
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Time parallelism and Newton-adaptivity of the two-derivative deferred

correction discontinuous Galerkin method

Peer-reviewed author version

ZEIFANG, Jonas; THENERY MANIKANTAN, Arjun & SCHUETZ, Jochen (2023)

Time parallelism and Newton-adaptivity of the two-derivative deferred correction

discontinuous Galerkin method. In: APPLIED MATHEMATICS AND

COMPUTATION, 457 (Art N° 128198).

DOI: 10.1016/j.amc.2023.128198

Handle: http://hdl.handle.net/1942/40527

Applied Mathematics and Computation 00 (2023) 1–31

Appl.
Math.

Comput.

Time Parallelism and Newton-Adaptivity of the Two-Derivative
Deferred Correction Discontinuous Galerkin Method

Jonas Zeifanga, Arjun Thenery Manikantana, Jochen Schütza,∗

aFaculty of Sciences & Data Science Institute, Hasselt University, Agoralaan Gebouw D, BE-3590 Diepenbeek, Belgium

Abstract

In this work, we consider a high-order discretization of compressible viscous flows allowing parallelization both in space and time.
The discontinuous Galerkin spectral element method, which is well-suited for massively parallel simulations, is used for spatial
discretization. The main novelty in this work is the additional demonstration of time-parallel capabilities within an implicit two-
derivative timestepping procedure to further increase the parallel speedup. Temporal parallelism is made possible by a predictor-
corrector-type time discretization that allows to split the associated workload onto multiple processors. We identify a homogeneous
load balance with respect to the linear (GMRES) iterations on each processor as a key for parallel efficiency. To homogenize the
load and to enable practical simulations, an adaptive strategy for Newton’s method is introduced. It is shown that the time-parallel
method provides a parallel efficiency of approx. 60-70% on 4-7 computational partitions. Moreover, the capabilities of the novel
method for the simulation of large-scale problems are illustrated with a mixed temporal and spatial parallelization on more than
1000 processors.

Keywords: Implicit time stepping, Parallel-in-Time, Multiderivative schemes, Newton adaptivity

1. Introduction1

In this work, we are interested in solving the compressible Navier-Stokes equations, which can be cast into flux2

formulation3

wt + ∇x · (F(w) − Fv(w,∇xw)) = 0, with w =

 ρρvE
 , (1)4

for the unknown quantities density ρ, velocity v and energy E. Note that we have closed the system by defining the5

pressure p via the ideal gas equation of state with the isentropic coefficient γ = 1.4 and reference Mach number ε. For6

a precise definition of the fluxes, consult Appendix A. All occuring quantities are non-dimensionalized.7

In this work, we are interested in a parallel algorithm for the temporal discretization of Eq. (1). Upon defining8

R(1)(w) := −∇x · (F(w) − Fv(w,∇xw)) , (2)9

∗Corresponding author
Email addresses: jonas.zeifang@uhasselt.be (Jonas Zeifang), arjun.thenerymanikantan@uhasselt.be (Arjun Thenery

Manikantan), jochen.schuetz@uhasselt.be (Jochen Schütz)

1

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 2

Eq. (1) can be cast as an ODE in some infinite-dimensional function space,10

wt = R(1)(w). (3)11

While classical timestepping methods only make use of the information of the first time derivative wt, the idea of two-12

derivative schemes is to additionally make use of the second temporal derivative. This adds an extra degree of freedom13

to the discretization and hence facilitates the development of storage- and runtime efficient high-order schemes. The14

second temporal derivative of w can be obtained by differentiating Eq. (1),15

wtt = R(2)(w,R(1)(w)), (4)16

where R(2) for the Navier-Stokes equations is defined through17

R(2)(w,R(1)(w)) := − ∇x ·

(
∂F
∂w

R(1)(w) −
∂Fv

∂w
R(1)(w) −

∂Fv

∂∇xw
∇xR(1)(w)

)
. (5)18

For more details on the derivation of wtt, consult [1]. In [2], a novel class of implicit two-derivative deferred cor-19

rection time discretization methods has been introduced. The concept is based on a predictor-corrector formulation20

and can - in principle - achieve arbitrary orders. After a predictor step based on the two-derivative Taylor method,21

successive correction steps improve the solution towards a background two-derivative Hermite-Birkhoff Runge-Kutta22

method, giving rise to the name Hermite-Birkhoff predictor-corrector methods (HBPC). In [3], HBPC schemes up23

to order 8 have been numerically investigated. The schemes are A(α)-stable with stability angles α close to 90◦,24

see [4]. Recently, these schemes have been combined with a high order discontinuous Galerkin spectral element25

spatial discretization of the Euler and Navier-Stokes equations [1].26

A common strategy to enable large-scale simulations of discretizations of Eq. (1) is the use of spatial paralleliza-27

tion. It typically comes with high parallel efficiencies. However, caused by an increase of the communication to28

computation ratio, the spatial parallelization tends to saturate as the assigned work per processor decreases. This has29

been observed by various authors, see e.g. [5, 6, 7]. One remedy is to additionally consider the parallelization of the30

temporal domain, which requires specifically designed strategies due to the causality principle. It has been shown that31

combining temporal and spatial parallelization can further reduce the required wallclocktimes, see e.g. [8, 9, 10]. An32

overview on parallel-in-time (PinT) algorithms can be found in the review articles [11] and [12]. Further literature33

and information can also be found on the PinT web page [13].34

One particularly attractive property of the HBPC methods is that they offer a mild time parallelism. This class35

of time parallel methods is sometimes classified as ”parallel-across-the-method” [14] or ”direct time-parallel meth-36

ods” [12]. This time-parallelism is based on the idea of distributing different correction steps to different processors,37

and has been introduced in [15], but has also been used for the RIDC (revisionist integral deferred correction) schemes38

in [16, 17]. While being limited to a mild parallelization, i.e. using O(10) processors at maximum, this concept offers39

good parallel efficiencies [17]. Also for the HBPC schemes, a good speedup in computational time has been observed40

when solving ODEs, see [3]. One prerequisite for a good parallel speedup of this type of parallelization is equally41

expensive prediction/correction steps. However, already for the ODE examples investigated in [3], a large discrepancy42

of the computational work of the different prediction/correction steps has been observed. This is due to the different43

costs of the solution of the algebraic systems of equations in the prediction/corrections steps. This non-homogeneous44

work distribution also transfers to the Navier-Stokes equations discretized with the discontinuous Galerkin spectral45

element method. We illustrate this with an introductory example that describes an advection-diffusion process of a46

density sine-wave, see Eq. (25) for initial conditions. The same simulation setup as described in [1, Sec. 5.2.] is47

used. The required number of GMRES iterations per prediction/correction step is reported in Fig. 1. One can see that48

especially the predictor (and, to a less extent, also the first correction step) requires significantly more computational49

work than the other correction steps. Therefore, in order to achieve a good parallel speedup when distributing differ-50

ent prediction/correction steps to different processors, one has two opportunities: try to harmonize the computational51

work and/or to develop a parallelization strategy that takes the different costs of the different iterates into account.52

In this work, we harmonize the computational work per processor through a novel parallelization strategy where,53

in addition to the parallelization over the correction steps, there is also a parallelization over the stages of the predictor54

and the first corrector. Furthermore, to use computational resources as efficiently as possible, a novel strategy to adap-55

tively determine the amount of Newton steps is developed. It is shown through several numerical testcases that this56

2

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 3

0 2 4 6
0

0.5

1

1.5

2
·104

[k]

G
M

R
E

S
ite

ra
tio

ns
HBPC(8, 7)

∆t = 0.1
∆t = 0.05
∆t = 0.025
∆t = 0.0125

0 2 4 6
0.5

1

1.5

2

[k]

no
rm

.G
M

R
E

S
ite

ra
tio

ns

HBPC(8, 7)

∆t = 0.1
∆t = 0.05
∆t = 0.025
∆t = 0.0125

Figure 1. Cumulated (left) and normalized (right) number of GMRES iterations per prediction/correction step for the Navier-Stokes example
described in [1, Sec. 5.2.] using the serial HBPC(8, 7) scheme [3] with different timestep sizes for the temporal discretization. Normalization
(right) has been done with the mean number of GMRES iterations per timestep. [k] denotes the number of the correction step, [0] corresponding to
the predictor.

leads to a work distribution that is more homogeneous and hence more efficient than the straightforward application of57

the scheme in [1]. Time-parallel efficiencies of 60-70% are demonstrated. Also comparisons to established ESDIRK58

schemes are being made. As such, the main contributions of this work can be summarized as follows:59

• An adaptive strategy for the Newton procedure, including a reliable error estimator, is developed in the context60

of the HBPC-DGSEM-methods. The strategy is numerically investigated.61

• A parallelization strategy for the HBPC-DGSEM-methods that balances the loads over the different processors62

more evenly is developed.63

• The actual parallel speedup is thoroughly investigated numerically.64

The remainder of this paper is structured as follows: In Sec. 2 the implicit two-derivative predictor-corrector65

time discretization method and its temporal parallelization strategy are introduced. The fully discrete scheme is66

summarized in Sec. 3. In order to homogenize the computational work and to enable efficient simulations, an adaptive67

strategy for the non-linear solver is introduced in Sec. 4. After having introduced all the ingredients of the novel68

method, its parallel performance and its efficiency compared to established serial methods is evaluated in Sec. 5.69

Finally, conclusion and outlook are given in Sec. 6.70

2. Parallel-in-Time HBPC Method71

2.1. The Hermite-Birkhoff Predictor-Corrector Method72

The parallel-in-time algorithm described in this paper is based on the two-derivative deferred correction method73

introduced in [2] and [3], which relies on the approximate quantities74

wn,[k],l ≈ w(tn + cl∆t), 0 ≤ n ≤ NT , 0 ≤ k ≤ kmax, 1 ≤ l ≤ s.75

Here, NT is the number of discrete time levels, cl a Runge-Kutta-type relative timestep of an s-stage Runge-Kutta76

method and kmax denotes the number of correction steps of the underlying deferred correction procedure. The s-stage77

Runge-Kutta methods are given by their two-derivative Butcher tableaux consisting of typically dense matrices B(1),78

B(2) ∈ Rs×s and a vector c ∈ Rs. They define the background Hermite-Birkhoff Runge-Kutta scheme and are given79

in the appendix, Eq. (B.1) and Eq. (B.3). More details can be found in [3]. The coefficients of the Butcher tableaux80

define a quadrature formula Il of order q through81

Il

(
w1, . . . ,ws

)
:= ∆t

s∑
j=1

B(1)
l j R(1)(w j) + ∆t2

s∑
j=1

B(2)
l j R(2)(w j) (6)82

3

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 4

for every stage 1 ≤ l ≤ s. Note that we have omitted the additional dependencies of R(1) and R(2) given by Eq. (4) and83

Eq. (5) for the sake of brevity.84

We use the parallel-in-time HBPC method according to [3, Alg. 2] and its improvement according to [4]. The85

predictor requires more computational load than higher correction steps, we have therefore modified the algorithm86

such that it allows for a parallelization of the stages for the predictor and the first correction step. The modifications87

in comparison to [4] have been marked in red color, they only apply to the definition of the quadrature rule. Note88

that while the original algorithm in [3] offers the possibility to use an IMEX splitting, here, only the implicit part is89

considered.90

Algorithm 1 (HBPC(q, kmax)). To advance the solution to Eq. (3) in time, we compute values wn,[k],l. To account for91

the initial conditions w0, define92

w−1,[k],s := w0.93

First, the values wn,[0],l are filled using a straightforward second-order implicit Taylor method departing from wn−1,[1],s.94

1. Predict. Solve the following expression for wn,[0],l and each 2 ≤ l ≤ s:95

wn,[0],1 :=wn−1,[1],s,

wn,[0],l :=wn−1,[1],s + cl∆tR(1)(wn,[0],l) −
(cl∆t)2

2
R(2)(wn,[0],l).

(7)96

2. Correct. Next, the corrected values wn,[k],l for 1 ≤ k ≤ kmax are computed through solving for each 2 ≤ l ≤ s97

and each 1 ≤ k ≤ kmax:98

wn,[k],1 := wn−1,[k+1],s,

wn,[k],l := wn−1,[k+1],s + θ1∆t
(
R(1)(wn,[k],l) − R(1)(wn,[k−1],l)

)
− θ2
∆t2

2

(
R(2)(wn,[k],l) − R(2)(wn,[k−1],l)

)
+ Il,

(8)99

with100

Il := Il

(
wn,[0],1, . . . ,wn,[0],s

)
, for k = 1,

Il := Il

(
wn,[k],1, . . . ,wn,[k],l−1,wn,[k−1],l, . . . ,wn,[k−1],s

)
, for k > 1.

(9)101

Il(·) denotes the q-th order Hermite-Birkhoff quadrature rule given in Eq. (6). If k = kmax, then the k + 1102

superscripts in Eq. (8) are replaced by kmax in order to close the recursion.103

3. Update. In order to retain a first-same-as-last property, we update the solution with104

wn+1 := wn,[kmax],s. (10)105

The coefficients θ = (θ1, θ2) are obtained by an optimization of the stability region, see [4]. For Alg. 1 with the106

Butcher tables given in Eq. (B.1) and Eq. (B.3) we find107

θ = (0.296, 0.0531) and θ = (0.259, 0.0288) (11)108

for the sixth and the eighth order quadrature rules, respectively. The resulting methods are A(α)-stable with the109

stability angles α > 89.81◦ (HBPC(6, kmax)) and α > 88.66◦ (HBPC(8, kmax)).110

Remark 1. Please note that for efficiency considerations, we only treat background schemes with an explicit first111

stage. Furthermore, the last stage corresponds to collocation point cs = 1. Strictly speaking, this is not necessary;112

the update step (10) has then to be modified accordingly.113

Remark 2. For k > 1, we use a Gauß-Seidel type procedure in the quadrature formula (9). Obviously, this could be114

done for k = 1 as well. However, the way we have formulated it in Alg. 1 makes it possible to parallelize over the115

stages for k = 0 and k = 1. This concept was not present in the original work [3]. The parallelization concept will be116

described in the next section.117

4

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 5

2.2. Parallelization of the HBPC Method118

The structure of Alg. 1 allows to distribute the predictor and the correction steps on multiple processors, see [3].119

The underlying basic idea of pipelining has been introduced in [15] and has also been used by the RIDC schemes [16,120

17, 18].121

Although the main ingredients of the parallelization of Alg. 1 have been already introduced in [3], we summarize122

them here and describe the differences of the present algorithm. The keys to parallelize Alg. 1 are:123

• The stages of the prediction step at time instance n, i.e. wn,[0],l only depend on the single value wn−1,[1],s of the124

previous timestep. Hence, the different stages of the predictor can be calculated independently of each other.125

• As the quadrature rule for the first correction step, i.e. wn,[1],l, only depends on values of the predictor, the126

different stages of the first correction step can also be calculated independently of each other.127

• For 1 ≤ k < kmax the [k]-th correction step at time instance n, i.e. wn,[k],l, depends on the [k − 1]-th iterate at the128

same time level n, as well as on the [k + 1]-th correction step at the previous time step, wn−1,[k+1],s, see Eq. (8).129

• The last correction step [kmax], i.e. wn,[kmax],l for 1 ≤ l ≤ s, depends only on the [kmax − 1]-th iterate at the same130

time level n, as well as on the last correction iterate of the previous time level, wn−1,[kmax],s.131

The dependencies described above are visualized in Fig. 2 at the example of the sixth-order method. On the y-axis132

the different correction levels 0 ≤ k ≤ kmax are illustrated, while on the x-axis, the different time levels n, n + 1, . . .133

are indicated. A full circle at position (n, k) corresponds to the computation of all stages of wn,[k],l, l = 2, . . . , s.134

(Calculation of the first stage l = 1 is trivial, see Eq. (8).) Splitted circles indicate computations of only one specific135

stage l > 1 of wn,[k],l. Note that the sixth order quadrature rule has two implicit stages; we hence split the circle in two136

semi-circles1. Numbers inside (semi-)circles indicate when the corresponding calculations can be performed: (semi-)137

circles with the same number can be computed at the same time in parallel, while those with a higher number have to138

wait for those with a lower number to finish. The main difference of the parallelization strategy performed here and139

the one described in [3, Alg. 2] is that we exploit the independence of different stages for the prediction and the first140

correction step. This is inspired by the observation that the calculation of the predictor and the first correction step141

is typically more expensive than the remaining correction steps, see [3]. This is also true for the PDE discretization142

considered in this work, see Fig. 1. The adaptive Newton strategy, which is described later in Sec. 4, will sharpen143

this observation, see Fig. 5. From Fig. 2 one can see that if one groups the correction iterates [k] and [k + 1], one144

obtains consecutively numbered circles on all processors. For the predictor and the first correction step this is done145

in an analogous way, i.e. the predictor and corrector of one specific stage l > 1 are grouped together. The processor146

boundaries resulting from this grouping are visualized with dashed lines in Fig. 2.147

Finally, one can see that each processor contains consecutively numbered circles, i.e. if communication is instan-148

taneous and all calculations indicated with a (semi-)circle are equally expensive, there is no processor idle time.149

Remark 3. The underlying assumption behind this is that solving for one stage of the predictor or the first corrector150

has the same cost as solving for all stages of one of the following correction steps (k > 1). While this is of course151

not true in a mathematically rigorous way, our numerical experience, see also Fig. 1, indicates that this assumption152

is reasonable.153

Hence, the total amount of work packages per timestep is 2(s − 1) + kmax − 1, where 2(s − 1) work packages154

stem from the predictor and the first corrector, and kmax − 1 work packages are due to the following correction steps.155

Note again that we have directly assumed that the calculation of the first stage is trivial. For the evaluation of the156

temporal parallelization’s maximum achievable speedup, one additionally has to find the relation between the total157

amount of work packages and the work packages on a single processor where the initial startup phase is taken into158

account. While the amount of work packages on one single processor is 2NT , the startup phase takes kmax − 1 work159

packages until the processor with index #0 can start. Under those assumptions the maximum achievable speedup can160

be calculated by161

NT (2(s − 1) + kmax − 1)
2NT + kmax − 1

→
kmax + 1

2
+ s − 2, NT → ∞. (12)162

1It should be three semi-circles for the eighth-order method.
5

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 6

proc. [k]

3

4

5

6

5

6

7

8

7

8

9

10

9

10

11

12

11

12

13

14

13

14

15

16

15

16

17

18

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

[0]

[1]

[2]

[3]

[4]

[5]

#2

#2

#3

#3

#1

#0

n n+1 n+2 n+3 n+4 n+5 n+6

Figure 2. Schematic overview on parallelization strategy of HBPC(6, 5) method. The parallelization is according to [3], with the only difference
that for k = 0 and k = 1, parallelization is also done over the stages, which is indicated by semi-circles. Note that the sixth order quadrature rule
has two implicit stages; we hence split the circle in two semi-circles. At the left, the processor index #i and the current iterate [k] are indicated. On
the x-axis, time instances n, n+1, . . . are visualized. Numbers inside (semi-)circles indicate when the corresponding calculations can be performed.
The gray-shaded area highlights solution steps where no adaptive Newton strategy can be performed, see Remark 11.

6

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 7

3. Fully Discrete Method163

3.1. Two-Derivative Discontinuous Galerkin Method164

After having introduced the temporal discretization procedure, a spatial discretization of R(1) and R(2) is needed.165

In [19] it has been shown that a careful discretization of the second derivative operator R(2) is required to retain the166

stability properties of the ODE integrator as it is desirable for a method-of-lines approach. This idea from [19] has167

been formulated for a Discontinuous Galerkin Spectral Element Method (DGSEM [20]) discretization of nonlinear168

equations in [1]. Here, we will only very briefly recall this discretization for a purely hyperbolic PDE and refer the169

reader to [1] and the references therein for more details. The DGSEM is based on the weak formulation of Eq. (1),170

NE∑
e=1

(wt, ϕ)Ωe
− (F(w),∇xϕ)Ωe

+
〈
F∗(wL,wR) · n, ϕ

〉
∂Ωe
= 0, ∀ϕ ∈ ΠNp , (13)171

where the function space ΠNp of the test functions ϕ is the tensor-product of the one-dimensional Lagrange polyno-172

mials ℓ, each of degree Np. The domain Ω is split into NE non-overlapping hexahedral (3d) or quadrangular (2d)173

elements. The integration over an element Ωe ∈ Ω is denoted by the scalar product (·, ·) and integration over the cell174

edges ∂Ωe is denoted by ⟨·, ·⟩. For the evaluation of the surface integral, the flux is substituted by a numerical flux F∗,175

depending on the values of both adjacent elements of the edge (wL and wR) and the outward pointing normal vector n176

of the current element. The numerical flux is chosen to be a global Lax-Friedrichs, see [1, Eq. (13)]. Using DGSEM177

techniques on (13), see [21], yields the discrete operator R(1)
h (wh) as an approximation to R(1)(w).178

The second derivative operator R(2) is defined through the artificial quantity179

σ := R(1)(w) ≡ wt. (14)180

In [1] a DGSEM discretization of the second temporal derivative has been proposed via the weak formulation181

NE∑
e=1

(wtt, ϕ)Ωe
−

(
∂F(w)
∂w
σ,∇xϕ

)
Ωe

+

〈
∂F∗(wL,wR)
∂wL σL · n +

∂F∗(wL,wR)
∂wR σR · n, ϕ

〉
∂Ωe

= 0, ∀ϕ ∈ ΠNp . (15)182

Note that the discretization of the second derivative operator is similar to the first derivative operator except for the183

flux which has to be substituted by ∂F(w)/∂w · σ (compare Eq. (13) and Eq. (15)). In analogy to the first derivative184

operator we obtain the discrete operator R(2)
h (wh,σh) for the second temporal derivative.185

Considering the Navier-Stokes equations, see Eq. (1), second order spatial derivatives occur by the introduction of186

the viscous flux Fv(w,∇xw). They are discretized by following the BR2 lifting approach [22]. A detailed description187

of how the Navier-Stokes equations can be handled with the two-derivative DGSEM can be found in [1].188

3.2. Solving for the Stage Values189

In Sec. 2.1 and Sec. 3.1 we have introduced the temporal and the spatial discretization, respectively. Bringing both190

together, one has to solve for the stages l > 1 of the predictor and the correction steps in Eq. (7) and Eq. (8). The191

resulting non-linear system to be solved is very similar for the predictor and the corrector (see also [1, Sec. 3.2.1.]).192

Due to the non-linearity of the considered systems of equations, one has to use some non-linear solution procedure.193

As it is common for time-dependent PDE discretizations, we use Newton’s method for that purpose.194

We start by casting the predictor and corrector step (Eq. (7) and Eq. (8)) for the current timestep n, iterate k and195

stage l into a uniform formulation. Due to the introduction of the quantity σn,[k],l
h := R(1)

h (wn,[k],l
h), we have to extend196

the state vector to consist of the discrete wn,[k],l
h and σn,[k],l

h , i.e. we introduce X[k] :=
(
X[k]

w ,X[k]
σ

)T
:=

(
wn,[k],l

h ,σn,[k],l
h

)T
.197

The non-linear equation to be solved can then be written as198

X[k] !
=

(
wold

0

)
+

Φ (
X[k], X[k−1],1:s

)
R(1)

h (wn,[k],l
h)

 =: Wold + Φ̄
(
X[k], X[k−1],1:s

)
, (16)199

7

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 8

with wold := wn−1,[k+1],s
h for k < kmax and wold := wn−1,[kmax],s

h for k = kmax. For the sake of notation, we use the200

abbreviation X[k−1],1:s :=
(
X[k−1],1, X[k−1],2, . . . , X[k−1],s

)
. For the predictor, Φ is given by201

Φ
(
X[k], X[k−1],1:s

)
:= cl∆tR(1)

h (wn,[k],l
h) −

(cl∆t)2

2
R(2)

h (wn,[k],l
h ,σn,[k],l

h), (17)202

and for the first corrector step by203

Φ
(
X[k], X[k−1],1:s

)
:= θ1∆tR(1)

h (wn,[k],l
h) −

θ2∆t2

2
R(2)

h (wn,[k],l
h ,σn,[k],l

h)

− θ1∆tR(1)
h (wn,[k−1],l

h) +
θ2∆t2

2
R(2)

h (wn,[k−1],l
h ,R(1)

h (wn,[k−1],l
h)) + Il

(
wn,[k−1],1:s

h

)
.

(18)204

Remark 4. For the ease of presentation, we did not distinguish between the treatment of the quadrature rule Il for205

k = 1 and k > 1, see (9). The treatment for k > 1 results in slightly different arguments of the quadrature formula and206

hence additional arguments in Φ. The modifications are straightforward and do not change the proposed arguments207

here, yet they make the notation more clumsy.208

We use Newton’s method to solve equations of type (16), in this particular case given by:209

1. For r = 1, . . . solve210 Id−∂Φ̄
(
X[k]
r−1, X

[k−1],1:s
r′

)
∂X[k]

∆Xr =Wold + Φ̄
(
X[k]
r−1, X

[k−1],1:s
r′

)
− X[k]

r−1

X[k]
r = X[k]

r−1 + ∆Xr.

(19)211

2. If the convergence criterion is met, set212

wn,[k],l
h := X[k]

r,w and σn,[k],l
h := R(1)

h (wn,[k],l
h). (20)213

Note that we have indicated that solutions from the previous correction step, i.e. X[k−1],1:s, are obtained via Newton’s214

method terminated at some finite Newton iterate r′, which can be different for different stages and different k. To215

initialize the iterative procedure, some initial guess216

X[k]
0 ≡

(
wn,[k],l

h,0 ,R
(1)
h

(
wn,[k],l

h,0

))T
217

has to be specified.218

Remark 5. If not stated otherwise, we choose an explicit second order Taylor step to obtain the initial guess for the219

predictor. For the correction step [k], the corresponding stage value of the previous iterate [k − 1] is used, i.e.220

wn,[0],l
h,0 =wold + cl∆tR(1)

h (wold) + (cl∆t)2R(2)
h (wold,R(1)

h (wold)) for l = 2, . . . , s.

wn,[k],l
h,0 =wn,[k−1],l

h for l = 2, . . . , s, and k = 1, . . . , kmax.
(21)221

We have observed that using a second order explicit Taylor step to obtain an initial guess for the predictor is superior222

to performing an explicit first order step. However, using a third order Taylor step did not give noticeable advantages.223

Please note that the effectiveness of using the second order step remains problem- and timestep-dependent.224

Remark 6. Please note that at the end of the Newton algorithm, we define σn,[k],l
h := R(1)

h (wn,[k],l
h) in Eq. (20) rather225

than setting σn,[k],l
h = X[k]

r,σ. If the equation (16) is solved exactly, σn,[k],l
h would be identical to R(1)

h (wn,[k],l
h). However,226

it is only solved to a certain accuracy, and hence, the identity does not necessarily hold. The definition in Eq. (20)227

avoids inconsistencies in wh, (wh)t and (wh)tt during the timestepping procedure and potential instabilities. Because228

of this, σh of a previous timestep, stage or correction iterate is no longer an independent variable and hence does not229

occur as an explicit argument in R(2)
h (wn,[k−1],l

h ,R(1)
h (wn,[k−1],l

h)) and in Il

(
wn,[k−1],1:s

h

)
in Eq. (18).230

8

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 9

In order to solve the arising linear system in Eq. (19), we use the matrix-free GMRES approach with extended231

block-Jacobi preconditioning described in [1]. As initial condition for the GMRES method a zero vector is chosen.232

Choosing the negative right hand side times the timestep as initial guess as suggested in [23] can sometimes be233

advantageous. Similar as the authors in [23], we observed that this advantage is problem dependent and can in some234

cases have an unfavorable influence on the required iterations, which is especially the case for large timesteps. We235

therefore use the zero vector as initial conditions in all simulations performed in this work. Similar as it has been done236

in [1], we neglect the Hessian contribution in Eq. (19), when solving the linear system.237

3.3. Error estimator of the HBPC method238

Controlling the numerical error introduced through the integration scheme per timestep is obviously crucial for239

multiple purposes. When using classical implicit Runge-Kutta methods, an error estimate is typically obtained via240

an embedded quadrature rule, see e.g. [24, 25]. This embedded quadrature rule uses the same nodes as the original241

scheme but utilizes different weights. This offers the opportunity to obtain either higher or lower order embedded242

schemes, see e.g. [25]. Inspired by these error estimates for Runge-Kutta methods, we define additional quadrature243

rules of order q̂ = q − 1 for the HBPC(6, kmax) and the HBPC(8, kmax) method,244

Îl

(
w1, . . . ,ws

)
:= ∆t

s∑
j=1

B̂(1)
l j R(1)(w j) + ∆t2

s∑
j=1

B̂(2)
l j R(2)(w j).245

The coefficients of the tables B̂(1) and B̂(2) are obtained through collocation such that they utilize the same nodes,246

i.e. c = ĉ. In the collocation procedure, the (arbitrary) choice is made that wtt at time instant c1 = 0 is not taken247

into account. This leads to schemes that are one order lower than the original quadrature rules HBPC(6, kmax) and248

HBPC(8, kmax), respectively. The Butcher tableaux corresponding to these fifth and seventh order, respectively, meth-249

ods are given in Eq. (B.2) and Eq. (B.4).250

Error Estimate. The error estimate ∥En,[k],l
t ∥2 is then obtained by251

∥E
n,[k],l
t ∥2 :=

∣∣∣∣∣∣wn,[k],l
h − w̃n,[k],l

h

∣∣∣∣∣∣
2 , with w̃n,[k],l

h := wn−1,[k+1],s
h + Îl

(
wn,[k∗],1

h , . . . ,wn,[k∗],s
h

)
, (22)252

where we have defined k∗ as a function of k to be the closest odd integer that is larger or equal than k. Due to the253

pipelining strategy of Alg. 1, this means that the k∗−th iterate is always the correction with the highest index available254

on one processor. Note that due to the construction of the parallelization strategy, see also Fig. 2, the processor(s)255

handling the predictor and the first corrector step for stages wn,[k],l with l , s (in the example in the figure, this256

would be proc. #3) are somewhat special, as they do not have acceess to the final stage wn,[k],s
h of their corresponding257

k ∈ {0, 1}. Hence, the error estimates En,[k],l
t with l , s are only needed for these processor(s). All other processors258

utilize En,[k],s
t for their error estimates.259

Alternatively, instead of evaluating the quadrature rule directly, one can perform an additional correction step with260

Îl to obtain an approximate quantity ˜̃wn,[k],l
. That means, solve the following for ˜̃wn,[k],l

:261

˜̃wn,[k],l
h = wn−1,[k+1],s

h + θ1∆t
(
R(1)(˜̃wn,[k],l

h) − R(1)(wn,[k∗],l
h)

)
− θ2
∆t2

2

(
R(2)(˜̃wn,[k],l

h , ˜̃σn,[k],l
h) − R(2)(wn,[k∗],l

h ,R(1)(wn,[k∗],l
h))

)
+ Îl

(
wn,[k∗],1

h , . . . ,wn,[k∗],s
h

)
,

(23)

262

and following, calculate the error estimate via263

∥E
n,[k],l
t ∥2 :=

∣∣∣∣∣∣∣∣wn,[k],l
h − ˜̃wn,[k],l

h

∣∣∣∣∣∣∣∣
2
. (24)264

Evaluation of Temporal Error Estimate. The accuracy of the embedded error estimate is evaluated by considering the265

Navier-Stokes equations (Eq. (1)) with initial conditions266

ρ(x, t = 0) = 1 + 0.3 sin (π(x1 + x2)) , v = (0.3, 0.3)T , and p = 1, (25)267

9

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 10

on the domain Ω = [−1, 1]2, equipped with periodic boundary conditions. Viscosity is chosen to be µ = 10−3 and268

the reference Mach number is ε ∈ {1, 10−1}. The domain is discretized with NE = 642 elements with Np = 7. The269

’exact’ solution is obtained via an explicit simulation with a fourth order low-storage Runge-Kutta method [26] with270

very small timestep (∆t ≈ 2.9 · 10−5 and ∆t ≈ 7.53 · 10−6 for ε = 1 and ε = 10−1, respectively).

0 2 4 6 8

10−4

10−3

10−2

10−1

100

101

[k]

∥w
−

w
h∥

2
an

d
∥E

n,
[k

],
s

t
∥ 2

HBPC(6, 9), ε = 1

embedded, direct
embedded, corrected
exact

0 2 4 6 8

10−3

10−2

10−1

100

[k]

HBPC(6, 9), ε = 10−1

embedded, direct
embedded, corrected
exact

0 2 4 6 8

10−5

10−4

10−3

10−2

10−1

100

101

[k]

∥w
−

w
h∥

2
an

d
∥E

n,
[k

],
s

t
∥ 2

HBPC(8, 9), ε = 1

embedded, direct
embedded, corrected
exact

0 2 4 6 8

10−3

10−2

10−1

100

[k]

HBPC(8, 9), ε = 10−1

embedded, direct
embedded, corrected
exact

Figure 3. Exact L2-error and estimated errors via evaluating the embedded formula directly (Eq. (22)) and evaluating the embedded formula within
one correction step (Eq. (23)) for HBPC(6, 9) (top) and HBPC(8, 9) scheme (bottom) after the first timestep. (Only one timestep each is performed,
as the embedded formulae only measure local (in time) error contributions.) Left column shows results with ε = 1 and ∆t = 0.4 (solid), ∆t = 0.2
(dashed) and ∆t = 0.1 (dotted). Right column shows results with ε = 10−1 and ∆t = 0.1 (solid), ∆t = 0.05 (dashed) and ∆t = 0.025 (dotted).

271

We now perform a single timestep with different sizes for ε = 1 and ε = 10−1 with the HBPC(6, 9) and the272

HBPC(8, 9) and report the exact and the estimated errors after the predictor and each correction step in Fig. 3. One273

can observe a clear trend: the higher the stiffness of the problem, i.e. larger ∆t and/or smaller ε, the worse do the error274

estimators approximate the true error. For larger stiffnesses, the procedure according to Eq. (23) is more accurate than275

evaluating the embedded formula directly. For lower stiffnesses, the error estimates coincide very well with the true276

error until some minimum error is reached for some [k]. This is due to the fact that the embedded quadrature formula277

is only of order q̂ = q − 1 and hence has a lower accuracy than the original quadrature rule. (Technically, the error278

of the lower-order method is approximated.) Similar results are obtained when the accuracy of the embedded error279

estimator is tested on different meshes (not shown here), which shows the robustness of the error estimator. Summing280

up, the error estimate in Eq. (23) requiring an additional solving step is slightly more accurate than directly evaluating281

the embedded quadrature rule; it is recommended for stiff problems.282

4. Adaptive Strategy for HBPC Schemes283

A key feature for an efficient implicit time discretization method is an adaptation strategy for the iterative solution284

procedure, see e.g. [5, 27, 28], as it is of utmost importance to keep Newton and GMRES iterations to an absolute285

10

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 11

minimum, while obviously guaranteeing a certain quality of the solution. This is very different to explicit schemes,286

where this part of the solution process simply does not exist. In this section, we are aiming for an adaptive New-287

ton convergence criterion that preserves the accuracy of the time stepping method without ’oversolving’ it, i.e., we288

envision that the error of the Newton procedure, defined by289

E
[k],l
r := X[k] − X[k]

r , (26)290

is of the same order as the time discretization error. Hence,291

∥E
n,[k],l
t ∥ ≈ ∥E

[k],l
r ∥,292

where we have omitted the superscript n for the error of Newton’s procedure for the ease of presentation. In this way,293

one does not deteriorate the temporal accuracy, while at the same time one is not overdoing Newton iterations. A294

rough, but seemingly reliable estimate of Newton’s error is devised through an analysis of the equations in Sec. 4.1.295

Remark 7. While it is possible to only use one Newton step per prediction/correction, and take into account more296

correction steps as similarly done in [29], we have found that this approach does not really work well in our context. In297

particular the solution quality of the predictor and the corrector do have a significant influence on higher corrections.298

This can already be seen in the context of ODEs; and has in fact motivated the analysis to follow.299

4.1. Adaptive Newton Strategy300

Convergence criteria for Newton’s method have been addressed by several authors in the context of flow simulation301

with implicit timestepping methods relying on Newton-Krylov methods. Basically, two different approaches can be302

distinguished:303

• An absolute tolerance for the Newton increment ∆Xr has been used in [30]. The inequality ∥∆Xr∥2 ≤ TOL,304

specified by a user-defined tolerance TOL ∈ {10−5, 10−7}, is used as a criterion to terminate the Newton itera-305

tions.306

• More used in practice seem to be convergence criteria based on the Newton residual N(X), which is the quantity307

to which the discrete solution fails to satisfy the equation. [31], [32] and [33] start with a user defined accuracy308

TOL. An embedded Runge-Kutta method is then used to determine the corresponding timestep size and a309

modified tolerance TOL′. While [31] and [32] use N(Xr) ≤ N(X0) · TOL/5 as convergence criterion ([32] also310

suggests the same treatment for the Newton increment), the authors in [33] use N(Xr) ≤ N(X0) · TOL′/10. A311

slightly different approach is pursued in [5], where a fixed timestep is prescribed by the user and the convergence312

criterion N(Xr) ≤ N(X0) · min
(
10−3, ∥Et∥2/3

)
is used, where ∥Et∥2 is computed through an embedded Runge-313

Kutta method. An absolute tolerance for the Newton residual has been proposed in [28]. They use N(Xr) ≤314

∥Et∥2/10, where the temporal error estimate is again based on an embedded Runge-Kutta method.315

None of these approaches can directly be used for the HBPC schemes as different levels of accuracy for the dif-316

ferent prediction/correction steps are not taken into account. Inspired by the approach outlined in [28], we derive a317

Newton convergence criterion that explicitly takes the different levels into account. We find that an absolute conver-318

gence criterion based on the Newton increment is a natural choice for this kind of methods.319

4.1.1. Newton Error Estimate320

In this section, we derive a heuristic that links the Newton error E[k],l
r , see Eq. (26), to the Newton increment ∆Xr+1321

of the following Newton step and the Newton errors E[k−1],i
r′ of previous correction steps. This allows, in a subsequent322

step, to derive a practically usable criterion on when to terminate Newton’s algorithm. Terminating Newton’s method323

(see Eq. (19) and Eq. (20)) at finite r, the introduced error E[k],l
r is given by324

E
[k],l
r = X[k] − X[k]

r =Wold + Φ̄
(
X[k], X[k−1],1:s

)
− X[k]

r + Φ̄
(
X[k]

r , X
[k−1],1:s
r′

)
− Φ̄

(
X[k]

r , X
[k−1],1:s
r′

)
.325

11

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 12

Performing a Taylor expansion one obtains326

X[k] − X[k]
r =
∂Φ̄

(
X[k]
r , X

[k−1],1:s
r′

)
∂X[k]

(
X[k] − X[k]

r

)
+

s∑
i=1

∂Φ̄
(
X[k]
r , X

[k−1],1:s
r′

)
∂X[k−1],i

(
X[k−1],i − X[k−1],i

r′

)
327

−X[k]
r +Wold + Φ̄

(
X[k]

r , X
[k−1],1:s
r′

)
+ O

((
X[k] − X[k]

r

)2
)
+ O

((
X[k−1],1:s − X[k−1],1:s

r′

)2
)
.328

Next, we truncate the higher order terms2 and find329

E
[k],l
r
.
=

Id−∂Φ̄
(
X[k]
r , X

[k−1],1:s
r′

)
∂X[k]


−1

·

Wold + Φ̄
(
X[k]

r , X
[k−1],1:s
r′

)
− X[k]

r +

s∑
i=1

∂Φ̄
(
X[k]
r , X

[k−1],1:s
r′

)
∂X[k−1],i

(
X[k−1],i − X[k−1],i

r′

) .330

We then can make use of the definition of Newton’s method, see Eq. (19) to simplify the first part of the expression331

E
[k],l
r
.
= ∆Xr+1︸ ︷︷ ︸

current Newton
procedure

+

Id−∂Φ̄
(
X[k]
r , X

[k−1],1:s
r′

)
∂X[k]


−1

·

 s∑
i=1

∂Φ̄
(
X[k]
r , X

[k−1],1:s
r′

)
∂X[k−1],i E

[k−1],i
r′

︸ ︷︷ ︸
accumulation of previous Newton errors

.332

The error hence consists of one part, where the Newton errors of previous prediction/correction steps are accumulated333

and another part influenced by the current Newton procedure, which equals the Newton increment of the next Newton334

iterate ∆Xr+1. For the predictor, we then directly find335

E
[0],l
r
.
= ∆Xr+1,336

as there are no previous prediction/correction steps that can influence the error. For the corrector one finds337

E
[k],l
r
.
= ∆Xr+1−

Id−θ1∆t ∂R
(1)
h

∂wn,[k],l
h
+ θ2∆t2

2
∂R(2)

h

∂wn,[k],l
h

θ2∆t2

2
∂R(2)

h

∂σn,[k],l
h

−
∂R(1)

h

∂wn,[k],l
h

Id


−1

·


θ1∆t ∂R(1)

h

∂wn,[k−1],l
h

−
θ2∆t2

2

(
∂R(2)

h

∂wn,[k−1],l
h

+
∂R(2)

h

∂σn,[k−1],l
h

∂R(1)
h

∂wn,[k−1],l
h

)
0

0 0

E[k−1],l
r′

−

s∑
i=1

∆tB(1)
li

∂R(1)
h

∂wn,[k−1],i
h

+ ∆t2B(2)
li

(
∂R(2)

h

∂wn,[k−1],i
h

+
∂R(2)

h

∂σn,[k−1],i
h

∂R(1)
h

∂wn,[k−1],i
h

)
0

0 0

E[k−1],i
r′

 ,
338

which can be simplified to (please note that due to construction, there holds ∂R
(2)
h
∂σh
=
∂R(1)

h
∂wh

3)339

E
[k],l
r
.
= ∆Xr+1−


S −1

(
θ1∆t ∂R(1)

h

∂wn,[k−1],l
h

−
θ2∆t2

2

(
∂R(2)

h

∂wn,[k−1],l
h

+

(
∂R(1)

h

∂wn,[k−1],l
h

)2))
0

∂R(1)
h

∂wn,[k],l
h

S −1
(
θ1∆t ∂R(1)

h

∂wn,[k−1],l
h

−
θ2∆t2

2

(
∂R(2)

h

∂wn,[k−1],l
h

+

(
∂R(1)

h

∂wn,[k−1],l
h

)2))
0

E[k−1],l
r′

+

s∑
i=1


S −1

(
∆tB(1)

li
∂R(1)

h

∂wn,[k−1],i
h

+ ∆t2B(2)
li

(
∂R(2)

h

∂wn,[k−1],i
h

+

(
∂R(1)

h

∂wn,[k−1],i
h

)2))
0

∂R(1)
h

∂wn,[k],l
h

S −1
(
∆tB(1)

li
∂R(1)

h

∂wn,[k−1],i
h

+ ∆t2B(2)
li

(
∂R(2)

h

∂wn,[k−1],i
h

+

(
∂R(1)

h

∂wn,[k−1],i
h

)2))
0

E[k−1],i
r′ ,

(27)340

2Please note that this is an assumption that we make. It is not clear – in particular for large ∆t or stiff equations – that these terms are small.
However, to obtain guidelines for the termination of Newton’s algorithm, we will from now on neglect the higher order terms.

3 That this is true can be seen the easiest from the continuous level: There holds wt = R(1)(w) due to Eq. (3). Differentiating with respect to

time yields wtt =
∂R(1)(w)
∂w wt =

∂R(1)(w)
∂w σ =: R(2)(w,σ). From this definition, the identity follows in a straightforward way. The same is true for the

DG discretization, yet, it is more cumbersome (but not more difficult) to show this, departing from the weak formulations in (13) and (15).

12

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 13

with the Schur complement corresponding to the lower right block given by341

S :=

Id−θ1∆t
∂R(1)

h

∂wn,[k],l
h

+
θ2∆t2

2

 ∂R(2)
h

∂wn,[k],l
h

+

 ∂R(1)
h

∂wn,[k],l
h

2
 .342

We now consider the limits of Eq. (27) and start with ∆t → 0, i.e.343

E
[k],l
r
.
= ∆Xr+1−


(
Id+O(∆t) + O(∆t2)

)−1 (
O(∆t) + O(∆t2)

)
0(

Id+O(∆t) + O(∆t2)
)−1 (
O(∆t) + O(∆t2)

)
0

E[k−1],l
r′344

+

s∑
i=1


(
Id+O(∆t) + O(∆t2)

)−1 (
O(∆t) + O(∆t2)

)
0(

Id+O(∆t) + O(∆t2)
)−1 (
O(∆t) + O(∆t2)

)
0

E[k−1],i
r′ → ∆Xr+1, ∆t → 0.345

We find that for vanishing ∆t, the Newton errors introduced by previous stages and correction steps do not play a role346

and the error is directly given by the next Newton increment. The limit ∆t → ∞ is more difficult to obtain. We start347

by considering the O(∆t2) terms348

lim
∆t→∞

E
[k],l
r
.
= ∆Xr+1−


(
∂R(2)

h

∂wn,[k],l
h
+

(
∂R(1)

h

∂wn,[k],l
h

)2)−1 (
∂R(2)

h

∂wn,[k−1],l
h

+

(
∂R(1)

h

∂wn,[k−1],l
h

)2)
0

∂R(1)
h

∂wn,[k],l
h

(
∂R(2)

h

∂wn,[k],l
h
+

(
∂R(1)

h

∂wn,[k],l
h

)2)−1 (
∂R(2)

h

∂wn,[k−1],l
h

+

(
∂R(1)

h

∂wn,[k−1],l
h

)2)
0

E[k−1],l
r′

+

s∑
i=1


2B(2)

li
θ2

(
∂R(2)

h

∂wn,[k],l
h
+

(
∂R(1)

h

∂wn,[k],l
h

)2)−1 (
∂R(2)

h

∂wn,[k−1],i
h

+

(
∂R(1)

h

∂wn,[k−1],i
h

)2)
0

2B(2)
li
θ2

∂R(1)
h

∂wn,[k],l
h

(
∂R(2)

h

∂wn,[k],l
h
+

(
∂R(1)

h

∂wn,[k],l
h

)2)−1 (
∂R(2)

h

∂wn,[k−1],i
h

+

(
∂R(1)

h

∂wn,[k−1],i
h

)2)
0

E[k−1],i
r′ .

(28)349

Remark 8. The above equation (28) is highly nonlinear, yet, it has an interesting structure. For linear equations,350

where the quantities ∂R(2)
h

∂wn,[k],l
h

and ∂R(1)
h

∂wn,[k],l
h

are constant, there holds
(
∂R(2)

h

∂wn,[k],l
h
+

(
∂R(1)

h

∂wn,[k],l
h

)2)−1 (
∂R(2)

h

∂wn,[k−1],l
h

+

(
∂R(1)

h

∂wn,[k−1],l
h

)2)
= Id, and351

the equations reduce to352

lim
∆t→∞

E
[k],l
r
.
= ∆Xr+1−

 Id 0
∂R(1)

h

∂wn,[k],l
h

0

E[k−1],l
r′ +

s∑
i=1


2B(2)

li
θ2

Id 0
2B(2)

li
θ2

∂R(1)
h

∂wn,[k],i
h

0

E[k−1],i
r′ .353

This automatically leads to the estimate354

∥E
[k],l
r,w ∥2

·

≤∥∆Xr+1,w∥2 + ∥E
[k−1],l
r′,w ∥2 +

s∑
i=2

2|B(2)
li |

θ2
∥E

[k−1],i
r′,w ∥2, for ∆t → ∞, (29)355

where by E[k],l
r,w , we denote the component of E[k],l

r corresponding to the degrees of freedom of wn,[k],l
h . E[k−1],1

r′ = 0356

due to the fact that the first stage is trivial to compute and does not need a Newton iteration. Please note that357

a similar computation is, to our knowledge, not possible for arbitrary nonlinear equations, in particular not for358

the compressible Navier-Stokes equations. We will, however, use (29) as a heuristic basis for our error estimation359

procedure.360

Inspired by the behavior of the linear algorithm, we consider the following error estimate for small and large ∆t:361

∥E
[k],l
r,w ∥2 ≈∥∆Xr+1,w∥2, for ∆t → 0,

∥E
[k],l
r,w ∥2 ≈∥∆Xr+1,w∥2 +Cl∥E

[k−1],l
r′,w ∥2 +

s∑
i=2

Ci
2|B(2)

li |

θ2
∥E

[k−1],i
r′,w ∥2, for ∆t → ∞.

(30)362

Here, Ci are user-defined constants, which, later, will reduce into one global constant. Please note that we also use363

this form in case of the modified arguments for the correction steps k > 1 (see Eq. (9)).364

13

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 14

Remark 9. Choosing the constants Ci basically means that we assume that terms of form365 ∥∥∥∥∥∥∥∥∥
 ∂R(2)

h

∂wn,[k],l
h

+

 ∂R(1)
h

∂wn,[k],l
h

2
−1  ∂R(2)

h

∂wn,[k−1],l
h

+

 ∂R(1)
h

∂wn,[k−1],l
h

2
∥∥∥∥∥∥∥∥∥366

are bounded.367

4.1.2. Newton Convergence Criterion368

The findings in Eq. (30) still depend on the various stages, which make the error estimate even more tedious to369

evaluate than it already is. In the sequel, we do therefore assume that the stage-error is constant within a timestep, and370

define371

∥E
[k]
r,w∥2 := ∥E[k],s

r,w ∥2, and ∥E
n,[k]
t ∥2 := ∥En,[k],s

t ∥2, (31)372

so only the last stage is taken into account. The desired goal of the adaptive Newton strategy is that the errors intro-373

duced by not solving the non-linear equation (16) exactly are smaller than the errors introduced by the timestepping374

procedure itself. In formulae, this means375

∥E
[k]
r,w∥2 ≤ η∥E

n,[k]
t ∥2, for k = 0, . . . , kmax, (32)376

where we have introduced some safety factor 0 < η < 1. η is testcase-dependent, and will be explicitly stated for each377

numerical result.378

Again, this is in good agreement with our numerical experience. Subsequently, based on the findings in Eq. (30)379

and definitions in Eq. (31), we assume that the Newton error ∥E[k]
r,w∥2 can be written as380

∥E
[k]
r,w∥2 = ∥∆X[k]

r+1,w∥2 +C · ∥E[k−1]
r′,w ∥2, (33)381

for a constant C. If we define ∥E[−1]
r′,w∥2 = 0, this is valid for all k ≥ 0. Please note that r′ is a generic constant, as the382

amount of Newton steps in correction k can be different from the ones in correction k − 1.383

Remark 10. For ∆t → 0, there holds C = 0, see (30). For all the numerical experiments we made, C was always in384

the order of one, never exceeding five. In the algorithm itself, it is treated as a user-supplied constant.385

We can recursively unfold formula (33) from k = kmax to obtain386

∥E
[kmax]
r,w ∥2 =

kmax∑
k=0

Ckmax−k∥∆X[k]
r′+1,w∥2.387

Please note again that r′ is a generic amount of steps and can change from one correction to the other. Under these388

preliminaries, the inequality to be fulfilled for kmax is given by389

∥E
[kmax]
r,w ∥2 =

kmax∑
k=0

Ckmax−k∥∆X[k]
r′+1,w∥2

!
≤ η∥En,[kmax]

t ∥2. (34)390

The scaling with Ckmax−k in (34) motivates the following heuristic choice for the Newton increment:391

∥∆X[0]
r+1,w∥2 ≤ ηmin

(
Ckmax

1 ∥E
n,[kmax]
t ∥2, ∥E

n,[0]
t ∥2

)
,

∥∆X[k]
r+1,w∥2 ≤ ηmin

(
C2Ckmax−k

1 ∥E
n,[kmax]
t ∥2, ∥E

n,[k]
t ∥2

)
, for 1 ≤ k ≤ kmax.

(35)392

Here, C1 ∼ C−1 and C2 are user-defined input parameters to the code. We have included C2 into this heuristic as we393

have found that the quality of the predictor typically has a larger influence on the quality than the correction steps;394

typically, C2 is taken to be smaller than one. We have found numerically that the kmax-dependent choices C1 := kmax−1
Ckmax

395

and C2 := 1 − kmax−1
kmax

seem to work very well; we will stick to this definition in the sequel.396

14

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 15

Remark 11. Eq. (35) shows that for the evaluation of the convergence criterion of Newton’s method for the current397

iterate [k], one requires ∥En,[k]
t ∥2 and ∥En,[kmax]

t ∥2. While the former can be evaluated independently on each processor,398

the latter requires some special treatment. The information about the solution wn,[kmax],s
h is only available on the399

processor with rank zero (#0), see Fig. 2. Hence, the temporal error estimate ∥En,[kmax]
t ∥2 can only be evaluated on400

this processor. The error information is then communicated to the other processors along the standard information401

propagation path, i.e. along the diagonal. This leads to a delay of the adaptive procedure’s start on the different402

processors, meaning that, instead of ∥En,[kmax]
t ∥2, the quantity ∥En∗,[kmax]

t ∥2 with n∗ < n is evaluated. This delay is403

indicated with the gray shaded area in Fig. 2. As it is crucial to keep the parallel-in-time structure of the scheme,404

we need to hence make the important assumption that the errors ∥En,[kmax]
t ∥2 are only changing mildly with n, so that405

∥E
n∗,[kmax]
t ∥2 is indeed a good approximation for ∥En,[kmax]

t ∥2. Note that n − n∗ cannot exceed kmax due to construction.406

Remark 12. A similar approach as the one outlined above in Sec. 4.1.1 and Sec. 4.1.2 can be done for standard407

diagonally implicit Runge Kutta methods. In Appendix C, we briefly introduce a similar adaptive Newton strategy for408

ESDIRK methods, which will then later be used for efficiency comparisons in Sec. 5.4.409

4.1.3. Newton Error Extrapolation410

Considering Eq. (34) and Eq. (35), one can see that we have found a condition for ∥E[k]
r,w∥2 via the Newton increment411

∥∆X[k]
r+1,w∥2. That means that in order to obtain a condition for the error at iterate r one has to calculate or estimate412

the norm of the (r + 1)-th Newton increment. As the computation of E[k]
r,w is time-consuming, we propose to use an413

extrapolation procedure to obtain an estimate for ∥∆Xr+1∥2, which is then used within the estimate for ∥Er,w∥2, see414

Eq. (34). We either use a linear extrapolation procedure,415

∥∆X[k]
3,w∥2 ≈

∥∆X[k]
2,w∥

2
2

∥∆X[k]
1,w∥2
,

∥∆X[k]
r+1,w∥2 ≈

∥∆X[k]
r−2,w∥2∥∆X[k]

r−1,w∥2 + ∥∆X[k]
r−1,w∥2∥∆X[k]

r,w∥2

∥∆X[k]
r−2,w∥

2
2 + ∥∆X[k]

r−1,w∥
2
2

∥∆X[k]
r,w∥2, for r ≥ 3,

(36)416

or a quadratic extrapolation procedure417

∥∆X[k]
3,w∥2 ≈

∥∆X[k]
2,w∥

3
2

∥∆X[k]
1,w∥

2
2

,

∥∆X[k]
r+1,w∥2 ≈

∥∆X[k]
r−2,w∥

2
2∥∆X[k]

r−1,w∥2 + ∥∆X[k]
r−1,w∥

2
2∥∆X[k]

r,w∥2

∥∆X[k]
r−2,w∥

4
2 + ∥∆X[k]

r−1,w∥
4
2

∥∆X[k]
r,w∥

2
2, for r ≥ 3,

(37)418

that considers at maximum the previous three calculated Newton increments. Note that for r ≥ 3, a least-squares419

approximation of the constants is used in both cases. The linear extrapolation procedure has to be applied if a fixed420

coarse relative tolerance for the GMRES solver is applied [32]. If the relative tolerances converge to zero fast enough,421

quadratic convergence of Newton’s method can be expected. One opportunity to achieve this is to use the Eisenstat-422

Walker procedure introduced in [34].423

4.1.4. Application of Adaptive Newton Procedure424

In this section, all ingredients of the adaptive Newton strategy are combined and validated. The temporal error is425

estimated according to Eq. (22) and is evaluated only once after the first timestep. This error estimate is then used426

to determine Newton’s convergence condition via Eq. (35), where the actual Newton increment is obtained via the427

extrapolation procedure, introduced in Sec. 4.1.3. The constants C and η are chosen to be 0.5 and 0.1, respectively.428

We either use a fixed relative GMRES tolerance of εGMRES = 5 · 10−2, which corresponds to the same criterion as429

used in [28], with the linear extrapolation procedure of Newton’s increment given in Eq. (36). Alternatively, we apply430

the adaptive Eisenstat-Walker procedure [34] to determine the relative GMRES tolerances and utilize the quadratic431

extrapolation of Newton’s increment given by Eq. (37).432

15

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 16

We choose the same setup used in Sec. 3.3 for the Navier-Stokes equations with the initial conditions given by433

Eq. (25) with ε = 1, Np = 7 and NE = 322. The final time is set to Tend = 1.0. In order to evaluate the adaptive434

Newton procedure, simulations with fixed relative tolerances are used. Additionally, an absolute convergence criterion435

∥∆X[k]
r+1,w∥2 ≤ 10−14

√
nDOF

min(1, ε)
, (38)436

is used for all cases including the simulations with adaptive Newton strategy, where nDOF describes the total number437

of spatial degrees of freedom and ε is the stiffness parameter of the considered physical equations.4 As initial guess438

for Newton’s method, i.e. X[k]
0 , we choose the solution of the second order explicit Taylor step for the predictor and the439

corresponding stage value of the previous iterate [k−1] for the correction steps. We start counting Newton’s iterations440

after kmax timesteps (compare Fig. 2) to ensure that the full capabilities of the adaptive strategy are evaluated. Solution441

steps that cannot use the adaptive Newton strategy (gray shaded area in Fig. 2) utilize a relative convergence criterion442

of εNewton,rel = 10−10.443

The resulting errors and average Newton iterations per stage of this series of simulations are visualized in Fig. 4.444

Missing points for the fixed tolerance εNewton = 10−2 indicate a diverging solution. Fig. 4, leftmost column, displays445

the numerical errors made for the adaptive choice of the Newton tolerance and several fixed Newton tolerances. It is446

only for HBPC(6, 5) with the finest timestep size that the error curves associated to the adaptive strategy and the finest447

tolerance deviate slightly; in all the other cases, the obtained ’adaptive’ error is equal to the one with the finest fixed448

Newton tolerance. This means that the adaptive strategy is succesful in the sense that it does not underresolve the449

algebraic systems of equations. The adaptive strategy is also successful w.r.t. the reduction of the required Newton450

and GMRES iterations, see Fig. 4 (middle, right). One can see that with the adaptive strategy, always at least two451

Newton iterations are performed. This is most likely caused by the fact that by choosing the Newton increment as452

convergence condition, we ”lag” one Newton iteration, and the extrapolation procedure can only be applied after two453

Newton increments have been calculated.454

Repetition of Introductory Example. We now repeat the illustrative example shown in the introduction (see Fig. 1)455

with all the ingredients introduced in the previous sections. These are the parallelizable timestepping procedure456

described in Alg. 1, an improved initial Newton guess given by Eq. (21) and the adaptive Newton strategy with457

linear error extrapolation given by Eq. (35) and Eq. (36). Again, the constants C and η are chosen to be 0.5 and 0.1,458

respectively. Similar as for the introductory example, we use εGMRES = 10−3 for the linear solver.459

The total number of GMRES iterations and the normalized GMRES iterations are shown in Fig. 5. Compared460

to the simulation with the serial algorithm, using a fixed relative tolerance for the residual of Newton’s method of461

εNewton = 10−10, one can clearly see a much stronger dependency of the required absolute number of iterations on the462

chosen timestep size. Moreover, the absolute values are much smaller than the ones reported in Fig. 1. Considering463

the normalized GMRES iterations, one can see that the relative cost of the predictor has been reduced and the costs464

of the correction steps have been homogenized. Moreover, the curves for the different timestep sizes coincide very465

well. The only exception from this behavior are the highest iterates, i.e. k = 6, 7, for the smallest timestep for which a466

reduced number of iterations is reported. This drop in iterations is most likely caused by hitting the absolute tolerance467

(see Eq. (38)).468

5. Parallel Performance469

In this section, we investigate the parallel performance of the novel scheme. For that purpose, we first investigate470

the performance of the spatial parallelization. Next, we combine the spatial parallelization with the novel paralleliza-471

tion in time.472

All simulations were performed on the VSC Genius cluster using up to 36 nodes. Each node has 192 GB RAM473

and consists of 18 cores, each equipped with 2 Xeon Gold 6240 CPUs@2.6 GHz (Cascadelake) processors. The474

4
√

nDOF is the Euclidean norm of the vector of size nDOF with each element being one. This quantity serves hence as a reference value –
the larger nDOF, the lesser one can expect that fine target accuracies can be reached. The ε in the denominator is a safety factor to account for the
stiffness of the problem.

16

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 17

10−2 10−1

10−13

10−11

10−9

10−7

10−5

6

∆t

∥w
−

w
h∥

2

HBPC(6, 5), Eisenstat-Walker

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

3

4

5

6

7

∆t
av

g.
N

ew
to

n/
st

ag
e

HBPC(6, 5), Eisenstat-Walker

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

50

100

150

200

∆t

av
g.

G
M

R
E

S/
st

ag
e

HBPC(6, 5), Eisenstat-Walker

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1
10−13

10−11

10−9

10−7

10−5

6

∆t

∥w
−

w
h∥

2

HBPC(6, 5), εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

1

2

3

4

5

∆t

av
g.

N
ew

to
n/

st
ag

e

HBPC(6, 5), εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

20

40

60

80

100

120

∆t
av

g.
G

M
R

E
S/

st
ag

e

HBPC(6, 5), εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

10−14

10−12

10−10

10−8

10−6

8

∆t

∥w
−

w
h∥

2

HBPC(8, 7), εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

1

2

3

4

5

∆t

av
g.

N
ew

to
n/

st
ag

e

HBPC(8, 7), εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

10−2 10−1

20

40

60

80

100

∆t

av
g.

G
M

R
E

S/
st

ag
e

HBPC(8, 7), εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive

Figure 4. Resulting L2-error (left), average Newton iterations per stage (middle) and average GMRES iterations per stage (right) for HBPC(6, 5)
with Eisenstat-Walker GMRES tolerance (top), HBPC(6, 5) with fixed GMRES tolerance (middle) and HBPC(8, 7) method with fixed GMRES
tolerance (bottom) when choosing different convergence criteria for Newton’s method. Adaptive Newton strategy is performed according to
Eq. (35) with Newton increment extrapolation (Eq. (36) and Eq. (37)) and temporal error estimate according to Eq. (22).

connection between nodes is established with an Infiniband EDR network (25 GB/s bandwidth). The Fortran-written475

simulation code is compiled with the GCC compiler (6.4.0). It uses OpenMPI (v3.1.1) for the implementation of476

processor communication and OpenBLAS (v0.3.17) for the efficient implementation of the preconditioner’s matrix in-477

version via LU-decomposition and matrix-matrix/matrix-vector multiplications. The single-derivative base-line code478

in which the novel method is implemented into is the open source code FLEXI5, see also [35].479

5.1. Parallel Performance of Spatial Parallelization480

The spatial parallelization is based on a domain decomposition via a space-filling curve. Each processor is re-481

sponsible for its own set of elements and information between different processors is done via the surfaces of adjacent482

elements. A detailed overview on the parallelization strategy, including the communication pattern and an evaluation483

of the parallel efficiency with an explicit timestepping procedure can be found in [35].484

5www.flexi-project.org, GNU GPL v3.0
17

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 18

0 2 4 6
0

0.5

1

1.5

2
·104

[k]

G
M

R
E

S
ite

ra
tio

ns
HBPC(8, 7)

∆t = 0.1
∆t = 0.05
∆t = 0.025
∆t = 0.0125

0 2 4 6
0.5

1

1.5

2

[k]

no
rm

.G
M

R
E

S
ite

ra
tio

ns

HBPC(8, 7)

∆t = 0.1
∆t = 0.05
∆t = 0.025
∆t = 0.0125

Figure 5. Repetition of the numerical experiment from Sec. 1, Fig. 1, but with parallel-in-time algorithm (Alg. 1), adaptive Newton strategy
(Eq. (35) and Eq. (36)) and improved initial Newton guess (Eq. (21)). Cumulated number (left) and normalized (right) GMRES iterations per
prediction/correction step are shown. Normalization of the GMRES iterations per [k] has been done with the mean GMRES iterations per timestep.

We benchmark the spatial parallel performance of the implicit two-derivative method with two different settings:485

a two dimensional setup with Np = 7 and a three dimensional setup with Np = 5. For both cases we use Eq. (25)486

as initial condition, where v = (0.25, 0.25, 0.25)T for the 3d and v = (0.3, 0.3)T for the 2d-setup. The temporal487

discretization is done with the implicit two-derivative Taylor method and ∆t = 0.1. We perform NT = 10 timesteps488

and use the relative tolerances εNewton,rel = 10−3 and εGMRES = 5 · 10−2. The preconditioner is built once, and kept489

fixed for the whole simulation. Similar as it has been done in [1], we neglect the Hessian contribution when solving490

the linear system. A measure for the computational cost is the performance index (PID)491

PID =
T · #processors

nDOF · NT · (s − 1)
,492

where T denotes the wallclocktime. PID measures the average time per degree of freedom that is necessary to perform493

one implicit stage of a single timestep. Note that, differently than for an explicit scheme, the absolute value of the494

PID does not transfer to different settings as it highly depends on the chosen test setup, i.e. on the implicit parameters495

and initial conditions6. It can hence serve only as a relative measure. For the investigation of the parallel efficiency,496

a series of simulations on different meshes with varying number of processors is performed. For the 2d simulations,497

the smallest mesh has 12 × 12 elements to discretize the domain Ω = [−1, 1]2. Larger grids are obtained by doubling498

the number of elements and extending the domain Ω accordingly. The domain is extended to account for the fact that499

the CFL number should stay constant (note that ∆t = 0.1 in this testcase), as otherwise, the behavior of the implicit500

algorithm changes drastically. The largest mesh has 192×192 elements for the domainΩ = [−128, 128]2. The meshes501

for the 3d simulations range from 6 × 6 × 3 elements (Ω = [−2, 2] × [−2, 2] × [−1, 1]) up to 24 × 12 × 12 elements502

(Ω = [−8, 8] × [−4, 4] × [−4, 4]). The lowest load, i.e. the lowest number of DOF per processor, is either obtained by503

using 1152 processors, or having 2 or 3 elements per processor for the 2d and 3d case, respectively. Each simulation504

is performed three times. The average, the minimum and the maximum PID of the simulations are reported in Fig. 6505

(left). From those values, the weak and strong parallel efficiency as well as the speedup can be derived, see Fig. 6.506

Note that the minimum number of processors is 36, corresponding to one node.507

One can see that the PID is a relatively constant quantity for small processor numbers. However, there is a strong508

increase if the load decreases below approximately 1000 DOF per processor and the number of processors increases.509

This increase additionally comes with an increasing variance of the measured PID. This is due to the increasing510

relative amount of communication and its high dependency on fluctuations of the machine’s performance. Regarding511

the parallel efficiency, one can still observe a weak and strong efficiency of approx. 80% when using 1152 processors512

for the 3d simulations. For the 2d case, a significant dependency of the strong parallel efficiency on the amount of513

6In particular, the conditioning of the nonlinear system of equations (16) plays an important role, which can be different for different test cases.
18

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 19

102 103 104
DOF per pr cess r

0.2

0.4

0.6

0.8

1.0

1.2

PI
D
[μ
s]

1e3

102 103
#proce##or#

100

101
#p
ee

du
p

102 103
#proce##or#

0.2

0.4

0.6

0.8

1.0

pa
ra
lle
l e
ffi
cie

nc
y
(s
tr

ng
)

102 103
#proce##or#

0.2

0.4

0.6

0.8

1.0

pa
ra
lle
l e

ffi
cie

nc
y

(w
ea

k)

62 (22

62 (23
62 (24

62 (25
62 (26

62 (27
62 (28

62 (29
62 (210 512

1024
2048
4096

8192
16384

103 104
DOF per pr cess r

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

PI
D
[μ
s]

1e3

102 103
#proce##or#

100

101

#p
ee

du
p

102 103
#proce##or#

0.2

0.4

0.6

0.8

1.0

pa
ra
lle
l e
ffi
cie

nc
y
(s
tr

ng
)

102 103
#proce##or#

0.2

0.4

0.6

0.8

1.0

pa
ra
lle
l e

ffi
cie

nc
y

(w
ea

k)

62 (3 (20

62 (3 (21
62 (3 (22

62 (3 (23
62 (3 (24

62 (3 (25
648
1296

2592
5184

10368

Figure 6. Performance index (left), speedup (second to left), strong parallel efficiency (second to right) and weak parallel efficiency (right) for the
2d setup with Np = 7 (top) and the 3d setup with Np = 5 (bottom). For the PID, the strong scaling and the speedup, the legend indicates the
different number of elements of different meshes. For the weak scaling, different lines correspond to different loads, i.e. different number of DOF
per processor.

DOF can be observed. Depending on the number of DOF, it decreases until approx. 30% to 60% when using 1152514

processors. Considering the weak parallel efficiency, one can observe a decrease towards approx. 55% when using515

1152 processors. The main findings from this investigation are:516

• Good weak scaling on up to more than 1000 processors indicates that the code is well-suited for large-scale517

applications.518

• One can decrease the computational load per processor almost until the finest possible granularity (one element519

per processor) and still observe some speedup.520

The significant differences between the 2d and the 3d simulations can be explained with the different ratios between521

internal work and communication, especially due to the increased work for matrix-matrix/matrix-vector multiplica-522

tions.523

5.2. Parallel Performance of Temporal Parallelization524

Next, we consider the parallel performance of the temporal parallelization. Setting up a fair evaluation problem525

for the parallel-in-time speedup is a non-trivial task [36]. One not only has to choose the problem, but also iterative526

procedures’ parameters such that they are representative for the desired applications. We start with the same setup as527

used in the previous subsection with the initial conditions given by Eq. (25) with ε = 1, Np = 7 and use the adaptive528

Newton strategy introduced in Sec. 4. Again, the well-known values 0.5 and 0.1 are assigned to the constants C and529

19

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 20

η, respectively. Differently to the previous subsection, we choose NE = 242 for the domain Ω = [−1, 1]2 and the final530

time is set to Tend = 10.0. We then perform simulations with Alg. 1 running the HBPC(6, kmax) and the HBPC(8, kmax)531

serially and in parallel using ∆t = {0.1, 0.05, 0.025} which corresponds to performingNT = {100, 200, 400} timesteps.532

The large number of timesteps ensures that the theoretical limit of the speedup for NT → ∞ given by Eq. (12) is533

within reach. The preconditioner is rebuilt every 10th timestep and the errors of the simulations are calculated by534

using the result of an explicit reference simulation with a fourth order low-storage Runge-Kutta method with a very535

small timestep (∆t ≈ 3.4 · 10−4).536

For the serial simulations we use one node with 36 processors corresponding to a load of 1024 DOF per processor537

for all kmax ∈ {1, 3, 5, 7, 9}. For the parallel simulation we use multiple nodes, e.g. the parallel HBPC(8, 7) method538

uses 6 nodes with 36 processor each7, resulting in 216 processors. Note that the load (i.e. DOF per processor) remains539

the same for all parallel-in-time and the serial simulations.540

Parallel-in-Time Speedup. In Fig. 7 we report the results of this series of simulations. On the left one can see the errors541

of the simulations w.r.t. the required wallclocktime T . While different colors correspond to different timestep sizes,542

the solid and the dashed lines indicate the parallel and the serial simulations, respectively. Points being connected by543

a line indicate simulations with increasing kmax ∈ {1, 3, 5, 7, 9}. One can see that the parallel method is more efficient544

(i.e. has a better relation between accuracy and wallclocktime) than the serial method, which is indicated by a much545

steeper slope of the parallel methods. This behavior can be observed consistently for all considered timestep sizes and546

both, the HBPC(6, kmax) and the HBPC(8, kmax) method.

0 200 400 600 800 1,000 1,200 1,400 1,600

10−9

10−8

10−7

10−6

10−5

10−4

10−3

T [s]

∥w
−

w
h∥

2

HBPC(6, kmax), efficiency

∆t = 0.1
∆t = 0.05
∆t = 0.025

2 3 4 5 6
1

2

3

4

5

6

#nodes

sp
ee

du
p

∆t = 0.1
∆t = 0.05
∆t = 0.025

1 3 5 7 9

1

2

3

4

5

6

kmax

2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

#nodes

pa
ra

lle
le
ffi

ci
en

cy

∆t = 0.1
∆t = 0.05
∆t = 0.025

1 3 5 7 9

0.5

0.6

0.7

0.8

0.9

1

kmax

0 500 1,000 1,500 2,000 2,500

10−12

10−10

10−8

10−6

10−4

T [s]

∥w
−

w
h∥

2

HBPC(8, kmax), efficiency

∆t = 0.1
∆t = 0.05
∆t = 0.025

3 4 5 6 7

2

4

6

#nodes

sp
ee

du
p

∆t = 0.1
∆t = 0.05
∆t = 0.025

1 3 5 7 9

2

4

6

kmax

3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

#nodes

pa
ra

lle
le
ffi

ci
en

cy

∆t = 0.1
∆t = 0.05
∆t = 0.025

1 3 5 7 9

0.5

0.6

0.7

0.8

0.9

1

kmax

Figure 7. Efficiency of temporal parallelization for HBPC(6, kmax) (top) and HBPC(8, kmax) method using different timestep sizes. The left plot
shows required wallclocktime T vs. resulting error using different kmax for the parallel-in-time (solid) and serial method (dashed). The speedup
(middle) gives the relation between serial and parallel wallclocktime. The black line indicates perfect speedup. The right plot displays the parallel
efficiency, i.e. the relation between the actual speedup and the perfect speedup.

547

7HBPC(8, 7) is a method with four stages, the first stage being trivial. Hence, the splitted circles in Fig. 2 would be split into three rather than
two. That means that three nodes are necessary for the handling of predictor and first corrector; and then one node each is necessary for k = 2, 3,
k = 4, 5 and k = 6, 7. In total, this yields the six nodes used.

20

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 21

Calculating the ratio between the wallclocktimes of the serial and the parallel simulations, one obtains the speedup548

enabled by the temporal parallelization, visualized in Fig. 7 (middle). The black line indicates ideal speedup, i.e. when549

using 6 nodes, one expects a speedup of 6. Note that we have neglected the influence of a finite number of timesteps550

on the ideal speedup, see Eq. (12). Calculating the ratio between the ideal speedup and the actual achieved one, gives551

the parallel efficiency shown in Fig. 7 (right). Here, one can see that the parallel-in-time scheme achieves a parallel552

efficiency of approximately 60% when using kmax = 9, corresponding to 6 and 7 nodes for the HBPC(6, 9) and the553

HBPC(8, 9) method, respectively.554

A parallel efficiency of 60% on up to 7 partitions is in the same range as it has been reported for other PinT555

methods in literature: For solving ODEs with the implicit RIDC method, efficiencies of 90% and 69% were reported556

for 4 and 8 processors, respectively. For the HBPC scheme simulating ODEs, efficiencies up to 65% and 48% are557

measured for 4 and 18 processors. An inverted dual time stepping procedure is used in [37] and efficiencies of 95%558

and 45% are reported for 4 and 20 processors. Combined with additional spatial parallelization, an efficiency of 50%559

is obtained on 12 processors [9]. The reporting of parallel efficiencies of methods based on the parareal algorithm is560

difficult as the performance heavily depends on the problem to be solved [36]. Especially for hyperbolic dominated561

problems, the parareal algorithm can have relatively low efficiencies. In [38], fluid structure interaction problems562

with the incompressible Navier-Stokes equations are solved, parareal is used for the temporal parallelization and an563

efficiency up to 22% on 20 processors is reported. The compressible Navier-Stokes equations are solved in [8] and564

the authors show that, in combination with a spatial parallelization, the parareal algorithm shows efficiencies up to565

approx. 40% on 16 processors.566

Work Distribution among the Parallel-in-Time Partitions. To obtain some insight in the parallel efficiency, we con-567

sider the work distribution among the different parallel-in-time partitions in Fig. 8. We visualize the normalized568

GMRES iterations performed on each partition for all the parallel-in-time simulations. One important property of the569

novel method can be seen from the different graphs in Fig. 8: The curves for different kmax and different timestep sizes570

are very close to each other. This indicates that the adaptive strategy manages relatively well to balance the load over571

the processors.572

Overall, the figure shows a qualitatively similar behavior for all simulations: While the partitions being responsible573

for one single stage of the predictor and the first corrector have the least load, the partition being responsible for k =574

{2, 3} has the highest load. For higher iterates, the load decreases again. Comparing Fig. 8 and the parallel efficiency575

in Fig. 7, one can see that the value of the inverse of the maximum normalized GMRES iterations over all partitions576

translates almost directly to the achieved parallel efficiency. This highlights the importance of the homogenization of577

the work distribution among the different prediction/correction steps.578

5.3. Space-Time Parallel Performance579

Next, we consider the parallel performance of the combined spatial and temporal parallelization. For that purpose,580

we again consider the initial conditions of the sine density wave given by Eq. (25). Two different representative581

configurations are investigated: A two dimensional problem on the domain Ω = [−2, 2]2 which is discretized with582

24×24 elements usingNp = 7, and a three dimensional problem on the domainΩ = [−2, 2]3 which is discretized with583

8 × 8 × 9 elements usingNp = 5. For the 2d example the HBPC(8, 7) and for the 3d example the HBPC(6, 5) scheme584

is used leading to an 8th order and a 6th order scheme in space and time, respectively. The final time is set to Tend = 5585

and the timestep is ∆t = 0.05, leading to NT = 100 timesteps. The preconditioner is rebuilt every 10th timestep and586

the linear solver tolerance is set to εGMRES = 5 · 10−2. C and η are set as before to 0.5 and 0.1, respectively.587

In Fig. 9 the parallel speedups and the parallel efficiencies of a pure spatial and a mixed spatial/temporal par-588

allelization are reported. Increasing the number of processors for the spatial discretization, the parallel efficiency589

decreases up to approx. 40% (2d) and 75% (3d). It is not possible to use more processors with the pure spatial par-590

allelization for the considered test setups as the very right points of the red curves in Fig. 9 correspond to the finest591

possible granularity (i.e. one element per processor). If one wants to further reduce the required wallclocktime, spatial592

and temporal parallelization can be combined. One can clearly see that the temporal parallelization gives a further593

speedup. For the 2d simulation, one can see that the parallel efficiency can even be improved by combining spatial594

and temporal parallelization. Due to the very high parallel efficiency of the spatial parallelization for the 3d case, one595

cannot observe an increase in the parallel efficiency. However, due to the possibility to use more processors, a speedup596

can still be achieved.597

21

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 22

0/1l=2 0/1l=3 2/3 4/5 6/7 8/9
0.6

0.8

1

1.2

1.4

1.6

current iterate [k]

no
rm

.G
M

R
E

S
ite

ra
tio

ns

HBPC(6, kmax), ∆t = 0.1

kmax = 1
kmax = 3
kmax = 5
kmax = 7
kmax = 9

0/1l=2 0/1l=3 2/3 4/5 6/7 8/9
0.6

0.8

1

1.2

1.4

1.6

current iterate [k]
no

rm
.G

M
R

E
S

ite
ra

tio
ns

HBPC(6, kmax), ∆t = 0.05

kmax = 1
kmax = 3
kmax = 5
kmax = 7
kmax = 9

0/1l=2 0/1l=3 2/3 4/5 6/7 8/9
0.6

0.8

1

1.2

1.4

1.6

current iterate [k]

no
rm

.G
M

R
E

S
ite

ra
tio

ns

HBPC(6, kmax), ∆t = 0.025

kmax = 1
kmax = 3
kmax = 5
kmax = 7
kmax = 9

0/1l=2 0/1l=3 0/1l=4 2/3 4/5 6/7 8/9

0.5

1

1.5

2

current iterate [k]

no
rm

.G
M

R
E

S
ite

ra
tio

ns

HBPC(8, kmax), ∆t = 0.1

kmax = 1
kmax = 3
kmax = 5
kmax = 7
kmax = 9

0/1l=2 0/1l=3 0/1l=4 2/3 4/5 6/7 8/9

0.5

1

1.5

2

current iterate [k]

no
rm

.G
M

R
E

S
ite

ra
tio

ns

HBPC(8, kmax), ∆t = 0.05

kmax = 1
kmax = 3
kmax = 5
kmax = 7
kmax = 9

0/1l=2 0/1l=3 0/1l=4 2/3 4/5 6/7 8/9

0.5

1

1.5

2

current iterate [k]
no

rm
.G

M
R

E
S

ite
ra

tio
ns

HBPC(8, kmax), ∆t = 0.025

kmax = 1
kmax = 3
kmax = 5
kmax = 7
kmax = 9

Figure 8. Normalized GMRES iterations per iterate [k] for the HBPC(6, kmax) (top) and the HBPC(8, kmax) (bottom) method using ∆t = 0.1 (left),
∆t = 0.05 (middle) and ∆t = 0.025 (right). Note that the indexed iterates correspond to the different ranks of the temporal parallelization. Note
that the iterates k = 0/1 are split up into the different implicit stages, see Fig. 2. For the normalization of the GMRES iterations, the mean GMRES
iterations of all iterates k per simulation is used.

Concluding, Fig. 9 shows that the temporal parallelization gives an efficiency gain if the pure spatial parallelization598

has an efficiency lower than the temporal one (i.e. lower than approx. 60%). I.e. the worse the parallel efficiency of the599

spatial operator, the more one can benefit from the temporal parallelization. Moreover, one can see that if the spatial600

parallelization reaches its limit, a further wallclocktime reduction can be achieved with the temporal parallelization.601

5.4. Efficiency Comparisons602

In this final subsection, we compare the efficiency of the novel parallel-in-time two-derivative method with603

classical sequential-in-time single-derivative Runge-Kutta methods. We will use the 4th order ARK4(3)6L[2]SA604

method [39, Appendix D] (abbreviated with ESDIRK4-6) and the 6th order ESDIRK6(5)9L[2]SA method [40, Ta-605

ble 13] (abbreviated with ESDIRK6-9) as high order implicit ESDIRK methods8. For both, an adaptive Newton606

procedure that is based on the same principles as the one derived in Sec. 4 is used. Details on this can be found607

in Appendix C. We set C = 0.5 and η = 0.1.608

5.4.1. Density Sine Wave609

We start by considering the previously used example with the initial data given by Eq. (25) with ε = 1 and610

Np = 7 on the domain Ω = [−1, 1]2, discretized with NE = 24 × 24 and with Tend = 10. We run the simulation by611

choosing different timesteps with the parallel-in-time HBPC(6, 5), HBPC(6, 7), HBPC(8, 7) and HBPC(8, 9) schemes.612

Additionally, the ESDIRK4-6 and ESDIRK6-9 are used as a reference. The simulations are performed on one node613

with 36 processors; for the parallel-in-time methods the respective multiples are used. The preconditioners are rebuilt614

every 10th timestep and εGMRES = 5 · 10−2 is chosen for the linear solver. Initially, when no adaptive Newton criterion615

is available, we choose εNewton,rel = 10−8. C and η are set to 0.5 and 0.1, respectively.616

8 While HBPC(8, 7) and HBPC(8, 9) are schemes of order eight, we did, despite a thorough literature study, not find an eighth-order diagonally
implicit Runge-Kutta scheme, see also [25]. Hence, only fourth- and sixth-order Runge-Kutta schemes are used for comparison.

22

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 23

102 10320

21

22

23

24

25

one element/processor

two elements/processor

#processors

sp
ee

du
p

2d, Np = 7, HBPC(8, 7)

space parallel
space+time parallel

102 103

0.4

0.6

0.8

1

one element/processor

two elements/processor

#processors

pa
ra

lle
le
ffi

ci
en

cy
(s

tr
on

g)

2d, Np = 7, HBPC(8, 7)

space parallel
space+time parallel

102 10320

21

22

23

24

25

one element/processor

two elements/processor

#processors

sp
ee

du
p

3d, Np = 5, HBPC(6, 5)

space parallel
space+time parallel

102 103

0.6

0.8

1

one element/processor

two elements/processor

#processors

pa
ra

lle
le
ffi

ci
en

cy
(s

tr
on

g)

3d, Np = 5, HBPC(6, 5)

space parallel
space+time parallel

Figure 9. Parallel speedup (left) and strong parallel efficiency (right) for a pure spatial and a mixed spatial/temporal parallelization for a 2d example
using Np = 7 and HBPC(8, 7) (top) and a 3d example using Np = 5 and HBPC(6, 5) (bottom). Note that the very right point of the pure spatial
parallelization (red, circles) corresponds to the finest possible granularity, i.e. one element per processor. The very right point of the mixed
spatial/temporal parallelization corresponds to two elements per processor.

Fig. 10 shows the temporal convergence (left) and the efficiency (right) of the different methods. One can see617

that all methods show the desired order of convergence. The sixth order HBPC schemes show a smaller error than the618

sixth order ESDIRK method. Considering the efficiency, one can see that if small errors are desirable, the higher order619

methods pay off. Moreover, one can see that the sixth order HBPC method is superior to the ESDIRK6-9 scheme for620

smaller errors.621

5.4.2. Cylinder Flow622

Next, we consider the two dimensional flow around a cylinder. Similar as it has been done by other authors, see623

e.g. [41, 42], we consider the aerodynamic coefficients as a quality measure. The flow parameters for the cylinder624

flow with diameter D = 1 are given by the reference Mach number ε = 0.1 and the Reynolds number ReD = 200. The625

initial conditions are given by the constant state626

ρ0 = 1, v0 = (1, 0)T , p0 =
1
γ
,627

and the cylindrical domain with an outer diameter of D∞ = 200 is discretized using NE = 1200 with Np = 5. On628

the cylinder surface, wall boundary conditions are prescribed. At the outer boundary, Dirichlet boundary conditions629

with the constant initial state are used. A more detailed description of the used mesh is available in [5, Sec. 5.1.1].630

We run the simulation with a fourth order low-storage Runge-Kutta time discretization (ERK4) [26] up to T = 400.631

At this time, the flow is fully developed and a vortex shedding has been established. In the interval from T = 400 to632

T = 500, we obtain CD ≈ 1.35, a fluctuating lift coefficient of CL′ ≈ 0.501 and a Strouhal number of Sr ≈ 0.197.633

23

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 24

10−2 10−1

10−12

10−10

10−8

10−6

10−4

4

6

8

∆t

∥w
−

w
h∥

2

convergence

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)
HBPC(6, 7)
HBPC(8, 7)
HBPC(8, 9)

100 200 300 400 500 600 700

10−12

10−10

10−8

10−6

10−4

T [s]

∥w
−

w
h∥

2

efficiency

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)
HBPC(6, 7)
HBPC(8, 7)
HBPC(8, 9)

Figure 10. Temporal convergence (left) and required wallclocktime (right) to achieve a certain error for different implicit schemes for the 2d sine
wave problem with ε = 1 using different timestep sizes.

Those aerodynamic measures agree well with data from literature, see e.g. [43, 44, 45]. Differences are most likely634

due to the relatively coarse spatial resolution.635

To evaluate the performance of the novel scheme, we use the mean drag coefficient636

CD :=
2F̄x

ρ0∥v0∥
2
2D
,637

where F̄x denotes the mean drag force at the cylinder surface as a measure for the accuracy. We restart the simulation638

at T = 400 and run it approximately for two vortex shedding periods (Tend = 410) using different timestepping639

methods and timestep sizes. As this is a quasi-steady flow, we estimate the temporal error only once during the640

adaptive Newton procedure. The aerodynamic forces are measured at the time intervals ∆t = 0.5 and F̄x is calculated641

via mean of these discrete values. A simulation with a very small explicit timestep for the ERK4 serves as a reference642

solution to calculate an error measure.643

As we are using relatively large timesteps and ε = 0.1, we use Eq. (23) to estimate the temporal error and do not644

perform an explicit step for the initial Newton guess. Moreover, we set C = 1 in the adaptive Newton procedure,645

see Eq. (35). For the linear solver, the adaptive Eisenstat-Walker procedure is used. During the startup procedure of646

the adaptive Newton strategy, a relative tolerance of εNewton,rel = 10−4 is used. The ESDIRK schemes initially use a647

Newton tolerance of εNewton,rel = 10−6. We choose the safety factor η = 0.1 for the ESDIRK4-6 and the ESDIRK6-9648

in Eq. (C.2).649

In Fig. 11 the convergence and efficiency considering the drag coefficient are visualized on the left and right,650

respectively. One can see that the ESDIRK4-6 reaches the desired order of convergence. The sixth order schemes651

have difficulties to reach the desired order for large timesteps but reach the asymptotic regime for small timesteps.652

The eighth order HBPC(8, 7) scheme also achieves almost its desired order for the small timesteps. The figure shows653

that the HBPC(6, 5) scheme has smaller errors than the ESDIRK methods using the same timestep. However, the654

HBPC(8, 7) scheme could outperform the sixth order schemes in terms of error only for a few timesteps. Considering655

the efficiency, the ESDIRK4-6 seems to be superior to the other methods. The ESDIRK6-9 and the HBPC(6, 5) are656

within reach, but are only able to outperform the ESDIRK4-6 for very few settings. One reason for the good behavior657

of the forth order method could be its L-stability. As both, the ESDIRK6-9 and the HBPC(6, kmax) are not L-stable,658

ESDIRK4-6 is naturally better suited for stiff problems. Note that the results of this investigation depend on the659

equipped error measure and physical setting. Using another error measure or using another mesh and/or Reynolds660

number could lead to slightly different results.661

5.4.3. Taylor-Green-Vortex662

Finally, we consider the three dimensional Taylor-Green-Vortex (TGV). It is a prototypical periodic test case to663

study the transition to turbulence and its decay. The initial data for the non-dimensional equations (see also [46]) are664

24

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 25

10−2 10−1
10−13

10−11

10−9

10−7

10−5

10−3

4 6

8

∆t

er
ro

r(
C

D
)

convergence

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)
HBPC(8, 7)

102 103
10−13

10−11

10−9

10−7

10−5

10−3

T [s]

er
ro

r(
C

D
)

efficiency

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)
HBPC(8, 7)

Figure 11. Temporal convergence (left) of mean drag coefficient CD and required wallclocktime (right) to achieve a certain error for different
implicit schemes for the cylinder flow problem at ReD = 200 using different timestep sizes.

given by665

ρ = 1, v =

 cos(x) cos(y) cos(z)
− cos(x) sin(y) cos(z)

0

 , and p =
ρ

γ
+
ρε2

16
(cos(2x) + cos(2y)) (cos(2z) + 2) ,666

on the periodic domain Ω = [0, 2π]3, which we discretize with NE = 16 × 16 × 16 and Np = 3. We use ε = 10−1, a667

Reynolds number of Re = 800 and Tend = 10. A measure for the turbulent decay is the dissipation rate of the kinetic668

energy669

∂Ekin

∂t
=
µ

ρ∥Ω∥

∫
Ω

∇xv : ∇xvdx.670

We use the dissipation rate as an error measure by calculating the L1-norm of the measured dissipation rates in the671

time intervals ∆t = 0.25. An explicit simulation with a very small timestep (ERK4, ∆t ≈ 1.4 · 10−3) serves as a672

reference. Similar as it has been done in Sec. 5.4.2, the ESDIRK4-6 and the ESDIRK6-9 use η = 0.1. For the673

HBPC(6, 5), the temporal error is estimated according to Eq. (23) and C = 0.5, η = 0.1. During the startup procedure674

of the adaptive Newton strategy, a relative tolerance of εNewton,rel = 10−4 is used. The ESDIRK schemes initially use a675

Newton tolerance of εNewton,rel = 10−6. At every 10-th timestep, the temporal error is estimated and the preconditioners676

are rebuilt. Simulations are performed on one node with 36 processors, or the respective multiples for the temporal677

parallelization. Please note that we do not report on HBPC(8, 7) results in this section. Due to limited computational678

resources, and the large amount of degrees of freedom present, we could not test the method sufficiently such that fair679

and reliable results can be guaranteed. Only very preliminary results are available that show that the method does not680

suffer from stability issues, and numerical errors are at least in the order of the other methods shown here.681

The dissipation rate for the ESDIRK4-6, ESDIRK6-9 and the HBPC(6, 5), each with ∆t = 0.25 are shown in682

Fig. 12 (left). Virtually, all schemes coincide; deviations from the DNS data [47] are due to the too coarse spatial683

resolution. In Fig. 12 (middle and right) the convergence and the efficiency w.r.t. the dissipation rate for the ESDIRK4-684

6, the ESDIRK6-9 and the HBPC(6, 5) are shown. One can see that the HBPC(6, 5) has smaller errors than the685

ESDIRK methods for the same chosen timestep sizes. However, this advantage does not directly transfer to higher686

efficiencies. This motivates further research on the development of the HBPC methods as outlined in the next section,687

possibly offering higher accuracies and efficiencies for stiff problems.688

6. Conclusion and Outlook689

In this work, we have shown the application of a parallel-in-time implicit two-derivative discontinuous Galerkin690

method to the Navier-Stokes equations. As time discretization the HBPC scheme has been used. In previous works,691

25

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 26

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

·10−2

t

−
∂

E
ki

n
∂

t

∆t = 0.25

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)
DNS

10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−8

10−7

10−6

10−5

10−4

4

6

∆t
er

ro
r(
∂

E
ki

n
∂

t
)

convergence

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)

103.2 103.4 103.6 103.8 104 104.2

10−8

10−7

10−6

10−5

10−4

T [s]

er
ro

r(
∂

E
ki

n
∂

t
)

efficiency

ESDIRK4-6
ESDIRK6-9
HBPC(6, 5)

Figure 12. Taylor-Green vortex at Re = 800 and ε = 10−1: temporal evolution of kinetic energy dissipation rate (left) with ∆t = 0.25, DNS
data from [47]. Temporal convergence (middle) and required wallclocktime (right) to achieve a certain error for different implicit schemes using
different timestep sizes.

this time discretization has been combined with the discontinous Galerkin method [1] to solve PDEs and the concept692

of time parallelism has been shown for ODEs [3]. The present work tackles practical aspects of combining a space-693

parallel discontinuous Galerkin PDE discretization with the time-parallel HBPC scheme.694

A homogeneous distribution of linear iterations over the different processors has been identified as a key for695

parallel efficiency. Two main ingredients have been introduced for that purpose: an adaptive procedure for Newton’s696

method, and an additional distribution of the predictor’s and first corrector’s stages to different processors. It has been697

shown that the temporal parallelization reaches a parallel efficiency of approx. 70− 60% on 4− 7 partitions. The pure698

spatial parallelization has been shown to be well suited for parallel computing as it provides 50−80% parallel efficiency699

for very fine granularities on more than 1000 processors. Combining spatial and temporal parallelization offers the700

possibility to obtain further speedup and in some cases also an improved efficiency over the pure spatial parallelization.701

This has also been demonstrated for settings with more than 1000 processors, highlighting the capability of the novel702

method to solve large-scale problems. Furthermore, the novel method has been compared with serial-in-time ESDIRK703

methods in terms of efficiency. We have shown that in some cases the novel method can outperform these schemes.704

We consider the current paper as a milestone towards making two-derivative predictor corrector schemes a viable705

alternative to established schemes in applications from compressible flows. Obviously, the results in Sec. 5 show706

that there is still room for improvement. Active research lines include the identification of more suited background707

schemes in Eq. (6) (other collocation points, extension to general linear methods); the use of IMEX schemes within708

this context, see [2, 3, 48] for first attempts in the context of ODEs; and Jacobian-free high-derivative schemes, where709

more than two temporal derivatives are added to the algorithm using a suitable finite difference approach, see [49] for710

first attempts. Further developments will consider full adaptivity in space and time, hence making use of spatial error711

estimators to determine both hp-adaptivity and non-constant timesteps.712

Acknowledgments713

J. Zeifang was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project714

no. 457811052. A. Thenery Manikantan was funded by the “Bijzonder Onderzoeksfonds” (BOF) from UHasselt715

- project no. BOF21KP12. We acknowledge the VSC (Flemish Supercomputer Center) for providing computing716

resources. The VSC is funded by the Research Foundation - Flanders (FWO) and the Flemish Government.717

Declaration of interest718

The authors declare that they have no known competing financial interests or personal relationships that could719

have appeared to influence the work reported in this paper.720

26

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 27

Appendix A. Navier-Stokes fluxes721

For the Navier-Stokes equations (1), inviscid and viscous fluxes F(w) and Fv(w,∇xw) are given by722

F(w) =

 ρv
ρv ⊗ v + 1

ε2 p · Id
v(E + p)

 , and Fv(w,∇xw) =

 0
τ

τ · v + q

 . (A.1)723

Pressure is coupled to density, momentum and energy via the ideal gas equation of state,724

p = (γ − 1)
(
E −
ε2

2
ρ∥v∥22

)
.725

The viscous stress tensor τ and the heat flux q are defined as726

τ := µ
(
∇xv + (∇xv)T −

2
3

(∇x · v) Id
)
, and q := λT∇xT,727

where T denotes temperature, µ dynamic viscosity, the thermal conductivity λT =
cpµ

Pr , specific heat capacity cp =
Rγ
γ−1 ,728

specific gas constant R = 1
γε2 , the ideal gas law p = ρRT and the fluid specific Prandtl number Pr = 0.72.729

Appendix B. Butcher Tables of the background Hermite-Birkhoff Runge-Kutta Methods730

We consider the following quadrature rules:731

• A sixth-order method (q = 6) with three stages (s = 3, one being fully explicit), as also used in [19, 3]732

c =

0
1
2
1

 , B(1) =


0 0 0

101
480

8
30

55
2400

7
30

16
30

7
30

 , B(2) =


0 0 0
65

4800 − 25
600 − 25

8000
1
60 0 − 1

60

 , (B.1)733

with the fifth-order (q̂ = 5) embedded quadrature rule734

ĉ =

0
1
2
1

 , B̂(1) =


0 0 0
31
240

4
15

5
48

2
15

8
15

1
3

 , B̂(2) =


0 0 0

0 − 23
240 − 1

60

0 − 1
15 − 1

30

 . (B.2)735

• An eighth-order method (q = 8) with four stages (s = 4, one being fully explicit), as also used in [3]736

c =


0
1
3
2
3

1


, B(1) =


0 0 0 0

6893
54432

313
2016

89
2016

397
54432

223
1701

20
63

13
63

20
1701

31
224

81
224

81
224

31
224


, B(2) =


0 0 0 0

1283
272160 − 851

30240 − 269
30240 − 163

272160
43

8505 − 16
945 − 19

945 − 8
8505

19
3360 − 9

1120
9

1120 − 19
3360


, (B.3)737

with the seventh-order (q̂ = 7) embedded quadrature rule738

ĉ =


0
1
3
2
3

1


, B̂(1) =


0 0 0 0

212
2835

47
1680

6
35

171
2891

214
2835

19
105

12
35

191
2835

8
105

117
560

18
35

337
1680


, B̂(2) =


0 0 0 0

0 − 299
4237 − 97

1890 − 51
9599

0 − 59
945 − 62

945 − 17
2835

0 − 33
560 − 3

70 − 19
1680


, (B.4)739

27

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 28

Appendix C. Adaptive Criterion for ESDIRK Method740

For the comparisons in Sec. 5.4, we use two different ESDIRK methods. The 4th order ARK4(3)6L[2]SA741

method [39, Appendix D] (abbreviated with ESDIRK4-6) and the 6th order ESDIRK6(5)9L[2]SA method [40, Ta-742

ble 13] (abbreviated with ESDIRK6-9)9. For those single-derivative implicit ESDIRK methods, the non-linear equa-743

tion to be solved for each stage l is given by744

Xl = wold + Φ
(
Xl, X1:l−1

)
,745

with Xl := wn,l
h , where wn,l

h denotes the discrete w at time tn and stage l. For the ease of notation, we use X1:l−1 :=746 (
X1, X2, . . . , Xl−1

)
. The function Φ is given by747

Φ
(
Xl, X1:l−1

)
= ∆tB(1)

ll R(1)
h (wn,l

h) + ∆t
l−1∑
i=1

B(1)
li R(1)

h (wn,i
h).748

Note that the introduction of Xl would not have been necessary for this method. Nevertheless, we introduce it here to749

highlight the similarities with the two-derivative method, see Eq. (16). As initial guess for Newton’s method we use750

wn,l
h,0 = wn,l−1

h . After defining the error introduced by Newton’s method751

El
r := Xl − Xl

r,752

where the subscript r denotes the solution of the r-th Newton step, we follow the steps outlined in Sec. 4.1.1 and find753

El
r

.
=∆Xr+1 +

Id−∂Φ
(
Xl, X1:l−1

)
∂Xl


−1

·

 l−1∑
i=1

∂Φ
(
Xl, X1:l−1

)
∂Xi Ei

r′

754

=∆Xr+1 +

Id−∆tB(1)
ll

∂R(1)
h

∂wn,l
h

−1

·

∆t
l−1∑
i=1

B(1)
li

∂R(1)
h

∂wn,i
h

Ei
r′

 .755

The limits of this equations can then be found as756

∥El
r∥2 ≈ ∥∆Xr+1∥2 for ∆t → 0,757

∥El
r∥2 ≈ ∥∆Xr+1∥2 +

l−1∑
i=2

C̃i

∣∣∣∣∣∣∣B
(1)
li

B(1)
ll

∣∣∣∣∣∣∣ ∥Ei
r′∥2 for ∆t → ∞,758

for some constants C̃i ≈

∣∣∣∣∣∣
∣∣∣∣∣∣(∂R(1)

h

∂wn,l
h

)−1
·

(
∂R(1)

h

∂wn,i
h

)∣∣∣∣∣∣
∣∣∣∣∣∣
2
, which equal one for a linear system. Note that due to the explicit759

evaluation of the first stage it holds E1
r = 0. We can hence find a condition for the Newton increment of stage l via760

∥∆Xl
r+1∥2 +C

l−1∑
i=2

∥∆Xi
r+1∥2 + O(C2) + · · · + O(Cl−2) ≤ η∥Et∥2. (C.1)761

As for the used ESDIRK methods the last stage directly gives the solution at the new timestep, we have defined762

∥Et∥2 := ∥Es
t ∥2. Similar as for the HBPC methods, C is a function of the timestep, though, we choose C = 0.5 to be763

constant in this paper and truncate all higher order terms of C in Eq. (C.1). This corresponds to neglecting secondary764

effects of error propagation from previous stages. Demanding that the Newton increments of all stages are below a765

common threshold, we can then find766

∥∆Xl
r+1∥2 ≤

1
1 +C(s − 2)

η∥Et∥, for l = 2, . . . , s, (C.2)767

28

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 29

10−2 10−1
10−12

10−10

10−8

10−6

10−4

10−2

[k]

∥w
−

w
h∥

2
an

d
∥E

t∥
2

ε = 1

ESDIRK4-6 embedded
ESDIRK6-9 embedded
ESDIRK4-6 exact
ESDIRK6-9 exact

10−2 10−1

10−11

10−10

10−9

10−8

10−7

10−6

10−5

[k]

ε = 0.1

ESDIRK4-6 embedded
ESDIRK6-9 embedded
ESDIRK4-6 exact
ESDIRK6-9 exact

Figure C.13. Accuracy of embedded error estimate for ESDIRK4-6 and ESDIRK6-9 using the initial conditions given by Eq. (25) , Np = 7 and
NE = 322. The reference Mach number is set to ε = 1 (left) and ε = 10−1 (right).

which can be combined with the Newton error extrapolation described in Eq. (36) and Eq. (37). Note that, similar768

as for the HBPC schemes, we have introduced a safety factor η that accounts for the non-exact error estimate via the769

embedded temporal error estimate. In Fig. C.13 the accuracy of the embedded error estimates are shown for the sine770

wave example and the same setup as used in Sec. 4.1.4. The results suggest that choosing η ≤ 0.1 is reasonable.771

We now combine the embedded error estimate and the adaptive Newton criterion given by Eq. (C.2). The effec-772

tiveness of this adaptive strategy is highlighted in Fig. C.14. One can see that the novel adaptation strategy is at least773

as good as the standard strategies based on the Newton residual and outperforms them for large timesteps.774

References775

[1] J. Zeifang, J. Schütz, Implicit two-derivative deferred correction time discretization for the discontinuous Galerkin method, Journal of Com-776

putational Physics 464 (2022) 111353.777

[2] J. Schütz, D. Seal, An asymptotic preserving semi-implicit multiderivative solver, Applied Numerical Mathematics 160 (2021) 84–101.778

[3] J. Schütz, D. C. Seal, J. Zeifang, Parallel-in-time high-order multiderivative IMEX solvers, Journal of Scientific Computing 90 (54) (2022)779

1–33.780

[4] J. Zeifang, J. Schütz, D. Seal, Stability of implicit multiderivative deferred correction methods, BIT Numerical Mathematics (2022).781

[5] S. Vangelatos, On the efficiency of implicit discontinuous Galerkin spectral element methods for the unsteady compressible Navier-Stokes782

equations, Ph.D. thesis, University of Stuttgart (2019).783

[6] E. Ferrer, G. Rubio, G. Ntoukas, W. Laskowski, O. Mariño, S. Colombo, A. Mateo-Gabı́n, H. Marbona, F. Manrique de Lara, D. Huergo,784

J. Manzanero, A. Rueda-Ramı́rez, D. Kopriva, E. Valero, HORSES3D: A high-order discontinuous Galerkin solver for flow simulations and785

multi-physics applications, Computer Physics Communications 287 (2023) 108700.786

[7] F. D. Witherden, A. M. Farrington, P. E. Vincent, PyFR: An open source framework for solving advection–diffusion type problems on787

streaming architectures using the flux reconstruction approach, Computer Physics Communications 185 (11) (2014) 3028–3040.788

[8] T. Lunet, J. Bodart, S. Gratton, X. Vasseur, Time-parallel simulation of the decay of homogeneous turbulence using parareal with spatial789

coarsening, Computing and Visualization in Science 19 (1) (2018) 31–44.790

[9] W. Chen, Y. Ju, C. Zhang, Parallel-in-time-space Chebyshev pseudospectral method for unsteady fluid flows (2021).791

URL https://www.researchgate.net/publication/350049339792

[10] R. Croce, D. Ruprecht, R. Krause, Parallel-in-space-and-time simulation of the three-dimensional, unsteady Navier–Stokes equations for793

incompressible flow, in: Modeling, Simulation and Optimization of Complex Processes-HPSC 2012, Springer, 2014, pp. 13–23.794

[11] M. J. Gander, 50 years of time parallel time integration, in: Multiple shooting and time domain decomposition methods, Vol. 9 of Contribu-795

tions in Mathematical and Computational Sciences, Springer, Cham, 2015, pp. 69–113.796

[12] B. W. Ong, J. B. Schroder, Applications of time parallelization, Computing and Visualization in Science 23 (1-4) (2020) 11.797

[13] Parallel-in-Time.798

URL https://parallel-in-time.org799

[14] C. W. Gear, Parallel methods for ordinary differential equations, Calcolo 25 (1) (1988) 1–20.800

[15] W. L. Miranker, W. Liniger, Parallel methods for the numerical integration of ordinary differential equations, Mathematics of Computation801

21 (1967) 303–320.802

[16] A. J. Christlieb, C. B. Macdonald, B. W. Ong, Parallel high-order integrators, SIAM Journal on Scientific Computing 32 (2) (2010) 818–835.803

9Note that in the original publication [40, Table 13] there is a typo for b̂4. The value should be b̂4 =
1376520686137389
1064235527052079 .

29

https://www.researchgate.net/publication/350049339
https://www.researchgate.net/publication/350049339
https://parallel-in-time.org
https://parallel-in-time.org

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 30

10−2 10−1

10−8

10−7

10−6

10−5

10−4

4

∆t

∥w
−

w
h∥

2

ESDIRK4-6, εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive ∆X
adaptive absolute
adaptive relative

10−2 10−1

2

3

4

5

6

7

∆t
av

g.
N

ew
to

n/
so

lv
e

ESDIRK4-6, εGMRES = 5 · 10−2

10−2 10−1

20

40

60

80

100

∆t

av
g.

G
M

R
E

S/
st

ag
e

ESDIRK4-6, εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive ∆X
adaptive absolute
adaptive relative

10−2 10−1

10−11

10−9

10−7

10−5

6

∆t

∥w
−

w
h∥

2

ESDIRK6-9, εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive ∆X
adaptive absolute
adaptive relative

10−2 10−1

2

4

6

∆t

av
g.

N
ew

to
n/

so
lv

e

ESDIRK6-9, εGMRES = 5 · 10−2

10−2 10−1

20

40

60

80

∆t
av

g.
G

M
R

E
S/

st
ag

e

ESDIRK6-9, εGMRES = 5 · 10−2

εNewton = 10−2

εNewton = 10−4

εNewton = 10−6

εNewton = 10−8

adaptive ∆X
adaptive absolute
adaptive relative

Figure C.14. Resulting L2-error (left), average Newton iterations per stage (middle) and average GMRES iterations per stage (right) for ESDIRK4-6
(top) and ESDIRK6-9 (bottom) with fixed GMRES tolerance when choosing different convergence criteria for Newton’s method. Adaptive Newton
strategy is performed according to Eq. (C.2) (adaptive ∆X), N(Xr) ≤ η∥Et∥2 (adaptive absolute) or N(Xr) ≤ η∥Et∥2N(X0) (adaptive relative). Note
that the legend in the middle figures has been omitted for clarity but is the same as for the left and the right plot.

[17] A. Christlieb, B. Ong, Implicit parallel time integrators, Journal of Scientific Computing 49 (2) (2011) 167–179.804

[18] A. J. Christlieb, C. B. Macdonald, B. W. Ong, R. J. Spiteri, Revisionist integral deferred correction with adaptive step-size control, Commu-805

nications in Applied Mathematics and Computational Science 10 (1) (2015) 1–25.806

[19] J. Schütz, D. C. Seal, A. Jaust, Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin807

spatial discretizations, Journal of Scientific Computing 73 (2017) 1145–1163.808

[20] D. A. Kopriva, Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers, Springer Science &809

Business Media, 2009.810

[21] F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.-D. Munz, Explicit discontinuous Galerkin methods for unsteady811

problems, Computers & Fluids 61 (2012) 86–93.812

[22] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous Finite Element method for inviscid and viscous813

turbomachinery flows, Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics (1997) 99–108.814

[23] V. Linders, P. Birken, Locally conservative and flux consistent iterative methods, arXiv preprint arXiv:2206.10943 (2022).815

[24] A. Kværno, Singly diagonally implicit Runge–Kutta methods with an explicit first stage, BIT Numerical Mathematics 44 (3) (2004) 489–502.816

[25] C. A. Kennedy, M. H. Carpenter, Diagonally implicit Runge–Kutta methods for ordinary differential equations. A review, Tech. Rep. TM-817

2016-219173, NASA Langley Research Center (2016).818

[26] M. Carpenter, C. Kennedy, Fourth-order 2N-storage Runge-Kutta schemes, Tech. rep., NASA Langley Research Center (1994).819

[27] M. Franciolini, A. Crivellini, A. Nigro, On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontin-820

uous Galerkin solutions of incompressible turbulent flows, Computers & Fluids 159 (2017) 276–294.821

[28] Y. Pan, Z.-G. Yan, J. Peiró, S. Sherwin, Development of a balanced adaptive time-stepping strategy based on an implicit JFNK-DG compress-822

ible flow solver, Communications on Applied Mathematics and Computation 4 (2022) 728–757.823

[29] M. Han Veiga, P. Öffner, D. Torlo, DeC and ADER: similarities, differences and a unified framework, Journal of Scientific Computing 87 (1)824

(2021) Paper No. 2, 35.825

[30] V. Dolejšı́, M. Holı́k, J. Hozman, Efficient solution strategy for the semi-implicit discontinuous Galerkin discretization of the Navier–Stokes826

equations, Journal of Computational Physics 230 (11) (2011) 4176–4200.827

[31] D. Blom, P. Birken, H. Bijl, F. Kessels, A. Meister, A. van Zuilen, A comparison of Rosenbrock and ESDIRK methods combined with828

iterative solvers for unsteady compressible flows, Advances in Computational Mathematics 42 (2016) 1401–1426.829

[32] P. Birken, Numerical Methods for Unsteady Compressible Flow Problems, Numerical Analysis and Scientific Computing, Chapman & Hall,830

2021.831

[33] G. Noventa, F. Massa, F. Bassi, A. Colombo, N. Franchina, A. Ghidoni, A high-order discontinuous Galerkin solver for unsteady incompress-832

ible turbulent flows, Computers & Fluids 139 (2016) 248–260.833

30

J. Zeifang, A. Thenery Manikantan, J. Schütz / Applied Mathematics and Computation 00 (2023) 1–31 31

[34] S. C. Eisenstat, H. F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM Journal on Scientific Computing 17 (1) (1996)834

16–32.835

[35] N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. Gassner, F. Hindenlang, M. Hoffmann, T. Kuhn, M. Sonntag, et al., FLEXI: A high836

order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws, Computers & Mathematics with Applications 81 (2021)837

186–219.838

[36] S. Götschel, M. Minion, D. Ruprecht, R. Speck, Twelve ways to fool the masses when giving parallel-in-time results, in: Workshops on839

Parallel-in-Time Integration, Springer, 2020, pp. 81–94.840

[37] W. Chen, Y. Ju, C. Zhang, A parallel inverted dual time stepping method for unsteady incompressible fluid flow and heat transfer problems,841

Computer Physics Communications 260 (2021) 107325.842

[38] N. Margenberg, T. Richter, Parallel time-stepping for fluid–structure interactions, Mathematical Modelling of Natural Phenomena 16 (2021)843

20.844

[39] C. A. Kennedy, M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Applied Numerical Mathemat-845

ics 44 (2003) 139–181.846

[40] C. A. Kennedy, M. H. Carpenter, Diagonally implicit Runge–Kutta methods for stiff ODEs, Applied Numerical Mathematics 146 (2019)847

221–244.848

[41] H. Bijl, M. H. Carpenter, V. N. Vatsa, C. A. Kennedy, Implicit time integration schemes for the unsteady compressible Navier–Stokes849

equations: laminar flow, Journal of Computational Physics 179 (1) (2002) 313–329.850

[42] A. Nigro, C. De Bartolo, F. Bassi, A. Ghidoni, Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin851

discretized Navier–Stokes equations, Journal of Computational Physics 276 (2014) 136–162.852

[43] L. Qu, C. Norberg, L. Davidson, S.-H. Peng, F. Wang, Quantitative numerical analysis of flow past a circular cylinder at Reynolds number853

between 50 and 200, Journal of Fluids and Structures 39 (2013) 347–370.854

[44] C. Liang, S. Premasuthan, A. Jameson, High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using855

spectral difference method, Computers & Structures 87 (11-12) (2009) 812–827.856

[45] J. Meneghini, F. Saltara, C. Siqueira, J. Ferrari Jr., Numerical simulation of flow interference between two circular cylinders in tandem and857

side-by-side arrangements, Journal of Fluids and Structures 15 (2) (2001) 327–350.858

[46] J. Zeifang, J. Schütz, K. Kaiser, A. Beck, M. Lukáčová-Medvid’ová, S. Noelle, A novel full-Euler low Mach number IMEX splitting,859

Communications in Computational Physics 27 (2020) 292–320.860

[47] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. Nickel, R. H. Morf, U. Frisch, Small-scale structure of the Taylor–Green vortex, Journal of861

Fluid Mechanics 130 (1983) 411–452.862

[48] E. Theodosiou, J. Schütz, D. Seal, An explicitness-preserving IMEX-split multiderivative method, UHasselt CMAT Preprint UP2301 (2023).863

URL https://www.uhasselt.be/media/zvvbnhh0/up2301.pdf864

[49] J. Chouchoulis, J. Schütz, J. Zeifang, Jacobian-free explicit multiderivative Runge-Kutta methods for hyperbolic conservation laws, Journal865

of Scientific Computing 90 (96) (2022).866

31

https://www.uhasselt.be/media/zvvbnhh0/up2301.pdf
https://www.uhasselt.be/media/zvvbnhh0/up2301.pdf

