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BACKGROUND: The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its
association with the gut microbiome during susceptible life periods remains scarce.

OBJECTIVES: In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and
bacterial richness and diversity measures, and bacterial families.

METHODS: A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort.
We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity)
and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumina-
tion in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust
multivariable-adjusted linear models to examine the associations between quantified black carbon loads andmeasures of richness (Chao1 index) and diver-
sity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal edu-
cation. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are
expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI).
RESULTS: Two diversity indices were negatively associated with placental black carbon [Shannon: −4:38% (95% CI: −8:31%, −0:28%); Simpson:
−0:90% (95% CI: −1:76%, −0:04%)], cord blood black carbon [Shannon: −3:38% (95% CI: −5:66%, −0:84%); Simpson: −0:91 (95% CI: −1:66%,
−0:16%)], and urinary black carbon [Shannon: −3:39% (95% CI: −5:77%, −0:94%); Simpson: −0:89% (95% CI: −1:37%, −0:40%)]. The explained
variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon
load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the
bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with
cord blood black carbon were not statistically significant after correction.
CONCLUSION: Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of
the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human
health. https://doi.org/10.1289/EHP11257

Introduction
Ambient air pollution accounts for over 4:2million premature deaths
each year and is recognized as the most important environmental
cause of disease.1 The EU Directive 2008/50/EC states that there is
no identifiable threshold for exposure to particulate matter (PM) with
an aerodynamic diameter ≤2:5 lm (PM2:5) below which it is not
harmful to human health.2 One of the most toxic components of
PM2:5 is believed to be combustion-derived PM, including black car-
bon particles, which are formed during incomplete fuel combustion

and towhich hazardous substances, such as heavymetals and polycy-
clic aromatic hydrocarbons (PAHs), can bind.3,4 After inhalation,
black carbon particles smaller than 1 lm can bypass the lung–blood
barrier5 and translocate to distal body sites, as substantiated by their
presence in urine,6 placental tissue,7 and cord blood.8 Quantified
black carbon loads in these biological matrices correlate well with
modeled prenatal and postnatal air pollution exposure and are there-
fore employed as individual internal exposure biomarkers.6–8

The human gut microbiome comprises 10–100 trillion symbi-
otic microbial cells,9 mainly belonging to the bacterial phyla
Firmicutes and Bacteroidetes.10 The gut microbiome evolves dur-
ing infancy to reach an adultlike state at approximately 3 y of
life.11 During early life, bacteria are indispensable for, among other
things, shaping the host immune system and mucosal integrity.12

Later on, themicrobiome sustains human health via processes such
as energy production and guardianship against pathogen coloniza-
tion.12,13 Therefore, a healthy indigenous bacterial microbiome is
essential, and intestinal dysbiosis, i.e., bacterial community com-
position imbalance, has been implicated in the pathogenesis of sev-
eral disorders, including diabetes,14 obesity,15 cognitive deficits,16

and hypertension.17 As such, investigating factors that alter intesti-
nal bacterial richness and diversity is paramount. Diet, medication,
socioeconomic status, and sex are well-known determinants.18–20

Yet, these factors were calculated to explain in total 16% of the
interindividual variation in intestinal bacterial composition, imply-
ing that over 80% of the variation remains unexplained.21 These
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findings suggest that additional factors, e.g., environmental factors
like air pollution exposure, might play a role.

Studies addressing the impact of air pollution on the microbiome
are scarce. Various animal studies found negative associations
between air pollution exposure and the intestinal microbiome as sum-
marized byVallès et al.22 Human studies exist aswell:Mariani et al.23

examined the impact of short-termPMexposure in adults on the nasal
microbiome and found inverse associations with alpha diversity indi-
ces. A study24 involving 8-y-old primary school childrenwith asthma
in China reported that 5-d smog exposure was associated with a
decrease in the relative abundance of the fecal bacterial families
Bifidobacteriaceae and Erypsipelotrichaceae and an increase in
Streptococcaceae, Rikenellaceae, and Porphyromonadaceae. Prior-
year residential concentrations of freeway traffic-related air pollution
were linked to a decrease in the relative abundance ofBacteroidaceae
and an increase in Coriobacteriaceae in the feces of 17- to 19-y-old
overweight and obese U.S. adolescents.25 A study26 in type 2 adults
with diabetes with an average age of 52 y found negative associations
of the prior 2-y average residential PM2:5 and PM10 exposure with
alpha diversity indices of fecal microbiota. Together, the above stud-
ies suggest an influence of air pollution exposure on the gut bacterial
diversity and composition.

Despite the emerging evidence, the effects of air pollution ex-
posure on the gut microbiota in healthy children during suscepti-
ble life periods, i.e., fetal development and early childhood,
remain uninvestigated. Here, we present a study within the
ENVIRONAGE birth cohort framework (ENVIRonmental influ-
ence ON early AGEing),27 where we examined the association of
air pollution with fecal bacterial richness and diversity, and the
relative abundance of bacterial taxa. The primary objective was
to investigate whether the placental and cord blood black carbon
load (prenatal exposure biomarker) and urinary black carbon load
(postnatal exposure biomarker) were associated with fecal bacte-
rial richness and diversity in 4- to 6-y-old children.

Material and Methods

Study Population
The ENVIRONAGE birth cohort recruits mother–newborn pairs
at arrival for delivery in the East Limburg Hospital (ZOL; Genk,
Belgium) and follows them longitudinally.27 In total, 1,596
mother–child pairs are included in the cohort, and recruitment
still continues. Written informed consent is obtained from all par-
ticipating mothers, and the study is approved by the Ethical
Committees of Hasselt University and East-Limburg Hospital
(EudraCT B37120107805) and complies with the Helsinki
Declaration. At the first antenatal visit, maternal body mass index
(BMI) was determined by dividing the measured weight in kilo-
grams by the measured height in square meters. The conception
date was estimated based on the first day of the mother’s last
menstrual period combined with the first ultrasonographic exami-
nation. After delivery, detailed lifestyle and sociodemographic
information about the mother and child were gathered via ques-
tionnaires (e.g., maternal age and education, parity, descent,
smoking habits, and antibiotic use during pregnancy) and medical
records (e.g., newborn sex, mode of delivery, and day of deliv-
ery). Parity was categorized as mothers having their first, second,
or third or more child. Descent was classified as European when
two or more grandparents were of European descent. Maternal
education was coded as “low” when the mother did not obtain a
high school diploma, “middle” when the mother obtained a high
school diploma, and “high” when the mother obtained a college
or university degree.28 After approximately 4 and 10 y, mother–
child pairs are contacted again to participate in the follow-up
phase, in which anthropometric, cognitive, and cardiovascular

examinations are performed and questionnaires regarding life-
style, use of medication, and behavior are administered. In addi-
tion, a nonquantitative food frequency questionnaire detailing the
child’s daily intake of, e.g., fruit, vegetable, and soda consump-
tion over the prior 3 months (never, <1 d=wk, 1 d/wk, 2 d/wk, 3–
4 d/wk, 5–6/d/wk, one time per day, multiple times per day) is
filled in by the mother.

For this study,mother–child pairs were contactedwhen the child
reached the age of 4 to 6 y and were asked to agree to a house visit
by a study employee, in which, among other biological samples and
measurements, a stool and urine sample were collected from the
child. In addition, questionnaire data (e.g., child’s age, antibiotic use
in the month before the house visit, in-house smoking, and maternal
occupation) was gathered, and the child’s anthropometrics (height
and weight) were measured. Maternal occupational levels were
coded using the Standard Occupational Classification: sales and
customer service occupations, process, plant and machine opera-
tives, and elementary occupations were coded as “low”; administra-
tive and secretarial occupations, skilled trades occupations, and
caring, leisure, and other service were coded as “middle”; and man-
agers, directors, senior officials, professional occupations and asso-
ciate professional and technical occupations were coded as
“high.”29 Last, based on the home address of the mothers, median
annual neighborhood income was defined using Belgian census-
tract data (FODEconomie/DGStatistiek) as previously described.29

Written informed consent was obtained from the parents and oral
permission from the child at the start of the house visit. Participant
recruitment was carried out in two phases: spring 2017 and spring
2018. For this study, only mother–child pairs who already partici-
pated in the 4-y follow-up study up to 1 y before the house visit or
who were going to participate within 1 y after the house visit,
mother–child pairs who did not (plan to) move between the house
visit study and the 4-y follow-up study, andmother–child pairs who
had nomajor renovations planned during the house visit study, were
eligible for inclusion. In total, 284 eligible mother–child pairs were
identified, of whichwe succeeded in contacting 233, and 157 agreed
to participate in the house visit study, where 96 children provided a
stool sample (success rate of stool sample collection was 61.1%).
The main reasons that participants did not provide a stool sample
were the collection of a stool sample within a limited time frame
(only 2 d) and the “yuck factor.” Three stool samples were excluded
due to improper storage, four samples because of an insufficient
DNA quality, and four due to a too-low number of sequence reads.
As a result, the number of included participants amounted to 85, of
which 36 (42%) were recruited in 2017 and 49 (58%) in 2018.
Among the 85 participants, 63 participants had placental tissue,
whereas cord blood and urine were each available from 80 partici-
pants (Figure 1). The overlap in availability for the three biological
samples is depicted in Figure S1.

Sample Collection and Processing
At birth, fresh placental tissue was collected within 10 min after
delivery. Four biopsies were taken at standardized sites: one in
each quadrant of the fetal side across the middle region of the pla-
centa, approximately 4 cm away from the umbilical cord and
1 cm below the chorion-amniotic membrane to avoid membrane
contamination. Biopsies were stored at −80�C until further use.30
Because a previous study showed no differences in black carbon
load among the four biopsies in three women in this cohort, only
one biopsy was used for further examination within this study.7
For black carbon quantification, frozen biopsies were fixed in 4%
formaldehyde on ice at least 24 h before being dehydrated and
paraffin-embedded.7 Additionally, 4-lm sections were cut using
a microtome (Leica Microsystems) and mounted on histological
glass slides. Per biopsy, five slides were prepared. Umbilical cord
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blood was also gathered within 10 min after delivery in BD
Vacutainer plastic whole blood tubes, spray-coated with K2
EDTA (BD) and stored at −25�C.31 For black carbon measure-
ments, cord blood samples were thawed at room temperature,
vortexed (VWR International), and 100 lL was pipetted into
imaging chambers fabricated in-house.8 Two imaging chambers
were prepared per participant. Imaging chambers were constructed
by placing a glass coverslip (24× 24 mm; no. 1.5, VWR) on a
microscopic glass slide (75× 25 mm; VWR) merged with 100 lm
thick double-sided tape (product no. 4959, Tesa SE). The imaging
chambers were air-sealed to prevent drying.

Two days before the house visit, the parent(s) collected one
stool sample from their child in a designated sterile stool container
(VWR) and stored it in their home freezer at −20�C. At the day of
the house visit, the parent(s) also collected a urine sample and kept
it in the refrigerator. After the examinations, stool and urine

samples were taken, transported on ice, and stored at −80�C and
−25�C, respectively, until further analysis. For black carbon analy-
sis, urine aliquots were thawed on ice, homogenized for 30min in a
thermomixer (Eppendorf SE) at room temperature, and 100 lL
was pipetted into the imaging chambers fabricated in-house
(described above). Urinary osmolality was determined using
150 lL urine and a Knauer Osmometer (K-7400S) (Knauer).

Black Carbon Measurements
Black carbon particles were quantified in placental tissue, cord
blood, and urine using white light generation under femtosecond
pulsed illumination, allowing label-free detection.32 All images
of cord blood were gathered at room temperature using a Zeiss
LSM880 NLO scan head mounted to the rear port of an inverted
laser-scanning microscope (Zeiss Axio Observer.Z1 motorized

Figure 1. Participant flow chart depicting the selection of participants enrolled in the ENVIRONAGE birth cohort for arriving at the final study sample size.
Note: Only mother–child pairs who already participated in the 4-y follow-up study up to 1 y before the house visit or who were going to participate within 1 y
after the house visit, mother–child pairs who did not (plan to) move between the house visit study and the 4-y follow-up study and who had no major renova-
tions planned during the house visit study were eligible for inclusion in this study. ASV, amplicon sequence variant; ENVIRONAGE, ENVIRonmental influ-
ence ON early AGEing birth cohort.
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stand; Carl Zeiss) equipped with a two-photon femtosecond
pulsed laser (810 nm, 120 fs, 80 MHz, MaiTai DeepSee;
SpectraPhysics) and an Plan-ApoChromat 20× =0:8 M27 air
objective (Carl Zeiss). All images of placental tissue and urine
were collected at room temperature using a Zeiss LMS510
META NLO scan head mounted on an inverted laser-scanning
microscope (Zeiss Axiovert 200M; Carl Zeiss) equipped with the
same ultrashort pulsed laser using a Plan-Neofluar 10× per 0:3
M27 air objective for placental tissue and an EC Plan Neofluar
20× per 0:5 objective for urine (Carl Zeiss). For placental tissue,
five 4-lm-thick sections were imaged entirely. The field view of
the resulting tile scans ranged between 2,700× 2,700 lm2 and
4,500× 4,500 lm2, depending on the size of our tissue. This
approach corresponds to either 9 images with a 3,888× 3,888
pixel resolution or 25 images with a 6,480× 6,480 pixel resolu-
tion, both recorded with a 2:51 ls pixel dwell time. For cord
blood, the resulting tile scans had a field of view of
4,250:96× 4,250:96 lm2 containing 100 images with a
5,120× 5,120 pixel resolution, recorded with a 1:54 ls pixel
dwell time at three different locations within two imaging cham-
bers. For urine, the resulting tile scans had a field of view of con-
taining 9 images with a 1,536× 1,536 pixel resolution and were
recorded with a 1,60 ls pixel dwell time at five different loca-
tions in the imaging chamber. Cord blood and urine images were
taken 5 lm above the coverslip.

For each image, two emission channels were employed (i.e.,
450–650 nm for channel 1, and 400–410 nm for channel 2). In
each channel, the number of black carbon particles was calcu-
lated using a peak-finding algorithm in MATLAB (MATLAB
2010; MathWorks, Inc.). This program counts pixels above a cer-
tain threshold value, i.e., 0.5% and 45% lower than the highest in-
tensity value of channel 1 and channel 2, respectively. The
detected pixels in both channels are compared, and only the
matching pixels are identified as black carbon particle. For pla-
cental tissue, the effectively imaged placental area was deter-
mined in the imaging originating from channel 1 using Fiji
(ImageJ). Based on MATLAB and Fiji outputs, the total relative
number of black carbon particles per cubic nanometer of tissue or
mL fluid was defined. We calculated Pearson correlation coeffi-
cients to assess the correlation between placental, cord blood, and
urinary black carbon loads. In addition, to examine whether the
measured black carbon load reflected well the participants’ expo-
sure to ambient airborne black carbon, we also calculated
Pearson correlation coefficients between the measured and mod-
eled data. Placental and cord blood black carbon loads were com-
pared with ambient airborne black carbon exposure averaged
over pregnancy. Similarly, the urinary black carbon load was cor-
related to the average airborne black carbon exposure over the
month, 6 months, and year preceding the house visit. Modeled air
pollution data was generated as follows: residential black carbon
exposure levels (micrograms per cubic meter) were interpolated
for each mother’s (during pregnancy) and each child’s (during
early life) residential address using a spatiotemporal interpolation
method that considers land-cover data obtained from satellite
images (CORINE land-cover data set) and pollution data from
fixed monitoring stations in combination with a dispersion model.
This model provides daily interpolated exposure values in a high-
resolution receptor grid using data from the Belgian telemetric air
quality networks, point sources, and line sources. Overall model
performance was evaluated by leave-one-out cross-validation
including 14 monitoring points for black carbon, resulting in a
spatiotemporal explanatory variance of over 74% in Flanders.33

Daily air pollutants concentrations during pregnancy and the year
preceding the house visit, taking into account address changes,
were calculated.27

Intestinal Microbiome 16S rRNA V3-V4 Amplicon
Sequencing
Stool samples were used as a proxy for the gut microbiome.34
Bacterial DNA was extracted from 200 mg of stool employing
the E.Z.N.A. Stool DNA Kit (Omega Bio-Tek Inc.) according to
the manufacturer’s instructions. The extracted DNA was eluted
in an elution buffer (10mM Tris/HCl, pH 8.5) and stored at
−20�C after checking the quantity and quality spectrophotomet-
rically (Nanodrop ND-1000 Spectrophotometer; Isogen Life
Sciences). Due to insufficient DNA quality, four samples were
omitted from further analysis.

Amplification of 16S rRNA Amplicon and Preparation of
16S Library
The bacterial V3-V4 16S rRNA gene region was amplified using
primers that incorporate Ion Torrent sequencing adaptors and Ion
Xpress barcodes [amplification PCR: 341F (50-TAC GGG AGG
CAG CAG-30) and 806R (50-GGA CTA CVS GGG TAT CTA
AT-30) primers (Alpha DNA); index PCR: sequencing adaptor
(underlined, underlined and bold) Ion Xpress barcoded (bold)
341F (50-CCA TCT CAT CCC TGC GTG TCT CCG ACT CAG
CTA AGG TAA CGA TTA CGG GAG GCA GCA G-30) with
P1 (underlined) adapted 806R (50-CCA CTA CGC CTC CGC
TTT CCT CTC TAT GGG CAG TCG GTG ATG GAC TAC
VSG GGT ATC TAA T-30)]. Both amplicon and index amplifi-
cation were achieved on a T100 Thermal Cycler (Bio-Rad) via
the polymerase chain reaction (PCR) programs in the Tables S1,
S2, and S3. Amplified products from each round were purified
using AMPure XP beads (Beckman Coulter) and a magnetic
rack, quantified with the Quant-iT dsDNA HS Assay Kit
(Thermo Fisher Scientific), and visualized on agarose gels (1.5%
agarose gel, 1.5h, 90V). Barcoded amplicons were pooled in
equimolar amounts, and the library dilution factor was deter-
mined using an Ion Library Quantitation Kit. An Ion 510 &
520 & 530 Kit-Chef on an Ion Chef system was used for
sequencing template preparation, and sequencing was performed
on an Ion 530 chip using 400 bp paired-end chemistry.

Sequencing Data Analysis
Sequencing data were received as a set of Ion Torrent-sequenced
FASTQ files. Sequences were demultiplexed using the Ion Torrent
software, and subsequently underwent quality trimming and pri-
mers removing using DADA2 1.10.1.35 Parameters for length
trimming were set to keep the first 230 bases of the forward read,
maxN=0, MaxEE= ð2Þ, trimLeft = 15, and truncQ=2. Reads
were de-replicated and error rates were inferred using the
DADA2 default parameters. Sequence variants were inferred
using the adjusted parameters for Ion Torrent-sequences: dada
(homopolymer gap penalty= − 1, band size= 32). After removal
of chimeras via the removeBimeraDenovo() function, an amplicon
sequence variant (ASV) table was built and taxonomy assigned
using the assignTaxonomy function and the SILVA v138 training
set,36,37 and alternatively using DECIPHER38 for taxonomic classi-
fication with IDTaxa function and the SILVA_SSU_r138_2019
database. The resulting ASVs and taxonomy tables were combined
with the metadata file into a phyloseq object (Phyloseq, version
1.26.1).39 Contaminants were removed from the dataset using the
package Decontam (version 1.2.1), applying the prevalence method
with a 0.5 threshold value.40 Four samples were omitted from the
analyses due to an insufficient number of reads (<10,000). Relative
taxa abundances at family level were computed by normalizing the
number of sequencing reads per ASV for the overall number of
sequencing reads per stool sample. The relative abundance of a bac-
terial family thus represents what percentage (ranging from 0% to
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100%) of themicrobiome that ismade up of that specific family. In a
log-log model, a percentage change of, e.g., 235% per doubling in
exposure would mean a 2.35-fold increase. Rarefaction analysis
was performed with ranacapa 0.1.0.41 Based on the ASV table,
alpha diversity was assessed by calculating Chao1 richness index,
Shannon diversity index, and Simpson diversity index. Chao1 rich-
ness estimates the total richness, i.e., the number of expected spe-
cies, based on the number of observed species, considering that low
abundance species might be missed. In addition, Shannon and
Simpson diversity take into account both richness and evenness.
The Shannon diversity index focuses most on species richness and
reflects the degree of uncertainty in predicting where randomly
selected species will belong and ranges from one (single dominant
specie) to the total number of all species (all species having equal
abundance). A larger value indicates a greater diversity.On the other
hand, the Simpson diversity index places greater emphasis on spe-
cies evenness and ranges between 0 and 1. It reflects the probability
that two bacteria randomly selected will belong to different species;
hence, a larger value reflects a greater diversity.42

Statistical Analyses
All statistical analyses were performed using R Statistical Software
(version 4.0.5; R Foundation for Statistical Computing). Descriptive
statistics of the lifestyle characteristics are presented in Table 1
for all included participants (n=85) and compared to the entire
birth cohort (Table S4). Continuous variables are expressed as
median± interquartile range (IQR) and categorical variables as
total number (n) and percentage (%). To improve normality of the
distributions, we log-transformed black carbon loads and rich-
ness and diversity indices. First, robust linear regression models
were fitted between the modeled black carbon exposure data (i.e.,
exposure during pregnancy and the month, 6 months, and year
before stool sample collection) and the Chao1 richness, Shannon
diversity and Simpson diversity indices, while accounting for the
following covariables based on previous associations between
the covariable and either the fecal microbiome or air pollution:
parity (first, second, or third and more),43 season of delivery
(winter, spring, summer, or autumn),44 sequencing batch (first or
second),45 child’s age (continuous),46 sex (male or female),47
weight (continuous),48 height (continuous),49 andmaternal education

Table 1. Anthropometric and lifestyle characteristics of the participating
mother–child pairs (n=85) enrolled in the ENVIRONAGE birth cohort.

Characteristics

Participants (n=85)

Median± IQR Total number (%)

Child characteristics
Sex — —
Male — 40 (47.1%)
Female — 45 (52.9%)

Age (y) 4:8± 0:8 —
Weight (kg) 18:3± 3:0 —
Height (cm) 107:0± 6:8 —
Descent — —
European — 82 (96.5%)
Non-European — 3 (3.5%)

Gestational duration (d) 280:0± 11:0 —
Season of delivery — —
Winter — 23 (27.1%)
Spring — 13 (16.5%)
Summer — 24 (28.2%)
Autumn — 24 (28.2%)

Antibiotic use in the month before
sample collection

— —

No — 77 (90.6%)
Yes — 8 (9.4%)

In-house smoke exposure — —
No — 83 (97.6%)
Yes — 2 (2.4%)

Vegetable intakea — —
Never — 0 (0%)
<1 d=wk — 1 (1.4%)
1 d/wk — 1 (1.4%)
2 d/wk — 1 (1.4%)
3–4 d/wk — 8 (10.8%)
5–6 d/wk — 14 (18.9%)
1 time/d — 40 (54.1%)
Multiple times/d — 9 (12.2%)

Fruit intakea — —
Never — 1 (1.4%)
<1 d=wk — 0 (0%)
1 d/wk — 2 (2.7%)
2 d/wk — 2 (2.7%)
3–4 d/wk — 10 (13.5%)
5–6 d/wk — 8 (10.8%)
1 time/d — 23 (31.1%)
Multiple times/d — 28 (37.8%)

Soda intakea — —
Never — 31 (41.9%)
<1 d=wk — 15 (20.3%)
1 d/wk — 9 (12.2%)
2 d/wk — 7 (9.5%)
3–4 d/wk — 3 (4.1%)
5–6 d/wk — 1 (1.4%)
1 time/d — 8 (10.8%)
Multiple times/d — 0 (0%)

Mother Characteristics
Age at delivery (y) 30:0± 5:0 —
BMI (kg=m2) 22:6± 3:7 —
Smoking during pregnancy — —
No — 79 (92.9%)
Yes — 6 (7.1%)
Antibiotic use during pregnancy — —
No — 74 (87.1%)
Yes — 11 (12.9%)
Parity — —
First child — 44 (51.8%)
Second child — 34 (40.0%)
Third or following child — 7 (8.2%)
Education level — —
Low — 2 (2.4%)
Middle — 23 (27.1%)
High — 60 (70.5%)

Table 1. (Continued.)

Characteristics

Participants (n=85)

Median± IQR Total number (%)

Occupation level — —
Low — 9 (10.6%)
Middle — 32 (37.6%)
High — 44 (51.8%)

Median annual neighborhood income
(Euro)

25,981:4± 4,011:8 —

Mode of delivery — —
Vaginal — 84 (98.8%)
Cesarean section — 1 (1.2%)

Note: Continuous covariables are expressed as median± IQR and categorical covariables
are described as total number (n) and percentage (%). Maternal educational level was
coded “low” if the participant did not obtain a high school diploma, “middle” if the partici-
pant obtained a high school diploma, and “high” if the participant obtained a college or uni-
versity degree. Maternal occupational levels were coded using the Standard Occupational
Classification: sales and customer service occupations, process, plant and machine opera-
tives, and elementary occupations were coded “low”; administrative and secretarial occu-
pations, skilled trades occupations and caring, leisure and other service were coded
“middle”; andmanagers, directors, senior officials, professional occupations and associate
professional and technical occupations were coded “high.” Descent was based on the
native country of the newborn’s grandparents and described as European when two or
more grandparents were European, or non-European when at least three grandparents were
of non-European origin. —, no data; BMI, body mass index; ENVIRONAGE,
ENVIRonmental influenceON early AGEing birth cohort; IQR, interquartile range.
aData available for 74 participants.
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(low, middle, or high)20,50 as a proxy for socioeconomic status.51–53

Afterward, (Partial) Spearman correlations coefficients (r) and coef-
ficients of determination (R2) were calculated to evaluate the corre-
lations between the different richness and diversity indices and
black carbon loads while accounting for the same covariables.
Subsequently, the standardized R2 values of black carbon loads
were compared to the standardizedR2 values of other covariables.

Next, robust multiple linear regression models were fitted to
assess the effect size of black carbon loads in placental tissue, cord
blood, and urine on the Chao1 richness index, Shannon diversity
index, and Simpson diversity index, respectively, while accounting
for the same covariables. A multiexposure robust linear regression
model incorporating both prenatal (cord blood black carbon) and
postnatal (urinary black carbon) exposure was fitted to assess the
relative effect size on each of the richness and diversity indices.
This multiexposure model was also adjusted for the aforemen-
tioned covariables. Cord blood black carbon was employed as pre-
natal exposure biomarker since cord blood samples were available
for a larger number of participants compared to placental tissue.
Robust models and partial correlations were used because of the
small sample size to reduce the effect of influential cases. Results
are presented as a percentage change (%) in index for a doubling in
black carbon load. In a sensitivity analysis, we assessed whether
the mode of delivery (vaginal or cesarean section),54 smoking dur-
ing pregnancy (yes or no),55 antibiotic use during pregnancy (yes or
no),56 in-house smoking during childhood (yes or no),57 antibiotic
use in the child during the month before stool sampling (yes or
no),58 descent (European or non-European),59 BMI z-score (contin-
uous) instead of weight and height separately,60 fruit, vegetables,
and soda intake as proxies for diet (never, <1 d=wk, 1 d/wk, 2 d/wk,
3–4 d/wk, 5–6 d/wk, one time per day, multiple times per day),61

maternal occupation (low, middle, high)26 instead of maternal edu-
cation, or adjustment for neighborhood income (continuous)62 to-
gether with maternal education affected the observed associations
between the diversity measures and black carbon loads. Last, raw
family counts were used to perform a differential relative abundance
analysis at the family level using the “Analysis of Compositions of
Microbiomes with Bias Correction” (ANCOM-BC) R package
(version 1.0.55).63 Multiple testing was corrected by restricting the
false discovery rate as lower than 0.10. All other options remained
as default. All reported p-values were two-tailed and a p ≤0:5 was
used to define statistical significance.

Results

Population Characteristics
Table 1 shows the anthropometric and lifestyle characteristics
of the participating mother–child pairs. In total, 85 children

were included, of which almost half were male (47%). On
average± IQR, children were 5± 1 y of age with a mean weight of
18± 3 kg and mean height of 107± 7 cm. Almost all of themwere
of European descent (97%), and half of them were the first-born
(52%). Eight children (9%) took antibiotics in the month before
stool sample collection, whereas only two (2%) were exposed to
in-house smoke. Most children ate vegetables once a day (54%),
ate fruit multiple times a day (39%), and never drank soda (42%).
The average± IQR maternal age at delivery was 30± 5 y, with a
mean prepregnancy BMI of 23± 4 kg=m2. The gestational dura-
tion was on average± IQR 280±11 d, with 23 children born in
winter (27%), 13 children in spring (17%), 24 children in summer
(28%), and 24 children in autumn (28%). Only one mother gave
birth via a cesarean section (1%). Six mothers (7%) smoked during
pregnancy, and 11 mothers (13%) took antibiotics. Most mothers
obtained a college or university degree (71%) and had an occupa-
tion classified as middle or high using the Standard Occupational
Classification (89%). The average median annual neighborhood
incomewas approximately 26,000± 4,000 Euro.

Black Carbon Measurements in Biological Matrices and
Modeled Values
Black carbon particles were identified in all three biological matri-
ces (Figure 2). The median± IQR loads in placental tissue, cord
blood, and urine were 2:25× 104 ± 1:25× 104 particles per cubic
millimeter tissue, 5:80× 104 ± 2:82× 104 particles per milliliter
cord blood, and 1:58× 105 ± 1:16× 105 particles per milliliter
urine, respectively (Table 2). Pearson correlation coefficients were
calculated between the black carbon values in the three biological
matrices: at birth, placental and cord blood black carbon were posi-
tively correlated (r=0:39, p=0:002), whereas no significant
correlations were observed between black carbon in placenta or
cord blood at birth and urine sampled 4 y later (r=0:23, p=0:10;
r=0:09, p=0:44, respectively). In addition to black carbon meas-
urements, modeled air pollution values were also employed. The
median± IQR modeled black carbon exposure during pregnancy
and the month, 6 months, and year preceding the house visit study
were 0:89± 0:32 lg=m3, 0:70± 0:23lg=m3, 0:99± 0:18lg=m3,
and 0:96± 0:20 lg=m3, respectively. We found that the modeled
black carbon exposure during pregnancy was significantly corre-
lated with black carbon particles quantified in placental tissue
(r=0:48, p<0:0001) and cord blood (r=0:44, p<0:0001).
Modeled black carbon exposure in the month, 6 months, and year
preceding the house visit study were correlated with black carbon
particles quantified in urine samples normalized for osmolality
(month: r=0:32, p=0:004; 6 months: r=0:25, p=0:03; year:
r=0:18, p=0:11) (Figure 3; Table S5).

Figure 2. Evidence of black carbon particles in (A) placental tissue, (B) cord blood, and (C) urine. White light generation originating from black carbon par-
ticles (yellow, indicated with a white arrow) under femtosecond pulsed laser illumination (excitation 810 nm, 120 fs, 80 MHz) was observed. Images represent
the overlap of channel 1 (green, emission 450–650 nm) and channel 2 (red, emission 400–410 nm). All samples were collected in the ENVIRONAGE birth
cohort and images were randomly selected from different participants. Scale bar: 50 lm. Note: ENVIRONAGE, ENVIRonmental influence ON early AGEing
birth cohort.
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Sequencing Data and Alpha Diversity of the Intestinal
Microbiome
Sequence data of the 16s rRNA gene hypervariable V3-V4 region
were analyzed to obtain a median± IQR of 84,132±95,725 reads
per sample and a median± IQR of 168± 87 ASVs. Rarefaction
analysis indicated that all samples had been sufficiently sequenced
(Figure S2). Bacterial relative abundance levels were calculated
at the family level (Figure 4). The most dominant bacterial fami-
lies were Lachnospiraceae (29%), Bacteroidaceae (23%), and
Ruminococcaceae (18%), together accounting for approximately
70% of the total bacterial taxa abundance. Lachnospiraceae and
Ruminococcaceae belong to the phylum Firmicutes, whereas
Bacteroidaceae is part of the phylum Bacteroidetes. Next, fecal
microbiome richness and diversity indices were calculated
for each sample. The species-richness measure Chao1 had a
median value ± IQR of 168± 87. The species-diversity measures
Shannon and Simpson, which combine richness and evenness
estimates, had amedian value± IQR of 3:8±0:62 and 0:95± 0:03,
respectively.

Association between Black Carbon Exposure/Loads and
Intestinal Microbiome Alpha Diversity
Modeled exposure to black carbon particles during the entire
pregnancy and the month, 6 months, or year prior to stool sample
collection were not associated with the alpha diversity of the in-
testinal microbiome (Table S6).

Both before and after adjustment for parity, season of deliv-
ery, batch, child’s age, sex, weight and height, and maternal
education, significant negative correlations were observed
between placental, cord blood, and urinary black carbon, and
the Shannon and Simpson diversity indices (Figure 5; Table
S7). Placental black carbon explained on average 13% of the
variation in the Shannon and 17% of the variation in Simpson
diversity indices. The explained variance of these indices by
the black carbon load of cord blood were 6% and 8%, respec-
tively, and by the urinary black carbon were 10% and 8%,
respectively. Moreover, when comparing the standardized R2

values of black carbon loads, we found that black carbon in all
three biological matrices explained on average as much varia-
tion in the Shannon diversity index as antibiotic use during the
previous month or soda intake during the previous 3 months,
whereas the explained variance of black carbon on the Simpson
diversity index was five times higher in comparison with the
same two covariables (Figure 6; Table S8).

The robust multiple linear regression models confirmed our
previous findings and evaluated the effect size of the association
between black carbon loads and richness and diversity indices

(Table 3). Overall, bacterial diversity indices Shannon and
Simpson were inversely associated with both prenatal black car-
bon exposure (placental and cord blood black carbon) and post-
natal exposure (black carbon load of urine). Each doubling in
placental black carbon was associated with a 4.38% lower (95%
CI: −8:31%, −0:28%; p=0:04) Shannon diversity index and a
0.90% lower (95% CI: −1:76%, −0:04%; p=0:04) Simpson di-
versity index. Each doubling in cord blood black carbon was
associated with a 3.38% lower (95% CI: −5:66%, −0:84%;
p=0:05) Shannon index, and a 0.91% lower (95% CI: −1:66%,
−0:16%; p=0:02) Simpson diversity index. Last, for each dou-
bling in urinary black carbon, the Shannon diversity index was
3.39% lower (95% CI: −5:77%, −0:94%; p=0:009), and the
Simpson diversity index was 0.89% lower (95% CI: −1:37%,
−0:40%; p<0:0001). No statistically significant associations
were found in black carbon loads with the Chao1 richness index
(Table 3). Additionally, the multiexposure model showed that
each doubling in cord blood black carbon was associated with a
0.85% lower (95% CI: −1:59%, −0:10%; p=0:03) Simpson di-
versity index, whereas the association with the Shannon diversity
index did not remain statistically significant (−2:61%, 95% CI:
−6:17%, 1.10%; p=0:16). On the other hand, each doubling in
urinary black carbon was associated with a 3.51% lower (95% CI:
−5:95%, −1:00%; p=0:006) Shannon diversity index and a
1.05% lower (95% CI: −1:56%, −0:54%; p<0:0001) Simpson
diversity index (Table 4).

In sensitivity analyses, we examined whether the main find-
ings of the robust multiple linear regression models remained af-
ter correcting for smoking during pregnancy (n=6); antibiotic
use during pregnancy (n=11); antibiotic use 1 month before
stool sampling (n=8); BMI z-score instead of weight and height
separately; fruit, vegetable, and soda intake (data available for 74
participants); maternal occupation instead of maternal education,
or neighborhood income together with maternal education; or
excluding children exposed to in-house smoke (n=2), mothers
who gave birth via a cesarean section (n=1), or children of non-
European descent (n=3). Correction for these variables or exclu-
sion of these participants did not significantly change the effect
estimates (Table S9).

Raw family counts were used as input to the ANCOM-BC R
package to examine the relationship between black carbon loads
and relative abundance at the family level (Table 5). Results are
expressed as a percentage change in bacterial family per doubling
in black carbon load.Within the model, we accounted for the same
covariables that were accounted for in previous models. The asso-
ciations between placental, cord blood, and urinary black carbon
and all bacterial families are depicted in Table S10. After multiple
testing correction via the false discovery rate, two bacterial fami-
lies were inversely associated with placental black carbon,
Defluviitaleaceae (−73:7%; q=0:09), Marinifilaceae (−96:9%;
q=0:08), and two bacterial families were negatively associated
with the urinary black carbon load: Christensenellaceae (−85:8%;
q=0:03) andCoriobacteriaceae (−80:7%; q=0:08). The associa-
tions found with cord blood black carbon and bacterial families did
not survivemultiple testing.

Discussion
The key finding of our study is that the load of black carbon
particles in prenatal tissues (placenta and cord blood) and in
child urine was associated with lower fecal bacterial diversity
and lower relative abundance of specific bacterial taxa in chil-
dren age 4–6 y. Statistically significant negative correlations
and associations were observed between the placental,
cord blood, and urinary black carbon loads and the Shannon
and Simpson diversity indices. High richness and diversity

Table 2. Detailed information on the distribution of the placental, cord
blood, and urinary BC load, quantified via the white light technique.

Placental BC
load (n=63)

Cord blood BC
load (n=80)

Urinary BC
load (n=80)

Mean 22,488 58,041 177,731
Median 23,162 54,535 157,834
Standard deviation 8,733 25,211 116,419
25th percentile 15,875 42,849 92,171
75th percentile 28,410 71,090 234,356
Minimum value 5,208 11,686 426
Maximum value 44,788 151,919 539,538

Note: Samples were collected in the ENVIRONAGE birth cohort framework: placental
tissue and cord blood were collected at birth and urine during the house visit study.
Placental BC load is expressed as number of particles per cubic millimeter tissue and
cord blood and urinary BC load are expressed as number of particles per milliliter fluid.
Urinary black carbon is normalized for osmolality. BC, black carbon; ENVIRONAGE,
ENVIRonmental influence ON early AGEing birth cohort.
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measures are important indicators of a healthy intestinal micro-
biome in humans, because a wide array of gut microbes are
associated with a more capable and resilient gut microbiome,
resulting in an improved health status.53,64,65 If air pollution
exposure lowers gut bacterial diversity indices, this exposure
could have detrimental effects on gut health. Within this study,
fecal samples were used as a proxy for the gut microbiome.34
Our findings might have a public health impact because we
found that between 6%–17% of the interindividual variation in
intestinal bacterial composition at the species level could be
explained by prenatal and postnatal measures of internal black
carbon levels. To our knowledge, this is the first study that
linked a measure of internal ambient air pollution particles
with differences in the childhood gut microbiome. Furthermore,

human studies examining the effect of prenatal air pollution ex-
posure on the intestinal microbiome are lacking.

For every doubling in internal black carbon load in placental
tissue, cord blood, and urine, the Shannon and Simpson indices
decreased approximately 4% and 1%, respectively. Due to the large
interindividual variation in black carbon load (e.g., ranging from
5,208 to 44,788 for placental black carbon), multiple doublings are
necessary to compare doublings for low- and high-exposed chil-
dren (e.g., four doublings to go from low- to high-exposed for pla-
cental black carbon). Thus, diversity indices differed considerably
among low- and high-exposed participants. Additionally, other
studies on the association between air pollution exposure and the
intestinal microbiome did not find significant associations with
bacterial diversity indices.24,25 The findings of our study are in line

Figure 3. Correlation graphs between (A) placental black carbon and residential black carbon exposure averaged over the entire pregnancy (n=63), (B) cord
blood black carbon and residential black carbon exposure averaged over the entire pregnancy (n=80), and (C), (D), and (E) urinary black carbon normalized
for osmolality (n=80) and residential black carbon exposure averaged over the (C) preceding month, (D) preceding 6 months, and (E) preceding year of
the house visit. See Table S5 for corresponding numeric data. Participants are enrolled in the ENVIRONAGE birth cohort. Note: ENVIRONAGE,
ENVIRonmental influence ON early AGEing birth cohort.
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with the results of a previous study53 examining the effect of
previous-year outdoor ozone (O3) exposure on the fecal bacterial
richness and diversity in 101 adolescents living in Southern
California. They noted negative associations between O3 exposure
and bacterial evenness (p<0:001) and the Shannon diversity index
(p<0:001) at the species level. They reported that up to 11.2% of
the interindividual variation in bacterial composition at the species
level could be explained by O3 concentrations. Similarly, negative
associations were observed between PM2:5 and PM10 exposure
during the preceding 3.5 y of life and intestinal alpha diversity of
fecal samples in Chinese adults.26

In the current study, the bacterial families that negatively cor-
related with placental and urinary black carbon differed from
each other. This differential suggests that prenatal and postnatal

exposure to black carbon may exert different effects on the gut
microbiome. An inverse association was observed between
the placental black carbon load and the bacterial families
Defluviitaleaceae and Marinifilaceae after correction for multi-
ple testing. Both families have previously been linked to disor-
ders, despite the lack of functional information. For instance, in a
study by Liu et al.,66 64 patients with hyperlipidemia, which is
characterized by elevated blood cholesterol and triglycerides levels
and forms a major risk factor for coronary heart disease, ischemic
stroke, and peripheral artery disease, were divided into two groups:
group one, in which statin (a cholesterol-lowering medicine)
treatment was successful, and group two, in which treatment
failed. The relative abundance of the intestinal bacterial family
Defluviitaleaceae was higher in men and women belonging to the
first group in comparisonwithmen and women in the second group.
This finding suggests a modulating effect of Defluviitaleaceae on
drug efficiency and accordingly the treatment of hyperlipidemia.
Additionally, 41 inactive adults with celiac disease showed enriched
intestinal Defluviitaleaceae levels accompanied by a reduction in
resting heart rate after a 12-wk intervention with high-intensity
interval training and lifestyle education.67 Furthermore, the bacterial
familyMarinifilaceae was negatively associated with black carbon
particles in placental tissue in this study. Marinifilaceae has been
indicated as a key actor in gut health byGe et al.68 Specifically,mice
on a high-fat diet received two hypoglycemic compounds to resolve
their lipid metabolism disorder. After treatment, a statistically sig-
nificant increase in the relative abundance of four intestinal bacterial
families, includingMarinifilaceae, was observed, linking this bacte-
rium to a healthy intestinal flora. In addition, a study of the Cameron
County Hispanic Cohort69 (n=217) in South Texas reported that
the gut microbiome of Hispanic adults with liver fibrosis (n=28) in
comparison with healthy controls was enriched with immunogenic
commensals and depleted of, among other bacterial families,
Marinifilaceae.

Using urinary black carbon load to reflect childhood expo-
sure, we found that a higher load was associated with a lower rel-
ative abundance of the bacterial families Christensenellaceae and
Coriobacteriaceae after false discovery rate correction. Both
Christensenellaceae and Coriobacteriaceae have been associated
with gut health,70 because patients suffering from Crohn’s disease
and ulcerative colitis have been reported to harbor significantly
lower levels of them.71–73 Coriobacteriaceae maintain host
health by assisting in glucose, bile salt, and steroid metabolism
and the activation of dietary polyphenols.74–76 A study conducted
by Zhao et al.74 reported increased Coriobacteriaceae levels in
stool samples in response to physical activity, whereas signifi-
cantly lower levels were observed in mucosal–luminal interface
samples from type two diabetes patients in comparison with
healthy controls.76 Christensenellaceae is also involved in meta-
bolic health, as demonstrated by Goodrich et al.77 and Fu et al.78

They found negative correlations with BMI and low-density lipo-
proteins and positive correlations with high-density lipoproteins.
Additionally, Christensenellaceae has been found to be depleted
in individuals suffering from metabolic syndrome, characterized
by visceral fat, dyslipidemia, impaired glucosemetabolism, increased
risk for type 2 diabetes, and cardiovascular disease.79 Thus, higher in-
testinalChristensenellaceae levels have been linked to a lower cardi-
ometabolic risk score.70,79 Together, these studies highlight the
importance of a stable, indigenous gut microbiome to maintain host
health.

Prenatal and postnatal exposure to black carbon particles may
influence intestinal bacterial growth via, among other mecha-
nisms, systemic inflammation. Black carbon exposure has been
associated with markers of systemic inflammation, e.g., increased
white blood cell count and pro-inflammatory cytokines such as

Figure 4. Overview of the relative abundance (percentage) of the 10 most
abundant bacterial families in relation to all other taxa. Height of bars repre-
sents the relative abundance. Families are ranked in increasing order from
bottom to top. Participants were enrolled in the ENVIRONAGE birth cohort.
n=85. ENVIRONAGE, ENVIRonmental influence ON early AGEing birth
cohort.

Figure 5. (Partial) Spearman correlation coefficients with 95% CI between
Chao1 richness index, Shannon diversity index, and Simpson diversity index
and placental black carbon load, cord blood black carbon, or urinary black
carbon normalized for osmolality, based on corrected (partial/adjusted) and
uncorrected models. Partial Spearman and adjusted coefficient of determina-
tion models were adjusted for parity, season of delivery, batch, age, sex,
weight, height, and maternal education per categories included in Table 1.
See Table S7 for corresponding numeric data. Participants were enrolled in
the ENVIRONAGE birth cohort. * indicates p ≤0:05. p-Values were calcu-
lated using pairwise (partial) Spearman correlation. Placenta n=63, cord
blood n=80, and urine n=80. Note: BC, black carbon; CI, confidence inter-
val; ENVIRONAGE, ENVIRonmental influence ON early AGEing birth
cohort.
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interleukin-6, in both children80 and adults,81 including preg-
nant women. Subsequently, these pro-inflammatory mediators
could impact intestinal bacterial growth, preferentially deplet-
ing beneficial gut flora and promoting the growth of otherwise
dormant bacteria with potential pathogenic properties.82–84

For instance, male C57BL/6j mice long-term intratracheally
instilled with diesel exhaust particles had higher circulating
levels of interleukin-1b in serum accompanied by a higher
relative abundance of Helicobacteraceae, Campylobacterales,
Campylobacteria, Desulfovibrionaceae, Duslfovibrionales,
Polyangiaceae, Myxococcales, and Deltaproteobacteria and
lower relative abundance of Deferribacteraceae, Deferribacterales,
and Deferribacteres.85 In addition, there may be a maternal–
fetal efflux of pro-inflammatory mediators,86 and therefore we
hypothesize that inflammation could impact the child’s gut
microbiome in the womb. Prenatal black carbon exposure might
also impact the gut microbiome via other pathways. For a long
time, the “sterile womb paradigm” was an accepted dogma, stat-
ing that the human body is only colonized with microorganisms
during and after birth.87 Depending on the route of delivery,
these pioneering microbes are predominantly of vaginal, cutane-
ous, or oral origin.88,89 If air pollution exposure during preg-
nancy could influence the maternal vaginal, skin, and/or oral
microbiome, this exposure might indirectly impact the infant’s
intestinal microbiome. In addition, maternal skin bacteria such as
Staphylococcus, Streptococcus, Lactobacillus, and Bifidobacterium
might also be transferred during breastfeeding.90 Yet, recent

studies challenged this dogma by discovering bacteria in placen-
tal tissue, amniotic fluid, and meconium.91–93 This “in utero col-
onization theory” leaves open the possibility of a maternal–fetal
efflux of commensal bacteria,87 providing another framework of
how prenatal air pollution exposure could more directly influence
an infant’s intestinal microbiome. However, the presence of bac-
teria in meconium samples is also debated, because studies94,95

reported that the bacteria found in the majority of the “dogma-
challenging” studies originated from contamination from lab
reagents and the environment. During childhood, black carbon
particles may also be transported into the gut after mucociliary
clearance of particles from the airways or systemic uptake after
inhalation.96–98 Once in the intestines, PM may alter bacterial
growth by various mechanisms, such as gut inflammation, dis-
ruption of tight junction proteins, and oxidative stress.99–102 The
majority of these mechanisms have been exclusively investigated
in in vitro studies and in vivo animal models. For instance, Mutlu
et al. showed that exposure to high doses of urban airborne PM
was associated with a) oxidant-dependent gastrointestinal epithe-
lial cell death, b) disruption of the tight junction protein Zonula
occludens-1, c) an increase in the inflammatory markers
interleukin-6, nuclear factor-kappa B, and tumor necrosis factor
a, and d) an increase in gut permeability in in vitro (Caco-2 intes-
tinal epithelial barrier model) and in vivo animal (male C57BL/6
mice) models.100,101 In addition, 126/SvEv mice gavaged with
PM10 particles for 2 wk showed increased pro-inflammatory
cytokine levels in intestinal tissue.99 As mentioned previously,

Table 3. Overview of the associations between the bacterial Chao1 richness and Shannon and Simpson diversity indices and placental, cord blood, and urinary
BC load.

Placental BC (n=63) Cord blood BC (n=80) Urinary BC (n=80)

Percentage change p-Value Percentage change p-Value Percentage change p-Value

Chao1 index −6:63 (−17:02, 5.08) 0.26 0.52 (−9:18, 11.26) 0.92 −2:45 (−8:95, 4.51) 0.48
Shannon index −4:38 (−8:31, −0:28) 0.04 −3:38 (−5:66, −0:84) 0.05 −3:39 (−5:77, −0:94) 0.009
Simpson index −0:90 (−1:76, −0:04) 0.04 −0:91 (−1:66, −0:16) 0.02 −0:89 (−1:37, −0:40) <0:0001

Note: Effects are expressed as percentage change and 95% CI for a doubling in black carbon load. Robust linear regression models were adjusted for parity, season of delivery,
sequencing batch, age, sex, weight, and height of the child, and maternal education per categories included in Table 1. Urinary black carbon is normalized for osmolality. Participants
were enrolled in the ENVIRONAGE birth cohort. BC, black carbon; CI, confidence interval; ENVIRONAGE, ENVIRonmental influence ON early AGEing birth cohort.

Figure 6. Percentage of variance (R2) in Shannon or Simpson diversity explained by different covariables. Covariables were categorized as depicted in Table
1. See Table S8 for corresponding numeric data. Participants were enrolled in the ENVIRONAGE birth cohort. Note: ENVIRONAGE: ENVIRonmental influ-
ence ON early AGEing birth cohort.
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black carbon particles are formed during the incomplete combus-
tion of carbonaceous fuels,3,4 during which hazardous substances
such as PAHs, including benzo(a)pyrene (BaP), can adhere to their
surface. Besides a possible mutagenic and carcinogenic potential,
multiple studies also reported a pro-inflammatory potential for
BaP, potentially affecting intestinal bacterial growth.103,104 For
instance, Khalil et al. demonstrated a significant increase inmurine
intestinal inflammation in association with a high-fat diet follow-
ing BaP exposure.104 Additionally, C57BL/6 mice orally exposed
to BaP showed a significant increment in inflammatory cell prolif-
eration and crypt damage, leading to decreased levels of the intesti-
nal bacterial genus Lactobacillus.103

To our knowledge, this study is the first to investigate the corre-
lation between airborne particulate matter exposure of healthy
young children during susceptible life periods and their gut bacte-
rial richness and diversity of specific bacterial taxa. Other epidemi-
ological studies examining the association between air pollution
and the intestinal microbiome so far made use of spatial temporal
modeled data.24–53 These air pollution models only consider expo-
sure at the residential address, implying that individual and time-
activity mobility patterns, e.g., commuting, hobbies, and work, are
not considered. Consequently, exposure misclassification and a
potential underestimation of the health risk can occur.6 As seen in
our study, modeled black carbon exposure during pregnancy and
the month, 6 months, or year before stool sample collection was
not associated with the bacterial richness and diversity of the in-
testinal microbiome. To overcome these shortcomings, we
employed the white light technique to assess individual and in-
ternal black carbon loads. The implication of this technique in
population-based research is unique, allows the determination
of a precise personal exposure measurement, and enables direct
linkagewith observed gutmicrobiome changes.32

We acknowledge some study limitations. First, only 85 children
were included in the present study, resulting in a small sample size.
Despite the small sample size, we were able to find statistically sig-
nificant correlations and associations with diversity indices and the
relative abundance of specific bacterial families. Due to the limited
sample size of our study, our study population might not be com-
pletely representative for the general population: e.g., our study
included only onemother giving birth via a cesarean section and had
a slightly lower percentage of children of non-European descent
(3.5% vs. 10.2%) and ofmothers with low education levels (2.4% vs.
10.6%) in comparison with the entire birth cohort (Table S4).
Moreover, the small sample size significantly limited our ability to
test the influence of certain factors (e.g., cesarean section and
descent) on the intestinal microbiome. Second, limited information
regarding diet was available. Yet, we adjusted the robust linear
regressionmodels for self-reported fruit, vegetable, and soda intake,
which did not significantly change our findings. Future population-
based research is necessary to examine potential pathways (e.g., sys-
temic oxidative stress and gut inflammation) that might underlie the
observed associations between air pollution exposure and the intes-
tinal microbiome because for now only in vivo animal and in vitro
studies exist. In addition, metagenomic shotgun and pathway analy-
ses could be performed to acquire more in-depth information on the
microbiome composition and functionality.

Conclusion
Higher accumulation of black carbon particles in placental tissue,
cord blood, and urine as internal biomarkers of prenatal and post-
natal combustion-related air pollution exposure was associated
with changes in intestinal bacterial diversity in young children.
Black carbon loads in placental tissue were negatively associated

Table 4. Overview of the results of multiexposure models considering the associations between the bacterial Chao1 richness and Shannon and Simpson diver-
sity indices and both the cord blood and urinary BC load.

Cord blood BC (n=76) Urine BC (n=76)

Percentage change p-Value Percentage change p-Value

Chao1 index 1.62 (−8:19, 12.48) 0.76 −1:61 (−8:25, 5.50) 0.65
Shannon index −2:61 (−6:17, 1.10) 0.16 −3:51 (−5:95, −1:00) 0.006
Simpson index −0:85 (−1:59, −0:10) 0.03 −1:05 (−1:56, −0:54) <0:0001

Note: Effects are expressed as percentage change and 95% CI for a doubling in BC load. Robust linear regression models were adjusted for parity, season of delivery, sequencing
batch, age, sex, weight and height of the child, and maternal education per categories included in Table 1. Urinary black carbon is normalized for osmolality. In addition, n=76
because either only cord blood or urine was available for four participants. Participants were enrolled in the ENVIRONAGE birth cohort. BC, black carbon; CI, confidence interval;
ENVIRONAGE, ENVIRonmental influence ON early AGEing birth cohort.

Table 5. Results of the relative abundance analysis examining the association between placental, cord blood and urinary BC and bacterial families computed
with the ANCOM-BC R package.

Matrix Family p-Value q-Value Percentage difference

Placenta Anaerovoracaceae 0.02 0.29 −45:81
Placenta Christenellaceae 0.04 0.36 −85:18
Placenta Defluviitaleaceae 0.003 0.09 −73:70
Placenta Marinifilaceae 0.001 0.08 −96:92
Placenta Muribaculaceae 0.02 0.29 −96:03
Placenta Oscillospiraceae 0.009 0.21 −52:02
Cord blood Anaerovoraceae 0.05 0.54 −45:81
Cord blood Coriobacteriaceae 0.03 0.58 445.66
Urine Christensenellaceae 0.0005 0.03 −85:84
Urine Coriobacteriaceae 0.0003 0.08 −80:67
Urine Coriobacteriales incertae sedis 0.05 0.42 −48:14
Urine Enterobacteriaceae 0.05 0.42 233.09
Urine Methanobacteriaceae 0.05 0.42 −57:80
Urine Rikenellaceae 0.05 0.42 −59:88

Note: Only bacterial families with a p ≤0:05 are shown. Results are expressed as percentage change per doubling in BC load: for instance, a −45:81% change would mean a 0.46-fold
decrease per doubling in BC load. ANCOM-BC log-log models were corrected for parity, season of delivery, batch, age, sex, weight, height of the child, and maternal education per
categories included in Table 1. Urinary black carbon was normalized for osmolality. p ≤0:05 and q ≤0:10 are considered statistically significant. Families that remained statistically
significant after multiple testing correction via the false discovery rate are indicated in gray. Participants were enrolled in the ENVIRONAGE birth cohort. Placenta n=63, cord blood
n=80, and urine n=80. BC, black carbon; ENVIRONAGE, ENVIRonmental influence ON early AGEing birth cohort.

Environmental Health Perspectives 017010-11 131(1) January 2023



with Defluviitaleaceae and Marinifilaceae, whereas urinary black
carbon was negatively associated with Christensenellaceae and
Coriobacteriaceae. These findings address the influential role of
exposure to air pollution during pregnancy and early life in
human health. Future studies are necessary to examine the mech-
anisms underlying the observed associations.
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