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Abstract

Background: Cervical cancer mortality in Belgium has been decreas-
ing continuously over the last forty years. This might generate the impres-
sion that the trend has hardly been influenced by changing exposure to
etiologic factors or by increasing attendance to screening conducted since
twenty years. It is important to separate out the role of ageing, period of
death and period of birth (cohort). 

Method: An age-period-cohort analysis, based on Poisson regression,
was performed on cervical cancer mortality in Belgium between 1955 and
1994 in women between 20 and 79 years. The method of model building
as proposed by Clayton (1, 2) is used. A linear secular trend (drift) can be
isolated but not attributed to either period- or cohort-effects. Only the non-
linear deviations are estimable using second differences contrasts. Over-
dispersion is allowed.
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Results: The mortality decreased with about 50% over the last four
decades. A full age-period-cohort model, adjusted for extra-Poisson vari-
ation, was necessary to adequately describe the trends. Strong cohort-
effects were observed, besides age and drift. The non-linear period effect
was significant but limited in magnitude.

Conclusions: The cohort effects seem to coincide with changing sex-
ual behaviour of successive generations. The existence of a substantial
negative drift factor shows that the decrease of mortality cannot be
ascribed simply to prevention by Papanicolaou testing. Otherwise it does
not provide evidence that screening was not influential. It is possible that
screening further prolonged the effect of earlier clinical diagnosis and treat-
ment due to improved access to health care.

Keywords

Age-period-cohort models, trend analysis, Poisson regression models, mortality, cervical
cancer, Belgium.

Introduction

Age standardised mortality rate (ASMR) due to cervical cancer in
Belgium decreased continuously since registration of death causes was
initiated in 1954, long before prevention by Pap-smear became important
(3, 4). This rather monotonous trend may suggest a regular decrease in
risk, which was hardly influenced by phenomena such as the progressive
introduction of screening or the changing exposure to etiologic factors.
The ASMR is a rough summary parameter obtained by age adjustment
of cross-sectional data from different generations (direct standardisation).
Older age groups, experiencing higher mortality, dominate the ASMR,
thereby masking the relevance of events occurring in recent cohorts. By
referring to a standard population it makes comparison of mortality possi-
ble among areas with different age structures. Nevertheless its relevance
in analytical epidemiology is limited. The same can be said of indirectly
standardised mortality ratios (SMR).

The tabular or graphical representation of age-specific rates, arranged
by calendar period or age of birth, allows qualitative understanding of the
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impact of preventive or therapeutic measures and the influence of chang-
ing exposure to carcinogenic agents (5, 6). This was the object of an ear-
lier study (4). When several time-related factors in complex combinations
are into play, it becomes difficult to discern clear patterns in the temporal
variation in mortality rates, without using statistical modelling techniques
to separate age, period (secular influences) and cohort (generational fac-
tors) on mortality (APC-models). To this end, Poisson models will be used
(1, 2). The mathematical basis of APC-modelling and its intrinsic methodo-
logical problems will be elaborated shortly. 

Materials and methods

Source of data

Data on deaths due to cervical cancer and on the composition of the
female population in Belgium between 1955 and 1994 were obtained from
the National Institute of Statistics. Deaths from cervix uteri cancer were
coded as 171 for the period 1954-1968 (ICD-6 and -7) and as 180 for the
period 1969-1994 (ICD-8 and 9). 

Identification of age groups, calendar periods and birth cohorts

Analysis is limited to the age range of 20 to 79 years, since mortality at
younger age is extremely rare (only one case in the category 15 to 19 years
in 1959) and the reliability of death cause certification in the elderly is lim-
ited (7, 8). Deaths and population are grouped in A quinary age groups
(A = 12) indexed a (a = 1, ..., A) and in P quinquenial periods (P = 8)
indexed p (p = 1, ..., P). Data are assembled in a two-way A by P table
with A rows representing the categories of age and P columns defining
the calendar periods. Mortality rates (Map) are derived from the number
of deaths (Dap) occurring in age group a during the period p over Nap, the
corresponding number of person-years (see Table 1).

Birth cohorts are defined by the K(K = A + P – 1 = 19) diagonals in the
A ≈ P contingency table. 

Cohorts are indexed by k (k = 1, ..., K; K = 19). The three indices are
related by

k = A – a + p. (Equation 1)
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Because intervals for age and period categories are both 5 years wide,
a birth cohort spans 10 years. Successive cohorts are overlapping par-
tially and can be identified by the mid-year of the interval. For example,
women aged 40-44 years (a = 5) in 1965-69 (p=3), were between 30-
34 years (a=3) in 1955-59 (p=1) and will be between 60-64 years (a = 9)
in 1985-89 (p = 7). They belong to the cohort born between 1920 and
1929 and can be identified as the 1925 cohort (k=10). Women who are
on average 5 years younger in the same period (situated one cell to the left
in the A ≈ P table, age = a-1 and period = p) belong to the generation born
between 1925 and 1934 and are identified as the 1930 cohort (k = 11).

The extreme birth cohorts (k = 1 or = 19), born respectively around
1880 and 1970, contain information of only one cell respectively at the
upper right and lower left corner. 

Log-linear modelling

Rates are nonnegative and therefore are naturally modelled on the log-
scale. The temporal variation of mortality can be explained by variables
such as age at death, period at death and epoch of birth. The logarithmic
transformation of the mortality rate allows the formulation of a generalised
linear model (9, 10) such as: 

Ln (Map) = m + aa + pp + kk

where aa, pp, kk are respectively the fixed age, period and cohort effects
or values. m represents a constant corresponding to the log-rate for the
reference levels (when a, p or k = 0).

Poisson variability can reasonably be assumed for the observed number
of deaths, which means that the variance of the logarithm of the mortality
rate is the inverse of the expected number of deaths (1). Parameters can be
estimated by means of maximum likelihood using statistical packages able
to perform generalised linear modelling (1, 11-13).

The logarithm of the person-years, Ln (Nap), is declared as the offset,
which means that its coefficient is put to unity, and hence does not need
to be estimated (9).

M̂ap = D̂ap / Nap

Ln (M̂ap) = Ln (D̂ap) – Ln (Nap)

Ln (D̂ap) = Ln (Nap) + m + aa + pp + kk
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Assessment of the goodness of fit

The goodness of fit is assessed by the deviance (D), which is based on
the ratio between the likelihoods (L) of the current and the saturated model
(D = – 2Ln (L {modeli} / L {saturated model}) (9). This log likelihood ratio
statistic provides an overall measure of the adequacy of the model. It fol-
lows approximately a chi-square distribution whose number of degrees of
freedom equals the amount of observations less the number of parameters
included in the model (14). The contribution of an additional term to the
current model is evaluated by comparing the change in deviance with the
chi-square value for the difference in degrees of freedom (9). The goal is
to find a model with deviance close to its residual degrees of freedom.

Over-dispersion 

If the actual variance of the observed number of deaths is larger than
expected under the Poisson assumption, the model is said to exhibit over-
dispersion or in this case extra-Poisson variation. This is not uncommon
when counts are large, for instance when data at national level are stud-
ied. One way to cope with over-dispersion in aggregated counts or rates
is to modify the fixed relationship between the mean and the variance in
the Poisson distribution by including a proportionality constant, called the
heterogeneity factor (15). The factor can be estimated from the deviance
of the most complex model one is prepared to consider, provided that it
contains all appropriate explanatory variables (16). 

The method for correcting for over-dispersion by Williams (17), adapted
by Breslow (18) for the particular case of Poisson distributions, takes into
account the following relationship:

= number of residual df,

where yap and ŷap are the observed and fitted log rates for age a and period
p; t2

ap is the expected variance corresponding to 1/D̂ap and s2
EP represents

the extra-Poisson variance to be estimated in an iterative procedure so that
the deviance approximates the number of residual degrees of freedom.
The procedure by Breslow (18) was implemented here by means of a GLIM
macro written by Lindsey (16) and adapted to our needs. It can be obtained
from the authors upon request.
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Description of the log-linear models

The expected rates (M̂ap) are obtained by the exponentiation of the
sum of the estimated effects or by multiplying the antilogs:

M̂ap = em + aa + pp + kk = em . eaa . epp . ekk

By back transformation of logrates the more familiar multiplicative 
parameters or relative risks are obtained. The antilogs of the effects aa,
pp or kk are to be interpreted as the adjusted rate ratios with respect to the
reference categories for a, p or k.

The constant parameter m is added to aa, so that the age value takes
the form of an age specific mortality rate (expressed as number of deaths
by 100 000 women-years in category a).

Hierarchical loglinear models will be analyzed in terms of age, drift,
period or cohort in the order as proposed by Clayton (2). This generally
applied method is extended by introducing drift*age interactions in order
to study age specific evolutions (19, 20). 

As age is a fundamental biological determinant of cancer incidence
and mortality, it is obvious to introduce it as first factor to a null model. 

Ln (M̂a) = m + aa (Model 1).

Model 1 implies absence of temporal change in age specific rates.

Next, calendar time is added as a continuous variable to verify if the
different age specific curves show a common constant linear slope or drift
over time. Year at occurrence of death (Model 2a) or year of birth (Model 2b)
can be used equally.

Ln (M̂ap) = m + aa + dp* (periodp – period1) (Model 2a),

Ln (M̂ap) = m + aa + dc* (cohortk – cohort1) (Model 2b).

If the age-drift model fits well, it should imply that the logarithm of the
mortality rate is changing at a constant rate for all age groups over time.
The constants dp and dcare the slopes of the log-linear regression equa-
tions. The age-values represent fitted age-specific rates in respectively the
reference period (p1) (model 2a) or the reference cohort (c1) (model 2b).

It is possible that age groups express different linear changes. This
implies an interaction between age and drift: 

Ln (M̂ap) = m + aa * dpa* (periodp – period1) (Model 3a).
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A significant P effect means that a non-linear temporal deviation from
the regular trend line is observed across all age groups. Age specific log-
mortality curves plotted against calendar period should be irregular but
parallel, if the AP- model fits well. The respective log-linear equation can
be formulated as:

Ln (M̂ap) = m + aa + pp (Model 3b).

The mortality rates of the first period, 1955-59, are taken as reference
set. p1 is put at zero, so pp expresses the difference in lograte occurred
in the interval between the initial and the considered period p. epp is the
multiplicative period parameter which expresses the relative risk respec-
tive to the standard period (p = 1) and can be interpreted as the indirectly
standardised mortality ratio (SMR) (21, 22). 

The analysis of the alternative AC model (3c) allows verifying the con-
tribution of generational kk effects. 

Ln (M̂ak) = m + aa + kk (Model 3c).

The default choice of the first cohort (women born around 1880) as
standard is not indicated for statistical reasons. The observed mortality
might not be very stable as deaths are only observed for one age group
(a = 12; women of 75 to 79 years). Therefore, we have recoded the cohort
index. The most recent complete generation (observed over the 8 peri-
ods), born around 1935, is given the index of one, so that it is considered
as reference. The AC-model implies that age-specific mortality curves
plotted on a logarithmic scale by birth cohort show a parallel pattern. The
multiplicative cohort effects (ekk) are similar to the standardized cohort
mortality ratios (SCMR) described by Beral (23). They represent the chang-
ing risk that successive generations exhibit throughout their lives relative
to the 1935 cohort.

Period- and cohort effects should be considered as sudden temporal
deviations from a straight line, while a drift expresses a monotone continu-
ous change over time. edp, the antilog of the slope parameter in model 2a
expresses the constant relative risk of dying by cervical cancer for adjacent
periods just as in the AP-model. The equation for Model 2a describing the
age-drift including the numeric period variable can be written as a special
age-period model:

Ln (M̂ap) = m + aa + pp* (periodp – period1) (Equation 2).
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The period at death can be derived from the age and the birth date
(1): p = c + a – A and p1= c1 + a1 – A. By replacing the p-terms in the drift
model, we can reformulate Model 2a as an age-cohort model, where the
age effect should be corrected accordingly (Equation 3):

Ln (M̂ac) = m + aa + dp* [(c + a – A – (c1 + a1 – A)] or 

Ln (M̂ac) = m + aa + dp* (a – a1) + dp* (c – c1) (Equation 3).

The aavalues in (Equation 2) are called “cross-sectional” age-effects,
while the values aa + dp*(a – a1) in (Equation 3) are termed “longitudinal”
age-effects.

The linear drift cannot be attributed purely to neither period at death or
epoch of birth, the mathematical formulations (Equation 2) and (Equation 3)
being equivalent. The same argumentation can be applied, starting from
the drift-model based on the numeric cohort-time variable, by replacing
now the terms c and c1. 

Only when neither the age & period nor the age & cohort terms provide
a satisfying fit, the full APC-model (Model 4) can be conceived.

Ln (M̂ac) = m + aa + pp + kk (Model 4).

The APC-model allows for non-parallel age-specific mortality curves
as a function of birth cohort or calendar period.

Identifiability problem

A complex identifiability question arises, because the tree factors are
not independent but mutually linked by the relation described by equation
(1). Drift can be partitioned arbitrarily among period and/or cohort influences
with resultant alteration of the age curve. An infinite number of different
parameterisations can be formulated that predict the mortality rate simi-
larly. Nevertheless, all the sets of non-drift effects have the so-called con-
trast of second differences in common. They are defined by the relative
position of a parameter compared to the preceding and the following one.
For three adjacent period effects, such a contrast is formulated as: 

(pp+1 – pp) – (pp – pp-1) = pp+1 – 2pp + pp-1 (Equation 4).

These identifiable contrasts determine the curvatures of secular trends.
A negative value implies a sudden acceleration (concave curve) at time
p and a positive value a brusque downward bending of the mortality rate
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(convex curve), while zero means absence of change of the local trend.
In a multiplicative form we have to consider the ratios of three consecutive
relative risks:

(epp + 1 / e pp) / (epp / epp-1) = (epp + 1 . epp-1) / (e2pp) (Equation 5).

Presentation of different models

For the successive models we will show the predicted and observed
age-specific mortality rates as a function of period or cohort. The esti-
mated multiplicative parameters (the antilogs of the additive values) will
be presented graphically as age-specific rates, or as relative risks with
respect to the standard period, 1955-59 or cohort, 1930-39. The estimated
effects and the second order differences for complex APC-model will be
displayed in tabular and graphical form.

Results

Tabular and graphical presentation

The trend over 5 year periods of age-specific mortality rates is given
in Table 1 and graphed in Figure 1a. 

The age adjusted rate, calculated by the method of direct standardisa-
tion and based on the European reference population, is included in the
same graph as solid bold line. Figure 1b shows the evolution of age spe-
cific rates as a function of birth cohorts. Alternated series are omitted in the
graph for reasons of presentation. The mortality rate increases obviously
with age. The standardised rate declined almost linearly from 6.3 to 3.0 by
100 000 women- years over the 40 years of observation (reduction of 52%;
slope of the linear regression line of –0.09/105 women-years; R2 = 0.97).
Most age-specific rates decreased also. The curve corresponding to the
oldest group (> = 75 years) increased gently until 1985-89 but started
declining thereafter. Mortality among the youngest groups (< = 39 years)
remained rather stable. The decreasing slopes of the intermediate age
groups tend to become less noticeable over the last 10 to 15 years. There
was little change over the cohorts born before 1920. Discrete upward
peaks can be observed for the generations C1895 and C1920. For four
successive cohorts (C1920 through C1935) an important continuous
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Fig. 1a: Age specific and standardised mortality rates from cervical cancer in Belgium
between 1955 and 1994 in function of period.

The periods are 5 years wide and indicated by the first year.
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Fig. 1b: Age specific mortality rates from cervical cancer in Belgium
between 1955 and 1994 in function of birth cohort.

The birth cohorts are 10 years wide and indicated by the mid-year.
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reduction in mortality is noticed. On the contrary, the curves for the next
generations follow a horizontal course with a slight tendency of increase.

Deviance analysis

The contribution of explanatory variables to the prediction of the mor-
tality rate is assessed by the analysis of the deviance, which is presented
in Table 2. 

The inclusion of age (1) as first term is evident, as it provokes a large
jump in deviance. Addition of the numeric drift factor (2) further forces the
deviance to decrease with 452 at the expense of only one degree of 
freedom. Inclusion of period (3b), cohort (3c), or the interaction between
age and drift (3a) each further ameliorates the model significantly. Even
the full Age-period-cohort model (4) provides a more adequate fit than the
previous combinations. The model (3a), containing the product aa*d, is
not further developed for reasons of interpretability.

The residual deviance of the final APC model (4) is 100.1 for df = 60.
The corresponding χ2 test (p = 0.0009) indicates a still unsatisfactory pre-
diction of the observed number of deaths assuming only Poisson varia-
tion. However, allowance for over-dispersion yields a deviance of 62.2,
approximating the number of degrees of freedom and indicating an accept-
able fit (p = 0.398). 

Observed and predicted mortality rates

The trends of observed (points) and modelled (curves) age specific
rates are shown for different considered models in figure 2. For reasons
of graphical visibility only the second age groups of each tenth are traced
(25-29, 35-39, and so on). Predictions from the six following models are
presented successively: (1) age-model (parallel horizontal regression lines),
(2) age-drift (parallel lines with common constant slope), (3a) age-age*drift
(non parallel straight lines with age-specific slopes), (3b) age-period and
(3c) age-cohort (parallel non-linear curves), and finally (4) age-period-
cohort (non-linear age-specific curves changing irregularly with cohorts
and periods). The first four graphs of figure 2 are plotted on a logarithmic
ordinate scale. Lower mortality rates (< 10/105 women-years) currently
observed in the younger age groups are obviously separated. The graphs
with cohort effects are traced on a linear Y-axis, allowing more distinct
mortality curves for older age groups. Going down progressively from fig-
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ure 2.1 to 2.4, the predicted curves more accurately approximate the
observed rates.

The age-specific curves are vertically separated and, in general, are
decreasing over the considered periods. Among the youngest and oldest
age categories an almost horizontal trend is observed. Until the birth cohort
of 1920, there is little variation at the exception of some discrete peaks
for the cohorts 1895 and 1920. From then onwards a continuous decline
can be distinguished until the epoch of 1935. For more recent cohorts,
the trend becomes horizontal or even increasing. 

Estimation of the parameters

The estimated parameters belonging to different models are presented
graphically in Figures 3.1 to 3.4.

Age model

The age effect in a simple A-model (figure 3.1), represents the general
average of fitted age specific rates over the 8 periods. It increases from
0.06 (95% confidence interval = CI: 0.03 – 0.12) for the youngest to 17.7
for the oldest age category (CI: 16.7 – 18.8) by 100 000 person-years.

Age-drift model (figure 3.2)

The age effect represents now the fitted age-specific rate for the first
period (1955-59) chosen as reference epoch. The period-drift assumes a
continuous linear decrease of the log rate with slope, d = –0.098. This
means that the relative mortality risk for a period with respect to the pre-
vious one is ed = 0.906 (CI: 0.898-0.915). From the first up to the last
period the mortality declined regularly to 50.3% (= e (P-1)*d) of its original
value. ed – 1 = –0.009 (CI: –0.010 – –0.008) represents the slope of the
regression line through the age standardised rates.

Parameters can also be estimated, considering the birth cohort as a
continuous independent variable. This yields the same d = –0.098 but
implies modification of the age-effects, which are shifted upwards with a
factor (e-0.098* (a-a1)). These longitudinal age-effects are shown as a dashed
curve in Figure 3.2. 

The inclusion of the numerical cohort variable instead of period-drift
yields the same predicted rates and shows an identical deviance ( = 252.1
for 83 degrees of freedom, Table 2). 
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Fig. 2: Observed (points) and fitted age specific mortality rates
for different Poisson models.

Remark: more clear graphs in colour can be obtained at:
http://www.iph.fgov.be/epidemio/epien/cervixen/aph2002_MA.pdf
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Fig. 3: Estimated effects from different models,
at left the age effects are plotted as age specific mortality rates;

at right the time related effects (drift, period or cohort) are plotted as relative risks.
See remark in Fig. 2.
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FIG 3.3a Age*drift model
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Interaction between age group and drift

In Figure 3.3a multiple age-specific periodic drifts are drawn. The steep-
est linear decrease is observed in the intermediate age groups 45-59 years,
while the less pronounced slopes are in the younger (25-29 years) and
older age groups (> = 70 years). 

Forcing all age groups expressing a regular trend over the complete
period has a distorting effect on the curve of the age effects, which shows
now a less smoothed course. 
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Fig. 3 (continued): Estimated effects from different models,
at left the age effects are plotted as age specific mortality rates;

at right the time related effects (drift, period or cohort) are plotted as relative risks.

FIG 3.3b Age-Period model
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FIG 3.3c Age-Cohort model
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FIG 3.4 Age-Period-Cohort model
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Age-period model

The period effect of the age-period model is shown in figure 3.3b in its
two most extreme expressions: without drift containing exclusively non-
linear changes (solid curve) and absorbing 100% of the linear drift (dotted
curve). The deviations from the straight line are limited.
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TABLE 3
Infinite alternative equations can be formulated by arbitrary repartitions

of the net linear slope in period or cohort components. Three different sets of estimates
*1, *2 and *3 from a multiplicative APC model are presented for age, drift, period 

and cohort. All predict the same fitted mortality rates. The common contrast
of second differences is shown in the last column. The contrast is derived

by calculating (*i-1 . *i+1) / *i
2 . For each set of parameters the contrast is the same

Parameters Parameter estimates Second
(*1) (*2) (*3) differences

Age group
20-24 0.058 0.058 0.058
25-29 0.310 0.278 0.310 0.664
30-34 1.102 0.885 1.102 0.624
35-39 2.442 1.758 2.442 0.913
40-44 4.943 3.193 4.943 0.723
45-49 7.228 4.183 7.228 0.816
50-54 8.627 4.472 8.627 0.940
55-59 9.679 4.499 9.679 1.019
60-64 11.067 4.613 11.067 1.029
65-69 13.026 4.864 13.026 1.011
70-74 15.501 5.191 15.501 1.002
75-79 18.484 5.551 18.484

Drift 0.896 – –

Period
1955-59 1.000 1.000 1.000
1960-64 0.983 0.983 0.881 0.960
1965-69 0.928 0.928 0.745 1.127
1970-74 0.986 0.986 0.710 0.980
1975-79 1.028 1.028 0.664 1.065
1980-84 1.141 1.141 0.660 0.915
1985-89 1.158 1.158 0.601 0.851
1990-94 1.000 1.000 0.465

Cohort
1875-1884 1.000 3.330 1.000
1880-1889 1.294 3.865 1.294 0.767
1885-1894 1.284 3.438 1.284 1.165
1890-1899 1.485 3.561 1.485 0.888
1895-1904 1.524 3.277 1.524 0.988
1900-1909 1.546 2.980 1.546 0.941
1905-1914 1.475 2.549 1.475 1.062
1910-1919 1.495 2.316 1.495 1.095
1915-1924 1.660 2.305 1.660 0.766
1920-1929 1.411 1.756 1.411 0.954
1925-1934 1.144 1.276 1.144 1.078
1930-1939 1.000 1.000 1.000 1.408
1935-1944 1.230 1.103 1.230 0.844
1940-1949 1.277 1.026 1.277 0.967
1945-1954 1.282 0.923 1.282 1.205
1950-1959 1.550 1.000 1.550 1.303
1955-1964 2.440 1.412 2.440 0.225
1960-1969 0.865 0.448 0.865 6.864
1965-1974 2.102 0.978 2.102



91Age-period-cohort model for cervical cancer mortality

Age-cohort model

The C effect in an AC model is presented in Figure 3.3c, again under
two extreme versions, with and without linear trend. A discrete upward peak
is observed for C1920. The three subsequent cohorts express a continu-
ously lower mortality. This trend changes abruptly at C1935. Women born
after this period seem exposed to increasing mortality risk. The variation
at the right end is very large. It concerns mortality for the youngest gen-
erations where mortality is extremely low and consequently not stable.
Therefore, no firm conclusions can be derived for the last two cohorts. 

Age-period-cohort model

In Figure 3.4 we show only the non-drift P- and C-effects adjusted for
the presence of all influences together. The inclusion of period hardly alters
the curve of the age- and cohort effects in comparison with the previous
model. The P-curve fluctuates within a limited range around the unit line.

No unique set of parameters

According to distinct splits of the drift in a period or cohort component,
different parameterisations are possible (see Table 3). 

Fig. 4: Second differences contrasts for the period and cohort-parameters estimated 
from the age-period-cohort model.
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The first set of parameters represents the situation plotted in Figure
3.4. Here, the drift is shown as periodic and completely separated from
the other effects, for which only the non-linear deviations are estimated.
In the second set the drift is absorbed in the cohort curve, which changes
the age relations dramatically. In the third column, the P-effects have com-
pletely assimilated the linear trend. 

The comparison of the change of slopes over adjacent age-, period or
cohort groups in all possible sets leads to the definition of a unique set of
second difference parameters (last column, Table 3). The curve with the
period contrast balances around unity (Figure 4). 

The negative peaks (values less than 1) for cohorts 1885, 1895 and
1920 indicate sudden changes: a convex curvature such as a temporary
increase followed by a decrease of the risk. Contrasts above unity, indi-
cating a concave bending of the mortality, are observed for the cohorts
1935 and 1955.

Discussion

General

The apparent monotone decrease of the mortality rate by cervical can-
cer over the last four decades is the result of a complex combination of
counteracting events. Detailed observation of age specific rates as a func-
tion of the period of death or the period of birth reveals interesting patterns
for which biological explanations can be sought. Age, period and cohort
influences make up the essential constituents of vital rates. Clear exami-
nation of their interrelations and thorough understanding of the strengths
and limits of the applied statistical methods protect against over-interpre-
tation. The evolution of cervical cancer mortality is quite complicated. A full
APC-model, allowing for extra-Poisson variation, is necessary to describe
the trend. 

Interpretation of the effects

The influence of age on mortality by cervical cancer is beyond any dis-
cussion for evident biological reasons and this fact is also corroborated
by statistical arguments. Its addition as a factor provokes a reduction in
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deviance of more than 7400. Nonetheless, further variation over time can-
not be ignored.

Very often, the trend is explained as a period-related phenomenon.
The striking decrease of the mortality in Belgium as well as in the rest of
Western Europe and North-America is, in the medical literature, gener-
ally ascribed to the successful implementation of screening (24, 25). This
interpretation implies the assumption of the drift as being (almost) com-
pletely periodic. Statistical and historical arguments can be retained against
this simple hypothesis. The fall in mortality has already been observed
since the 1950s, while screening became only important since the late
1960s (3). Since then, the coverage among the target population increased
gradually (26, 27). The non-linear P-effect alone, the only part of the sec-
ular trend that is identifiable, is too weak to explain the observed variation.
Moreover, no statistical arguments justify the assimilation of the drift within
the period effect (1, 2).

The negative slope of the observed age-standardised mortality (fig 1)
and of the fitted mortality in the AP-model (Figure 2.3b) does not show
any further decline while the screening coverage increased. Certain epi-
demiologists considered screening with Pap smear as infective because
of this fact (28, 29). Again this hypothesis starts from a simple age-period
or age-periodical drift model.

The interaction between age and drift was not conceptualised in
Clayton’s general framework for APC-analysis (1, 2). The inclusion of
A*drift was used by Bouchardy (19) and Estève (20) to verify age-specific
changes of cervical cancer incidence rates subsequent to screening. They
explained the decreasing linear trends in the age groups 30-64 years as
a result of screening efficacy. The horizontal or even increasing trends in
women less than 30 years old were interpreted as a possible result of
exposure to risk factors linked with sexual behaviour. The explanation
concerning the younger women is obviously a generational effect. The age*
drift model shows a better fit than the alternative with age + drift. However,
the assumption of a continuous regular change within all of the age groups
looks implausible. The distorted aspect of the corresponding curve of age-
effects (fig 3.3a) further enhances the impression this model is an artefact.

From Table 2, we learn that the addition of cohort, given age and drift,
yields a more substantial reduction of the deviance than the inclusion of
period or the interaction term. Of course, neither the AC, AP nor A*d can-
not be distinguished using classical model comparison. Therefore, we can
use the less formal Akaike’s Information Criterion (AIC = deviance-2df)
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for the judgment on the adequacy of the models described in table 2 at
step 3 (30, 31). The AIC was lowest for the age-cohort (AIC = -5.0), followed
by the age*drift (AIC = 54.8) and age-period (AIC = 76.4). Also in Figure 3,
we observe larger deviations from linearity in the C- than in the P-effects.
Plausible biological explanations can be given in terms of changing expo-
sure of generations to etiological factors. Very strong associations have
been observed between infection with sexually transmittable oncogenic
types of human papillomavirus (HPV) and cervical cancer (32-35). Their
etiologic role in carcinogenesis is nowadays generally accepted. Remarkable
in this context is the increased mortality due to cervical cancer among the
cohorts C1895 and C1920, that include women who were in their twen-
ties during respectively the First and Second World War (36). Beral (23)
illustrated the relation between the increased incidence of sexually 
transmitted diseases among women that were young during the period
1940-45 in England and Wales and the subsequent enhanced risk of 
mortality by cervical cancer. The increase of mortality for women, born
after 1935, is ascribed to the higher promiscuity and, consequently, more
intense HPV-transmission since the 1960s (25, 37, 38). The increase of
mortality in younger cohorts seems in Belgium more limited than in some
other West-European countries such as Great-Britain and Ireland (25).
The recently increased prevalence of other less important risk factors, for
instance smoking (39) and oral anti-conception (40-42), can have con-
tributed for a minor extent to the enhanced cervical cancer mortality rate
(25). The First World War effect is less clear. However, it must be stated
that cohort effects, due to a short time increase of risk and overlap between
adjacent cohorts, are smoothed somehow (6).

The AC-model (3c) turns out to be the most adequate alternative at
step 3 (see Table 2). Non-linear P-elements further contribute as signifi-
cant constituents of a full APC-model. The deviations of period effects
from the straight line are limited in magnitude. Nonetheless, the existence
of strong non-linear cohort effects, explainable as caused by changes in
exposure to etiologic agents, and the lack of distinct period effects, do not
exclude a favorable impact from secondary prevention. First of all, the evi-
dence provided by numerous case-control, cohort and ecological studies
is too overwhelming to deny protective effects resulting from screening
(43, 44). Even in mortality data, arguments can be found to support the
favorable effect of preventive activities. At least a part of the linear drift
might be attributed to prevention. In the epoch that screening was not yet
performed at large scale, access to health care increased and so the oppor-
tunity for diagnosis of cervical cancer at early treatable stages (45, 46).
The lack of an obvious P-effect must not be interpreted as evidence for
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lack of efficacy of the Pap smear campaigns. Attendance to screening dif-
fers significantly according to age (3, 26, 27). As a consequence, no pure
P-effects can be distinguished anymore, since these imply uniform changes
affecting all age groups in the same period, in the same direction and
approximately the same amount. Consequently, protective actions with
heterogeneous coverage in the population varying with age necessarily
yield a cohort effect. It is possible that the limited recent increase of the
cohort effect might be the net result of increased risk counterbalanced by
screening.

Over-dispersion 

The lack of fit of the final APC-model indicates heterogeneity in the mor-
tality rates beyond Poisson variation. This could be due to specific spatial
intra-country patterns or unmeasured covariates (16). Over-dispersion
might simply be due to lack of quality of the data. Cervical cancer mortality
is in this aspect an exceptionally difficult issue because of important death
cause certification problems. In Belgium the proportion of not otherwise
specified uterine cancer (ICD-9 = 179) among all deaths from uterus can-
cer varied between 54.9% and 33.7%. In a recent trend study of cervical
cancer mortality over the last three decades in the Flemish Region (North
Belgium), we focused on this particular certification problem (47). The adjust-
ment for not specified cancer of the uterus made the linear downward trend
for cervical cancer more steeply and smoothed some abrupt temporal
changes principally due to 8th ICD codification (47). Nevertheless, the strong
cohort effects, also observed in the Belgian data set, were maintained.

Hysterectomy

Varying hysterectomy rates, for neoplastic or other gynaecological indi-
cations, further complicates the story (48, 49). The prevalence and incidence
of hysterectomy in Flanders and the rest of Belgium over the last 15 years
were described earlier (50). Only recently, reliable age-specific data for
Belgium became available that allow precise correction of population
denominators corresponding to the women-years with a cervix uteri.
Consequently, the possible impact of hysterectomy on cervical cancer
mortality cannot be assessed. As described in studies from the USA (45),
Canada (48, 51) and the Netherlands (52), we can expect that also in
Belgium the increasing hysterectomy rates are not substantial enough to
explain the observed decrease in mortality form cervix cancer.
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Identification problem 

The dependence between age, period and cohort (equation 1) is the
root of the well-known problem of making the linear effect unidentifiable.
Hence, considering isolated mortality data, derived from vital statistics,
the drift factor can be attributed neither to cohort neither to period, or a
determinable mixture of both. 

Several attempts of solutions have been proposed (1, 2, 11, 53-55).
Artificial constraints can be imposed on the parameter sets, allowing lin-
ear change being assigned to cohort- or period according to the relative
magnitude of the non-linear deviations (11, 53); if individual records are
available, age-period cells can be subdivided as belonging to two distinct
non overlapping cohorts, which breaks the linear dependency (54) or the
age-effects can be considered as fixed and calculable from multiple reg-
isters (56). All these methods lack a straightforward biological basis and
generalisability (1, 2). 

A thorough discussion of this question is beyond the scope of this
study. Together with Clayton (2), we believe the problem of parameter
estimation should be left, as it is, unresolved. The attention should be 
targeted to the derivation of irregular period and or cohort-effects beyond
the regular continuous change over time.

Forecasting future trends

Extrapolation of p, dand k-values allows to some extent the prediction
of future trends (57-59). The theoretical influences derived from Poisson-
models should be corrected judiciously within realistic ranges for the main
modifying factors: prevalence of HPV-infection, the participation to and
quality of preventive activities. The most recent cohort values provide
important clues for projections into the future, but it must be taken in mind,
as mentioned before, that these estimations are unstable (57). The inves-
tigation of future trends of cervical cancer mortality in Belgium, adjusted
for death-cause certification and hysterectomy, is the object of further
research.

Conclusions

The impossibility to attribute the drift to respectively cohort- or period-
related effects, because of their linear dependency, implies a serious prob-
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lem in displaying and estimating the model parameters (2). Nevertheless,
APC-modelling protects against over-interpretation of trends based on
standardised rates or simple graphical presentation of age-specific curves.
The existence of an important linear decrease of 9% per 5-year period or
cohort and the absence of non-linear period effects indicate that Pap
smear screening alone was not responsible for the decline. Neither does
it provide evidence that screening did not imply any protection. Cytological
detection and removal of precursor lesions probably might have prolonged
the effect, already initiated by improved access to health care, allowing
down-staging and consequent better survival of cervix cancer. 

Identifiable, non-linear cohort effects further contribute substantially to
the evolution of the mortality rate. The increased risk observed for the
youngest cohorts prompts to supplementary caution from health author-
ities and warns against precocious relaxing of screening campaigns. 

APC models of mortality data are essentially descriptive and the expla-
nations given are partially speculative. Other reliable information systems
linking screening histories, risk profiles, cancer diagnosis and death cer-
tification are needed to provide more causal evidence. 
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