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An Incremental Capacity Analysis-based State-of-health
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Applications
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The Incremental Capacity (IC) is a rich source of data for the
state-of-health estimation of lithium-ion batteries. This data is
typically collected during a low C-rate (dis)charge of the battery
which is not representative of many real-world applications
outside the research laboratories. Here, this limitation is
showcased to be mitigated by employing a new feature-
extraction technique applied to a large dataset including 105
batteries with cycle lives ranging from 158 to 1637 cycles. The

state-of-health of these batteries is successfully predicted with a
mean-absolute-percentage error below 0.7% by using three
regression models of support vector regressor, multi-layer
perceptron, and random forest. The methodologies proposed in
this work facilitate the development of accurate IC-based state-
of-health predictors for lithium-ion batteries in on-board
applications.

Introduction

Accurate state-of-health (SoH) prediction of the lithium-ion
batteries (LIBs) is a very desired functionality for the battery
management systems (BMS) to ensure a safe and optimal
control of battery-powered devices such as electric vehicles.[1]

Equivalent circuit models (ECMs),[2] physics-based models[1,2]

and pure data-driven methods have been extensively proposed
and investigated in the literature to predict the SoH of LIBs.[3]

Although the ECM-based models have the privilege of being
implemented online, they normally fail to predict the nonlinear
aging behavior, what is known as accelerated aging zone or
“knee-point”.[4] This shortcoming can be avoided in the physics-
based models,[1] but at the expense of longer computational
times[5] and the need for a prior knowledge about the active
aging mechanisms. The pure data-driven models and machine-
learning (ML) approaches are emerging as a promising
alternative to predict the SoH of batteries.[6] In this category,

the Neural networks (NNs) and support vector machines have
been successfully employed to predict battery SOH and
remaining useful life (RUL) using three time-dependent data
streams which are obtained during the life of a battery, i. e.,
current, voltage, and temperature.[6,7] More recently, ‘feature
engineering’ has been employed by the data-driven models in
which transformations of the raw data are used as the input to
the models also known as health indicators (HIs). A widely
studied class of HIs is based on the incremental capacity (IC)
and differential voltage (DV) analysis.[8] The value of the peaks/
valleys, the position of the peaks/valleys and peak/valley area
in the IC/DV curves have shown significant correlation with the
battery SOH and RUL.[8c,9] This highlights the importance of the
hidden information of the voltage data which has shown
higher predictability of the SoH compared to the battery
capacity or internal resistance that are extensively studied as
conventional HIs.[10] For instance, Severson et al.[17] showed that
the changes between the voltage curve of very early cycles can
accurately classify the cells into the relatively short and long life
cells.

The technique of differential analysis has been widely used
to study various Lithium-Ion Battery (LIB) chemistries, such as
LFP, NMC, and LTO.[11] Typically, these studies focus on
investigating aging data obtained from low-rate constant-
current experiments. Jiang et al.[12] conducted research on
large-format LFP cells and analyzed their incremental capacity
(IC) curves. They discovered that the main cause of degradation
was the loss of lithium inventory and anode material. Addition-
ally, they demonstrated that by using features extracted from
the IC curve peaks, a prediction accuracy up to 97% for SoH
could be achieved. Ansean et al.[13] conducted a thorough IC
peak area analysis on LFP jGr chemistry to create look-up tables
that can be used to identify aging modes, with the aim of
simplifying the implementation of the differential analysis
method in the battery management systems. Li et al.[8c] utilized
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a combination of incremental capacity method and Gaussian
process regression to analyze a part of the NASA aging dataset.
Their results demonstrated highly accurate SoH prediction
mean absolute error (MAE) and root mean square error (RMSE)
being less than 1%. Tang et al.[14] conducted a study on various
aging data repositories that are publicly available, including the
NASA and SONY aging datasets. In order to predict the SoH,
they extracted features from the peak position and peak value
of the filtered IC curves, which they referred to as regional
capacity and regional voltage. The method they used resulted
in an estimation error of 2.5% for all the batteries that were
studied. Lu et al.[15] suggested a two-stage method to estimate
the SoH of LFP/Gr cells by examining the degradation modes
and implementing a deepCoral-based domain adaptation
technique. Their approach was successfully validated with both
synthetic and real aging data from seven cells and resulted in
accurate SoH predictions. An efficient way to enlarge the
sample size data is to use physics-based models to generate
synthetic aging data. Costa et al.[16] utilized a convolutional
neural network (CNN) in order to investigate a substantial
synthetic aging dataset which consisted of over 700,000
representative C/25 charge cycles for LFP, NMC, and NCA. They
implemented Dynamic Time Warping to convert the IC curves
into images, which were subsequently utilized as the CNN’s
input. This method yielded more impressive outcomes com-
pared to the state-of-the-art methods, with an average RMSPE
error of roughly 2% for 1000 duty cycles. Another option is to
analyze existing large experimental aging datasets to train
reliable and accurate models. For instance, Severson et al.[17]

conducted an experiment with 124 LFP jGr cells with an aging
period of approximately two years. Kheirkhah et al.[18] utilized
this dataset and applied various regression learners, selecting
input features based on charging and discharging time. They
reported a MAPE error of 1.95% for the SoH prediction.
Moreover, Ma et al.[19] conducted aging tests on 77 LFP jGr cells,
each cell subjected to a unique discharge protocol, while all
the cells were charged using an identical fast-charging
protocol. They employed a deep transfer learning technique
and utilized the information of the preceding 30 cycles to
estimate capacity at a given time. Their approach led to a mean
testing error of less than 0.2%. One advantage of their
approach is its ability to accommodate vastly different load
protocols and generalize the model to forecast new, unseen
load protocols.

In this paper, a data-driven SoH prediction model is
proposed by extending the application of ICA to the cells
cycled at high discharge rates. This is important since real-
world battery data are in general characterized by a rather high
C-rate which degrades the data quality extracted from the
numerical differentiation of the voltage-capacity raw data
being the basis of IC/DV techniques. In this regard, a novel
feature extraction method is developed based on a pattern
recognition algorithm to analyze the discharge IC curves. The
methodology is then applied to a large aging data repository
provided by Severson et al.[17] After extracting the features,
three distinct regression models namely Support Vector
Regressor (SVR), Random Forest (RF), and Multi-Layer Percep-

tron (MLP) are trained and validated demonstrating a high level
of accuracy in estimating the SoH of 105 cells with LFP j
Graphite chemistry.

Results and Discussions

Feature extraction from aging dataset

Here, the experimental dataset generated by Severson et al.[17]

is used to train and develop 3 different models of Support
Vector Regressor (SVR), Random Forest (RF), and Multi-Layer
Perceptron (MLP) for SoH prediction (see supporting informa-
tion). The dataset investigated in the present study covers the
charge/discharge behavior of 105 high-power LFP jGraphite
A123 APR18650M1A cells cycled with a constant current-
constant voltage (CC-CV) protocol. The cells were fast charged
using different profiles, but all were discharged with the same
CC-CV profile at 4 C with 2.0 V and of C/50 as the cut-off
voltage and current, respectively. The charging profile con-
sisted of one-step or two-step charging periods from 0% to
80% state of charge (SOC) and thereafter up to 100% SOC
using a 1 C CC-CV step with 3.6 V and C/50 as the cut-off
voltage and current, respectively. The lifetime of the cells varies
between 158 to 1637 cycles with the end of life defined as the
20% capacity loss relative to the nominal capacity of the
pristine cells (Figure 1). The SoH at a given time ‘ti’ is defined as
the ratio of the available capacity at time ‘ti’ relative to the
capacity at the beginning of life (ti ¼ 0).

The features used for SoH estimation are based on the
incremental capacity analysis (ICA). In a conventional ICA, the
battery charge throughput (Ah) is recorded using the Coulomb
counting method during a charge or discharge process at a
very low current. The most significant information can be
extracted from the IC curves from pseudo-equilibrium con-
ditions, i. e., C-rates in the range of C/20 or lower.[20] The IC plots
are obtained by differentiating the capacity (Q) vs. voltage (V)
curves with respect to the voltage (dQ

dV) and are characterized by
the presence of peaks. The peak positions in the dQ

dV vs. V plots
and the areas under such peaks are very sensitive to the cell
parameters including but not limited to the redox potentials of
the Li-insertion particles in the anode and cathode, cell
balancing, and the internal resistance.[21] Any change in these
parameters during the lifetime of the cell will be reflected as a
deviation in the IC signature of the cell relative to that of the
cell at its beginning of life.

At high C-rates, the peaks in the IC curves start to merge,
and the features that differentiate them become indistinguish-
able. Although IC curve peak positions are effective in
estimating SoH, they are very sensitive to the noise. To
overcome these shortcomings, here, an iterative search algo-
rithm is proposed that calculates the difference between the IC
curves of the fresh cell at the beginning of life (BoL) and that of
the aged cell at a given time. The algorithm is based on the
image registration, an image processing technique used to
align multiple scenes into a single integrated image.[22]

Similarly, the algorithm of the present study aligns the two IC
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curves to quantify the scaling of the IC plot induced by aging
in both the voltage and incremental capacity dimensions
(Figure S1). The as obtained two scaling factors, i. e., IC-scale
and V-scale, are the features to train the data-driven models.
This feature extraction method involves comparing the IC curve
of the nth cycle to that of the BOL and adjusting the two scales
until the difference between the two curves is minimized
(Figure 2a and b, see Supporting Information for more details).

This feature extraction method resulted in a matrix of features
comprising of two columns, namely V-scale and IC-scale, and
78438 rows that correspond to the cycle lives of the 105 cells
analyzed. The V-scale and IC-scale values are shown against
their corresponding SoH values in Figures 2(c) and (d),
respectively. The Pearson correlation coefficients of 0.86 and
0.96 among the SOH and the Vscale and IC-scale, respectively,

Figure 1. a) SoH as a function of cycle number for the 105 cells (LFP jGraphite A123)[17] studied in this work. The color bar encodes the life cycle of the cells. b)
The distribution of the cycle lives of the cells.

Figure 2. A typical scaling of the IC plot a) at a given cycle (nth cycle) with respect to the beginning of life (cycle #1) to extract the two features of V-scale and
IC-scale, b) by matching the IC plots of the 1st and nth cycle. The correlation between the resulted features and State of Health (SoH), showing a strong
correlation among c) the V-scale and SoH and d) IC-scale and SoH. The colors encode the SoH with blue representing a lower SoH.
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indicate the high predictive power of these features for the
SoH (Figure 2c and d).

Parametrization of the SoH models

The dataset was randomly split into two categories of ‘train-
validation’ (60%) and ‘test’ cells (40%). The train-validation
dataset was further randomly grouped into two categories of
‘training’ (60%) and ‘validation’ (40%) (see SI for more details).
First, the hyperparameters for the three regression models of
SVR, MLP, and RF were optimized by exploring a range of
model parameters using the ‘train-validation’ cells. To achieve
this, the model was trained on the train dataset for each
combination of model parameters. Once the training was
complete, the model was tested on the validation dataset. The
model parameters that resulted in the lowest prediction error
on the validation dataset were selected as the final model
parameters. The optimized model parameters are summarized
in Table 1 (block I). The prediction accuracy of the three
regression models is compared in terms of the RMSE and MAPE
errors in Table 1 (block II). A comparison between the perform-
ance of the three models show that all of them work well in
fitting the training dataset with RMSE of around 0.01 and MAPE
of less than 1%. However, the RF model slightly outperforms
the other two models which is also reflected in its higher R2

score value. The residual value, defined as the difference
between the predicted SoH and the actual SoH using the
training dataset is shown as a function of the actual SoH for the
SVR model in Figure 3(a) and for the MLP and RF models in
Figure S2. The data show that for all the three models, the
residuals are scattered randomly around zero and do not show
any particular pattern as a function of the target variable, i. e.,
actual SoH, indicating that all the three models can be
considered as a proper fit to the training datasets.

Validation of the SoH models

To further validate our results, the regression models were
again trained with the “train-validation” dataset while preserv-
ing the same hyperparameters from the previous training step
(Table 1, block I). The performance of the regression models
after this new round of training is presented in Figure for the
five randomly selected cells (for each model) from the “train-
validation” dataset. Overall, all three models show satisfactory
results in predicting the SoH. The predicted SoH values from
the MLP model, however, show a higher deviation from the
actual SoH compared to the outputs of RF and SVR models.
This is in line with the higher MAPE and RMSE errors associated
with MLP model (Table 1).

Next, the newly trained models (i. e., trained on “train-
validation” datasets) were applied to the test dataset. The
resulting RMSE, MAPE and model scores are presented in
Table 1 (block III). The predicted SoH values by SVR and RF
models are compared against the actual SoH values in Figure 4
for the three cells that showed the lowest estimation error
(Figure and 4 C) and three cells that had the highest estimation
errors (Figure and 4d). Although both SVR and RF models show
extremely accurate predictions for most of the representative
cells, there are certain cells (Figure 4) of which the predicted
SoHs display a noticeable deviation from the actual SoH values.
This might be linked to the unique behavior of this certain
group of the cells with an increasing capacity during the first
few cycles which deserves further attention in the following
works. However, despite the large errors for this group of cells,
it is noteworthy that the models still do a good job in
predicting the overall aging trajectory and particularly the
accelerated aging phase of the cells (Figure 4b and d). This is,
in particular important for the identification of the so-called
knee point in SoH diagnosis and prognosis models.

The method proposed in this study works very well on the
IC curves obtained from 4 C discharge data. The versatility of
this method was further investigated by training the regressor

Table 1. The optimized regression models’ parameters (I block) obtained after training the models by the ‘train+validation’ dataset and the corresponding
RMSE, MAPE and goodness of fit (R2) values when the model was applied on the ‘validation’ dataset (II block). SoH prediction accuracy of the models trained
by the ‘train+validation’ and applied on ‘test’ dataset (III block) and ‘50multiples’ (IV block) datasets.

I. Optimized parameters of the regression models with ‘train+validation’
dataset

II. model metrics trained with ‘validation’ dataset

RMSE MAPE% R2

SVR C=1374 ɛ=0.01 γ=1.79 0.0108 0.88 0.943
MLP α=0.001 Hidden layer size= (50,50) 0.0116 0.86 0.935
RF Max depth=10 Min samples leaf=4 Min samples split

=10
0.0104 0.712 0.946

validation phase

III. Validation of model trained by ‘train+validation’ dataset against ‘test’
dataset

IV. Validation of model trained by ‘50multiple’ dataset against ‘test’
dataset.

RMSE MAPE% R2 RMSE MAPE% R2

SVR 0.0102 0.75 0.945 0.0096 0.74 0.945
MLP 0.0109 0.815 0.938
RF 0.0104 0.72 0.943 0.014 0.89 0.904
RMSE formula MAPE formula
RMSE ¼ 1

N

PN
i¼1 SoHpred � SoHactual

� �2� �0:5

MAPE% ¼ 100
N

PN
i¼1

SoHpred � SoHactual

SoHactual

�
�
�

�
�
�
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models using only a subset of the entire dataset (‘50multiples’).
This data subset includes the cycle numbers which are multi-
ples of 50 to train the RF and SVR models of which the
performance metrics are summarized in Table 1 (block IV). The
results of the SVR model suggest that reliable SoH predictions
can be achieved even when the training is performed with a
limited portion of the entire dataset. This finding is particularly
significant for real-world applications where frequent inter-
mediate capacity checks may not be feasible or practical. A
comparison between the predicted and actual SoH values using

the SVR and RF regression models on this subset of dataset are
shown in Figure 5. Table 2 provides a summary of the state-of-
the-art estimation models for SoH based on IC analysis reported
in the literature for LFP jGr cells. An unequivocal comparison
among the different reports is not easy since the measure
index of accuracy is not the same in different reports. Nonethe-
less, the prediction accuracy of the models proposed in the
present study stand very competitive to the state-of-the-art
with a MAPE <0.75%. Noteworthy is the study of Zhou et al.[23]

reporting a better MAPE of 0.3309% developed from a

Figure 3. a)The residual, defined as the difference between the predicted SoH and actual SoH values, as a function of actual SoH using the ‘training’ dataset
and SVR regression model. The figure inset shows the distribution of the residual following a symmetric distribution around zero. b–d) A visual guide into the
predictive performance of the b) SVR, c) MLP and, d) RF regression models. The predicted SoH values are compared to the actual SoH values during the whole
life of five randomly selected batteries from the ‘train-validation’ dataset.

Table 2. The scope and accuracy of the most recent data-driven SoH estimation models based on the IC analysis for the LFP jGraphite cells. It is important
to note that the C-rate in this table refers the C-rate used for the IC analyses and does not correspond to the load profile applied during the battery aging.

Health indicator Battery chemistry
(Capacity)

#batteries
studied

C-rate Evaluation
index

Estimated
precision

Ref.

IC curve
(peak intensity)

LFP jGraphite
(1.1 Ah)

8 0.5 C Absolute error 1% [8b]

Area under IC curve LFP jGraphite
(60 Ah)

4 0.33 C Relative error 2% [24]

IC curve
(peak intensity)

LFP jGraphite
(1.1 Ah)

30 0.5 C RMSE 1.62% [25]

IC curve
(peak and valley)

LFP jGraphite
(5 Ah)

2 1 C Maximum relative error 4% [9a]

IC curve (peak intensity
and area under IC curve)

LFP jGraphite
(20 Ah)

12 0.33 C RMSE 0.9–2.1% [11]

Area under the IC curve LFP jGraphite
(1.1 Ah)

35 Up to 4 C MAPE 0.3309% [23]

Area under IC curve LFP jGraphite
(50 Ah)

6 0.1 C RMSE 3% [12]
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substantially smaller dataset of 35 cells compared to the
present study, i. e., 105 cells. The size of the training and

Figure 4. The predicted SoH as a function of cycle number for the three cells (test dataset) with a–c) the minimum estimation error and b–d) for the three
cells with the maximum estimation error using a, b) the support vector machine regressor and c, d) random forest regressor.

Figure 5. A visual guide into the accuracy of the SoH prediction models trained by the ‘50multiple’ dataset, i. e., only cycle numbers multiples of 50, a) SVR
and b) RF regression models. Predictions are compared against five randomly selected batteries from the ‘test’ dataset.
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validation datasets is an extra important consideration which
impacts the reliability of the model predictions for the field
applications.

The accuracy of the three regression models validated on
the ‘test’ and ’50multiple’ datasets is summarized in Figure 6.
The SVR and RF models outperform the MLP model. The
inferior accuracy of the MLP regressor might be explained by
the fact that the MLP models typically require a relatively larger
dataset to attain a high accuracy.[26] As such the present dataset
might not be sufficient for the MLP to capture the underlying
patterns and relationships as good as the SVR and RF models.
Although the SVR and RF models exhibited similar performance
on the original dataset, SVR outperforms RF on the ’50multiple’
dataset. It seems that on the ’50multiple’ dataset, the RF model
encounters an overfitting problem reducing its accuracy in
predicting the target variable. The RF’s inferior accuracy on the
smaller ’50multiple’ dataset suggests that the performance of
this model, compared to the SVR model, is more sensitive to
the size of the dataset.

Conclusions

In this study, differential capacity analysis method was applied
to high-rate (4 C) discharge cycling data of 105 LFP\Gr cells
with cycle lives ranging from 158 to 1637 cycles. A pattern
recognition algorithm was used to juxtapose the differential
capacity curves of each cycle to that of the first cycle. The
searching algorithm resulted in two features, i. e., a scale of
voltage and a scale to the incremental capacity. These features
were then used by three different regressors to find suitable
learners with the maximum prediction capabilities. Random
forest regressor and support vector machines with radial basis
kernel were found to yield MAPE errors below 1% for the
prediction of SoH both on the test and validation datasets.

The findings of this work suggest that the differential
analysis technique is not limited to low-rate charge and
discharge cycling data and can be applied to very high C-rate
data relevant to the on-board applications. This enables the
development of short-lasting intermediate checkup protocols

with a low frequency. Further improvements are needed to
extend the application of the proposed methodology of this
work to the circumstances with an arbitrary partial charge and
discharge protocols.
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