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ABSTRACT Forecasting research disciplines associated with research projects is a significant challenge in
research information systems. It can reduce the administrative effort involved in entering research project-
related metadata, eliminate human errors, and enhance the quality of research project metadata. It also
enables the calculation of the degree of interdisciplinarity of these projects. However, predicting scientific
research disciplines and measuring interdisciplinarity in a research endeavor remain difficult. In this paper,
we propose a framework for predicting the research disciplines associated with a research project and
measuring the degree of interdisciplinarity based on associated metadata to address these issues. The
proposed framework consists of several components to improve the performance of research disciplines
prediction and interdisciplinarity measurement systems. These include a feature extraction component that
utilizes a topic model to extract the most appropriate features. Further, the framework proposes a discipline
encoding component that applies a data mapping strategy to lower the dimensionality of the output variables.
Furthermore, a distance matrix creation component is proposed to recommend the most appropriate research
disciplines and compute interdisciplinarity associated with research projects. We implemented the suggested
framework on two separate research information systems databases for research projects, Dimensions and
the Flemish Research Information Space. Experimental results demonstrate that the proposed framework
predicts the research disciplines associated with research projects more accurately than related work.

INDEX TERMS Metadata, research information systems (RIS), research disciplines prediction, interdisci-
plinarity, machine learning, distance metrics.

I. INTRODUCTION
There exists a large amount of research project meta-
data available in many research information systems (RIS)
databases. These are rich resources for scientists as well as
for policy makers [1]. For efficient searching and analyz-
ing, research projects are categorized by a specific research
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classification schemawhich often consists of a list of research
disciplines [2], [3].

For example, the Flanders Research Information Space1

(FRIS) is a regional web portal, governed by the Flemish
government. Almost 40 data sources in Flanders contribute
information on (partially) publicly financed research (e.g.,
researchers, research institutes, projects, and publications) to
the FRIS site. It empowers the Flemish government to create

1https://researchportal.be/en/about-fris
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reports, analyses, and statistics for policy-making and trend
monitoring. Each object in FRIS is assigned one or more
research disciplines which is obligatory for any object added
to the FRIS database since 1 January 2019. To label research
objects with research disciplines, FRIS makes use of the
Flemish Research Discipline Standard2 (‘‘Vlaamse Onder-
zoeksdiscipline Standaard’’, abbreviated VODS, in Dutch),
which has been described in [3]. The VODS has four hierar-
chical levels that mirror research disciplines at different levels
of granularity, with 7, 42, 382, and 2493 disciplines, respec-
tively. The first level corresponds to the OECD FORD [4]
classification’s six scientific fields (natural sciences (01),
engineering and technology (02), medical and health sciences
(03), agricultural and veterinary sciences (04), social sci-
ences (05), and humanities and arts (06), expanded with one
extra discipline to label administrative and technical research
personnel (general and logistic services (07)). The second
level contains the major disciplinary subjects (for example,
mathematical sciences (0101), information and computing
sciences (0102), physical sciences (0103), and so on), while
the third and fourth levels correspond to more granular sub-
fields. The majority of objects in FRIS are assigned a level 4
discipline.

Assigning disciplines to projects is often done manually
by researchers or administrative staff. Besides being a time-
consuming task, it is rather subjective and may incur human
errors. As a consequence, incorrectly assigning disciplines
or missing disciplines may occur. Therefore, for data quality
improvement and administrative burden reduction, automat-
ically predicting disciplines related to research projects can
be seen as an essential task for research information sys-
tems. Besides, it can support other activities such as grant
competition management, and interdisciplinarity evaluation
by funding agencies.

Predictingmultiple disciplines related to a research project,
however, remains challenging [1], [5]. The first challenge
is related to the quality of labeled data. For example,
since research disciplines are often manually assigned to
the research projects, the data might have been incorrectly
labeled or with missing labels. Further, the abstracts of
research projects are often short and do not contain rich infor-
mation for training machine learning models. Directly apply-
ing a machine learning (ML) classification model on these
databases may be accompanied by poor accuracy [6], [7].
Another difficulty in multiple discipline classification comes
from theML techniques themselves sincemulti-label classifi-
cation is more complicated than multi-class one. In practice,
various studies [1], [5] attempted to classify scientific pub-
lications by fields of study (research disciplines). However,
their experimental results revealed that the performance of
classical ML, as well as deep learning algorithms, are not
satisfactory, even for single-label classification [5].

Interdisciplinarity is another piece of valuable informa-
tion for researchers or policymakers to evaluate the degree

2https://researchportal.be/en/disciplines

of knowledge integrated within the research document [8].
Interdisciplinary research (IDR) is crucial to address the
complex problems that our society is confronted with like
the COVID-19 pandemic and global warming. Governments,
funders, and research institutions each have their own activi-
ties to stimulate interdisciplinary research. It is however still
unclear whether these activities are effective in stimulating
interdisciplinary research because it is not known how inter-
disciplinary research activities can be recognized [9]. In the
context of IDR measurement, various methods have been
proposed; however, there is no consensus about the validity as
well as the results of these methods [10], [11], [12]. Accord-
ing to a study by [13], the choice of data, the methodology,
and the indicators can produce seriously inconsistent and
even contradictory outcomes.

Most of the related work applied traditional ML classifi-
cation algorithms [1], [5], while some used deep machine
learning to predict fields of study related to the research
document [1], [14]. Within these approaches, the percentage
of correctly predicted disciplines of the project relies on
the performance of the classifier. However, to the best of
our knowledge, the performance of these algorithms is not
satisfactory in practice.

To overcome the above-mentioned limitations, we pro-
pose a framework, with a number of components, to help
improve the performance of the research discipline predic-
tion and interdisciplinarity measurement systems. The main
contribution of our proposed framework is the introduc-
tion of the following three components in the context of
research discipline prediction and interdisciplinarity assess-
ment research information systems: 1) A feature extraction
component which runs an unsupervised topicmodel to extract
the most appropriate features. 2) A discipline encoding com-
ponent which provides a mapping technique to reduce the
dimensionality of output variables. 3) A distance matrix cre-
ation component which generates a distance matrix based
on a supervised topic modeling approach in order to pro-
vide disciplines relevant to projects. This matrix allows us
to determine additional disciplines that are close to the pre-
dicted disciplines. The matrix also plays an important role
in interdisciplinarity calculation. We evaluate the proposed
framework on two RIS databases: Flanders Research Infor-
mation Space (FRIS) [15], and Dimensions - a largely linked
research information dataset [16]. The results show that the
performance of the proposed framework with the three pro-
posed components could achieve higher performance than
related work.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Section III presents the pro-
posed framework. Section IV presents experimental and
comparison results. Section V concludes the paper and pro-
poses future work.

II. LITERATURE REVIEW
This work is close to approaches that aim to automati-
cally classify research data by fields of study or research
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disciplines. In this section, we highlight the most relevant
studies in this domain.

The frequently used methods in bibliometrics to classify
research documents are bibliographic coupling, co-citation,
and direct citation [17]. These techniques are mostly based
on citation network analysis. Several clustering techniques
can be used to categorize research disciplines connected with
documents. This is a bottom-up approach that requires linking
the clusters obtained to categories. The main disadvantage of
these approaches is that determining optimal levels of cluster
aggregation is a difficult task [17].

More recently, machine learning and deep learning tech-
niques have been applied to classify research documents.
These techniques could advantageously be used in biblio-
metrics. Evykens et al. [5] have applied classical supervised
machine learning algorithms such as Multinomial Naïve
Bayes [18], Support Vector Machine [19], Random For-
est Classifier [20], and Gradient Boosting [21] to classify
publications. The experimental assessment of these machine
learning techniques on titles and abstracts of publications
showed that the models did not work as expected with the
unseen data. They limited the problem as a multiclass clas-
sification problem, i.e, each publication was assigned only
one label in a set of 77 labels. As a result, the best-reported
F1-score was slightly over 80% for Gradient Boosting mod-
els. Other models performed relatively poor when compared
to Gradient Boosting.

Rives et al. [1] used deep learning, i.e., a modified
character-based convolutional deep neural network to clas-
sify articles based on abstracts. They tested the model on a
dataset with more than 40 million scientific articles. They
also compared the performance of the deep learning model
to bibliographic coupling, co-citation, and direct citation.
The results showed that the performance of the deep learn-
ing approach was equivalent to the graph-based bibliometric
approaches. In particular, the precision of deep learning was
57%. It was slightly better than the precision of bibliographic
coupling and direct citation which were 41% and 53%,
respectively.

Weber et al. [14] employed different machine learn-
ing techniques such as Decision Tree Classifier, Random
Forest Classifier, and deep learning techniques such as mul-
tilayer perceptron neural networks, and recurrent neural
networks to classify research documents. They meticulously
produced training and testing datasets to evaluate the per-
formance of the models. To avoid the imbalanced data
problem, these datasets were cleaned and processed. In par-
ticular, the data was compiled into a set of 613,585 records
with 20 general fields of study. According to their results,
the multilayer perceptron model performed the best, fol-
lowed by long short-term memory models. The classical
machine learning techniques did not perform well on these
datasets.

Regarding IDR measurement, there is extensive literature
on measuring IDR in general [9]. A typical method for

evaluating IDR of research activity is to assess the diversity
of disciplines associated with it [10]. In theory, diversity
measurement takes into account three factors: balance, vari-
ety, and disparity. Regarding IDR calculation, balance is the
distribution of disciplines, variety is the number of disci-
plines, and disparity is the degree of dissimilarity of the
disciplines. The most popular method is the citation-based
approach which relies on the subject classification of the
publication’s references. The degree of IDR of a publica-
tion is evaluated by the diversity of the categories to which
the references belong [12], [22]. Another approach relies
on the professional skills of the authors who participated
in the research activity. The degree of IDR of research
activity is measured by the diversity of the authors’ disci-
plines [12], [23]. Within these methods, the calculation of
disparity requires a predefined category similarity matrix
which depends on the discipline classification systems. This
is the main limitation of these approaches since they depend
on the way bibliographic databases assign documents to their
subject classification schemes [9]. In addition, any change
in the classification systems could significantly affect the
results.

Compared to the rich literature of studies on measuring
IDR based on citation analysis, there is only a few studies
exploring IDR with text-based methods. Typical approaches
in this research direction are keyword analysis and topic
modeling [24], [25], [26], [27]. Despite these promising
approaches in the effective prediction of IDR, text-based
approaches need a certain amount of high-quality text which
is not always available in many databases.

There are some major differences between the work pro-
posed in this paper and related work. Firstly, the databases
used in this work are research project repositories which can
be smaller than those used by the related work. However,
we assume that this does not have an impact on the efficacy
of the proposed framework. Secondly, the number of research
disciplines analyzed in this work is larger. Additionally,
in order to improve the performance of the classificationmod-
els, we propose the use of topic modeling to create a feature
matrix. The feature matrix is fed into the ML classification
model. The rationale for this is that, as will be explained
later, the feature matrix produced by the unsupervised topic
model is more representative of the projects when fed to the
classifier as input data rather than typical project input data.
Moreover, because the number of topics is generally much
fewer than the number of terms in the data, the time required
to train the model is reduced. Further, we propose a data
mapping technique to reduce the dimensionality of the clas-
sifier outputs which helps improve the performance. Finally,
to boost research discipline prediction systems performance,
we combine the ML classifier with a pre-computed distance
matrix, which can be considered novel for this work as we
are not aware of any previous studies that have combined a
research discipline prediction classifier with a distancematrix
to improve prediction systems.
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TABLE 1. List of notations used in the paper.

III. PROPOSED FRAMEWORK
A. SYSTEM MODEL
In order to easily read the following sections, we present a list
of notations used throughout the paper in Table 1.

We assume that a research information system database,
stores projects’ metadata, minimally consisting of titles,
abstracts, keywords, and disciplines. Each project has a
list of disciplines. Each discipline has a unique code iden-
tifier. For example, in FRIS, 0101 represents discipline
Mathematical sciences and 0106 represents disci-
pline Biological sciences. The input project meta-
data is defined as C = (T ,V ); T is a set of textual
descriptions which is a combination of titles, keywords, and
abstracts. V = {v1, v2, . . . , vN } is the set of discipline codes
in the data. A project p ∈ C is a pair of (t, v) where t ∈ T
and v ⊆ V . Given an unseen project p′ = (t ′, v′) with
v′ = ∅, the first objective is to predict a set of disciplines
v′ ⊆ V , associated with t ′. In order to predict disciplines
related to project p′, we propose to apply text classification
algorithms. The generic framework of text classification is
illustrated by Fig. 1. The input data, T , are vectorized in order
to create features. Text vectorization is a process through
which text data are converted into numerical data. According
to a review of feature extraction methods onmachine learning
by Suhaidi et al. [28], there are various approaches to create
features such as Bag of Words, Binary Term Frequency,
Term Frequency, and Term Frequency-Inverse Document
Frequency (TF-IDF) or using embedding approaches such
as Doc2Vec [29]. Within these approaches, TF-IDF and
Doc2Vec are widely-used methods since they calculate how
relevant a word, in a series, or corpus, to a text is. In addi-
tion, since not all machine learning algorithms can deal with
categorical data, the input labels, V , need to be converted
into numerical data. One-hot encoding [30] is a straight-
forward method for this purpose. In this paper, we propose
a different discipline encoding mechanism which will be

FIGURE 1. Schema of a generic text classification model.

introduced later, to deal with this issue which is more suit-
able for the context of this framework. After creating the
features and encoding labels, a text classification model can
be used to create the trained classification model. The trained
model then is used to predict the disciplines of an unseen
project.

In order to enhance the performance of the ML classifier,
we integrate it with a pre-calculated distance matrix, enabling
us to identify related disciplines in proximity to the predicted
ones. The distance matrix, denoted byM , is aKxK dimension
matrix where each cell mij is a value representing the differ-
ence between two disciplines i and j. In the distance matrix,
mij = 0 (if i = j) and mij = mji (if i ̸= j). A distance
matrix can be transformed from a similarity matrix, denoted
by S, which is a matrix representing the similarity between
disciplines. In order to calculate the similarity between two
disciplines, we can examine how often they co-occur. For
example, we can count the number of co-citations of two
disciplines based on publications [9], count the number of
co-occurrences of disciplines in projects, or consider co-
occurrences of keywords of two disciplines [25]. In this work,
we create the distance matrix using the cosine similarity
approach [31].

IDR is a research mode that involves two or more research
disciplines. To measure IDR, most of the studies focus
on analyzing the research disciplines associated with the
project [9]. The interdisciplinarity of a project p can be
calculated by a measure such as Simpson index [32], Shan-
non entropy [33], or Rao-Stirling diversity [34]. Common
indicators for measuring IDR can be found in the study of
Wang et al. [13]. Given a project p′ without assigned disci-
plines, the objective is to effectively predict disciplines and
interdisciplinarity score related to p′ based on its textual
description.

B. FRAMEWORK
In this section, we present the specifications of the framework
components (see Fig. 2).
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FIGURE 2. The schematic diagram of the framework.

1) DATA PREPROCESSING
Preprocessing is an essential step in text classification. This
step helps prepare data for the classification model according
to the proposed system model. Appropriate data preprocess-
ing contributes to the efficient processing of data in the
framework. The preprocessing presented here is done on
two different research information systems (RIS) databases
and can be reused on any other similar RIS database. This
component performs various steps such as data extraction and
data cleaning in order to prepare the data for the ML models.

a: DATA EXTRACTION
Research information systems usually provide a set of open
APIs or web services interfaces to open up their data for exter-
nal access. They implement different data structures, for
example, Dimensions returns a python data frame object for
a request,3 whereas FRIS returns an XML file with Common
European Research Information Format (CERIF).4 In order
to have a specific input, this component is designed to query
data from a database and create a python data frame object
for the data preprocessing step. Particularly, after collecting
project data, we extract titles, keywords, abstracts, and disci-
plines and store them in a data frame.

b: DATA CLEANING
The collected metadata may contain incorrect text format,
empty or too short text, etc. In order to provide good-quality
data for the models, the text should be cleaned first. In this
study, we employed a conventional method for data cleaning,

3https://api-lab.dimensions.ai/cookbooks/1-getting-started/3-Working-
with-dataframes.html

4https://eurocris.org/services/main-features-cerif

which typically involves common procedures such as con-
verting text to lowercase, eliminating punctuation marks, and
retaining solely English language text.

As mentioned, each project is assigned one or more
disciplines from a set of disciplines. The frequency of
project disciplines usage can vary widely. As a result,
the distribution of disciplines is not balanced. This can
have a significant impact on the performance of a clas-
sification model. For example, in FRIS data, certain dis-
ciplines such as Biological sciences, Computer
sciences occur with high frequency, whereas others such
as Social and economic geography, General
and logistic services occur only a few times. The
significant difference in occurrences of disciplines in data
leads to an imbalanced data problem in the classification
model. This step aims to reduce the imbalanced data problem
by excluding projects that contain low frequent disciplines.
In order to do that, we first identify these disciplines with
low frequency then associated projects are removed from the
dataset. Improving the prediction of these low frequent disci-
plines is not in the scope of this work and will be considered
in future work.

2) DISCIPLINES ENCODING
Since not all traditionalML classification algorithms can deal
with categorical data, in this work, we propose converting
categorical data into numerical values. One-hot encoding
technique is often used for this purpose [35]. To encode
categorical data, this approach performs two steps: 1) For
each category, it creates a column, so the number of columns
is equal to the number of categories. 2) For each column,
it puts ‘0’ for others and ‘1’ as an indicator for the appropriate
column. This method is preferable but has some disadvan-
tages. Firstly, it can lead to increased dimensionality since a
column is created for each category. This can make the model
more complex and slow to train [36]. Secondly, it can lead
to over-fitting, especially if there are many categories in the
variable and the sample size is relatively small.

The discipline encoding component performs a data map-
ping technique in order to convert categorical data into
numerical data that helps accelerate the performance of the
classifier. In particular, instead of using one-hot encoding as
the usual machine learning classification approach, we map
discipline labels to numerical values. It is noticed that the
one-hot encoding creates K output variables. This number
is usually large. For example, the Dimensions dataset has
213 labels, whereas the FRIS dataset has 42 labels.

In order to transform discipline labels into numerical val-
ues, we first create a coding table where each discipline label
corresponds to an integer number. Based on this coding table,
we then transform discipline labels in each project into integer
values. For example, Table 2 shows a coding table generated
from FRIS data. With this coding table, we can transform the
disciplines of the projects into n new discipline codes. Each
one corresponds to a discipline label of the project.

VOLUME 11, 2023 61999
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Algorithm 1 Discipline Encoding
Input: V , V1′, n,
Output: V ′.
1: for v in V do
2: if |v| < n then
3: v← add ‘NULL’ label
4: else
5: v← keep the first n labels in v
6: end if
7: end for
8: for each v in V do
9: for each vv in v do

10: vv←V1′(vv) // adding the corresponding code from
the coding table

11: end for
12: V ′← v
13: end for
14: return V ′

TABLE 2. Example of the discipline code table.

The discipline encoding process is illustrated in
Algorithm 1. The number of labels, n, is defined through an
analysis of the distribution of disciplines over the projects
in dataset. Usually, projects disciplines set v has more than
two disciplines and less than the total number of unique
disciplines in the dataset. For each project, if the number
of entered disciplines is larger than n, then only the first
n disciplines are encoded. The rest of the disciplines are
ignored. Assuming that the most relevant disciplines for a
project are usually entered first. If the project has fewer
disciplines than n then we add a NULL label to that project
such that the number of labels is equal to n.
In this algorithm, we transform v with mm disciplines

into n disciplines where n ≤ mm. Each discipline (vv),
in v, will have a possible integer number in a range of 0 to
K − 1. Suppose a project ‘‘i’’ has two disciplines: 0101
Mathematical sciences and 0102 Information
and computing sciences, and a project ‘‘j’’ has
two disciplines: 0101 Mathematical sciences and
0103 Physical sciences the encoded integer labels
of these two projects is shown in Table 3.

3) FEATURE EXTRACTION
This component adopts an unsupervised topic modeling
approach to extract topic probability distribution values over
projects which are afterward used as features for the dis-
cipline prediction component. LDA [37], Top2Vec [38],
BERTopic [39] are examples of unsupervised topic models.

TABLE 3. Example of discipline encoded table.

Algorithm 2 Feature Extraction
Input: T . project data
Output: F . feature matrix

{step 1: data preprocessing, e.g., data cleaning, stem-
ming, stopword removing}

1: T ′←− preprocessing(T )
{step 2: Bag of word calculation}

2: F ′←− BoW (T ′)
{step 3: unsupervised topic model training}
model ←− train an unsupervised topic model on F ′

{step 4: get project-topic probability distribution matrix
from model}

3: F ←− get − project − topic(model)
4: return F

Unsupervised topic modeling is a probabilistic model for
discovering the topics that occur in a collection of documents.
The unsupervised topic model excels at feature reduction and
can be employed as a preprocessing step for other models,
such as machine learning algorithms.

The feature extraction process is illustrated in Algorithm 2.
The algorithm takes a set of project data as the input. After
preprocessing and calculating bags of words, the unsuper-
vised topic model is able to analyze the data to provide
two outputs: a project-topic probability matrix that represents
topics probability distribution over projects, and a topic-term
probability matrix that represents words probability distribu-
tion over topics. In the project-topic probability distribution
matrix, each row represents a project, and each column
represents a topic. The values in thematrix represent the prob-
ability that a particular topic is present in a given project. The
sum of the probabilities across all topics for a given project
will be equal to one since a project must belong to one ormore
topics. In the topic-term probability distribution matrix, each
row represents a topic, and each column represents a term
(word). The values in the matrix represent the probability that
a particular term belongs to a given topic. The sum of the
probabilities across all terms for a given topic will be equal
to one since a mixture of different terms must completely
represent a topic.

In this framework, we use the output of the unsupervised
topic model, i.e., project-topic probability distribution as fea-
ture vectors to input to the machine learning classification
algorithm used in the discipline prediction component. The
reason for using the project-topic probability matrix is that it
provides a more representative representation of the projects.
Additionally, we expect that using this matrix as input to the
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classification model will improve its performance. Another
advantage is that the number of topics is typically much
smaller than the number of terms in the data, resulting in
faster training of the classification model using the topic
probability distribution.

4) DISTANCE MATRIX CREATION
Different from the unsupervised topic models, a supervised
topic model is able to constrain the topic model to use only
those topics that correspond to a project’s (observed) label
set. For example, the L-LDA topic model [40], a modification
of LDA, incorporates supervision by simply constraining the
topic model to use only those topics that correspond to a
project’s (observed) label set. In practice, each project is
assigned one or more discipline codes from a set of disci-
plines. Considering this set of disciplines to be labels of the
data, we can apply the supervised topic model to discover
the probability distribution of disciplines over projects and
the probability distribution of words over disciplines which is
known as the discipline-term probability distribution matrix.

The process of generating a discipline-term matrix using
L-LDA follows the same procedure as depicted in
Algorithm 2, with the exception that L-LDA requires labeled
input data (in this case, the labels are disciplines). The result-
ing output of L-LDA consists of twomatrices: discipline-term
probability and project-topic probability. Instead of returning
the project-topic matrix, the discipline-term one is returned.

In this framework, the supervised topic model is used for
calculating the discipline distance matrix which presents the
distances between disciplines in the data. It plays an impor-
tant role in the recommendation of disciplines and in IDR
calculation.

As mentioned, the supervised topic model can discover
the probability distribution of terms over disciplines. In other
words, each discipline is represented by a vector of terms
probability distribution values. We assume that the two dis-
ciplines are similar if their representative vectors are within
a distance threshold. To calculate the distance between two
vectors, we apply the cosine distance measure [31] which
is a widely utilized similarity metric in machine learning,
data mining, and natural language processing. Its primary
advantage is its independence on the dimensionality of the
vectors being compared, allowing it to be applied to high-
dimensional data. Further, it is insensitive to the magnitude
of the data, enabling vectors of different magnitudes to still
have a high cosine similarity score. Suppose two disciplines
di ={a1,a2,..,ant} and dj ={b1,b2,..,bnt}, the distance between
di and dj is calculated as follows:

distance(di, dj) = 1− cosine_similarity(di, dj)

= 1−

∑nt
i=1 albl√∑nt

l=1 a
2
l

√∑nt
l=1 b

2
l

, (1)

with nt is the total number of terms.
The procedure to calculate the discipline distance matrix

based on the discipline-term matrix is illustrated by

Algorithm 3 Distance Matrix Calculation
Input: D. discipline-term matrix
Output: M . discipline distance matrix
1: for each pair of di, dj ∈ D do
2: cs ←− cosine_similarity(di, dj) {calculate cosine

similarity of d_i and d_j}
3: M [i, j]←− 1− cs // add distance to M
4: end for
5: return M

Algorithm 3. The input is a discipline-term matrix, D, which
represents the probability distribution of terms in a set of
disciplines. The algorithm first iterates through all pairs of
rows in D and calculates the similarity score between them
using the cosine similarity measure. The resulting distance
(1-cosine similarity) is then added to the distance matrix,M .

5) DISCIPLINE PREDICTION CLASSIFICATION MODEL
This component is designed to train a multi-label classifi-
cation model. This classifier is afterward used to predict
the disciplines related to an unseen project. In theory, any
multi-label classification model can be applied to build a
classifier. To evaluate the proposed approach, we employed
various classification models, ranging from simple ones like
K Nearest Neighbor (kNN) [41], Decision Trees (DT) [42]
and Logistic Regression (LR) [43] to more robust ones such
as Support Vector Machine (SVM) [19], Random Forest
(RF) [20], Gradient Boosting (GB) [21] and Extra Trees
(ET) [44]. As we understand it, Random Forest, Extra Trees,
and Gradient Boosting are all ensemble learning techniques.
Specifically, Random Forest and Extra Trees are known
as Bagging Ensemble Learning, while Gradient Boosting
Machine is known as Boosting Ensemble Learning. These are
well-known algorithms, therefore, we do not present them in
detail here. These above mentioned algorithms are adopted
due to their simplicity and powerfulness. Each algorithm has
its advantages. For example, kNN is a robust classifier that
is often used as a benchmark for more complex classifiers.
RF is also a widely-used algorithm. It works well with both
categorical and numerical data. No scaling or transformation
of variables is usually necessary. Last and not least, SVM is
one of the most powerful prediction methods.

a: EVALUATION METRIC
In traditional classification models, model accuracy is calcu-
lated as follows:

accuracy =
TP+ TN

TP+ TN + FP+ FN
, (2)

where TP = True positive; FP = False positive; TN = True
negative; FN = False negative. Since, in the proposed model,
the labels are encoded as numbers, some factors such as TN ,
FP, and FN are not applicable. As a result, this accuracy
measure can not be applied to evaluate the performance of
the classificationmodel. For example, given two projects with
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true and predicted labels as follows: y_test = [[6, 7], [10, 9],
y_pred = [[6, 8], [9, 10]]. If we compare disciplines one by
one in y_test and y_pred, the true positive of the first project
is 50% and the true positive of the second project is 0%.
This calculation is however not suitable in the context of this
framework because we need to compare the true and pre-
dicted labels without considering the order of the labels. With
this purpose, we propose a metric to count the true positive
values in a way suitable for the context of this framework.
We define a metric called the correctly predicted discipline
percentage (CPDP). CPDP of a project is the ratio of the
number of correctly predicted disciplines to the number of
true disciplines. The CPDP of the model is calculated as
follows:

CPDP =
1
N

N∑
i=1

#correctly_predicted_disciplines
#true_disciplines

, (3)

with N as the number of projects.
Since in this study, we use the distance matrix to improve

the performance of the ML classification model, we propose
a metric, denoted by CPDP_D, that takes into account the
distance matrix to measure the performance of the ML clas-
sification model (see Algorithm 4).

The algorithm takes in four inputs: y_test , y_pred , M ,
and distance_threshold . y_test and y_pred are lists of lists,
where each inner list represents a sample and contains the true
(y_test) and predicted (y_pred) disciplines for that sample.M
is a square matrix that contains the distances between all pairs
of disciplines. distance_threshold is a float number indicat-
ing the minimal value of distance for two disciplines to be
nominated similar. For each sample in y_test and y_pred , the
algorithm checks each predicted discipline. If it is predicted
correctly, we increase the number of correctly predicted dis-
ciplines (CPD) by one. Otherwise, it looks for the closest
discipline to the incorrectly predicted one. If the distance
between the closest discipline and the incorrectly predicted
one is less than or equal to distance_threshold then we can
use this closest discipline to compare to the true disciplines.
If the closest discipline is found in the true disciplines, CPD
is increased by one. After counting CPD for each sample,
the algorithm calculates the average number of CPD per
predicted discipline for each sample and then calculates the
CPDP per predicted discipline across all samples.

6) DISCIPLINE RECOMMENDATION & IDR CALCULATION
This component aims to recommend the most appropriate
disciplines related to an unseen project based on its textual
description.

a: DISCIPLINE RECOMMENDATION
The discipline recommendation component is illustrated by
Algorithm 5. It includes the following steps:

1) The trained unsupervised topic model is loaded to dis-
cover the topic probability distribution in the input.

Algorithm 4 CPDP_D Calculation
Input: y_test . list of true labels,

y_pred . list of predicted labels
M . distance matrix
distance_threshold . distance threshold.

Output: CPDP_D. correctly predicted discipline percent-
age.

1: sum_CPD←− 0
2: for each sample, s do
3: y_test_s←− y_test[s]
4: y_pred_s←− y_pred[s]
5: for each discipline l in y_pred_s do
6: if l is in y_test_s then
7: CPD+ = 1
8: remove l from y_test_s
9: else
10: distances←− get distances between l and others

from M
11: closest_discipline←− get the discipline that has

the smallest distance
12: if distance of closest_discipline ≤

distance_threshold then
13: if closest_discipline in the y_test_s then
14: CPD+ = 1
15: remove closest_discipline from y_test_s
16: end if
17: end if
18: end if
19: sum_CPD+ = CPD / by size of y_pred_s
20: end for
21: end for
22: CPDP_D←− sum_CPD / number of sample
23: return CPDP_D

2) The trained classifier is used to predict the disci-
plines of the project based on its topic probability
distributions. The classifier outputs a list of predicted
disciplines.

3) The distance matrix is used to find the closest dis-
ciplines with predicted disciplines. For the sake of
simplicity, this step outputs the two closest disciplines
for each predicted discipline.

4) vp and vc are combined in order to find a set of
recommended disciplines. This step will display rec-
ommended disciplines to the users.

b: IDR CALCULATION
Given a set of disciplines provided by the discipline rec-
ommendation component, we can calculate the diversity
of disciplines. In particular, the diversity of disciplines,
denoted idr , is calculated based on the Rao-Stirling diversity
index [34]. The Rao-Stirling diversity index provides a more
robust and nuanced measure of interdisciplinarity than the
Simpson index [32] and Shannon entropy [33], making it a
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Algorithm 5 Discipline Recommendation
Input: t . textual description of the project,

M . distance matrix,
V1. list of disciplines,
distance_threshold . distance threshold

Output: vr . list of disciplines recommends to the user
1: {step 1: calculate topic probability distribution.}
2: topic_probability← calculate topic probability distribu-

tion of t based on the unsupervised topic model
3: {step 2: predict disciplines.}
4: vp ← predict disciplines of topic_probability based on

the classification model
5: {step 3: find close disciplines based on the distance

matrix.}
6: vc← ∅
7: for each vv in vp do
8: index ←− find index of vv in the V1
9: distances←− get row index of the M

10: for each d in distances do
11: if d ≤ distance_threshold then
12: vc← add corresponding discipline in V1
13: end if
14: end for
15: end for
16: {step 4: combine disciplines}
17: vr ← combine disciplines: vp, vc
18: return vr

valuable tool for researchers studying interdisciplinary col-
laboration and innovation [10]. It is well-suited for measuring
interdisciplinarity as it considers not only the number of disci-
plines and their probability distribution but also incorporates
the pairwise distances between them. Specifically, the idr is
calculated as follows:

idr =
K∑

i,j(i̸=j)

f (di) ∗ f (dj) ∗ d(di, dj), (4)

where K is number of disciplines; f (di), f (dj) are probability
distribution of discipline di and dj, respectively; d(di, dj) is
the distance between disciplines di and dj.
Algorithm 6 shows in detail the steps of IDR calcula-

tion. Given a list of disciplines, v, we first need to create
a vector where each element of the vector is a probability
distribution of a discipline over a project. This task is done
from lines 1 to 13. The discipline vector, dv, is then used in
interdisciplinarity calculation based on (4). This task is done
from lines 14 to 16.

IV. EXPERIMENTAL WORK
The proposed framework has been simulated using python.
In order to preprocess data, train the topic models, and train
the classification model, we implemented various python

Algorithm 6 IDR Calculation
Input: v. list of disciplines with distance values,

M . distance matrix,
V1. list of disciplines

Output: idr . Rao-Stirling diversity score of disciplines
1: discipline_size←− size(disciplines)
2: sum_distances←− sum of distances of disciplines
3: discipline_vector ←− create list of discipline_size zeros
4: for each d in disciplines do
5: index ←− find index of d in V1
6: val ←− distance of discipline d divide by

sum_distances
7: assign val to discipline_vector at the position index
8: end for
9: for each vv in v do
10: index ←− find index of vv in V1
11: val ←− probability of discipline vv
12: dv← val at the position index
13: end for
14: for each pair of i, j in dv do
15: idr ←− idr + dv[i] ∗ dv[j] ∗M [ij]
16: end for
17: return idr

packages such as nltk,5 spacy,6 gensim,7 and sklearn.8 The
packages are presented in detail in the related step. All experi-
ments were conducted on a laptop with Intel Core i5-10210U,
CPU 1.60GHz, 16GB memory, and Windows operating
system.

A. DATA AND MODEL SELECTION
1) DATASETS
In order to evaluate the model, we collected data from two
databases: FRIS and Dimensions. FRIS is the regional por-
tal for researchers and their research in Flanders, Belgium.
It provides information on researchers, scientific projects,
and publications since 2008. The data on the FRIS Research
portal is open access and offered through web services. Each
research object, e.g., a publication or a project, in FRIS is
classified into one or more research disciplines from VODS
classification schema [3].

FRIS provides web services that allowed us to extract data
from its database. The procedures to extract project data from
the FRIS database are given in appendix V-C. For analysis
purposes, we only selected projects that started in 2010 and
later on and that were assigned more than one research disci-
pline code of level 2 of the VODS. As a result, 5702 projects
were selected for analysis.

Dimensions is a large research information system. It cov-
ers millions of research publications connected by more

5https://www.nltk.org/index.html
6https://spacy.io/
7https://radimrehurek.com/gensim/
8https://scikit-learn.org/stable/index.html
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FIGURE 3. Distribution of the number of disciplines in FRIS data.

than 1.7 billion citations, supporting grants, datasets, clinical
trials, patents, and policy documents. Dimensions database
applies the ANZSRC classification schema [2] to describe
and classify research objects. Each grant is classified into one
or more fields of research (FOR). For experimental purposes,
in this study, we used disciplines of level 2 of FOR as labels
for grants. To limit the size of collected data, in this work,
we selected grants with the following conditions:
• funded by Belgian funding organizations,
• started in 2018 or later.
The query9 to request grants data from Dimensions is

given in appendix V-D. From the output of the query,
we excluded the grants that contained only 1 FOR.As a result,
6332 records were selected.

2) DATA PREPROCESSING
We first filtered out short abstracts in datasets. The number
of words in the abstracts can be determined by the users or
the research information system administrators. Based on the
project data, we can recommend an appropriate number to be
used in such research information systems. In the experimen-
tal work and for the sake of simplicity, we filtered out projects
with abstracts of less than 200 words. We then excluded
projects containing a large number of disciplines. As shown
in Fig. 3 and 4, most of the projects in both databases had two
disciplines. If we used more than two encoded labels there
would have been a high number of projects encoded with a
NULL label. As a result, the data could have become imbal-
anced. To avoid this problem, we filtered out of projects that
include more than two disciplines. After this step, there were
2606 and 4727 projects selected in FRIS and Dimensions,
respectively.

In multi-label classification systems, the imbalanced
number of labels in data significantly affects the perfor-
mance. To further improve the quality of training data,
we excluded projects that contained low frequent disciplines.

9In order to access data, we must have an account provided by
Dimensions.

FIGURE 4. Distribution of the number of disciplines in Dimensions data.

In particular, for each dataset, we excluded projects that
involved disciplines that appeared less than 20 times. After
this step, there were 2571 and 4248 projects selected
from FRIS and Dimensions, with 37 and 121 disciplines,
respectively.

3) DISCIPLINES ENCODING
For each project, we converted the original discipline labels
into two encoded integer labels. Particularly, each discipline
label was encoded by an integer of a range from 0 toK−1. For
example, the number of unique disciplines in FRIS data is 37,
whereas in Dimension it is 121. Lists of encoded disciplines
in FRIS and Dimensions are given in Appendix V-A and V-B,
respectively.

4) FEATURE EXTRACTION
In this framework, we applied Top2vec [38] to extract topic
probability distribution over the projects. Top2Vec is an
algorithm for topic modeling and semantic search. It auto-
matically detects topics present in the text and generates
jointly embedded topics, documents, and word vectors. The
advantage of Top2vec over other topic models, e.g. LDA,
is that it does not require the input K number of topics.
The model is able to automatically detect topics present in
the text. In addition, Top2vec provides pre-trained models
that can be declared by the parameter embedding_model.
This will determine which model is used to generate the
document and word embeddings. The embedding model
can be chosen according to the size, language, etc. of the
data.

5) DISTANCE MATRIX CREATION
In order to extract discipline probability distributions
over projects and term probability distributions over
disciplines, we applied the L-LDA model [40]. The
L-LDA model produces a disciplines-term matrix that
allowed us to calculate the distance between disciplines in
data.

62004 VOLUME 11, 2023



H.-S. Pham et al.: Metadata-Based Approach for Research Discipline Prediction

6) DISCIPLINE PREDICTION
In this component, we could apply one of the multi-label
classification models mentioned in subsection III-B5 to build
a classifier. These algorithms were implemented using the
sklearn library.10 For each algorithm, we needed to choose a
set of parameters for better performance. Themost commonly
adjusted parameter with k Nearest Neighbor is n_neighbors.
It regulates how many neighbors should be checked when
an item is being classified. For Random Forest and Gradient
Boosting, the most important parameters are n_estimators
and max_features.
• n_estimator : number of trees inside the classifier.
• max_features: the number of features to consider when
looking for the best split.

B. EVALUATION SETUP
In order to evaluate the performance of the machine learning
classification models, we set up experiments as follows:
• Data: we used data finally obtained from the preprocess-
ing step for evaluating and comparing the performance
of the models.

• Top2vec parameters:
– embedding_model =′ universal − sentence −
encoder ′

• L-LDA parameters:
– α = 0.001,
– η = 0.001.

• Feature matrix: in addition to features produced
by Top2vec, for each dataset, we created a term
frequency-inverse document frequency (TF-IDF)matrix.
We used TfidfVectorizer11 from sklearn library to
create TF-IDF with parameters: n_gram = (1, 2),
max_features = 1000. Further, we utilized Doc2Vec12

with vector_size = 1000 to extract another fea-
ture matrix. Doc2Vec was chosen because it extends
Word2Vec by capturing not only word embeddings but
also document-level embeddings, allowing for more
comprehensive representations of texts and enabling
analysis at both the word and document levels.

• Target labels: apart from encoded integer labels, we cre-
ated binary labels for each target label set. To transform
labels in the dataset to binary representation, we used
MultiLabelBinarizer13 from sklearn library.
The experimental setup for classification performance
evaluation is as follows.
– Features:

1) Doc2Vec: features extracted by Doc2Vec
2) TF-IDF: features extracted by term frequency

and inverse document frequency

10https://scikit-learn.org/stable/modules/classes.html
11https://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.TfidfVectorizer.html
12https://www.tutorialspoint.com/gensim/gensim_doc2vec_model.htm
13https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.MultiLabelBinarizer.html

TABLE 4. Result of Top2vec model.

TABLE 5. Result of L-LDA model.

3) Topic: features extracted by Top2vec

– Target labels:

1) Binary: one-hot encoded binary labels
2) Int: encoded integer labels

– Performance measure:

1) CPDP: correctly predicted discipline
percentage

2) CPDP_D: correctly predicted discipline per-
centage using the distance matrix

– kNN parameters:

∗ n_neighbors is ranging from 3 to 9
∗ weight =′ auto′

∗ algorithm =′ auto′

– RF and GB parameters:

∗ n_estimators = 100
∗ max_features =

√
feature_size

∗ random_state = 0

– For other algorithms, e.g., SVM, LR, DT, ET,
we used default parameters.

We first evaluated the performance of kNN with various
values of n_neighbors in order to assess the effectiveness of
features and target labels to the model. Then we compared the
performance of the models on the two datasets.

C. RESULTS
1) RESULTS OF TOPIC MODELS
We first summarize the outputs of the topic models. With
the given parameters, Top2vec discovered 28 topics in the
FRIS dataset, whereas, for the Dimensions dataset, it found
48 topics. These topic probability distributions were used
as the input features of the classifiers. The size of vectors
(#Terms) was equal for both datasets, i.e., 512. The output of
Top2vec is shown in Table 4. Regarding L-LDA, the numbers
of topics were exactly the same as the number of disciplines in
the input datasets. In particular, there were 37 and 121 topics
for FRIS and Dimensions, respectively. The number of terms
trained in each dataset was different, e.g., 31,585 terms for
FRIS and 35,210 for Dimensions. The output of L-LDA is
summarized in Table 5.

VOLUME 11, 2023 62005



H.-S. Pham et al.: Metadata-Based Approach for Research Discipline Prediction

TABLE 6. Performance of the kNN on FRIS data.

FIGURE 5. Performance of kNN with various n_neighbors values on FRIS
data.

2) RESULTS OF MODEL EVALUATION
Experiment 1: the performance of the model on types of
features and target labels

We used kNN model as a test case. The performance of
the model was calculated based on the average CPDP of
the model with the n_neighbors ranging from 3 to 9. For
each value of n_neighbors, we used 10-Folk validation and
repeated three times. The average performance of the kNN
on the FRIS dataset is shown in Table 6. As shown, we can
see that the performance of the model with topic probability
was slightly better than the model with features extracted
by TF-IDF and Doc2Vec. The performance of model with
TF-IDF was better than that with Doc2Vec. With the same
feature matrix, the performance of the model with numerical
labels was better than the one with binary-encoded labels.
The average CPDP of kNN for each value of n_neighbors
is shown in Fig. 5. As can be seen the performance of kNN
could slightly change according to the values of n_neighbors.
Table 7 shows the average CPDP of the model on the

Dimensions dataset. Similar to the results on the FRIS
dataset, in all cases, the model training with topic prob-
ability and integer encoded labels achieved higher CPDP.
It is worthwhile to mention that the performance of the kNN
model on the Dimensions dataset was better than it was on
FRIS data. The highest CPDP on the Dimensions dataset
was 63.39%. The average values of CPDP of the model with
various values of n_neighbors are shown in Fig. 6.
To summarize, these experimental results show that the

kNN model trained with topic probability and encoded inte-
ger labels achieved better CPDP than the model trained with

TABLE 7. Performance of the kNN model on Dimensions data.

FIGURE 6. Performance of kNN with various values of n_neighbors on
Dimensions data.

TABLE 8. Performance of classification models.

features created by TF-IDF and Doc2Vec and encoded binary
labels.

Experiment 2: the performance of classificationmodels
To evaluate the models mentioned in Section III-B5,

we trained them with topic probability and encoded integer
labels. The performance was measured by CPDP_D from
cross-validation with 10-FOLK and repeated three times.
To distinguish between a classifier with a distance matrix and
a traditional classifier, we append the letter D after the name
of the traditional classifier. For example, kNN-D is the kNN
associated with the distance matrix.

Table 8 shows the average performance of the models.
As can be seen, RF-D achieved the highest performance on
both datasets. In particular, the CPDP_D of RF-D on the
FRIS and Dimensions datasets were 58.12% and 69.87%,
respectively. They were slightly higher than the performance
of ET-D (56.36% for FRIS, 67.98% for Dimensions) and
kNN-D (53.61% for FRIS, 64.82% for Dimensions). The
performance of LR-Dwas the worst on both datasets (25.34%
for FRIS and 13.43% for Dimensions).
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FIGURE 7. System recommendation examples for FRIS Data.

Based on the training models, the recommendation
algorithm was able to discover the most relevant disciplines
of a project.

Given textual data of an unseen project, the discipline
recommendation algorithm outputs results as follows:

• # predicted disciplines: the list of disciplines predicted
by the machine learning (ML) classifier.

• # recommended disciplines based on distance matrix:
the list of recommended disciplines. For each predicted
discipline, the system recommends the two closest dis-
ciplines according to distances.

• # IDR score: the discipline diversity calculated by the
Rao-Stirling diversity index.

Due to space limitations, we only display a few examples
of the discipline recommendation algorithm. Fig. 7 shows
two examples of recommending disciplines to two projects
in the FRIS dataset. In the first example, the ML classifier
predicted two disciplines: ’0301 Basic sciences’,
’0306 Translational sciences’. Based on the
distance matrix, we found other disciplines which were close
to them. We can notice that the close disciplines are dupli-
cated. The reason is that ’0301 Basic sciences’ and
’0306 Translational sciences’ are very similar
in practice. As a result, they are close to the same disciplines.
After filtering out duplicates, the disciplines recommended
to the user were ’0301 Basic sciences’, ’0306
Translational sciences’, ’0106 Biological
sciences’.With these three disciplines, the diversity score
(#IDR score) was 0.15.

In the case of the second example, the predicted disciplines
were ’0101 Mathematical sciences’ and ’0201
Civil and building engineering’. These two
disciplines were far from each other in practice. Based
on predicted disciplines and close disciplines the algorithm
recommended four disciplines to the users. Since these rec-
ommended disciplines were different in terms of the research
fields, the IDR score (0.25) was higher than that in the first
example.

We can observe from the FRIS dataset and distance matrix
that discipline ’0301 Basic sciences’ occurred in
600 projects and had 336 projects in common with discipline
’0306 Translational sciences’. The second
most similar discipline to ’0301 Basic sciences’
was ’0106 Biological sciences’, which occurred
in 86 projects with ’0301 Basic sciences’. Fur-
thermore, the third closest discipline, ’0302 Clinical
sciences’, had 74 projects in common with ’0301
Basic sciences’, according to the distance matrix.
Similarly from the obtained results, we can see that when
the distance between two disciplines increases, the number
of common projects decreases.

3) COMPARISON TO RELATED WORK
A typical approach to compare our research findings to
related work is by evaluating the performance of the pro-
posed machine learning models based on the commonly used
evaluation metrics such as accuracy, precision, recall, and
F1-score on various datasets. This approach is widely adopted
in almost every research in the area of machine learning
models design [45], [46], [47], [48]. In a similar manner,
we compared the proposed approach to related work by
applying them to the same dataset and using the same met-
ric to evaluate their performance. However, in the proposed
model, the labels are encoded as numbers, some factors
such as True negative, False positive, and False negative
are not applicable. As a result, these metrics: accuracy,
precision, recall, F1-score could not be applied to evalu-
ate the performance of our proposed framework. Therefore,
we proposed a new metric to count the true positive val-
ues in a way suitable for the context of our framework.
We are confident that our approach is appropriate for this
paper.

To compare the proposed approach to other studies, we first
selected the typical ML classification models employed in
those studies. The algorithms were then performed on the
same data using two approaches: one traditional way that uti-
lized TF-IDF and binary labels, and one that employed topic
probability distribution and the proposed encoded numerical
labels. The performance of the algorithms was measured by
CPDP and CPDP_D.

We first compared the performance of the proposed
approach to the approaches used in [14]. In order to do that,
we ran three traditional classificationmodels: RF, DT, and ET
on FRIS data. The performance of the models was measured
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TABLE 9. Comparison to [14].

by CPDP before and after using the distance matrix. The
comparison result is shown in Table 9. As can be seen, the
performance of the models based on the proposed approach
outperforms the models of [14]. In all cases, the performance
of the proposed approach classifiers achieved a better CPDP
score.

Besides, the performance of the proposed approach was
compared to that of the classification models used in [1].
In [1], besides using traditional classification models such as
SVM, and LR, the authors applied amodified character-based
convolutional deep neural network to classify research docu-
ments by fields of study (disciplines). For the sake of compar-
ison only, in this paper, we considered the improvement of [1]
when using deep learning over the same traditional classifi-
cation models as a means of comparison. The improvements
of [1] over the SVM and LR were 24.21% and 28.61%,
respectively. With the proposed approach, these two classi-
fiers: SVM-D, and LR-D achieved a higher improvement than
the improvement of [1]. In particular, the improvements of
SVM-D, LR-D over SVM, and LR on FRIS data were 32.61%
and 42.7%, respectively.

It is important to acknowledge that the models’ perfor-
mance was not optimal. This is attributed to the inherent
difficulties associated with predicting multiple disciplines
pertaining to research projects. For instance, in [5], although
the problem was treated as a multiclass classification task
where each publication was assigned only one discipline, the
highest reported F1-score achieved was 80%. In our study,
we tackle a more challenging task of multi-label classifi-
cation. The results we obtained align with those reported
in related studies [1], [14]. We have already conducted a
comparative analysis of our approach against similar works.
There are several possible reasons why the results may not
be highly accurate. Firstly, the research disciplines used in
the database may be very similar, making it challenging
for the classifier to distinguish between them correctly. Sec-
ondly, the distribution of research disciplines in the projects
may be imbalanced, which can affect the accuracy of themod-
els. Another factor that may have impacted the performance
is the quality of the data. For instance, in some databases
like FRIS, research disciplines are assigned to projects by
research administrators due to time constraints of principal
researchers, which can lead to inconsistencies in discipline
assignments.

D. THREATS TO VALIDITY
There are several validity concerns regarding the framework
proposed in this study. First of all, the datasets used in this
study were obtained by querying project metadata containing

titles, keywords, and abstract with certain conditions. It is
possible that the dataset is not representative of all project
data in databases and may contain bias towards certain
research disciplines or demographics. In future work, it is
important to collect data that not only has high volume but
also high quality to void this bias issue.

The performance of the machine learning models was eval-
uated using CPDP. However, this metric does not capture the
trade-off between false positives and false negatives, which
may be important in certain applications. In addition, the
models were trained using a specific set of hyperparameters.
There may be other hyperparameter configurations that yield
better performance.

Another threat to validity is that the machine learning
models were trained and evaluated on specific datasets and
may not generalize well to other datasets which do not
have labeled data. Our research predicts research disciplines
using machine learning and distance metrics. Combining and
applying these methods to data from two real systems is the
important contribution. A conceptual framework with several
components is implemented in a simulated environment on
real data. Thus, our experimental approach is not to extend
our technique to fit all datasets or systems, but to design and
evaluate a solution to an actual challenge for research project
metadata systems like FRIS. In that sense, we compared
our technique to similar work within this context of the two
systems to demonstrate our contribution and utility in this
simulated environment, not to conclude that our approach
works on other research project systems.

V. CONCLUSION
In this paper, we proposed a generic framework not only for
multiple disciplines prediction but also for interdisciplinarity
calculation. The proposed framework consisted of a number
of components which combined different machine learning
techniques and distance metrics to find the most relevant
research disciplines to a research project based on its textual
description metadata. To the best of our knowledge, this work
is the first to apply distance metrics to improve research
discipline prediction. We evaluated the proposed framework
on two different scientific databases; FRIS and Dimensions.
Empirical results show that in the proposed framework, the
ML classifier performs better than conventional approaches
like TF-IDF as features and binary encoded labels as output
variables. Further, the proposed approach was found to out-
perform related work.

This study has some limitations, which can be considered
in the future. First of all, the size of the experimental data is
limited. i.e. only 2571 records from FRIS and 4248 records
from Dimensions were considered. The limited size of the
dataset may have affected the performance of the ML classi-
fication models to a certain extent. The second limitation is
that the distance threshold used to determine close disciplines
is selected experimentally. For each predicted discipline we
select two disciplines that are closest to it. Finally, the out-
puts of the topic models change every time. This can affect
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TABLE 10. Discipline code table for FRIS dataset.

the ML classification models since they use the output of
the topic model as the input. In this paper, we excluded
projects with low frequent disciplines which means that the
system does not predict those disciplines at the moment.
We expect with using the system more data will be added and
accordingly we will update the system to include associated
disciplines.

Besides, different research directions can be considered for
future work. First of all, investigating methods to improve
data quality as well for training ML classification models is
the most essential task. With high-quality data, e.g, abstracts
containing rich information, labels correctly assigned, labels
balanced, etc., the ML classification model performance can
improve. Improving the quality of the distancematrix through
applying more sophisticated distance metric techniques is
another essential research. This matrix plays an important
role in finding close disciplines and in calculating interdisci-
plinarity. Optimizing the number of topics or controlling the
change of topics produced by topic models is also important.
This can help improve the performance of the ML classi-
fication model as well as make the recommendation more
reliable.
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APPENDIX
A. DISCIPLINE CODE TABLE FOR FRIS DATASET
See Table 10.

B. DISCIPLINE CODE TABLE FOR DIMENSIONS DATASET
See Table 11.

C. EXTRACT PROJECT DATA FROM FRIS

def f e t c h _ f r om_ s e r v i c e ( u r l , h eade r s ,
body , max_pages , d e s t i n a t i o n ) :

w i th r e q u e s t s . S e s s i o n ( ) a s s e s s i o n :
page = 0
whi le page < max_pages :
b o dy_ f o r _ t h i s _ p a g e = body % page
r e s p on s e = s e s s i o n . p o s t ( u r l , d a t a =

body_ f o r _ t h i s _p ag e , h e a d e r s = h e ad e r s )
f = open ( d e s t i n a t i o n % page , ’wt ’ )
f . w r i t e ( r e s p on s e . t e x t )
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TABLE 11. Discipline code table for Dimensions dataset.

f . c l o s e ( )

def f e t c h _ p r o j e c t s ( ) :
u r l = " h t t p s : / / f r i s r 4 . r e s e a r c h p o r t a l . be /

ws / P r o j e c t S e r v i c e "

h e a d e r s = { " con t e n t−t y p e " : " a p p l i c a t i o n /
xml " }

body = " " "
<soap : Enve lope xmlns : soap=" h t t p : / /

schemas . xmlsoap . org / soap / e n v e l op e /" >
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<soap : Body>
<ns1 : g e t P r o j e c t s xmlns : ns1=" h t t p : / / f r i s .

ewi . be /" >
<p r o j e c t C r i t e r i a xmlns=" h t t p : / / f r i s . ewi .

be / c r i t e r i a ">
<window>
<pageS i ze >1000</ pageS i ze >
<pageNumber>%s </ pageNumber>
<orde r i ng s >
<order >
<id > e n t i t y . c r ea t ed </ id >
<d i r e c t i o n >DESCENDING</ d i r e c t i o n >
</ order >
</ o rd e r i ng s >
</window>
</ p r o j e c t C r i t e r i a >
</ ns1 : g e t P r o j e c t s >
</ soap : Body>
</ soap : Envelope >
"" "
f e t c h _ f r om_ s e r v i c e ( u r l , h eade r s , body ,

max_pages =50 , d e s t i n a t i o n = ’
p r o j e c t _ d a t a / page%s . xml ’ )

D. EXTRACT PROJECT DATA FROM DIMENSIONS

query = f " " "
s ea r ch g r a n t s
where r e s e a r c h e r s i s no t empty and

s t a r t _ y e a r >= { s t a r t _ y e a r }
and funder_org_name i n { f u n d e r s }
and r e s e a r c h _ o r g _ c o u n t r i e s . name={ coun t r y

}
r e t u r n g r a n t s [ i d+ t i t l e +a b s t r a c t+

ca t e go r y _ f o r _2020+c o n c e p t s _ s c o r e s ]

r e s = d s l . q u e r y _ i t e r a t i v e ( query )
" " "
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