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Abstract 
How much data are needed to obtain useful parameter estimations from a computational 
model? The standard approach to address this question is to carry out a goodness-of-recovery 
study. Here, the correlation between individual-participant true and estimated parameter 
values determines when a sample size is large enough. However, depending on one’s research 
question, this approach may be suboptimal, potentially leading to too small (underpowered) or 
too large (overcostly or unfeasible) sample sizes. In this paper, we formulate a generalized 
concept of statistical power, and use this to propose a novel approach toward determining how 
much data is needed to obtain useful parameter estimates from a computational model. We 
describe a Python-based toolbox (COMPASS) that allows determining how many participants are 
needed to fit one specific computational model, namely the Rescorla-Wagner model of learning 
and decision making. Simulations revealed that a high number of trials per person (more than 
number of persons) are a prerequisite for high-powered studies in this particular setting. 
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Introduction 

How much data do I need to answer my research question? Nowadays, this question is high on 

the agenda of researchers, ethical committees, and funding agencies alike. And not without 

reason. Researchers collect data to arrive at valid conclusions about their theories. Too small 

samples lead to underpowered studies, as has been famously noted in the context of the 

replication crisis (Open Science Collaboration, 2012). In contrast, too large sample sizes also pose 

specific problems given that researchers do not have unlimited financial, time, and other 

resources. It is thus important to strike a balance between those two extremes. The current 

paper attempts to formulate an answer to the question of how much data is required in the 

context of fitting computational models to data. We describe a toolbox that applies it to one of 

the most popular models of learning and decision making, the Rescorla-Wagner (RW) model 

(Rescorla & Wagner, 1972). 

The standard approach to answering the question of how much data is needed to 

obtain useful parameter estimations from a computational model, is by evaluating the 

goodness-of-recovery of parameter estimates (Wilson & Collins, 2019). Here, one computes the 

correlation between a set of true parameter values that were used to simulate the model and 

the set of estimated parameter values that resulted from fitting the model on the simulated 

data. Although this approach is widely used, a one-size-fits-all approach is not necessarily 

optimal. For example, suppose one is merely interested in whether a learning curve correlates 

with brain activity (measured using fMRI, in a neural area or voxel). Given that the resulting 

regressors are typically extremely highly correlated across several values of learning rate (Wilson 

& Niv, 2015), getting highly precise estimates of each individual participant’s learning rate is 

probably not worth the cost and effort. Moreover, given these high financial and practical costs 

of fMRI, the standard approach will likely make answering the research question infeasible. In 

this case, a different approach might hence be preferred over a goodness-of-recovery study. 

To address how much data is needed to obtain useful parameter estimations from a 

computational model, we start from the more conventional approach to determine one’s 

sample size, which is the notion of statistical power (power for short). Usually, power refers to 

the probability of rejecting the null hypothesis, given a linear model, some effect size (for a linear 

contrast), some sample size, and several statistical assumptions (e.g., all errors are sampled 

independently and from identical distributions). But more generally, power can be taken to refer 

to the probability, given a specific model and sample size, that a well-chosen statistic exceeds a 
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threshold. Formally, we could be interested in whether a statistic T reaches some cut-off value 

𝜏, conditional on a model (or hypothesis) H: 

 
(1) 

Note that the standard notion of power is a straightforward application of (1). Indeed, one can 

choose as H the linear model together with a specific effect size (e.g., Cohen’s d), T the standard 

t-statistic, and the threshold 𝜏 to be the 5% cutoff point in the (central) t-distribution (i.e., the 

threshold is chosen to maintain a fixed type-I error, typically 5%). We can thus define statistical 

power to be the probability (1) for any well-specified choice of H, T, and 𝜏. For instance, T can 

be a descriptive statistic (e.g., a correlation) or a test statistic (t-value). Furthermore, H can be 

the linear model (with specific parameter settings), but also any computational model. Hence, 

one advantage of the general formulation of (1) is that it allows treating sample size 

determination in computational and in linear model fitting under the same conceptual umbrella. 

While previous work and toolboxes were limited to statistics such as the linear model and 

accompanying t-tests and F-tests (e.g., G-power; Faul et al., 2007), for which closed-forms 

solutions exist (Cohen, 1988), the general formulation in Equation (1) allows to compute power 

for a wide variety of situations for which closed-form solutions do not exist. Specifically, current 

work presents a novel Python-based toolbox which applies this approach to statistics derived 

from computational models, and the RW model in particular. 

We next consider three different statistics T of interest. First, the standard approach 

to determining an appropriate sample size when fitting computational models is goodness-of-

recovery (Lerche et al., 2017; Wilson & Collins, 2019). From here on, we refer to this approach 

as the Internal Correlation (IC) criterion. Thus, for the IC criterion, the statistic T is the correlation 

between true and estimated parameters. It is up to the researcher to determine the magnitude 

of threshold 𝜏, regulating how high this correlation must be.  

Second, statistic T can be the correlation between parameter values of the 

computational model and a measure external to the model. Again, the value of threshold 𝜏 

indicates how high one desires this correlation to be. We refer to this criterion as the External 

Correlation (EC) criterion. Typical examples would be correlating the learning rate with the age 

of the participants (Xia et al., 2021), or with a questionnaire score (Goris et al., 2021). 

Third, the criterion can be a difference in model parameter values (e.g., learning rate) 

such as for example between two groups (Rutledge et al., 2009) or two experimental conditions 

(Behrens et al., 2007). We refer to this criterion as the Group Difference (GD) criterion. This is 
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most similar to the standard notion of power as typically employed in the context of the linear 

model. 

Depending on how conservative researchers aim to be about rejecting a null 

hypothesis (absence of correlation or group difference), different cut-off values (𝜏) can be 

considered. As in standard power analysis, higher cut-offs decrease power and hence require 

more data to be collected. Also the underlying hypothesis (H) can be manipulated. As in standard 

power computations, the smaller the assumed effect (measured, for example, via variance of 

parameter values, group difference or correlation), the larger the sample must be to obtain a 

high power. Note that two levels of sample size can be distinguished. A first level considers the 

number of measurements for each participant, and the second level the number of participants. 

As we will demonstrate, both levels of sample size have distinctive influences on the obtained 

power. 

Once the variables H, T, and 𝜏 are defined, any instance of power (under linear model, 

computational models, …) can be estimated using Monte-Carlo simulations, as summarized in 

Figure 1. Specifically, the algorithm entails to repeatedly (Nreps times) (1) sample a parameter 

from the assumed parameter distribution (as stipulated by hypothesis H), (2) generate a dataset 

with this parameter set (also following H), (3) compute the statistic of interest T from the 

generated dataset. Finally, power is defined as the percentage for which T exceeds the cut-off 

𝜏.  

In sum, current work presents a novel toolbox for COMputational Power Analyses 

using SimulationS (COMPASS) which implements three possible criteria (T) for computing power 

under the RW model. The cut-off values (𝜏) and Hypotheses (H) can be chosen by the user. 

 

Figure 1. Power analysis for computational model evaluation. Visualization of a power analysis with a 
given hypothesis (H), statistic (T) and cut-off (𝜏). Here, one samples a parameter value () under 
hypothesis H. From this parameter value, a dataset (D) is generated which allows to compute a 
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statistic (T). By doing this Nreps times, a distribution of T can be derived. Finally, power can be 
computed based on the distribution of T and a specified cut-off (). 

Methods 

The computational model 

The COMPASS toolbox currently supports one computational model: the RW model 

(Rescorla & Wagner, 1972). In this model, stimulus-action associations are learned via  

 
(2) 

in which the value of a given stimulus-action pair (Q(s,a)) on trial t is updated by the difference 

between the reward (Rew) on trial t and the current value of that stimulus-action pair. This 

update is scaled by the learning rate parameter (𝛼). On each trial, the model selects an action 

via the Softmax decision (Sutton & Barto, 1998) rule described by 

 

(3) 

in which 𝛾 is an inverse temperature parameter that controls the degree of exploration. Lower 

values of 𝛾 imply a higher probability of selecting an action that does not have the highest value, 

and thus increased random responding.  

The three power criteria 

As described before, three criteria for power computations are implemented in 

COMPASS. First, for the IC criterion, the statistic of interest (T) is the Pearson correlation 

coefficient between a set of true parameter values and the estimated parameter values. This 

corresponds to the standard method to evaluate the goodness-of-recovery of model 

parameters. Note that even though this statistic contains true parameters, it is still a statistic 

because we condition on a model H; just like the standard t-statistic is compared to a (fictive but 

model-based) population value of 0. In COMPASS, the true parameter values are sampled from 

a normal distribution. The user has the freedom to specify a mean and standard deviation for 

each parameter (𝛼 and 𝛾). Additionally, the user can define a cut-off value 𝜏 (between 0 and 1) 

for the correlation coefficient.  
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The second criterion is the EC criterion. Here, the statistic of interest (T) for the EC 

criterion is the Pearson correlation between an estimated parameter value from the 

computational model and an external measure such as for instance a questionnaire score or 

neurophysiological activity. Here, again a hypothetical parameter distribution must be specified. 

For this criterion, the values for the model parameter (learning rate) and external measure are 

sampled from a multivariate normal distribution. The user can determine the mean and 

standard deviation for the learning rate. The distribution for the external measure is fixed with 

a mean of 0 and standard deviation of 1. Note that these parameters simply scale the external 

measure and should not cause a loss of generality. As part of the model H, the user should also 

specify a hypothesized correlation between the learning rate and the external measure. From 

this correlation value, the covariance matrix of the multivariate normal distribution is computed, 

from which samples are taken to calculate T (Nreps times). For the EC, the cut-off  is computed 

internally in such a way as to keep Type I error rate under control. Specifically, the user defines 

a Type I error rate. From this Type I error rate, and Nparticipants a probability density (beta) function 

(see Scipy.Stats.Pearsonr — SciPy v1.10.0 Manual, n.d.) can be constructed which allows to 

derive the critical correlation coefficient to reach significance under a correlation of zero 

between model parameters and external criterion. This value functions as cut-off (𝜏) for the 

power computations. 

Third, for the GD criterion, statistic T represents the difference between the mean 

estimated learning rates for two groups (t-statistic). To compute T, one first samples true 

parameter values from two group-specific normal distributions. The hypothesis (H) about the 

underlying true difference of the parameter values between the two groups can be 

implemented by specifying the means and standard deviation of each group. As for the EC 

criterion, the user needs to define a Type I error rate. From this error rate and Nparticipants a critical 

t-value can be derived, which functions as cut-off value.  

Power computations with COMPASS 

Specifying parameters 

COMPASS implements power computations for computational models. Here, all three 

criteria T for power computations are to different degrees influenced by the precision of 

parameter estimates in the computational model. Of course, precision of parameter estimates 

not only depends on the model, but also on the experimental design on which the model is 

tested, as well as the distribution of parameter values in the tested population (which 
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collectively constitute the hypothesis H). One design factor that influences the precision of 

parameter estimates is the number of trials. However, we also consider the reward probability 

of selecting the optimal action and the number of reversals of stimulus-action associations. This 

allows the application of COMPASS power computations to a wide variety of probabilistic and/or 

reversal learning tasks. The distribution of parameter values can be defined by choosing a mean 

and standard deviation for both learning rate and inverse temperature which allows to construct 

a normal distribution for both model parameters. As will be demonstrated in the Simulations, 

choosing an appropriate population distribution of parameter values can significantly influence 

power computations. 

Next, one should specify the remaining power parameters, namely the criterion (T) 

and the cut-off value (𝜏). Additionally, one must define the number of participants (Nparticipants) 

who will be empirically tested. 

Monte Carlo simulations 

Once the empirical design and power parameters are specified, power is estimated by using 

Monte Carlo simulations to compute (sample) multiple values for T. An algorithmic overview for 

power computations is given in Table 1. 

A first step in the Monte Carlo simulations is to sample parameter values from the 

distributions that follow from hypothesis H. These parameters are then used to simulate the RW 

model on the experimental design. This results in a simulated dataset. Then, estimated 

parameter values are derived by maximizing the log likelihood on the simulated dataset. For this 

purpose, COMPASS uses the Nelder-Mead (Olsson & Nelson, 1975) method that is implemented 

in the SciPy package (version 1.9.3) in Python (version 3.10.6).  

This sequential process of data simulation and parameter estimation is repeated 

Nparticipants times. Then, the statistic T is computed. After repeating this process Nreps times, a 

distribution of statistics is computed. This process is illustrated in Figure 1. Power is then defined 

as the proportion of statistics that was equal to or larger than the cut-off value (see Equation 

(1)). COMPASS presents the user a value of power as well as a plot of the simulated distribution 

of statistics (see Applications). 
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Algorithm Power computations via Monte Carlo Simulations for computational models 

Input:  csv data file with values for (1) creating simulated data (e.g., Ntrials, Nreversals, 

Pr(Rew), Nparticipants), (2) creating parameter distributions for  (learning rate) 

and  (inverse temperature) under hypothesis H (i.e., defining αmean, αsd, γmean, 

γsd, …) and for (3) power computation (τ, Nreps). 

Process: 

Create a design K with Ntrials, Nreversals and Pr(Rew) 

for rep = 1: Nreps 

 Sample true parameter values 

 If criterion is EC they have a pre-specified correlation. 

 If criterion is GD they have a pre-specified mean difference 

 for p = 1 : Nparticipants 

Simulate response data (D) with true parameter values of participant p 

on design K 

  D = Simulate_data(αp, γp, K) 

Estimate parameters for participant p that maximize log likelihood (LL) 

on simulated dataset (D) 

 

  end 

Compute statistic T (correlation or t-value) for α across all simulated participants 

(p) for this repetition (rep) 

 end 

 Output:  Approximate power as  

    

 where I(.) is an indicator function equal to 1 if its argument is true and 0 otherwise.  

Table 1. The power computation algorithm as implemented in COMPASS. 

Simulations 

Simulations were executed to validate COMPASS and increase our understanding of 

the parameters that are involved in power computations. Given the strong interest in RW 
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models for probabilistic reversal learning tasks (Crawley et al., 2020; Goris et al., 2021; Manning 

et al., 2017; Verbeke et al., 2021), we defined a probabilistic reversal design. Here, each trial one 

of two possible stimuli is presented, and the participant/model must select one out of two 

response options. Each stimulus is mapped to one response option with a reward probability of 

80% and this mapping reverses every 40 trials. As described before, we distinguish between two 

levels of sample size; number of trials and number of participants. As reasonable bounds to 

perform high-power empirical studies we varied the total number of trials from 80 to 880 and 

the number of participants from 40 to 200. The assumed true distribution of learning rates and 

temperatures were informed by previous work (Crawley et al., 2020; Goris et al., 2021; Verbeke 

et al., 2021).  

The IC criterion  

Power computations with different numbers of trials and participants were performed. 

In all simulations, the inverse temperature distribution has a mean of 1.5 and a standard 

deviation (SD) of 0.5. For the learning rate parameter, the mean of the distribution was 0.7. 

Simulations were executed once with different standard deviations for the learning rate 

distribution. This standard deviation could be small (SD = 0.05), medium (SD = 0.1) or large (SD 

= 0.2). 

Figure 2 shows that, congruent with the well-known restriction of range phenomenon, 

power under the IC criterion dramatically depends on the range of learning rate parameters 

across participants (i.e., SD). As can be observed by comparing power in Figure 2A versus 2B and 

2C, a distribution with a larger standard deviation will result in higher power.  

Additionally, the power increases with an increasing number of trials. In contrast, it 

hardly (perhaps surprisingly; although see Discussion) depends on the number of participants 

included. Consider the results with a medium learning rate standard deviation of 0.1 (Figure 2B). 

One concrete conclusion that the applied researcher may draw from Figure 2B, is that if one 

wants an 80% probability of obtaining reliable parameter estimates (internal correlation >= 0.5), 

at least 560 trials per person would be needed. No matter how many participants are tested, if 

the number of trials is 400 or less, only a maximum power of 70% can be reached. In contrast, 

by increasing the number of trials from 400 to 560 power increases to at least 81%, even if only 

40 participants are tested. Hence, under the IC criterion it is clearly optimal to prioritize large 

trial numbers over large participant numbers.  
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Figure 2. Power estimates under IC criterion. Heatmaps showing the power estimates with varying 
number of trials and participants when relying on the IC criterion. Number of participants is shown on the 
x-axis, number of trials on the y-axis. Nreps = 1000 repetitions were used to estimate the power for each 
cell in the grid. A: Power estimates when the assumed distribution of learning rates has a mean of 0.7 and 
a small standard deviation of 0.05. B: Power estimates when the assumed distribution of learning rates 
has a mean of 0.7 and a medium standard deviation of 0.1. C: Power estimates when the assumed 
distribution of learning rates has a mean of 0.7 and a large standard deviation of 0.2. 

The EC criterion  

Under the EC criterion, we evaluate the power for obtaining a significant correlation 

between a parameter estimate (learning rate) with a measure that is external to the 

computational model (e.g., questionnaire score, neurophysiological measure, demographic 

variables, …). For simulations, the Type I error (which determines  as mentioned above) was 

fixed at 0.05. Again, we evaluated power for a varying number of trials and participants. 

Additionally, three effect sizes were explored: We evaluated power under the assumption that 

the true correlation was small ( = 0.1), medium ( = 0.2) or large ( = 0.4) (Cohen, 1988).  

In contrast to the IC criterion, power here increases both with increasing numbers of 

trials but also with increasing numbers of participants. Interestingly, under a low hypothesized 

correlation of 0.1 (Figure 3A), a lot of resources are required to achieve a decent power. In the 

most extreme case of our simulations with 200 participants and 880 trials, power reaches only 

a value of 31%. When the hypothesized correlation is 0.2 (Figure 3B) or 0.4 (Figure 3C), much 

less resources are required to achieve decent power.  

Note however, that while for the IC criterion, the learning rate SD was manipulated, 

all EC simulations are performed under the assumption that the learning rate SD = 0.1. Also 

power under the EC criterion can be influenced by the hypothesized standard deviation. 



 

 

11

 

Figure 3. Power estimates under EC criterion. Heatmaps showing the power estimates with varying 
number of trials and participants when relying on the EC criterion. Number of participants is shown on 
the x-axis, number of trials on the y-axis. Nreps = 1000 repetitions were used to estimate the power for 
each cell in the grid. A: Power estimates when the assumed correlation between the learning rate and 
external measure is 0.1. B: Power estimates when the assumed correlation between the learning rate and 
external measure is 0.2. C: Power estimates when the assumed correlation between the learning rate and 
external measure is 0.4. 

The GD criterion 

Under the GD criterion, we compare parameter estimates between two groups of 

participants. The Type I error (which here also determines ) was fixed at 0.05. Again, simulations 

were executed with a varying number of trials and participants. Here, we express effect size in 

terms of Cohen’s d (Cohen, 1988), and we again explore small, medium and large effect sizes: d 

= 0.2, d = 0.4 and d = 0.6 respectively.  

As can be expected, a much higher power can be obtained if the hypothesized effect 

size is stronger (Figure 3C versus Figure 3B versus Figure 3A). Furthermore, as for the EC 

criterion, results indicate that both an increase in the number of trials as well as an increase in 

the number of participants increases power under the GD criterion. 
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Figure 4. Power estimates under GD criterion. Heatmaps showing the power estimates with varying 

number of trials and participants when relying on the GD criterion. Number of participants is shown on 

the x-axis, number of trials on the y-axis. Nreps = 1000 repetitions were used to estimate the power for 

each cell in the grid. A: Power estimates when the assumed distribution of learning rates has a mean of 

0.7 +/- group difference (with Cohen's d = 0.2) and a pooled standard deviation of 0.1. B: Power estimates 

when the assumed distribution of learning rates has a mean of 0.7 +/- group difference (with Cohen's d = 

0.4) and a pooled standard deviation of 0.1. C: Power estimates when the assumed distribution of learning 

rates has a mean of 0.7 +/- group difference (with Cohen's d = 0.6) and a pooled standard deviation of 0.1.  

Applications  

This section explains how researchers can use COMPASS to estimate the number of 

participants and trials they need for their study. We consider a typical example as described in 

Goris et al., (2021). This study wanted to investigate whether learning rates in a probabilistic 

reversal learning task correlated with autistic traits. The RW model was used to estimate 

learning rate and temperature per participant. A questionnaire was used to measure autistic 

traits. As described in the Introduction, the standard approach to evaluate how many 

participants must be tested, would be to carry out a goodness-of-recovery study where true 

parameters are correlated with estimated ones (i.e., what we called the IC criterion). However, 

Goris et al. aimed to investigate the correlation between the learning rate and another (autistic 

trait) measure that was external to the computational model. Hence, evaluating power under 

the EC criterion could be more appropriate. Note that instead of correlating learning rate with 

the autistic trait score, researchers could choose to recruit participants with a (sub-)clinical 

autistic trait score and compare this clinical group to a control group. Then, a t-test can be used 

to evaluate the difference in learning rates between both groups which corresponds with our 

GD criterion.  



 

 

13

Below, we use the Goris et al. (2021) study as an example to perform power 

computations with all three criteria implemented in the COMPASS toolbox. The Goris et al. 

(2021) study tested 150 participants on an empirical design with 90 trials. We performed power 

analyses with these settings. However, across all criteria, simulations revealed that at least 400 

trials are needed to obtain decent power. Therefore, we also estimate power when the design 

would have contained 450 (90 x 5) trials. To illustrate the differential effect of participant and 

trial numbers we evaluate power with 150 participants as in the original study but also with five 

times less participants (30). This results in three situations, distinguishing between the two levels 

of sample size: (a) high number of participants (150) but low number of trials (90), as in the 

original study, (b) low number of participants (30) but high number of trials (450) and (c) high 

number of participants as well as trials. 

After installation (see Code availability statement), COMPASS can be used. Using 

COMPASS for power analyses requires two steps. First, one needs to specify the parameters. 

This can be done by completing a csv file. In the GitHub repository 

(https://github.com/CogComNeuroSci/COMPASS), we provide a separate csv file for each of the 

three criteria. Each csv file has multiple columns which contain user-defined power 

computation. Seven parameters are present in each file: ntrials, nreversals, npp, reward_prob, 

nreps, full_speed, output_folder. In the Goris et al. study, 150 participants were tested on a 

probabilistic reversal learning task with 90 trials, 5 reversals and a reward probability of 90%. 

Hence, we fill in each csv file with npp = 150, ntrials = 90, nreversals = 5 and reward_prob = .9. 

Then, we define the number of repetitions (samples) in the Monte Carlo simulations. The more 

repetitions, the more precise the power estimate will be. Of course, more repetitions also 

significantly increase the computation time. As a decent standard, we propose nreps = 250 

repetitions. Another variable that needs to be specified is the output_folder. This represents the 

folder to which output should be written. COMPASS will save two files to this folder. One is a csv 

file with all data from the Monte Carlo simulations. The second file is a .jpg image file showing 

the distribution of (nreps) statistics that were computed, and how this relates to the cut-off  

(see Figure 5).  

To evaluate power under different conditions, we can use multiple rows in the csv files. 

As described above, we also evaluate power with more trials. Hence, we set ntrials = 450 and 

nreversals = 25 in the second (and third) row. We did this for 150 participants but also for the 

situation when only 30 participants were tested. Hence, in the third row we set npp = 30. All 

other variables were copy-pasted from the first row. To decrease computation time, a full_speed 
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option is provided. If this is set to 1, Monte Carlo simulations will be performed in parallel, 

distributed over multiple logical cores of the computer. To avoid overhead, the full_speed option 

evaluates how many cores are available and leaves two cores out of the computation. We note 

that full_speed can be set to 0 at the expense of a significantly increased computation time.  

Second, one must run COMPASS. For this purpose, one opens the terminal window, 

and runs the command  

python PowerAnalyses.py $CRITERION$  

Here, $CRITERION$ is the criterion that is evaluated (one of the following three options: IC, EC 

or GD). Since there are three rows in our csv file, COMPASS will perform three power analyses. 

We next illustrate the use of the three criteria. First, we consider the IC criterion. 

Hence, we open the csv file: “InputFile_IC.csv”. On top of the standard parameters described 

above, one must define five additional parameters. The first four (meanLR, sdLR, 

meanInverseTemperature and sdInverseTemperature) represent the researcher’s hypothesis 

about the population distribution of learning rates and inverse temperatures. As in standard 

power analyses, it is recommended to use data from previous studies to inform the current 

hypothesis. Based on Goris et al., 2021 we use meanLR = 0.55, sdLR = 0.1, 

meanInverseTemperature = 1.5 and sdInverseTemperature = 0.5. The fifth parameter (tau) 

defines the cut-off () that is used to evaluate whether parameter estimates are precise enough. 

Here, a default value is used of tau = 0.5. As described above, these values are entered in three 

rows of the csv file. The csv file “InputFile_IC.csv” is saved and in the terminal, we run the power 

analyses under the IC criterion. In the terminal window, output is printed for all three power 

analyses. Below, we show the output for one analysis.  

(PyPower) MacBook-Pro-4:COMPASS USER$ python PowerAnalysis.py IC 

Power estimation started at 2022-12-21 13:07:17.782379. 

The power analysis will take ca. 28.0 minutes 

Probability to obtain a correlation(true_param, param_estim) >= 0.5 

with 90 trials and 150 participants: 0.0% 

Power analysis ended at 2022-12-21 13:36:49.530127; run lasted 

0:29:31.747748 hours. 

As described in the documentation (https://github.com/CogComNeuroSci/COMPASS), 

running COMPASS can require significant computation time. This mostly depends on the number 

of Monte Carlo repetitions and the number of participants or trials. To help the user, COMPASS 
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will soon after the start of its computations, provide an estimate of how long it will take (in this 

case, the estimate equals 28 minutes). Once power computations are finished it will provide a 

power estimate (in this case 0.0%) as well as a distribution plot. The distribution plots for all 

power computations described in this application are combined in Figure 5. Notably, simulations 

(see above) revealed that for the IC criterion, the most important variable is the number of trials. 

Consistently, power is also in this application estimated to be higher when high trial numbers 

are favored over high participant numbers. While power was 0% with 150 participants but only 

90 trials (Figure 5A), it reached 71.2% with 30 participants but 450 trials (Figure 5B). When both 

participant numbers (150) and trial numbers (450) are high, power is 80.4% (Figure 5C). Hence, 

the increase in IC power is significant by administering more trials but limited by testing more 

participants.  

Second, we consider the EC criterion. For this criterion, the csv file (“InputFile_EC.csv”) 

holds six additional parameters. Again, the learning rate and inverse temperature distribution 

parameters should be specified. We define meanLR = 0.55, sdLR = .1, meanInverseTemperature 

= 1.5 and sdInverseTemperature = 0.5. Additionally, the hypothesized correlation should be 

specified. Here, we predict a medium effect size of True_correlation = 0.2. As a last parameter, 

the user should define a Type-I error rate, based on which the appropriate is internally 

calculated. Here, we define TypeIerror = 0.05. Again, we entered these values in three rows of 

the csv file. The csv file “InputFile_EC.csv” is saved and in the terminal, we run the power 

analyses under the EC criterion. In the terminal window, output is printed for all three power 

analyses. Again, we show one example below. 

(PyPower) MacBook-Pro-4:COMPASS USER$ python PowerAnalysis.py EC 

Power estimation started at 2022-12-21 10:34:17.198074. 

The power analysis will take ca. 29.0 minutes 

Probability to obtain a significant correlation under conventional 

power implementation: 69.9% 

Probability to obtain a significant correlation between model 

parameter and an external measure that is 0.2 correlated with 90 

trials and 150 participants: 22.4% 

Power analysis ended at 2022-12-21 11:00:49.383942; run lasted 

0:26:32.185868 hours. 

For the EC criterion multiple outputs are presented in the terminal window. First, again 

a time estimation is given for the power computations. Second, COMPASS also provides an 
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indication of what the conventional power would be to find a significant correlation under the 

true correlation that was specified in the csv file (e.g, as one would compute with G-power (Faul 

et al., 2007)). Third, the power of interest as computed by COMPASS is presented. This 

represents the power for finding a significant correlation between parameter estimates and an 

external measure if they correlate at True_correlation = 0.2. Notice that this is always lower than 

the power under the conventional implementation. This is because parameter estimates are not 

perfect and therefore there is additional noise introduced in the analyses. We observe for the 

EC criterion a power of 22.4% with 150 participants and 90 trials (Figure 5D). Interestingly, while 

for the IC criterion the number of participants hardly matters, there is a strong effect of the 

number of participants under the EC criterion. Here, a power of only 14% is obtained for 30 

participants and 450 trials (Figure 5E), whereas a power of 51.6% is obtained for 150 participants 

and 450 trials (Figure 5F).  

Third, the GD criterion is considered. For this criterion, the csv file (“InputFile_GD.csv”) 

holds five additional parameters. Again, the learning rate and inverse temperature distribution 

should be specified. However, here one needs two distributions, one for each group. For 

simplicity, we will assume that there is no difference between the groups in terms of inverse 

temperature. Thus, meanInverseTemperature_g1 = meanInverseTemperature_g2 = 1.5 and 

sdInverseTemperature_g1 = sdInverseTemperature_g2 = 0.5. Additionally, we assume that both 

groups have the same standard deviation for the learning rate. Hence, sdLR_g1 = sdLR_g2 = 0.1. 

Again, we hypothesize a medium effect size (Cohen’s d = 0.4). With a standard deviation of 0.1, 

this implies that the mean difference between the two groups should be 0.05. Therefore, we 

specify, meanLR_g1 = 0.57 and meanLR_g2 = 0.53. As for the EC criterion, also a statistical 

threshold should be specified. Here, we set TypeIerror = 0.05. Again, we entered these values in 

three rows of the csv file. Importantly, the group difference criterion requires inserting the 

number of participants in each group, rather than the total number of participants. Hence, 

instead of 150 or 30, we now insert 75 or 15 for npp. The csv file “InputFile_GD.csv'' is saved and 

in the terminal, we run the power analyses under the GD criterion. In the terminal window, 

output is printed for all three power analyses. Again, we show one example below. 

(PyPower) MacBook-Pro-4:COMPASS USER$ python PowerAnalysis.py GD 

Power estimation started at 2022-12-21 14:52:11.448771. 

The power analysis will take ca. 27.0 minutes 

Probability to obtain a significant group difference under conventional 

power implementation: 68.2% 
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Probability to detect a significant group difference when the estimated 

effect size d = 0.4 with 90 trials and 75 participants per group: 14.4% 

Power analysis ended at 2022-12-21 15:21:34.069889; run lasted 

0:29:22.621118 hours. 

Also for the GD criterion, multiple outputs are presented in the terminal window. First, 

again a time estimation is given for the power computations. Second, COMPASS provides an 

indication of what the conventional power would be to find a significant group difference with 

the effect size that was specified in the csv file. Third, the power of interest as computed by 

COMPASS is presented. This represents the power for finding a significant group difference for 

learning rates under the hypothesized effect size. As for the EC criterion, this is always lower 

than power under the conventional implementation since the conventional implementation 

ignores the parameter estimation process of the computational model. Here, a power of 14.4% 

is obtained with 150 participants and 90 trials (Figure 5G). With only 30 participants but 450 

trials, there is a slight increase in power to 22.4% (Figure 5H). Of course, power is highest when 

both the number of participants and the number of trials is high. In this case, a power can be 

obtained of 40.8%.  

In sum, our application demonstrates that power critically relies on the criterion that 

is used. For the Goris et al. (2021) study, which aimed to correlate autistic trait scores with 

learning rate, the EC criterion could be considered most appropriate. Based on our analyses, we 

can conclude that their design with 150 participants and 90 trials resulted in a statistical power 

of 22.4 % (Figure 5D) to obtain a significant correlation between the learning rate and an autistic 

trait score. This is probably much lower than the researchers would have estimated themselves 

since, as COMPASS indicated, a conventional correlation-based power analysis would have told 

the researchers that the power to obtain a significant correlation was 69.9%. However, what 

was critically overlooked here, is the fact that many trials per participant are needed to obtain 

reliable learning rate estimates. We demonstrated that by increasing the length of their 

empirical design to 450 trials, a power could be achieved of 51.6% (Figure 5F). 
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Figure 5. Output plots from COMPASS applications. Output plots show the distribution of computed 
statistics (T). Here, the upper row (panels A-C) shows distributions for the IC criterion, the middle row 
(panels D-F) illustrates distributions for the EC criterion and the lower row (panels G-I) shows distributions 
for the GD criterion. The vertical dashed line indicates the cut-off value (𝜏) that was specified by the user. 
Here, power is defined as the percentage of statistics right from (higher than) the cut-off. 

Discussion 

We presented a novel approach to determine how much data needs to be collected to 

obtain useful parameter estimations from computational models. We argued that this can be 

formulated in terms of the notion of statistical power, but that it should be tailored to the 

research question at hand. This approach encompasses the standard approach to sample size 

determination in computational models (goodness-of-recovery) with the traditional concept of 

statistical power (Cohen, 1988). We applied this approach to the Rescorla-Wagner model and 

described a toolbox that allows calculating the relevant power statistics in this case. This should 

allow applied modelers to make theory-driven design choices. Low statistical power has two 

complementary disadvantages: It makes it less likely to find true effects; but at the same time, 

found effects are more likely to be false positives (Button et al., 2013). On the other hand, if 
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required power is overestimated, it may be unrealistic to even run a study (typically, in hard-to-

sample contexts or populations). We thus consider it vital to provide a general systematic 

approach to determining how much data is required to reach sufficient power when using 

computational models.  

Simulations revealed several practical notes for researchers when using the RW model. 

First, if one wants to obtain precise parameter estimates, as evaluated under the IC criterion, 

the number of trials in the experimental design is of much greater importance than the number 

of tested participants. Note that this is not entirely surprising since the IC criterion aims to find 

reliable parameter estimates for individual participants. Hence, while within-subject noise of the 

estimate should be minimized, between-subject noise is less relevant in this case. For the EC and 

GD criteria, where one aims to test correlations or differences across participants, reducing 

between-subject noise is (much) more relevant. As a result, the number of participants has a 

stronger influence for the EC and GD criteria than under the IC criterion. Nevertheless, also 

reducing within-subject noise remains relevant and much power can be gained by increasing the 

number of trials in the experimental design. This finding has important practical implications, 

because several previous studies using the RW model seemed to use the suboptimal approach 

to prioritize large participant numbers over large trial numbers (Goris et al., 2021; Mukherjee et 

al., 2020; Xia et al., 2021).  

Second, as has been stressed in previous work (Wilson & Collins, 2019), and again 

demonstrated in our simulations under the IC criterion, the variance of learning rates in the 

tested population is an important factor that should not be ignored. Our simulations indicated 

that when learning rate distributions are narrow (small SD), a lot of data are needed to obtain 

precise parameter estimates. Given the fact that the distribution of learning rates in empirical 

studies typically has a small SD (Crawley et al., 2020; Goris et al., 2021; Verbeke et al., 2021), this 

might create a pessimistic image for reliably using computational models in empirical studies. 

However, as a third important practical note, we demonstrated that precision of 

parameter estimates (as evaluated under the IC criterion) might be less important depending on 

the research question. For instance, while using 240 trials and 120 participants results in a power 

of 27% under the IC criterion (Fig. 2B), a power of 47% can be obtained with the same amount 

of data under the EC criterion (Fig. 3B). 

An important factor that influences power but was not addressed in our simulations is 

the number of estimated parameters in the model. It is well known that the precision of 

parameter estimates decreases with an increasing number of model parameters (i.e., bias-
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variance trade-off; Pitt & Myung, 2002). As a result, also power will likely decrease with an 

increasing number of parameters. However, the exact amount of decrease strongly depends on 

the model, experimental design and task, and potentially even the tested population. Although 

a detailed investigation is beyond the current scope, for any specific model, task, and design, 

the toolbox allows evaluating the effect of adding extra parameters on statistical power.  

The current toolbox is limited in terms of its underlying model (Rescorla-Wagner 

model); the number of statistical tests it carries out (currently three); the statistical framework 

it is formulated in (frequentist contrary to a Bayesian framework); and the type of power 

question it can address (a priori power analysis; Faul et al., 2007). However, one key take home 

message from the current work is that statistical power is not necessarily tied to the workhorse 

of statistical analysis in psychology, the linear model. Due to fast computing power, researchers 

with substantive hypotheses can now not only estimate parameters in their models, but also 

evaluate their (power) consequences. The general test (equation (1)) and algorithm (Table 1) 

should allow anyone with basic programming skills to adapt our code to their preferred model.  

The replication crisis has received strong interest in recent years and underpowered 

studies have been diagnosed as one of its symptoms (Brysbaert, 2019; Button et al., 2013). 

However, several authors have proposed that in addition to the data replication crisis, a 

potentially equally severe theory crisis continues to plague psychology and neuroscience 

(Muthukrishna & Henrich, 2019; Oberauer & Lewandowsky, 2019; Verguts, 2022). While the 

notion of power has typically been associated with the former, it is equally important for the 

latter. With this note, we intended to close this gap. Indeed, our approach allows answering how 

much data is needed to test any substantive hypothesis, not just for effect size in the linear 

model, but for any theoretical question formulated in a computational model. 

 

Open practices statement: Our toolbox including all raw Python-code is available on the GitHub 

repository: https://github.com/CogComNeuroSci/COMPASS. All figures in the current paper can 

be reproduced using this code. As there was no experimental data collected, there was also no 

preregistration for the current study.  
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