayed in Fig. 8, since for this time lag the temporal
correlation was the highest. We chose to display the results of Model 4
since the MSPEs were smaller. However, the results of Model 3 with a
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Fig. 7. Posterior means of the temporal risks for the number of imported cases.
Table 3
Summary of the results of Model 3 and Model 4.

Lag WAIC MSPE Deaths MSPE Imported Cases Temporal correlation Spatial correlation

Model 3

2 26 442.78 2.1997 [1.9891; 2.4440] 2.4753 [2.1965; 2.8290] 0.1147 [−0.2425; 0.4474] 0.3775 [0.1186; 0.6325]
4 26 269.23 2.2102 [1.9974; 2.4697] 2.4725 [2.1983; 2.8405] −0.0642 [−0.4096; 0.3058] 0.3648 [0.0998; 0.6328]
6 26 062.67 2.2163 [1.9972; 2.4708] 2.4702 [2.1995; 2.8344] 0.0406 [−0.3109; 0.3839] 0.3592 [0.0882; 0.6219]
8 25 846.76 2.2159 [1.9869; 2.5168] 2.4771 [2.2017; 2.8510] 0.2322 [−0.1187; 0.5424] 0.3477 [0.0773; 0.6155]
10 25 645.08 2.2278 [1.9808; 2.5662] 2.4721 [2.2088; 2.8562] 0.1248 [−0.2329; 0.4568] 0.3358 [0.0606; 0.6158]
12 25 463.83 2.2479 [1.9856; 2.6932] 2.4765 [2.2072; 2.8479] 0.0728 [−0.2821; 0.4124] 0.3229 [0.0448; 0.6077]

Model 4

2 26 445.24 2.1981 [1.9893; 2.4410] 2.4701 [2.2069; 2.8387] 0.1371 [−0.2779; 0.5163] 0.3651 [0.1061;0.6121]
4 26 272.15 2.2127 [1.9886; 2.4725] 2.4730 [2.1994; 2.8401] −0.0668 [−0.4554; 0.3783] 0.3622 [0.1025; 0.6244]
6 26 069.91 2.2169 [1.9970; 2.4850] 2.4779 [2.1980; 2.8460] 0.0574 [−0.3708; 0.4900] 0.3560 [0.0865;0.6255]
8 25 847.91 2.2067 [1.9821; 2.4779] 2.4709 [2.1985; 2.8353] 0.2702 [−0.1539; 0.6102] 0.3392 [0.0766; 0.6034]
10 25 644.45 2.2745 [1.9846; 2.5830] 2.4766 [2.2052; 2.8361] 0.1679 [−0.3355; 0.5884] 0.3201 [0.0548; 0.6024]
12 25 461.79 2.2327 [1.9794; 2.6048] 2.4735 [2.1984; 2.8383] 0.1295 [−0.3514; 0.5524] 0.3006 [0.0316; 0.5846]
time lag of 8 weeks are also plotted in Figure .11 in the Supplemental
Materials. As expected, the global temporal evolution from the multi-
variate models are identical to the global temporal evolutions from the
univariate models.

A positive and significant correlation was found between the spa-
tially structured random effects, 𝑢𝑖1 and 𝑢𝑖2, in all models for all time
lags. In Figure 8 and Figure .11, we also plotted the posterior means
of the municipality-specific spatial risks for Model 4 and Model 3, re-
spectively. For both the number of deaths and the number of imported
cases, we observe larger spatial risks in the middle part of Cuba and
in the area of Ciudad de La Habana, and smaller spatial risks in the
Southern part of the country. Especially for Moron, we notice a large
spatial risk for the number of imported cases and for the number of
deaths as well.

5. Discussion

In this paper, the numbers of imported cases and deaths due to
COVID-19 were analyzed across the 168 municipalities of Cuba using
spatio-temporal models. First, we analyzed the two outcomes univari-
ately using two models (Models 1 and 2). Both models give similar
results and lead to the same conclusions regarding the spatial patterns
and the temporal evolutions. For the number of deaths, the spatial
pattern shows higher spatial risks in the middle and Northern parts
of Cuba. This is possibly because the center of the country and some
municipalities of Havana have the highest aging population, with the
highest risk of death. For the number of imported cases, the spatial
pattern also shows higher spatial risks in the middle part of Cuba and in
the area of Ciudad de La Habana. The highest spatial risks of imported
cases are observed in Moron, Cardenas and Holguín. These municipal-
ities are close to or are tourist attractions. The global temporal trend
for the number of imported cases shows two peaks; one in week 20
and another in week 26. The peak in the global temporal trend for the
number of deaths is in week 36.
7

We did not find a significant effect of population density on the
number of deaths or the number of imported cases. While this may
seem counterintuitive, there are several possible explanations. For ex-
ample, it is possible that the effect of population density is non-linear.
Second, it is likely that the number of people passing through a mu-
nicipality, rather than population density, affects the number of deaths
and imported cases. For Moron, we observed a high relative risk for
both outcomes, although this is a municipality with a relatively low
population density (56.6350 persons per square kilometer). A third
possibility is that the effect of population density on the incidence of
deaths or imported cases depends on whether the population density
exceeds a certain threshold. Further research is needed to investigate
these hypotheses.

The main goal of this article was to develop and present methodol-
ogy to model multiple spatio-temporal outcomes jointly, and to use this
methodology to study the association between the number of deaths
and imported cases. Presumably, this is the first study that investigates
the spatial and temporal association between these two indicators. For
this purpose, we developed two models (Model 3 and 4). As far as
the authors are aware, this is the first time that an MCAR prior is
used for the temporal random effects. We also fitted these models for
different time lags. The results of the two joint models are again similar.
The analyses reveal a positive and significant correlation between the
spatial patterns of the number of deaths and imported cases, with
higher spatial risks in the center of Cuba and lower spatial risks in
the South. This might indicate that there are some common underlying
spatial risk factors affecting both the number of deaths and imported
cases (e.g., demographic or socio-economic characteristics). Specifically
for Moron, we observe a high spatial risk for both the number of deaths
and imported cases. Arguably, this is because Moron is the city closest
to the Cayos, a group of islands very popular among tourists, with many
tourists passing through or staying in Moron. Also, Moron is a munic-

ipality with a direct connection to the touristic Keys in northern Cuba
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Fig. 8. Global temporal trends and spatial trends for the number of deaths and imported cases from Model 4.
and Chambas (Ciego de Avila). Furthermore, there was no significant
correlation between the temporal evolutions, indicating that there may
be some temporal events affecting the two outcomes differently. For
instance, changes in policies regarding international travel restrictions
may primarily affect the number of imported cases. The international
travel restriction level in Cuba throughout the study period is displayed
in Figure .10 in the Supplemental Materials (Hale et al., 2021). In
addition, the vaccination campaign in Cuba started in May but was
scaled at different times across the country. The temporal evolution of
vaccination might also be a temporal event that affects both outcomes
differentially. The immunity acquired by vaccination protected the
population from the effect of transmission by infected travelers. Other
temporal events that might affect the two outcomes differently are
the transmissibility and severity of the circulating variants. Several
variants circulated in the country in 2021 (Guzmán et al., 2022). Until
July, the Beta variant was predominant, while Delta dominated for the
remainder of the period.

In further research, possible extensions of the proposed models
could be explored. For instance, instead of using a multivariate ex-
tension of the ICAR prior for the spatially structured random effects,
one might consider using a multivariate proper CAR model. For the
temporal random effects, it is, for instance, possible to assume a random
walk prior of order 2 instead of order 1. Another possible extension is to
also allow for correlation between the spatially unstructured effects by
assuming a multivariate Gaussian prior for these random effects. In our
models, we always assumed independent Gaussian priors for the space–
time interactions. Different forms proposed by Knorr-Held (2000) for
these interactions might also be considered. Also, another interesting
extension would be to fit models that do not assume spatial stationarity
since spatial variation might itself change through space.

Lastly, efforts are needed to determine factors that contribute to the
excess mortality risk that is observed in some regions. In additional
research, potential spatial risk factors could be identified that affect
both outcomes and that may explain the positive and significant spa-
tial correlation between imported cases and deaths. This correlation
reaffirms and alerts health authorities to the importance of surveillance
measures and early warning systems in regions with the highest influx
of travelers. Deaths may be related to imported cases at the beginning
of transmission, but once transmission is established in the country, it
8

depends more on sociodemographic aspects and the capacity of health
services to detect cases early and treat them appropriately. Cuba’s
National Health System is based on equitable primary care and allo-
cates the greatest resources to the regions in the lowest socioeconomic
stratum. These regions are typically also the regions with the highest
risks (Mas Bermejo et al., 2021).
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