Long-term capacity planning in rail-road networks under demand uncertainty

Thibault Delbart
Prof. Dr. Kris Braekers
Prof. Dr. An Caris
13 June 2023

Research focus

Dispatch

Support logistics service providers in their transition towards synchromodal transport
"Synchromodal transport is real-time, dynamic and optimised intermodal transport" (Ambra et al., 2019)

How?

IPIC 2023

Research focus

Decision support model to assist capacity decisions under uncertainty
(1) Which capacity?
$>$ Train slots on the long/medium term
$>$ Trucking capacity in the short term
(2) Which uncertainty?
-Demand volume
$>$ Available train slots over time
$>$ Train slot prices over time

IPIC 2023

Network assumptions

knowleder in action

Train services
> Offered by rail operators
$>$ LSPs can book slots between each terminal pair
$>$ Fixed schedules
$>$ Can be booked in advance
Truck services
$>$ Unlimited number
$>$ More expensive and faster than trains
$>$ Only booked in the short term

Terminals

$>$ Cost per transhipped container
$>$ Transhipment time

Network example
Dispatch

酉
UHASSELT

Network example
Dispatch

回
UHASSELT

IPIC 2023

Literature results: uncertainty

Demand
 Travel time
 Capacity

Literature results: modelling approach

DISpATch

Modelling approach

Chance-constrained mixed integer programming

Fuzzy chance-constrained mixed integer programming

Mixed integer linear program

Simulation optimisation

Two-stage chance constrained programming

Two-stage robust programming

Two-stage stochastic programming

Total number of studies

Capacity and travel
time
Demand
Demand and travel time

1

1

1

1

1

6

8
1

1

	1	1
		1
	1	1
1	6	
	8	4

Model description

Integer programming model

Objective

Minimise costs
$>$ Train slots at each stage
$>$ Trucking at the operational stage
>Transhipment

Planning timeline

	First stage	Second stage	Third stage		
Decisions	Train slots to book	Train slots to book	Train slots to book		
		Train slots to cancel		Train slots to cancel	Trucks to book
:---					

IPIC 2023

Scenario tree

Stochastic demand

Low demand:	Medium	High demand:
25%	demand: 50%	25%

Each terminal pair has its own average demand
$2^{\text {nd }}$ stage demand distributions depend on the total demand in the market

Each market state has its own probability

Stochastic demand

Low demand:	Medium	High demand:
25%	demand: 50%	25%

Each terminal pair has its own average demand
$2^{\text {nd }}$ stage demand distributions depend on the total demand in the market

Each market state has its own probability
Long-term demand distribution is the weighted sum of the $2^{\text {nd }}$ stage distributions

Stochastic capacity

Fixed number of train slots in the first stage
Second and third stages:
$>$ Stochastic capacity decrease per connection
$>$ Distribution mean depends on the market state

Train slot prices

Evolution of prices per train slot

Fixed increase compared to initial prices

Depends on the market state

IPIC 2023

Methodology

- Exact solver with a time limit and minimum optimality gap
- Factorial design
- Tested models:
- Three-stage
- Two-stage
- Without replanning
- Perfect information

Factorial design

Train cost ratio

UHASSELT
knowledee in action

Additional cost over perfect information

Rail share

Network

Total cost

Network - continued

Additional cost compared to perfect information

Rail share

Capacity

Additional cost compared to perfect information

Rail share at a train/truck cost of 75\%

Capacity - slots booked

Train Slots booked per stage
■ 1st stage - 2nd stage — 3rd stage

Stages
Capacity
Train/truck cost

Market states demand differences

Additional cost compared to perfect information

Rail share at a train/truck cost of 75%

Discussion

Factors that improve the cost and rail share over a two-stage model

- Lower train cost compared to trucks
- More flexible network
- Information quality when updating capacity decisions

Challenges

- Data requirements
- Computational complexity

Future research

- Horizontal cooperation

IPIC 2023

Thank you for your attention

M thibault.delbart@uhasselt.be

Thibault Delbart
Prof. dr. Kris Braekers
Prof. dr. An Caris

Hasselt University
Hasselt University
Hasselt University

Research group website:
https://www.uhasselt.be/en/onderzoeksgroepen-en/research-group-logistics

Expanding the logistics Scope

