

IPIC 2023

9th International Physical Internet Conference June 13-15, 2023 Athens, Greece

Long-term capacity planning in rail-road networks under demand uncertainty

Thibault Delbart Prof. Dr. Kris Braekers Prof. Dr. An Caris

13 June 2023

Research focus

Support logistics service providers in their transition towards synchromodal transport

"Synchromodal transport is real-time, dynamic and optimised intermodal transport" (Ambra et al., 2019)

How?

Research focus

Decision support model to assist capacity decisions under uncertainty

(1) Which capacity?
➤Train slots on the long/medium term
➤Trucking capacity in the short term

(2) Which uncertainty?
➢ Demand volume
➢ Available train slots over time
➢ Train slot prices over time

Network assumptions

Train services

- Offered by rail operators
- LSPs can book slots between each terminal pair
- Fixed schedules
- Can be booked in advance

Truck services

- Unlimited number
- More expensive and faster than trains
- Only booked in the short term

Terminals

- Cost per transhipped container
- Transhipment time

Network example

Network example

Literature results: uncertainty

Literature results: modelling approach

Modelling approach	Capacity and travel time	Demand	Demand and travel time
Chance-constrained mixed integer programming			1
Fuzzy chance-constrained mixed integer programming	1		
Mixed integer linear program		1	1
Simulation optimisation			1
Two-stage chance constrained programming			1
Two-stage robust programming		1	
Two-stage stochastic programming		6	
Total number of studies	1	8	4

Model description

Integer programming model

Minimise costs

- Train slots at each stage
- Trucking at the operational stage
- ➤Transhipment

Planning timeline

	First stage	Second stage	Third stage
Decisions	Train slots to book	Train slots to book	Train slots to book
		Train slots to cancel	Train slots to cance
			Trucks to book
			Container routing
Nowinformation		Available capacity	Available capacity
New Information		Improved demand	Demand volume
	forecasts	Order sizes	
			Time windows

Scenario tree

Stochastic demand

IPIC 2023

Stochastic demand

Each terminal pair has its own average demand

2nd stage demand distributions depend on the **total demand in the market**

Each market state has its own probability

Long-term demand distribution is the weighted sum of the 2nd stage distributions

Stochastic capacity

Fixed number of train slots in the first stage

Second and third stages:

- Stochastic capacity decrease per connection
- Distribution mean depends on the market state

Train slot prices

Evolution of prices per train slot

Fixed increase compared to initial prices

Depends on the market state

Methodology

- Exact solver with a time limit and minimum optimality gap
- Factorial design
- Tested models:
 - Three-stage
 - Two-stage
 - Without replanning
 - Perfect information

Factorial design

Network	Network 1	ce 4	Network 2	Netwo Service 1 Service 2 Service 2	ervice 3 Service 4 Service 5
First-stage train capacity/demand ratio	120%		150%	180%	
First-stage train slot prices as % of truck cost	65%	70%	75%	80%	85%
Width of demand distribution as % of average demand	s 20%		40%	60%	
Difference between market state demand volumes as % o average demand	of 10%		20%	30%	

Train cost ratio

■ no updates ■ 2 stages ■ 3 stages

Network

Network - continued

Capacity

Capacity – slots booked

IPIC 2023

Market states demand differences

IPIC 2023

Discussion

Factors that improve the cost and rail share over a two-stage model

- Lower train cost compared to trucks
- More flexible network
- Information quality when updating capacity decisions
- Challenges
 - Data requirements
 - Computational complexity

Future research

Horizontal cooperation

Thank you for your attention

M thibault.delbart@uhasselt.be

Thibault Delbart

Hasselt University

Prof. dr. Kris Braekers Prof. dr. An Caris Hasselt University Hasselt University **IPIC** 20

9th Internation hysical Internet Co

Research group website: https://www.uhasselt.be/en/onderzoeksgroepen-en/research-group-logistics

Expanding the logistics Scope