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Abstract: This paper assesses the performance of Highway Safety Manual (HSM) predictive models
when applied to Brazilian highways. The study evaluates five rural multilane highways and calculates
calibration factors (Cx) of 2.62 for all types of crashes and 2.35 for Fatal or Injury (FI) crashes. The
Goodness of Fit measures show that models for all types of crashes perform better than FI crashes.
Additionally, the paper assesses the application of the calibrated prediction model to the atypical
year of 2020, in which the COVID-19 pandemic altered traffic patterns worldwide. The HSM method
was applied to 2020 using the Cx obtained from the four previous years. Results show that for
2020, the observed counts were about 10% lower than the calibrated predictive model estimate of
crash frequency for all types of crashes, while the calibrated prediction of FI crashes was very close
to the observed counts. The findings of this study demonstrate the usefulness of HSM predictive
models in identifying high-risk areas or situations and improving road safety, contributing to making
investment decisions in infrastructure and road safety more sustainable.

Keywords: road safety; highway safety manual; transferability; local calibration factor; sustainable
transportation

1. Introduction

Road safety is a global concern that has prompted nations to implement measures
to reduce the fatalities and injuries resulting from road crashes. Despite some success in
reducing the number of deaths in road crashes [1], the problem persists, with the proportion
of fatal crashes increasing in recent years, causing more than 15 deaths per 100 thousand
inhabitants yearly [2]. This number is about three times higher for emerging countries than
developed countries [3], which might be related to the rise in motorization across Latin
American countries that has led to a significant increase in exposure to traffic risks [4].

Therefore, countries must devise strategies to decrease this figure, including imple-
menting stricter regulations to manage key risk factors and allocating greater resources
to initiatives and studies that enhance road safety. By comprehending the factors that
significantly influence the likelihood of accidents, it becomes feasible to forecast the prob-
ability of their incidence [5–7]. Establishing standardized definitions and methodologies
for collecting comprehensive data on accidents, risk factors, and exposure occurrence is
imperative to facilitate global and regional comparisons [4]. As a result, there is a lack of
uniformity in the organization and collection of crash data across different regions and
municipalities within the country. Each state and municipality may have its system for
collecting crash data, leading to inconsistencies and challenges in data management and
analysis [4,8].
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Despite a decrease in the total fatalities on federal highways in Brazil over the past ten
years, there has been an alarming increase in the proportion of fatal crashes [2,9]. This dis-
crepancy may be attributed to changes in the crash reporting system since 2015, particularly
the introduction of self-reporting for non-injury crashes. This could have led to an under-
reported number of property damage only (PDO) crashes [8,10]. Additionally, Brazil’s
technological backwardness resulting from the economic and political crisis that began in
2014 may have contributed to this trend [11]. Thereby, further investigation is needed to
address road safety on Brazilian highways, including investments in infrastructure and
technology for accident prevention [12].

Developing effective strategies to address road safety requires a comprehensive under-
standing of contributing factors, which can be achieved through data-driven approaches
like safety performance functions (SPF). The Highway Safety Manual (HSM) offers pre-
dictive models that integrate SPF with crash modification factors to estimate the crash
frequency and identify high-risk areas and scenarios. However, it is crucial to assess the
transferability of HSM predictive models when applied to an international context, particu-
larly on Brazilian highways where data availability is limited and local SPFs are lacking.
This study aims to bridge this gap by evaluating the performance of HSM predictive models
on Brazilian rural multilane highways, thereby contributing to developing effective road
safety strategies and advancing the United Nations Sustainable Development Goals.

Additionally, the COVID-19 pandemic had a significant impact on mobility in Brazil,
leading to a reduction in the use of public transportation and an increase in individual
transport [13,14]. This shift and the overall decrease in mobility during the pandemic
resulted in a heterogeneous mobility pattern over time. Therefore, this study aimed to
evaluate the performance of the calibrated prediction model under these atypical conditions,
offering insights into its resilience and accuracy when confronted with significant changes
in traffic patterns and volumes caused by the COVID-19 pandemic.

2. Literature Review
2.1. The Highway Safety Manual Predictive Model

The existing literature on crash prediction models primarily attributes crashes to
inadequate driving performance with the demands of the road environment. Factors
such as traffic flow, geometric attributes, road signs, and vehicle characteristics have been
identified as contributing to this mismatch [15–20]. Moreover, SPFs have been developed
to estimate crash rates within a specific timeframe or exposure [5,21–26]. These SPFs utilize
statistical models that analyze risk indicators, including absolute numbers, frequency, and
crash rates, as defined by Equation (1).

λ = N × p, (1)

where λ is the expected crash number, N is the exposure, and p is the crash rate. The
introduction of the HSM has provided a systematic approach to assessing crashes by
employing analytical techniques and tools that quantify the impacts of road network
planning, design, operation, and maintenance decisions. In research-based studies, the
HSM has played a significant role in evaluating crashes.

The SPFs included in the HSM were developed using negative binomial (NB) regres-
sion models. These models were constructed using a generalized linear modeling (GLM)
procedure, as outlined by Srinivasan et al. [27]. The SPFs consider both the infrastructure
and operational characteristics.

Equation (2) illustrates how the predicted number of crashes (Npredicted) is determined
using the SPF [28]. The SPF equation is specific to each facility, considering its base
conditions, and adjusted by a calibration factor (Cx) and multiple crash modification
factors (CMFs). Each CMF accounts for the operational and geometric characteristics (y) of
the facility (x).

Npredicted = NSPFx × Cx × (CMF1x × CMF2x × . . . × CMFyx) (2)
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To determine Cx, Equation (3) provides the necessary calculation. The observed crashes
are summed up across all sites and divided by the predicted crashes across all sites. The
resulting Cx value is rounded to two decimal places and applied to the predictive model.

Cx = ∑ observed crashes/∑ predicted crashes (3)

Calculating the corresponding Cx value for each facility type and year is advisable
to customize the model. By substituting default values with locally derived values, the
reliability of the predictive model can be improved. To apply this methodology, the HSM
recommends a minimum desirable sample of 30 to 50 sites, representing at least 100 crashes
annually [28]. Following the initial calibration, the HSM suggests utilizing the Empirical
Bayes (EB) method to enhance the reliability of results and account for the regression-to-
the-mean effect.

However, the model has limitations, particularly regarding its failure to consider speed
limits. A study by Shirazinejad et al. [29] demonstrated that increasing the speed limit
from 70 mph to 75 mph led to a significant 27% increase in total crashes and a notable 35%
increase in fatal and injury crashes. Additionally, the HSM methodology fails to account
for factors such as road infrastructure damage and unreasonable road design, all of which
have been identified as impacting traffic safety [30].

2.2. Previous Studies on the Transferability of the HSM Model

Numerous studies have investigated the transferability and calibration of the HSM
predictive model in different countries and regions. Over the past decade, researchers have
explored the performance and parameters of the HSM model to assess its applicability and
effectiveness in various contexts. The following studies shed light on the transferability
and calibration challenges and the practical solutions and results in different countries.

Sun et al. conducted a statewide calibration of the HSM model for rural divided
multilane highways in the US [31]. Their findings indicated that the HSM model reasonably
predicted crashes in Missouri, with a calibration factor (Cx) of 0.98. In a study on rural
two-lane roads in Arizona, Srinivasan et al. identified limitations in applying the HSM
predictive models [32]. They emphasized the importance of gathering a larger sample
and exploring the estimation of calibration functions to fit local data better. The overall
calibration factor in this study was 1.079, indicating the success of the HSM model for US
cases. D’Agostino examined the calibration factor for Italian motorways and found that the
HSM model underestimated observed crash counts, with a Cx of 1.26 [33]. La Torre et al.
concluded that a jurisdiction-specific base model derived from the HSM’s SPF provided a
solid and reliable tool for crash prediction on the Italian freeway network [34].

In Brazilian studies, Rodrigues-Silva applied the HSM predictive model to two-lane
highways in São Paulo State and found a calibration factor of 3.73 [35]. Barbosa et al.
developed SPFs for intersections in Belo Horizonte, Brazil, with a calculated Cx of 2.06 [36].
Another study in Fortaleza city found a calibration factor of 0.65, highlighting the challenges
in developing a nationwide SPF. Waihrich & Andrade investigated the calibration of the
HSM model for multilane highways in the states of Minas Gerais and Goiás, Brazil. The
resulting Cx values were 2.37 and 1.58 for each region, respectively, indicating a lack of
transferability of the original HSM model in these scenarios [37]. Rodrigues-Silva compared
the transferability between the HSM method and a local SPF for two-lane highways in
different regions of Brazil. The calculated calibration factors were 3.67, 3.77, and 2.60 for
São Paulo, Minas Gerais, and Paraná, respectively. This study highlighted the need for
more parameters and knowledge in models for different facility types [38].

Studies conducted in Egypt by Elagamy et al. and in California, Maine, and Washing-
ton by Matarage & Dissanayake found that the HSM model overpredicted crash occurrences
on multilane rural roads [39,40]. These studies emphasized the importance of consider-
ing local conditions and conducting calibration to improve the accuracy of predictions.
Dadvar et al. proposed a method to adjust the HSM crash prediction model to provide
a better fit for local data, as misallocating resources due to incorrect calibration factors
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can be problematic [41]. Al-Ahmadi et al. studied multilane rural highway segments
in Saudi Arabia [42]. They found Cx values ranging from 0.63 to 0.78, emphasizing the
need for in-depth local calibration and assessment of SPF quality. Researchers agree that
the transferability of a model is dependent on the similarity of site characteristics to base
conditions, and models must be built by associating regions with similar characteristics.
The effectiveness of the local calibration factor as a method for transferring SPFs is widely
discussed, considering socio-economic characteristics, traffic safety data distributions, and
traffic flow influences on the transferability process. Kronprasert et al. compared dif-
ferent regression models for prediction accuracy, and the calibrated HSM SPF was the
most effective model in predicting crashes on horizontal curve segments, underscoring its
usefulness [43]. In a comprehensive overview, Heydari S. et al. [44] addressed road safety
in low-income countries (LICs). They stressed the importance of accurate and complete
road crash data for effective road safety interventions. They acknowledged that traditional
sources such as police records suffer from varying levels of under-reporting, especially in
LICs. They also emphasized the need to improve the quality and accuracy of road crash
data through techniques like combining police and hospital records.

Countries like Brazil, with comprehensive databases integrating crash counts, traffic
volume, and infrastructure data, must evaluate the performance of crash prediction models
to shape investment planning strategies effectively. Conducting local calibration exercises
considering regional peculiarities is crucial to enhance the transferability and precision
of the HSM model across diverse countries and regions. These efforts aim to optimize
the reliability of crash predictions, facilitating sustainable and informed interventions in
transportation systems.

2.3. Goodness of Fit Measures

Assessing the accuracy of crash prediction models is essential in enhancing road safety
measures. One approach to improve model performance is incorporating a local calibration
factor (Cx) that considers the specific conditions of the target region. However, it is equally
important to evaluate the model’s goodness of fit (GOF) and examine how well it aligns
with observed data. In this regard, two widely used measures of forecast accuracy, the mean
absolute percentage error (MAPE) and the mean absolute deviance (MAD), are commonly
employed for comparative analysis.

Table 1 summarizes recent studies applying the Highway Safety Manual (HSM)
method to the Brazilian road network. The table provides information on the geographical
region, facility type, estimated Cx values, and the GOF tests employed in the prediction
models. Various studies have focused on different types of highways, including multilane,
rural, and urban roads, while also investigating the influence of road geometry and traffic
characteristics on crash frequency.

Table 1. Works of HSM method application in Brazil [35–38,45].

Author Region Facility Type Cx GOF

Rodrigues-Silva
(2012) [35] SP Two-lane Rural Highways 3.73 Chi square test and

Kolmogorov-Smirnov

Barbosa et al.
(2014) [36] CE Urban Intersection

0.65
AIC, R2 statistic, and CURE plots2.06

Cunto et al.
(2015) [45]

Fortaleza (CE) Urban Roads
0.98 MAD, MAPE, CURE, Pearson χ2

p
statistics and z-score2.15

Waihrich &
Andrade (2015) [37]

MG Multilane Rural Highways 2.37
MAD, MAPE and R2

EfronGO/DF 1.58

Rodrigues-Silva
(2017) [38]

SP
Two-lane Rural Highways

3.67
MAD, MAPE, R2

Efron, and CURE plotsPR 3.77
MG 2.60
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Moreover, in recent research, the root mean square error (RMSE) has emerged as
another evaluation metric for prediction accuracy in studies conducted by Li et al., Yao et al.,
and Yehia et al. [46–48]. However, it should be noted that the effectiveness of CURE plots
in assessing model performance may be limited in studies with smaller sample sizes, as
highlighted by Dadvar et al. [41].

2.4. The Impact of COVID-19 on Traffic Safety

The COVID-19 pandemic has brought about significant changes in traffic patterns and
increased interest in investigating its impact on traffic safety globally. During the period of
lockdowns and restrictions, there was a noticeable reduction in traffic flow in many affected
countries [49]. However, studies have revealed a concerning increase in the severity of
crashes during this period [50].

Research suggests that implementing nonpharmaceutical interventions (NPIs) and
the higher percentage of people staying at home have had mixed effects on traffic safety.
On the one hand, these measures have been associated with potential improvements in
pedestrian and cyclist safety but have also increased crash risk for motor vehicle drivers [51].
Surprisingly, the average number of cyclists killed or injured per crash has tripled compared
to previous years [52].

It is important to note that simply reducing traffic volume during the pandemic does
not necessarily lead to improved traffic safety. This can be attributed to the homeostasis
effect, wherein drivers compensate for reduced traffic by engaging in risky driving behav-
iors such as speeding and failure to signal [47]. Furthermore, crashes resulting in severe
injuries are more likely to occur on highways due to, i.a., increased speeding, reduced law
enforcement, lack of seat belt usage, and alcohol and drug abuse [49]. Therefore, effective
law enforcement mechanisms should focus on preventing these behaviors [53].

Another significant pandemic effect was the shortened trip lengths and decreased
travel frequency as people engaged in more online activities as an alternative to physical
travel [50]. These changes in transportation characteristics and reduced traffic intensity on
the roads, driven by the rise of e-commerce, have had implications for traffic patterns.

The sudden disruptions in traffic behavior caused by the pandemic offer a valuable
opportunity to broaden the understanding of risk factors and the application of SPFs. As
such, in this study, the calibrated HSM SPF for 2020 is compared to the crash data count in
2020 to assess its capability in evaluating the impacts of COVID-19 on the studied highways.
This analysis can provide valuable insights into the effects of the pandemic on road safety
and inform future strategies and interventions.

3. Materials and Methods
3.1. The HSM Crash Prediction Method for Divided Highway Segments

The required and desirable site characteristics for calibrating the SPFs for divided
rural multilane roadways are described in Table 2.

Table 2. Data needed to calibrate Part C predictive models by facility type for Rural Multilane
Highway Segments [28].

Data Element
Data Need

Default Assumptions
Required Desirable

Segment length X Actual data required
Average annual daily traffic (AADT) X Actual data required

Lane width X Actual data required
Shoulder width X Actual data required

Presence of Lighting X Assume no lighting
Use of automated speed enforcement X Base default on current practice

Median width X Actual data required
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The Nspf for rural multilane highways depends on the Annual Average Daily Traffic
(AADT) for each year by segment and the segment length (L) in miles, as shown in Equation
(4). The regression coefficients a and b are presented in the HSM (Table 3).

Nsp f = e(a+b×ln (AADT) +ln (L)) (4)

Table 3. Regression coefficients for four-lane highways in HSM [28].

Facility Type/Severity A b c

4-Lane Total −9.025 1.049 1.549
4-Lane KABC −8.837 0.958 1.687
4-Lane KAB −8.505 0.874 1.740

The EB method should be applied to estimate better the expected number of crashes
for a single site [54], as described in Equation (5).

k =
1

e(c+ln (L))
(5)

Here, k represents the overdispersion parameter associated with the roadway segment,
L is the length of the roadway segment (in miles), and c is a regression coefficient used to
determine the overdispersion of this model (see Table 3). After determining the k value
for each studied segment, the Site-Specific EB Method is applied to obtain the weighted
adjustment (w) placed on the predictive model estimate in Equation (6).

w =
1

1 + k ×
(

∑all study years Npredicted

) (6)

The final step is to obtain the Nexpected, as shown in Equation (7). This represents the
final calibrated number of crashes for each segment.

Nexpected = w × Npredicted + (1 − w)× Nobserved (7)

3.2. Road Network Analysis

Five rural divided highways in São Paulo State managed by toll administration were
analyzed. The selected segments are part of the highways SP-255, SP-318, SP-330, SP-334,
and SP-345. The sections were chosen based on their geometric aspects and the availability
of traffic volume information, as presented in Table 4. The total length of the studied roads
is 235.6 km. Traffic volume data was collected through sensors strategically placed along
the highways.

3.2.1. Traffic Volume Data

The traffic volume data is detected by sensor devices called “SAT” or “TESC”. The
available traffic volume data were verified to match the studied highways. The average
annual daily traffic (AADT) data was collected for 2016, 2017, 2018, 2019, and 2020, as
presented in Table 5. There are a few cases in which there was a lack of information. For
SP 318, the available AADT data corresponds to 2019 and 2020 only. As recommended by
HSM, the number has been repeated for previous years (2016, 2017, 2018). For SP330_S01,
the AADT for 2016 was missing, completed by linear interpolating the existing data.

3.2.2. Crash Data

The crash data analysis for the study period is presented in Table 6, while Figure 1
depicts the severity-based distribution of crash data. The findings corroborate that the
observed KABC data has exhibited lower variability than PDO data since 2015. As antici-
pated, the number of PDO crashes has been declining since 2015, which may be attributed
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to regulatory changes in Brazil’s crash reporting system, resulting in underreported crashes.

Table 4. Key aspects of the studied road segments.

Highway ID
Start Point

(km)
Endpoint

(km)
Studied

Length (km)
Total Number of

Crashes (2009–2019)
Traffic VolumeData Available

2016 2017 2018 2019 2020

SP 255
255_S01 2.8 48.1 45.3 1837 X X X X X
255_S02 77.1 83.1 6.0 215 X X X X X

SP 318 318_S01 235.7 236.1 0.4 24 X X

SP 330
330_S01 241.0 267.3 26.3 1865 X X X X
330_S02 267.3 304.0 36.7 3144 X X X X X
330_S03 304.0 318.5 14.5 3175 X X X X X

SP 334
334_S01 319.3 349.5 30.2 2015 X X X X X
334_S02 349.5 396.0 46.5 1856 X X X X X
334_S03 396.0 406.0 10.0 1237 X X X X X

SP 345
345_S01 19.4 31.1 11.7 612 X X X X X
345_S02 31.1 39.1 8.0 377 X X

Table 5. AADT of the studied period.

Homogeneous Segments AADT (veh/day)

Sensor Highway ID Direction Start Point (km) Endpoint (km) 2016 2017 2018 2019 2020

SAT10 255_S01 North 48.1 2.8 3173 5725 6049 5969 6374
SAT10 255_S01 South 2.8 48.1 3429 5889 6164 6394 6144
SAT11 255_S02 North 83.1 77.1 6600 5741 6813 6901 6855
SAT11 255_S02 South 77.1 83.1 7972 6602 8357 8461 8498
TESC2 318_S01 North 235.7 236.1 8195 8195 8195 8195 1683
TESC2 318_S01 South 236.1 235.7 8488 8488 8488 8488 1638
SAT01 330_S01 North 241 267.8 9565 9573 9581 9575 8913
SAT01 330_S01 South 267.8 241 8359 9322 9437 9400 8570
SAT04 330_S02 North 267.8 304 10,222 13,928 13,842 13,318 12,311
SAT04 330_S02 South 304 267.8 27,889 13,969 13,851 13,656 12,643
SAT05 330_S03 North 304 318.5 28,125 29,505 19,360 30,589 29,153
SAT05 330_S03 South 318.5 304 27,793 29,690 19,320 31,177 29,558
SAT06 334_S01 North 319.3 349.5 10,535 10,985 11,682 11,090 9764
SAT06 334_S01 South 349.5 319.3 9251 10,746 11,795 11,161 9766
SAT08 334_S02 North 349.5 396 4898 4281 4162 4402 3910
SAT08 334_S02 South 396 349.5 4257 4252 4461 4386 3887
SAT09 334_S03 North 396 406 9284 13,758 15,524 16,283 15,655
SAT09 334_S03 South 406 396 7937 14,159 14,801 15,031 13,896
SAT13 345_S01 East 31.1 19.4 6402 6750 6689 6692 6548
SAT13 345_S01 West 19.4 31 5469 5666 5541 5788 5748
SAT13 345_S02 East 36 31.1 6402 6750 6689 6692 6548
SAT13 345_S02 West 31.1 36 5469 5666 5541 5788 5748

Table 6. Key information regarding the observed crash data throughout the study period.

Severity Type Total FI

Year of Study 2016 2017 2018 2019 2016 2017 2018 2019
∑ 1653 1597 1398 1301 451 467 406 415

Mean 2.32 2.24 1.96 1.83 0.63 0.66 0.57 0.58
Standard deviation 3.47 3.08 2.94 3.08 1.18 1.13 1.13 1.17

Max 33 27 28 39 9 10 7 15
Min 0 0 0 0 0 0 0 0
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Figure 1. Crash frequency by severity.

Table 6 provides key information regarding the observed crash data throughout the
study period, encompassing severity types and corresponding totals for each year. The
mean and standard deviation values highlight the decreasing trend in crash frequencies,
particularly for fatal or injury (FI) crashes. The data ranges from a minimum of zero to a
maximum of 39 crashes, with decreasing means and standard deviations over the years.

Figure 1 graphically illustrates the crash frequency distribution by severity type,
further emphasizing the decreasing trend in crash occurrences over the study period.
Furthermore, Table 7 presents the proportion of crash data categorized by crash type, a
crucial aspect for determining crash modification factors (CMFs). The table highlights the
distribution of FI and PDO crashes among different collision types, including single-vehicle
and multi-vehicle crashes. The proportions provide valuable insights for calculating CMFs,
which serve as multiplicative factors in predicting the number of crashes based on specific
road features.

Table 7. Proportion of crash data categorized by crash type.

Collision Type FI PDO Total

Single vehicle 0.649 0.755 0.724
Multi-vehicle (total) 0.351 0.245 0.276

Angle 0.037 0.016 0.022
Head-on 0.011 0.001 0.004
Rear-end 0.207 0.148 0.165
Sideswipe 0.073 0.056 0.061
Other multi-vehicle 0.022 0.025 0.024

Total Crashes 1.000 1.000 1.000

3.3. Crash Modification Factor for Divided Roadway Segments (CMFs)

In Equation (2), the predicted number of crashes (Npredicted) is determined by multiplying
the corresponding safety performance function (SPF) values (NSPFx) with calibration factors
(Cx) and the CMFs specific to each road characteristic (CMF1x × CMF2x × . . . × CMFyx). The
default base conditions for divided roadway segments on rural multilane highways include
lane width of 12 feet, right-hand side shoulder width of 8 feet, median width of 30 feet, no
lighting, and no automated speed enforcement. CMFs greater than 1.0 indicate an expected
increase in crash frequencies due to specific road characteristics, while CMFs less than
1.0 signify a potential reduction in crash numbers.
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4. Results and Discussion

The study applies the recommended methodology from Part C, Chapter 11 of the
HSM 1st edition. The methodology includes calculating the network screening predicted
frequency (Npredicted) using the crash modification factors (CMFs) and the observed crash
data. A calibration factor (Cx) is determined by comparing the observed crashes (Nobserved)
to the predicted crashes (Npredicted).

4.1. The Local Calibration Factor (Cx)

The results of the calibration process are presented in Table 8, which shows the
observed crashes (Nobserved), predicted crashes (Npredicted), expected crashes (EB), and
the corresponding calibration factors (Cx) for total and fatal injury (FI) crashes. The
values of Cx indicate the similarity between the local road networks and the conditions
for which the model was developed. Comparing the Cx values with previous studies, it
is observed that the methodology performs closely to existing findings (Cx = 2.37 for the
state of Minas Gerais) [37]. However, thoroughly examining the predicted points’ fit to the
observed data is necessary to gain better insights.

Table 8. Estimated Npredicted, Nexpected, and Cx.

Severity 2016 2017 2018 2019 Four-Years

Observed Crashes
Total 1653 1597 1398 1301 5949

FI 451 467 406 415 1739

Predicted Crashes
(Npredicted)

Total 565 570 545 587 2267
FI 182 186 181 191 741

Expected Crashes (EB)
(Nexpected)

Total 1622 1581 1402 1298 5892
FI 457 472 420 422 1774

Cx
Total 2.92 2.80 2.57 2.22 2.62

FI 2.47 2.50 2.24 2.17 2.35

4.2. The Goodness of Fit (GOF) Measures

The goodness-of-fit measures, including mean absolute deviation (MAD), mean abso-
lute percentage error (MAPE), and root mean square error (RMSE), are presented in Table 9.
The smaller values of these measures indicate a better model fit. The results suggest that
the total crash model performs better than the FI crash model, indicating the variability in
calibrated predicted values. Moreover, the comparison with previous studies shows a good
methodology performance regarding these measures.

Table 9. The goodness of Fit of the HSM predictive model by MAD, MAPE, and RMSE tests.

GOF
Calibrated Predicted Crashes Expected Crashes

MAD MAPE RMSE MAD MAPE RMSE

Total 4.44 53% 8.59 0.80 10% 1.33
FI 1.92 78% 3.38 0.86 35% 1.35

As anticipated, applying the Empirical Bayes (EB) method yielded estimated values
closely aligned with the observed values. The MAD, MAPE, and RMSE metrics indicate
that the total crash model outperforms the FI model in the final step after implementing the
EB method. Conversely, the MAD and RMSE values suggest that the calibrated predicted
values exhibit more substantial variation when including PDO crashes, which is reasonable
given that FI crashes represent only a smaller portion (approximately 30%) of the total
crash data. The MAD for FI crashes accounted for 43% of the MAD for total crashes, while
the RMSE was 39%. Moreover, a study by Waihrich and Andrade reported a MAD value of
5.54 for total crashes in the Minas Gerais state, which is 24% higher than the MAD value
found for total crashes in the São Paulo state (MAD = 4.44) [37].
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Figure 2 displays the results for the entire study period, comparing the calibrated
Npredicted values with the observed total and FI crashes to the centerline. The proximity
of the model’s output to the centerline signifies a closer alignment between the predicted
and observed data. The graph underscores the dispersion of total crashes in comparison
to FI crashes. Furthermore, points below the centerline indicate underestimation by the
model, while points above the centerline indicate an overestimation of the observed data.
Approximately 56% of the predicted values fall below the centerline trend, indicating
that the model has predominantly underestimated the data. Figure 3 also compares the
calibrated Npredicted values for total and FI crashes to the centerline for each study year.
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To further analyze the difference between Npredicted and Nexpected (results obtained
after applying the EB method), Figures 4 and 5 display the estimated data for total crashes,
while Figures 6 and 7 illustrate the estimated data for FI crashes. These graphs facilitate
the estimation of the R2 values for each severity type (total or FI) and year, as presented in
Table 10. Upon applying the EB method, the performance of Nexpected aligns with previous
literature studies, as indicated by the proximity of the points to the centerline. This close
alignment suggests that Nexpected closely resembles Nobserved. In contrast, Npredicted exhibits
a moderate dispersion. The graphs for each study year exhibit a similar pattern to the
one depicted in Figure 4. Notably, 2019 displays a denser distribution of Npredicted values,
indicating a closer prediction of the actual number of crashes. In contrast, the estimated
values for 2016 appear more dispersed, suggesting a less accurate prediction for that
particular year.

By adjusting the graph scale to accommodate the smaller sample represented by FI
crashes (Figure 6), a clearer understanding of the performance of Npredicted can be achieved.
Consistent with previous observations, the predicted values are denser above the centerline,
indicating a tendency for underprediction by the model. However, in the case of Nexpected
for FI crashes, most values fall below the centerline, indicating that most expected values
underestimated the observed FI crashes. This suggests that the EB method did not perform
as effectively for all types of crashes. In this context, the expected crashes are more scattered,
and the results indicate a general trend of underprediction.
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Table 10. Estimated R2 for Npredicted and Nexpected by year and by severity type.

Severity Type Total FI

Year of Study 2016 2017 2018 2019 2016–2019 2016 2017 2018 2019 2016–2019
Calibrated Npredicted 0.26 0.43 0.34 0.40 0.45 0.12 0.19 0.10 0.23 0.24

Nexpected 0.98 0.98 0.99 0.99 0.99 0.85 0.87 0.89 0.91 0.88

Figure 7 demonstrates a similar performance of Nexpected compared to Figure 6, in-
dicating that the EB method consistently underpredicted the observed crash counts. The
graphs reveal a pattern where the model underestimates FI crashes in segments where
more than five crashes are observed annually. Lastly, Table 10 provides the R2 estimates
obtained from the developed graphs.

Table 10 presents the estimated R2 values for Npredicted and Nexpected, categorized by
severity type and year. The R2 value represents the goodness of fit between observed and
estimated graphs, providing a correlation measure. A higher R2 value indicates a better fit.
As expected, the R2 values for Nexpected, which accounts for the observed crash counts, are
significantly higher than those for Npredicted after applying the EB method. Notably, the FI
crashes show lower R2 values compared to all crashes.

Table 11 presents the results of various goodness of fit (GOF) tests for calibrated
predicted crashes. These tests include MAD, MAPE, RMSE, and R2. It is observed that
using FI crashes yields lower MAD and RMSE values, indicating better accuracy, while
MAPE and R2 show better performance for all crashes.
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Table 11. Result of all the GOF tests applied for calibrated predicted crashes.

GOF MAD MAPE RMSE R2

Total 4.44 53% 8.59 0.45
FI 1.92 78% 3.38 0.24

On the other hand, Table 12 compares the GOF parameters for expected crashes. Here,
improved results are observed for all crash types. This suggests that the prediction of
crashes using the HSM model performed better across all crash types.

Table 12. Result of all the GOF tests applied for expected crashes.

GOF MAD MAPE RMSE R2

Total 0.80 10% 1.33 0.99
FI 0.86 35% 1.35 0.88

4.3. Crash Data Analysis for 2020

Due to the COVID-19 pandemic, 2020 witnessed significant disruptions in global
traffic patterns. Ongoing studies are exploring the impact of the pandemic on various
aspects of human health, including traffic-related fatalities and injuries [55]. In Figure 8,
the number of Property Damage Only (PDO) crashes is depicted, while Figure 9 displays
the reported traffic-related fatalities on state highways in the years 2019, 2020, and 2021, as
documented by the São Paulo State government [56].
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Notably, there is a substantial difference in PDO crashes between April 2019 and April
2020, with a 40% reduction in PDO crashes. Similarly, the highest reduction in fatal crashes
was observed during the same period, with a decline of approximately 27%. Despite the
lockdown measures commencing on 22 March 2020 in São Paulo State, the impact of these
measures became more pronounced in April 2020. The graphs also present the moving
average of crashes over a twelve-month interval, demonstrating the reduction in crashes
during that period.

Table 13 and Figure 10 illustrate the variation in fatal crashes and average AADT
concerning the average and counts of the previous year. The data suggest that the decrease
in fatal crashes is associated with the reduction in AADT, which can be attributed to the
implementation of disease control measures during that period.

Table 13. Comparison of estimated variance in fatalities and AADT on state highways in recent years.

Year Fatal Crash Counts Mean
% Change Compared to

AADT Mean
% Change Compared to

Previous Year Mean Previous Year Mean

2015 1872

1836

No data 1.94% No data -- - -
2016 1853 −1.01% 0.90% 14,598

14,137

− 3.26%
2017 1911 3.13% 4.06% 14,149 −3.08% 0.08%
2018 1876 −1.83% 2.15% 14,183 0.24% 0.32%
2019 1929 2.83% 5.04% 15,128 6.66% 7.00%
2020 1651 −14.41% −10.10% 12,092 −20.07% −14.47%
2021 1763 6.78% −4.00% 16,764 38.64% 18.58%

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 
Figure 10. Estimated variation of crashes and AADT for state highways. 

To assess the impact of COVID-19 on the analyzed segments, Table 14 presents the 
crash data specifically from 2020. A comparison is made between the crash counts in 2020 
and the average counts from the previous four years. The data indicate a significant re-
duction in crashes during 2020, with a decrease of approximately 20% for all types of 
crashes and 11% for FI crashes compared to the average counts. This reduction in crash 
numbers suggests a notable influence of the COVID-19 pandemic on traffic safety, poten-
tially due to factors such as reduced traffic volume, changes in driver behavior, and al-
tered travel patterns resulting from pandemic-related restrictions and guidelines. 

Table 14. Key aspects related to crash data from 2016, 2017, 2018, 2019, and 2020. 

Severity Type Total FI 
Year of Study 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

∑ 1653 1597 1398 1301 1182 451 467 406 415 389 
Mean 2.32 2.24 1.96 1.83 1.66 0.63 0.66 0.57 0.58 0.55 

Standard Deviation 3.47 3.08 2.94 3.08 2.73 1.18 1.13 1.13 1.17 1.13 
Max 33 27 28 39 27 9 10 7 15 11 
Min 0 0 0 0 0 0 0 0 0 0 

The 2020 AADT data played a crucial role in predicting the crash counts for that year 
using the HSM prediction model. This model relies on AADT values and segment length 
to estimate crash counts. In this study, the calibration factors obtained in Section 4.1 (Cx, 
TOTAL = 2.62 and Cx, FI = 2.35) were utilized to calculate the calibrated N predicted for 2020, 
as shown in Table 15. These calibration factors were derived from the baseline data of the 
four previous years. The EB method was also applied using the obtained parameters to 
calculate the Nexpected, which represents the expected crash counts considering the ob-
served crash data. By comparing the calibrated Npredicted and Nexpected, it becomes 
possible to evaluate the prediction model’s performance and assess its accuracy in esti-
mating the crash counts for 2020. 

Table 15. HSM prediction model estimation compared to observed crashes. 

 Severity 2016 2017 2018 2019 Four-Years Me-
dian 

2020 

Observed Crashes Total 1653 1597 1398 1301 1487 1182 
FI 451 467 406 415 435 389 

-20

-10

0

10

20

30

40

2015 2016 2017 2018 2019 2020 2021

VA
RI

AT
IO

N 
(%

)

Crashes Compared to the Mean AADT Compared to the Mean

Crashes Compared to Previous year AADT Compared to Previous year

Figure 10. Estimated variation of crashes and AADT for state highways.

To assess the impact of COVID-19 on the analyzed segments, Table 14 presents the
crash data specifically from 2020. A comparison is made between the crash counts in
2020 and the average counts from the previous four years. The data indicate a significant
reduction in crashes during 2020, with a decrease of approximately 20% for all types
of crashes and 11% for FI crashes compared to the average counts. This reduction in
crash numbers suggests a notable influence of the COVID-19 pandemic on traffic safety,
potentially due to factors such as reduced traffic volume, changes in driver behavior, and
altered travel patterns resulting from pandemic-related restrictions and guidelines.

The 2020 AADT data played a crucial role in predicting the crash counts for that
year using the HSM prediction model. This model relies on AADT values and segment
length to estimate crash counts. In this study, the calibration factors obtained in Section 4.1
(Cx,TOTAL = 2.62 and Cx,FI = 2.35) were utilized to calculate the calibrated N predicted for
2020, as shown in Table 15. These calibration factors were derived from the baseline data
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of the four previous years. The EB method was also applied using the obtained parame-
ters to calculate the Nexpected, which represents the expected crash counts considering
the observed crash data. By comparing the calibrated Npredicted and Nexpected, it be-
comes possible to evaluate the prediction model’s performance and assess its accuracy in
estimating the crash counts for 2020.

Table 14. Key aspects related to crash data from 2016, 2017, 2018, 2019, and 2020.

Severity Type Total FI

Year of Study 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020
∑ 1653 1597 1398 1301 1182 451 467 406 415 389

Mean 2.32 2.24 1.96 1.83 1.66 0.63 0.66 0.57 0.58 0.55
Standard Deviation 3.47 3.08 2.94 3.08 2.73 1.18 1.13 1.13 1.17 1.13

Max 33 27 28 39 27 9 10 7 15 11
Min 0 0 0 0 0 0 0 0 0 0

Table 15. HSM prediction model estimation compared to observed crashes.

Severity 2016 2017 2018 2019 Four-Years
Median 2020

Observed Crashes
Total 1653 1597 1398 1301 1487 1182

FI 451 467 406 415 435 389
Predicted Crashes

(Npredicted)
Total 565 570 545 587 567 498

FI 182 186 181 191 185 164
Calibrated Predicted Crashes

(Cal. Npredicted)
Total - - - - - 1308

FI - - - - - 386
Expected Crashes (EB)

(Nexpected)
Total 1622 1581 1402 1298 1476 1205

FI 457 472 420 422 443 394

The COVID-19 pandemic has affected crash counts and changed the Average Annual
Daily Traffic (AADT) values. Consequently, the Nspf (predicted crash counts) reflects the
impact of the pandemic on crash frequencies. Despite this, the Nobserved (actual observed
crash counts) remains approximately 10% lower than the calibrated Npredicted (predicted
crash counts considering calibration factors) for all types of crashes. However, the calibrated
prediction of FI crashes aligns closely with the observed counts, indicating high accuracy
in predicting FI crashes.

Moreover, applying the EB method, which incorporates the observed number of
crashes, brings Nexpected (expected crash counts) closer to Nobserved. This suggests that the
prediction model performs well in estimating unseen data.

In Table 16, the evaluation of model performance based on mean absolute deviation
(MAD) and root mean square error (RMSE) reveals that FI crashes demonstrate a better
model adjustment to the actual inputs compared to all types of crashes. Conversely, the
mean absolute percentage error (MAPE) and R2 (coefficient of determination) indicate
that using all types of crashes yields successful model adjustment. The high MAPE value
for 2020 can be attributed to the sudden reduction in crashes, which the model was not
explicitly trained to anticipate as it was based on previous years’ data.

Table 16. Result of all the GOF tests applied for calibrated predicted crashes, including 2020.

GOF MAD MAPE RMSE R2

Total (4 years) 4.44 53% 8.59 0.45
FI (4 years) 1.92 78% 3.38 0.24
Total (2020) 1.33 80% 2.30 0.32

FI (2020) 0.62 114% 1.04 0.17

After applying the EB method and considering the 2020 data, the GOF (Goodness
of Fit) tests demonstrate that the model performs better when using all types of crashes,
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as shown in Table 17. However, further investigation is required to fully understand the
influence of infection prevention and control procedures on road safety in Brazil.

Table 17. Result of all the GOF tests applied for expected crashes, including 2020.

GOF MAD MAPE RMSE R2

Total (4 years) 0.80 10% 1.33 0.99
FI (4 years) 0.86 35% 1.35 0.88
Total (2020) 0.24 15% 0.37 0.98

FI (2020) 0.29 52% 0.44 0.90

5. Conclusions

Injury crashes and fatalities have significant economic and social costs, impacting
the development of a country by increasing medical expenses, insurance claims, and
productivity losses. Additionally, these crashes contribute to a higher carbon footprint and
infrastructure repair costs. For developing countries like Brazil, the impact is particularly
significant. Predictive models, such as the HSM prediction model, can play a crucial role
in identifying high-risk areas and situations, enabling targeted interventions to improve
road safety, and contribute to a more sustainable transport system. This aligns with the
objectives of the 2030 Agenda, which aims to ensure sustainable transport systems that
promote economic growth, social inclusion, and environmental sustainability, including
reducing the number of road traffic deaths and injuries by 50% by 2030.

The assessment of the HSM prediction model employment during the atypical year
of 2020, marked by the COVID-19 pandemic and the resulting changes in traffic patterns,
helped understand the temporal transferability of the model. The calibrated prediction
model showed promising results, although there was a slight underestimation of crash
counts for all types of crashes compared to the observed values. However, the calibrated
prediction of fatal and injury crashes (FI crashes) closely matched the observed counts,
demonstrating the model’s capability of capturing severe crash fluctuations.

Using all types of crashes in the model yielded better results in most goodness-of-fit
tests, indicating that underreporting crashes did not significantly affect the model’s validity.
However, it is essential to acknowledge that additional risk factors not accounted for by
the Safety Performance Functions (SPFs) may influence road safety outcomes. The study
also highlighted the importance of calibration to local conditions and the need to establish
“good-enough” thresholds for other contexts, as Brazilian data and road characteristics may
differ from those in the original development of the HSM SPFs.

This research provides valuable insights into applying the HSM prediction model
for multilane rural highways in Brazil, serving as a reference for safety assessment and
guidance for highway administration, municipalities, and toll agencies. It demonstrates the
need for calibration and suggests further investigation into roadway characteristics, driver
behavior, and crash patterns specific to the Brazilian context to enhance the accuracy of
crash predictions. The findings also contribute to understanding SPF transferability and
the model’s performance in atypical years.

Future studies should consider using different calibration methods and functions
and explore additional goodness-of-fit tests such as cure plots, chi-square, and coefficient
of variation. Developing jurisdiction-specific SPFs for local conditions and addressing
questions related to SPF calibration frequency and temporal transferability acceptable
thresholds would further enhance the knowledge in this research area.
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