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SUMMARY

Clinical and quality of life (QL) variables from an EORTC clinical trial of �rst line chemotherapy in
advanced breast cancer were used in a prognostic factor analysis of survival and response to chemother-
apy. For response, di�erent �nal multivariate models were obtained from forward and backward selec-
tion methods, suggesting a disconcerting instability. Quality of life was measured using the EORTC
QLQ-C30 questionnaire completed by patients. Subscales on the questionnaire are known to be highly
correlated, and therefore it was hypothesized that multicollinearity contributed to model instability.
A correlation matrix indicated that global QL was highly correlated with 7 out of 11 variables. In
a �rst attempt to explore multicollinearity, we used global QL as dependent variable in a regression
model with other QL subscales as predictors. Afterwards, standard diagnostic tests for multicollinearity
were performed. An exploratory principal components analysis and factor analysis of the QL subscales
identi�ed at most three important components and indicated that inclusion of global QL made mini-
mal di�erence to the loadings on each component, suggesting that it is redundant in the model. In a
second approach, we advocate a bootstrap technique to assess the stability of the models. Based on
these analyses and since global QL exacerbates problems of multicollinearity, we therefore recommend
that global QL be excluded from prognostic factor analyses using the QLQ-C30. The prognostic factor
analysis was rerun without global QL in the model, and selected the same signi�cant prognostic factors
as before. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Prognostic factor analyses are used in oncology to identify variables that are ‘independent’
predictors of outcome, and that therefore should be used to stratify patients in the design and
analysis of clinical trials, to assist in the interpretation of the data generated by such trials,
to aid the clinical management of individual patients and to increase e�ciency. Since the
advent of methods for measuring health-related quality of life (QL), several studies have been
published in which QL variables derived from visual analogue scales and patient-completed
questionnaires have been identi�ed as important prognostic factors in addition to clinical
factors [1–14]. This �nding has considerable importance, particularly in advanced disease
where treatment is generally palliative and the aim is to optimize QL.
We therefore undertook prognostic factor analyses for response and survival using both

clinical and QL variables from an EORTC study (10923) of single agent paclitaxel versus
doxorubicin as �rst line therapy in advanced breast cancer. The two drugs were expected to
yield no substantial di�erences in response and survival, and therefore QL was considered an
important endpoint.
Details of the prognostic factor analyses from this trial in advanced breast cancer have

already been reported in Kramer et al. [15]. However, our �ndings and our knowledge of the
structure of QL questionnaires alerted us to the possibility that harmful multicollinearity was
present: a situation that arises in multiple regression when two or more predictor variables
are so highly correlated that non-sensical results are obtained, such that the analysis yields
parameter estimates of incorrect magnitude, incorrect sign etc. These di�culties can lead to
incorrect model selection or can make it impossible to determine the direction or magni-
tude of e�ects of the predictor variable on the response variable, even with a correct model
speci�cation (Cramer [16], Slinker and Glantz [17] and Sithisarankul [18]). It is self-evident
that these issues need to be addressed before drawing conclusions from a prognostic factor
analysis.
Although intercorrelation between variables measured using QL questionnaires has been

observed before (Coates [12] and Aaronson [19]), neither proper identi�cation tools nor the
impact of multicollinearity on prognostic factor analyses using QL variables have been ex-
plored. We consider this a potentially important and previously unreported context in which
multicollinearity can occur, which will be dealt with in this paper.
In Sections 2 and 3 we will respectively introduce the data and describe the models that will

be the subject of further investigation. In Section 4, we will identify harmful multicollinearity
using standard diagnostic techniques. Fully aware of the limited use of such techniques in
the light of ordinal categorical data (such as produced by the QLQ-C30), we use a bootstrap
technique in Section 5 and investigate model (in)stability. In Section 6, we comment upon
ways to avoid or circumvent the problems of multicollinearity. Finally, we conclude with
practical recommendations in Section 7.

2. THE DATA

The data were taken from an EORTC study (10923) of single agent paclitaxel versus dox-
orubicin as �rst line therapy in advanced breast cancer. Information about eligibility criteria
can be found in Kramer et al. [15]. Characteristics of all eligible patients are reported in
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Table I. The EORTC QLQ-C30 vl.0 is a 30-item questionnaire that consists of �ve
function scales, three symptom scales, six single item scales and a global health

status=quality of life (QL) scale.

Scales in the EORTC QLQ-C30
Description Code

Function scales
physical functioning PF
role functioning RF
emotional functioning EF
cognitive functioning CF
social functioning SF

Symptom scales
fatigue FA
nausea=vomiting NV
pain PA

Single item scales
dyspnoea DY
sleep disturbance SL
appetite loss AP
constipation CO
diarrhoea DI
�nancial impact of disease=treatment FI

Global health status indicator
quality of life QL

Paridaens et al. [20]. Since the two drugs were expected to yield no substantial di�erences
in response and survival, QL was considered an important endpoint.
Of 249 available eligible patients only 187 completed baseline QL evaluations (compliance

rate of 64 per cent). Baseline QL was assessed using the EORTC QLQ-C30 vl.0 questionnaire
[19]. This is a 30-item questionnaire that consists of �ve function scales, three symptom scales,
six single item scales and a global health status=quality of life (QL) scale (Table I). Items
are scored and then scaled to values ranging from 0–100, with higher values representing
better function and global QL or more severe symptoms [21]. Since the number of possible
categories for a scale range from three (RF), over four (all single item scales) to more than
four, up to 13 (for example, QL) [21], we may treat all scale scores as if continuous, hereby
using caution in interpreting analyses results.
In order to limit the number of variables under consideration, three questionnaire items (CO,

DI and FI) were not included in our prognostic factor analyses: constipation and diarrhoea
were present in only small proportions of patients at baseline and therefore the power to detect
an e�ect of these variables was limited; �nancial impact was considered di�cult to interpret
as a prognostic factor in a multinational clinical trial.

3. THE MODELS

Similar to the prognostic factor analyses carried out in Kramer et al. [17], we used the
Cox proportional hazards model with strati�cation for treatment arm for both univariate and
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multivariate analyses of survival. The logistic regression model with treatment arm included
in the model was applied for both univariate and multivariate analyses of response. Scale
scores were dichotomized at the median (CF was dichotomized at a score of 70, see Kramer
et al. [15]) and variables were used in binary form.
To build the �nal multivariate models, clinical variables were identi�ed that were signi�cant

predictors of survival and response. More speci�cally, the following patient and disease vari-
ables were included: WHO performance status [22]; age; disease-free interval (DFI, the time
between diagnosis of breast cancer and diagnosis of advanced disease) and dominant anatom-
ical site of disease according to UICC criteria [23]. Only a subgroup of 177 patients was used
for the multivariate analyses, since those were the patients with complete information on all
QLQ-C30 variables. The signi�cant clinical variables selected by the �nal multivariate models
were �xed into models to which QLQ-C30 variables were then added using forward selection
(selection entry criterion=0:01) and backward elimination (selection stay criterion=0:01). In
adding the QL variables, the same �nal models were obtained for survival irrespective of the
selection method used. In the models for response, di�erent �nal models were obtained with
the two selection methods.
In practice, the entry criterion is often less restrictive than the stay criterion. Hence, we

�xed the criterion for variables to enter into the model at 0.05 instead of 0.01 and noticed
that the kind of instability in the models for response seemed to have disappeared.

4. IDENTIFICATION OF PROBLEMATIC MULTICOLLINEARITY

4.1. Introduction

Slinker and Glantz [17] observed that the usual source of multicollinearity in physiological data
is inability to manipulate all predictor variables independently. In the case of questionnaires
measuring QL, multicollinearity is inherent in the questionnaire itself, since all variables are
designed to measure putative components of QL. Moreover, the greater the number of items,
the higher the risk of multicollinearity.
A number of diagnostic tests can be used to determine the degree to which multicollinearity

might be a problem in our data set when all QL variables are included in the analysis
[24]. One may be warned by (i) considering correlation matrices, (ii) by regressing each
explanatory variable on other explanatory variables, (iii) by investigating the (in)stability of
regression models with QL variables to predict the global QL, or (iv) by comparing principal
components analyses or factor analyses with and without the variable global QL included
etc. Standard diagnostic techniques include calculating variance in�ation factors (VIF) and
considering tolerance and condition indices. While allowing to let the QL scaled scores range
from 0 to 100, we take a closer look at these techniques as a �rst approach to testing
for multicollinearity and highlight the potential of a second approach in which a bootstrap
procedure is implemented to investigate the stability of models in prognostic factor analyses
(Section 5).

4.2. Alarming signals

4.2.1. Pairwise correlations between QL variables. In our data set of 177 women with ad-
vanced breast cancer and complete QLQ-C30 data available at baseline, Spearman’s correlation
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Table II. Correlation matrix for EORTC QLQ-C30 function variables, symptoms and
global quality of life (absolute values of Spearman correlation coe�cients, n=177).

PF RF EF CF SF FA NV PA DY SL AP

RF 0.706
EF 0.151 0.196
CF 0.268 0.236 0.361
SF 0.496 0.549 0.322 0.408
FA 0.657 0.573 0.359 0.464 0.584
NV 0.353 0.339 0.110 0.151 0.308 0.421
PA 0.495 0.457 0.189 0.294 0.453 0.511 0.315
DY 0.375 0.303 0.288 0.246 0.345 0.489 0.294 0.142
SL 0.044 0.201 0.301 0.116 0.186 0.203 0.117 0.201 0.037
AP 0.374 0.344 0.208 0.356 0.361 0.505 0.489 0.318 0.324 0.104
QL 0.578 0.523 0.332 0.319 0.674 0.709 0.363 0.535 0.422 0.253 0.413

r was used to identify the degree of correlation between QL variables (Table II). The highest
correlations were observed between PF and RF, and FA and global QL (Spearman’s corre-
lation |r|=0:71). One-third of the correlations in the matrix have |r|¿0:4, with FA, global
QL and SF having the greatest number of strong correlations. Although these intercorrela-
tions do not reach the extreme levels of |r|¿0:9 reported in studies of multicollinearity in
biological and physicochemical data [17, 18, 25, 26], it has been observed that pairwise cor-
relations in absolute value greater than 0.70–0.80 between two predictor variables signify a
harmful multicollinearity between the two variables [17]. Moreover, important multicollinear-
ities among three or more predictor variables can exist even though pairwise correlations are
small. We hypothesize that small correlation coe�cients do not exclude the possibility that
harmful multicollinearity has an in�uence on model selection involving variables derived from
patient-completed QL questionnaires.

4.2.2. Regression analyses. If the assumptions underlying multiple linear regression are met,
the usual initial indications of the presence of harmful multicollinearity are unexpected mag-
nitudes or signs of parameter estimates [17]. This is shown particularly well if slight changes
in model structure result in considerable changes in the magnitude or sign of parameter es-
timates. Since the QLQ-C30 variable global QL has been shown in published studies to be
a signi�cant prognostic factor [12, 13], and since intuitively it is the variable expected to be
most a�ected by multicollinearity, it was chosen as an illustration of the problem. Table III
shows the sensitivity of the parameter estimates to slight changes in predictive models for
global QL, particularly for those variables that are highly correlated with FA. Of interest is
the sign change of the parameter estimate for CF from a positive sign in the univariate model
to a negative sign in the multivariate model.
Next, global QL was entered as dependent variable in a stepwise selection model (crite-

rion for variables to enter into the model set to 0.05, criterion for variables to stay in the
model=0:01) for multiple regression in which all other QLQ-C30 variables (except CO, DI
and FI) were entered as predictors. The replication stability of the �nal model predicting
global QL was investigated using a bootstrap resampling technique [27, 28]. A total of 1000
samples of size n=177 each were generated by randomly selecting patients with replacement.
The frequency of inclusion of the component variables in the resulting models using stepwise
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Table III. Multiple linear regression model for predicting global QL. The scaled vari-
ables are allowed to range from 0–100. Column 1, QL covariate; column 2, parameter
estimate of QL variable in predicting global QL; column 3, parameter estimate of QL
variable in a multiple regression model with the QL variable and FA as only covari-
ates; column 4, parameter estimate of QL variable in a multiple regression model with
the QL variable, FA and SF as covariates; column 5, similar to columns 3 and 4,

now using the additional covariates FA, SF and PA.

Variable Parameter estimates (p-values)
in model Univariate +FA +FA+SF +FA+SF+PA

PF 0.49 (¡0:001) 0.19 (0.001) 0.13 (0.018) 0.10 (0.064)
RF 0.34 (¡0:001) 0.13 (0.002) 0.06 (0.153) 0.04 (0.342)
EF 0.30 (¡0:001) 0.09 (0.110) 0.04 (0.417) 0.04 (0.390)
CF 0.33 (¡0:001) −0:02 (0.811) −0:08 (0.198) −0:08 (0.151)
SF 0.53 (¡0:001) 0.29 (¡0:001) — — — —
FA −0:58 (¡0:001) — — — — — —
NV −0:52 (¡0:001) −0:18 (0.025) −0:12 (0.102) −0:11 (0.138)
PA −0:40 (¡0:001) −0:19 (¡0:001) −0:14 (0.002) — —
DY −0:36 (¡0:001) −0:09 (0.065) −0:07 (0.128) −0:09 (0.044)
SL −0:19 (0:001) −0:09 (0.031) −0:09 (0.028) −0:07 (0.073)
AP −0:30 (¡0:001) −0:05 (0.252) −0:02 (0.707) −0:01 (0.825)

selection can be considered to be indicative of the importance of the variables other than
global QL entered as predictors. In line with the correlation observed in Table II, both SF
(94.4 per cent) and FA (97.3 per cent) show the highest occurrence frequencies in predictive
models for global QL. The QL variable PA gives an inclusion frequency of 59.8 per cent.
Therefore, inclusion or exclusion of PA in the model seems to be fairly unpredictable. The
observed manifestations of sensitivity and sign change con�rmed the presence of potentially
harmful multicollinearity.

4.2.3. Principal component analysis. To assess the e�ects of including global QL in the
variable pool of prognostic factor analyses, we �rst considered all QL variables (except CO,
DI and FI, as usual) in a principal components analysis, based on the variance-covariance
matrix. The aim of principal components analysis is to reduce the dimensionality of the data
by creating new orthogonal (independent) variables from linear combinations of the original
variables and selecting only a few of these. Since the newly de�ned variables are uncorrelated,
the problem of multicollinearity is circumvented. The method can be legitimately used in a
non-normal setting, provided no inferences are being made.
The more desirable situation in a principal component analysis is the one where one eigen-

value is ‘large’ with the remaining ones very ‘small’. Since it is hard to judge what is large
and what is small based on the absolute numbers, the proportion of explained variability may
be an option. However, there is no �xed gold standard and the meaning of a ‘acceptable’
percentage highly depends on the application �eld. For the data under study, the �rst six
principal components account for 84 per cent of the total variability.
Alternatively, a Monte Carlo study performed by Guadagnoli and Velicer [29] highlights

the importance of the absolute magnitude of the loadings (loadings pertain to the Pearson
correlation coe�cients between the variables and the principal component, that is, the par-
ticular linear combination of the variables) and the absolute sample size. Bearing in mind
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Figure 1. Scree plot.

that a component with only a few important loadings (in terms of absolute value) defeats
the purpose, and since the principal component analysis is used in an exploratory fashion,
we may restrict attention to the �rst three or even two components. This choice can also be
justi�ed by looking at the so-called scree plot (Figure 1). It shows that there are at most
two eigenvalues (corresponding with the �rst two principal components) before the scree plot
starts to level o�.
The question remains which loadings should be used for interpretation, or in other words,

which variables make up the selected components. One approach is to test each loading for
signi�cance at alpha =0:01 (two-tailed test). Setting the alpha level for each separate test
more stringently is prompted by the use of multiple testing. Stevens [30] provides a table
with critical values for a correlation coe�cient for alpha =0:01 and a two-tailed test. A good
approximation for the actual sample size of n=177 is found by interpolating between n=140
and n=180 in the latter table, resulting in a critical value of c=0:002. A rough check for
assessing whether or not a loading is statistically signi�cant is then given by doubling this
critical value. Hence, using this technique, only loadings of 0.388 in absolute value will be
declared statistically signi�cant.
It appears that the �rst principal component has signi�cant loadings on 11 of the 12 vari-

ables, which makes it di�cult to interpret. It should be noted though that PF, RF, QL and FA
seem to dominate this component. The second principal component seems to be dominated
by SL (the latter having a loading of 0.889, which largely exceeds the loadings for the other
variables).
If we exclude QL from the variable pool, we obtain similar results. Remarkably, restrict-

ing attention again to the �rst two principal components, the loadings hardly change (results
not shown). Hence, there seems to be little use in adding global QL to the list of remain-
ing variables (PF, RF, EF, CF, SF, FA, NV, PA, DY, SL and AP) in order to increase
the explanatory capacity of the model. This is entirely in line with expectations, since QL
was designed to be a global score. Moreover, inclusion of QL might cause unnecessary
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Table IV. Factor analysis results: extraction method = principal components analysis;
rotation method = varimax with Kaiser normalization.

Rotated factor pattern

QL included QL not included

FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3

RF 0.89572 −0:16034 −0:04207 0.89920 −0:17875 −0:05891
PF 0.81611 −0:26985 0.13596 0.81372 −0:28080 0.12661
QL 0.61169 −0:46462 −0:21463
SF 0.59799 −0:42766 −0:12395 0.58645 −0:43204 −0:12606
PA −0:66003 0.17197 0.31908 −0:65267 0.17994 0.32405
AP −0:17310 0.78221 0.14116 −0:16685 0.79100 0.14947
DY −0:24535 0.70110 −0:17883 −0:23605 0.70214 −0:17988
FA −0:59170 0.60447 0.12974 −0:57785 0.60898 0.13184
NV −0:23270 0.50349 0.05611 −0:22482 0.50682 0.05892
CF 0.21261 −0:50169 −0:14455 0.20935 −0:50918 −0:14960
SL −0:11507 −0:01424 0.92100 −0:10485 −0:01080 0.92325
EF 0.05324 −0:44412 −0:47217 0.04266 −0:44604 −0:47186

multicollinearity problems. Especially RF, EF and FA seem to be forming a group together
with QL. Also note that RF was one of the parameters that gives a counterintuitive sign in
the normal regression analysis of QL on the remaining variables.

4.2.4. Factor analysis. When performing an exploratory factor analysis, we used the mineigen
criterion to specify the smallest eigenvalue for which a factor is retained. In order to deter-
mine the appropriate number of factors to include in the model, we considered the point at
which including additional factors did not substantially increase the variance explained by the
common factors. The appropriate number of factors to �t appeared to be three. The estimated
factor loadings obtained after an orthogonal varimax rotation with Kaiser normalization are
displayed in Table IV. The data show that the function scales PF, RF, SF and QL are con-
trasted with PA in one factor, AP, DY, FA, NV are contrasted with CF in a second factor,
and SL primarily loads on the third factor. Relatively large loadings are obtained for EF on
more than one factor, causing some ambiguity in the interpretation of the factors. Applying
a Harris–Kaiser oblique rotation to allow for correlation between the factors, and forcing a
large loading on only one factor for each variable, gives similar interpretations of the factors
as before. The variable EF now loads high on two of the three factors, making it less clear
whether AP, DY, NV, FA should be contrasted against EF and CF together or only against
CF.
Conclusions were unchanged when global QL was excluded from the analyses (Table IV).

4.3. Standard diagnostic tool kit

4.3.1. Variance in�ation factors and tolerances. Slinker and Glantz [17] report on a variety
of diagnostic checks that can be used to evaluate the severity, number and structure of mul-
tivariable multicollinearities. For instance, the severity of multicollinearity may be suggested
by the magnitude of the variance in�ation factors (VIF) for the regression of each predictor
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Table V. Diagnostic tests for multicollinearity between predictor variable.

Variable Tolerance Variance in�ation

PF 0.3730 2.6813
RF 0.4036 2.4776
EF 0.7494 1.3344
CF 0.7087 1.4111
SF 0.5469 1.8286
FA 0.3537 2.8274
NV 0.6779 1.4752
PA 0.6139 1.6289
DY 0.6631 1.5082
SL 0.7986 1.2522
AP 0.5985 1.6709

on all remaining predictor variables. The variance in�ation factor measures the in�ation in
the variance of the parameter estimate due to collinearity between the explanatory variable
and other variables. For the jth dependent variable, the variance in�ation factor is de�ned as

VIFj=
1

(1− R2j )

where R2j is the coe�cient of determination for the regression of the jth independent variable
on all other independent variables. A VIF¿10 is generally considered indicative of harmful
multicollinearity, but this value is arbitrary, and relatively small VIFs may still be unstable
(Myers [31]). Some authors (for example, Slinker and Glantz [17]) accept a VIF¿4 (cor-
responding to an auxiliary regression R2 of 0.75). These values are based on the situation
of normally distributed data, but data derived from patient-completed questionnaires are cat-
egorical and often not normally distributed, and the problem might exist in this special case
even when the usual criteria are not ful�lled. The VIFs we observed when regressing each
predictor variable on all the other predictor variables are shown in Table V. The variables
FA, PF and RF produced the highest VIFs, although none was ¿4. We considered that these
three variables might nevertheless produce harmful multicollinearity in the present context.
The tolerance factor is another statistic that measures the strength of interrelationships among
the explanatory variables in the model. Tolerances close to zero indicate a strong linear as-
sociation or collinearity among the explanatory variables. From Table V it can be seen that
FA, PF and RF produced the lowest tolerance factors. These results are consistent with the
ones obtained by using VIFs before.

4.3.2. Condition indices. Analysis of the structure of relationships among a set of variables,
and hence diagnosis of harmful multicollinearity, may be pursued by examination of the
structure of X TX (for example, eigenvalues) where X is the design matrix. The design matrix
contains all dependent variables included in the analysis. The literature suggests that eigen-
values 60:01 indicate a serious problem [17]. The square root of the ratio of the largest to
each individual eigenvalue is known as the condition index, and allows one to assess the
relative magnitudes of the eigenvalues. The largest condition index (square root of the ratio
of the largest to the smallest eigenvalue) is the condition number, and when this number
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is large the data are said to be ill-conditioned. Criteria for a condition number to signify
serious multicollinearity are arbitrary, with values of 30 to 100 often quoted [31]. However,
it has also been suggested that a condition number larger than 10 probably indicates harmful
multicollinearity [17]. Clearly, insight into the particular problem at hand should guide the
diagnosis rather than strict adherence to a rule. In addition, for each variable, the proportion
of variance of its estimate accounted for by each component can be evaluated. A problem
is indicated when an eigenvalue with a high condition index is associated with high values
for the variance proportion indicating near linear dependence between those variables. Belsley
et al. [24] suggest the following approach: identify eigenvalues having condition numbers
¿30, then variables with variance proportions ¿0:5 for each of those eigenvalues are con-
sidered to be involved in the near linear dependency that produces the large condition numbers.
The structure of relationships among the variables can be analysed by using raw (non-

centred) variables or by scaling and centring them. Practically, this is achieved by respectively
including or not including an intercept term in the model statement. Hence, in the case of QL
variables that are derived from ordered categorical variables, already scaled, it does not make
sense to exclude the intercept while basing the analysis on scaled and centred variables. Table
VI shows selected collinearity diagnostics obtained when the intercept is included and global
QL is the dependent variable. The condition number is 25.81. In the row corresponding to
this value (Table VI) relatively large variance proportions are observed for FA, CF and PF,
suggesting that these variables are involved in a near linear dependency. The latter statement
should not be overemphasized, since large condition numbers are likely to be produced if
the origin lies outside the range of the data. Table VI only lists condition indices ¿10 and
suggests near linear dependency between RF and EF, between PF and SF, but also between
PF, RF and CF.

4.4. Comments

In summary, the diagnostic techniques investigating pairwise correlations, sensitivity and sign
change suggest the presence of harmful multicollinearity in the data set, and this is supported
by investigating variance in�ation factors, the condition number and variance proportions. In
Section 5, we will use a bootstrap resampling technique as a promising diagnostic tool in the
present context. QL variables will be used in dichotomized form, since it is common practice
in prognostic factor analyses to do so. Moreover, the technique allows investigating the impact
of multicollinearity on prognostic factor analyses.

5. INFLUENCE OF MULTICOLLINEARITY ON MODEL STABILITY:
THE BOOTSTRAP RESAMPLING TECHNIQUE

The problem of multicollinearity demonstrated in the prediction of global QL from other QLQ-
C30 variables using multiple linear regression, can also arise in Cox and logistic regression.
It may be that neither of two correlated factors will be identi�ed as statistically signi�cant
although both have an in�uence on the outcome [27]. Therefore, investigation of the stability
of the chosen regression model is important. Stability is de�ned by the replication stability
for the choice of variables included in the model and the predictive ability of the model itself
[28].

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3865–3884



MULTICOLLINEARITY IN PROGNOSTIC FACTOR ANALYSES 3875

T
ab
le
V
I.
M
ul
tic
ol
lin
ea
ri
ty

di
ag
no
st
ic
s,
us
in
g
th
e
ra
w
(n
ot

ce
nt
re
d)

va
ri
ab
le
s.
E
ig
ht

ei
ge
nv
al
ue
s
ar
e
no
t
di
sp
la
ye
d.
T
he
y
ha
ve

as
so
ci
at
ed
co
nd
iti
on
in
di
ce
s
ra
ng
in
g
fr
om

1.
00
00
0
to
7.
79
87
6.

C
on
di
tio
n

V
ar
ia
nc
e
pr
op
or
tio
n

E
ig
en
va
lu
e

In
de
x

In
te
rc
ep
t

PF
R
F

E
F

C
F

SF
FA

N
V

PA
D
Y

SL
A
P

0.
06
56
3

11
.1
23
28

0.
00
46

0.
01
27

0.
22
83

0.
63
74

0.
16
00

0.
15
75

0.
00
07

0.
00
24

0.
00
22

0.
01
30

0.
14
20

0.
00
31

0.
05
71
8

11
.9
16
82

0.
00
51

0.
40
48

0.
12
80

0.
00
25

0.
03
67

0.
51
54

0.
00
40

0.
00
97

0.
01
11

0.
00
21

0.
03
30

0.
00
18

0.
04
61
1

13
.2
69
69

0.
00
00

0.
29
24

0.
35
10

0.
03
06

0.
46
53

0.
23
91

0.
00
12

0.
00
19

0.
00
75

0.
00
00

0.
01
54

0.
00
03

0.
01
21
9

25
.8
11
70

0.
98
88

0.
25
03

0.
00
05

0.
09
20

0.
30
18

0.
07
81

0.
30
66

0.
00
28

0.
08
67

0.
03
20

0.
00
27

0.
01
61

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3865–3884



3876 K. VAN STEEN ET AL.

Table VII. Frequency of inclusion of QL variables in multivariate models of survival
and response based on 1000 simulated data sets containing the clinical variables
disease-free interval and dominant site of disease. The minus sign indicates that in
the majority of the cases, the variable entered the model with a minus sign. In turn,
a percentage without a sign indicates that in the majority of the cases, the variable
entered with a positive sign. The value is italicized if the sign is consistent throughout

all selections.

QLQ-C30 variable Frequency of inclusion in multivariate model (%)

Survival Response

Forward Backward Forward Backward

PF 9.8 4.7 −9:6 −7:2
RF −6:6 −2:8 7.3 3.5
EF −11:5 −4:4 72.8 49.9
CF −36:5 −21:0 −10:8 −4:8
SF −14:7 −10:6 −11:1 −5:7
QL 33.3 31.2 −17:0 −9:6
DY 17.0 8.4 −77:7 −59:9
FA 23.8 15.3 −50:4 −39:1
NV 17.3 10.8 −34:9 −20:7
PA 50.7 39.9 −6:5 −3:7
SL −13:2 −5:8 −8:9 −2:2
AP 16.8 10.3 −15:7 −9:2

The replication stability of the �nal multivariate models predicting survival and response
was checked using a bootstrap resampling technique [27, 28]. A total of 1000 samples each
of the same size as the complete baseline data set (n=177) were generated by randomly
selecting patients and replacing them before selecting the next patient. The frequency of
inclusion of the component variables in models built on these simulated data sets using both
forward selection and backward elimination gives an indication of the prognostic importance
of the variable. The results are shown in Table VII for a signi�cance level for inclusion set
at p=0:05 and a signi�cance level for variables staying in the model set at p=0:01.
For most QLQ-C30 variables, the frequency of inclusion in the multivariate model di�ered

by¡10 per cent according to whether forward or backward selection was used. The exceptions
for the survival model were CF and PA and for the response model EF (more than 20 per
cent di�erence), DY, FA and NV. Sauerbrei and Schumacher [27] suggested a cutpoint of
30 per cent for a low frequency of inclusion in the model, and 60–70 per cent as a high
cutpoint.
For survival, the frequency of inclusion of QLQ-C30 variables in the model is relatively

low, with PA (the most frequent) included in fewer than 55 per cent and global QL included
in fewer than 35 per cent. For response, the inclusion frequency for DY is more than 60 per
cent. Two other variables, EF and FA, have inclusion frequencies ranging between about 50
–70 per cent and 40–50 per cent, respectively, which account for the instability (according
to the selection method used) of the model for response.
In addition, we draw attention to the behaviour of PF in both the survival and response

model. Despite its low inclusion frequency, we observe that once PF is selected in the response
model, it most frequently enters into the model with a minus sign and it enters most often
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Table VIII. Frequency of inclusion of QL variables (global QL excluded) in multi-
variate models of survival and response based on 1000 simulated data sets containing
the clinical variables disease-free interval and dominant site of disease. The minus
sign indicates that in the majority of the cases, the variable entered the model with a
minus sign. In turn, a percentage without a sign indicates that in the majority of the
cases, the variable entered with a positive sign. The value is italicized if the sign is

consistent throughout all selections.

QLQ-C30 variable Frequency of inclusion in multivariate model (%)

Survival Response

Forward Backward Forward Backward

PF 14.4 8.0 −11:2 −7:5
RF −7:3 −3:0 6.6 3.2
EF −10:0 −4:0 71.9 49.4
CF −38:7 −21:3 −11:1 −4:4
SF −9:5 −4:2 −13:1 −6:3
DY 18.9 9.9 −79:1 −61:6
FA 36.4 28.8 −54:5 −42:4
NV 17.5 9.1 −33:2 −21:3
PA 54.0 44.6 −6:1 −3:1
SL −12:8 −4:7 −10:3 −1:7
AP 14.5 10.4 −15:7 −9:8

with a positive sign in the survival models. Intuitively one would expect high scores on the
function variables and global QL to be associated with better survival and response, and high
scores for symptoms to be associated with a poor outcome. Hence, apart from rather low
inclusion VII frequencies, the �gures in Table VII give further evidence of instability.
We repeated the bootstrap analyses with global QL deleted from the predictor variables, to

see whether this improves model stability. The results are presented in Table VIII and show
similar di�erences in inclusion frequencies as before. For the survival and response models,
again, respectively, CF and PA, and EF, DY, FA and NV give rise to the largest di�erences in
inclusion frequencies. It therefore seems that global QL is redundant as a predictor variable. It
also appears to interact with FA (note the higher inclusion probabilities for FA in the survival
model, compared to the ones obtained in Table VII), which is consistent with the �nding that
they are the most highly correlated variables in Table II.
Finally, Tables IX and X give an impression of the size of the parameter estimates for

the selected variables, based on the 1000 simulated data sets. For every variable in the
variable pool (global QL excluded), we averaged the (maximal 1000) obtained parameter
estimates, together with their corresponding standard errors. The Cox multivariate model
(Table IX, column 2), stratifying by treatment arm and adding QLQ-C30 variables to the
�xed clinical variables multiple sites of visceral disease (DS) and DFI62 years, indicated
that poor survival was associated with DS (estimated =0:660, p-value=0:003), DFI62 years
(estimated =0:385, p-value=0:026) and pain PA (estimated =0:505, p-value=0:003). The
backward elimination method produced the same results. On the basis of the simulation study,
an average PA parameter estimate of 0.598 (p-value=0:001) was obtained with the forward
selection method (Table IX, column 3), and an even larger average PA parameter estimate of
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Table IX. The Cox multivariate model, stratifying by treatment arm and retain-
ing the clinical variables disease-free interval (DFI) and dominant site of disease
(DS). Column 1, variable pool (global QL is excluded); column 2, parameter
estimates and corresponding standard errors via forward selection (identical re-
sults are obtained via backward selection); column 3, mean parameter estimates
and mean standard errors for multivariate models of survival based on 1000 sim-
ulated data sets and forward selection; column 4, similar to column 3, now

with backward selection.

Survival variable Cox multivariate model

Forward Backward

Estimate (SE) Estimate (SE) Estimate (SE)

DFI 0.385 (0.173) 0.473 (0.183) 0.449 (0.180)
DS 0.660 (0.225) 0.609 (0.237) 0.630 (0.235)
PF 0.519 (0.195) 0.592 (0.189)
RF −0:201 (0.215) −0:260 (0.216)
EF −0:414 (0.189) −0:528 (0.190)
CF −0:612 (0.210) −0:678 (0.211)
SF −0:473 (0.213) −0:478 (0.207)
DY 0.511 (0.190) 0.583 (0.187)
FA 0.668 (0.199) 0.709 (0.184)
NV 0.541 (0.202) 0.665 (0.195)
PA 0.505 (0.169) 0.598 (0.186) 0.644 (0.179)
SL −0:446 (0.186) −0:568 (0.188)
AP 0.523 (0.196) 0.594 (0.192)

0.644 (p-value¡0:001) was obtained relying on backward elimination (Table IX, column 4).
Note that PA was selected in 54.0 per cent of the cases using forward selection and in 44.6
per cent of the cases using backward selection (Table VIII). Consequently, the average PA
parameter estimates via forward or backward selection are based on averaging, respectively,
540 or 446 parameter estimates.
The �nal logistic regression model for response (Table X, column 2) with treatment

arm (ARM) included in the model in addition to QLQ-C30 variables predicted a poor re-
sponse with multiple sites of visceral disease (estimated =−1:420, p-value=0:028), DFI62
years (estimated =−1:169, p-value=0:004), bad emotional functioning EF (estimated =1:093,
p-value=0:008), dyspnoea DY (estimated =−1:262, p-value=0:003) and fatigue FA
(estimated =−1:268, p-value=0:004). The same results were produced using the backward
elimination method. Although the signs are consistent throughout the analyses
(Table X, within rows), the magnitude of the estimates may vary substantially. For example,
focusing on FA, we observe an average parameter estimate of −1:555 (p-value=0:002) in
the forward procedure and −1:775 (p-value ¡0:001) using the backward elimination method.

6. AVOIDING THE PROBLEM OF MULTICOLLINEARITY

Because of the interdependent nature of variables derived from the QLQ-C30, it is not possible
to overcome the problem of multicollinearity when undertaking a prognostic factor analysis
since most variables need to be entered into the model. One technique that has been proposed
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Table X. The logistic regression model for response, with treatment arm (ARM)
included in the model, and retaining the clinical variables disease-free interval (DFI)
and dominant site of disease (DS). Column 1, variable pool (global QL is excluded);
column 2, parameter estimates and corresponding standard errors via forward selection
(identical results are obtained via backward selection); column 3, mean parameter
estimates and mean standard errors for multivariate models of response based on 1000
simulated data sets and forward selection; column 4, similar to column 3, now with

backward selection.

Variable Logistic regression model

Forward Backward

Estimate (SE) Estimate (SE) Estimate (SE)

Intercept −0:623 (0.652) −0:572 (0.705) −0:676 (0.679)
Arm 0.568 (0.372) 0.641 (0.401) 0.638 (0.392)
DFI −1:169 (0.409) −1:265 (0.441) −1:207 (0.431)
DS −1:420 (0.645) −1:828 (4.423) −1:774 (4.647)
PF −0:971 (0.459) −1:406 (0.446)
RF 1.107 (0.517) 1.491 (0.564)
EF 1.093 (0.411) 1.495 (0.469) 1.579 (0.465)
CF −1:197 (0.532) −1:534 (0.535)
SF −1:255 (0.503) −1:545 (0.501)
DY −1:262 (0.419) −1:452 (0.458) −1:605 (0.448)
FA −1:268 (0.442) −1:555 (0.503) −1:775 (0.486)
NV −1:473 (0.541) −1:774 (0.544)
PA −0:466 (0.446) −0:467 (0.442)
SL −0:662 (0.440) −1:031 (0.443)
AP −1:208 (0.458) −1:470 (0.444)

for mitigating the problem is to collect additional data over a wider range or over more
than one experimental condition [17]. The original validation study for the QLQ-C30 reported
pretreatment Pearson correlations in over 300 patients with inoperable lung cancer [19]. In
our study of patients with advanced breast cancer, many of the �ndings were similar, except
for higher correlation coe�cients for PF, RF and SF with most other variables. Coates et al.
[12] reported Spearman correlations between the �ve function scales of the QLQ-C30 in
over 700 patients with advanced malignancies. Our �ndings were remarkably similar, except
for lower correlations between EF and all other variables in our study. Coates et al. [12]
unfortunately did not report correlations for the symptom scales. It seems that there are some
di�erences between our correlation �ndings and those of published studies, but that most
pairwise correlations are similar. It is notable that the variables we identi�ed as problematic
are also those where di�erences from published data were observed.
One of the remedial measures to deal with multicollinearity (in a linear regression setting,

for example, regressing global QL on all other QL variables of interest, scaled scores allowed
to range from 0 to 100 again) is to perform ridge regression (Draper et al. [32]). It is an
alternative to ordinary least squares and is one of several biased regression estimators that have
been proposed. The ridge standardized regression estimators can be determined by introducing
a biasing constant c in the usual least squares normal equations, resulting in

(rXX + cI)bR= rYX
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Figure 2. Left shows plot of the minimal press score versus the biasing constant c in an attempt to �nd
the minimal press score. Right shows ridge trace plot of estimated standardized regression coe�cients for
di�erent values of c, here containing amongst others 20 values ranging from 0 to 0.5 (equally spaced).
The idea is to select the value of c for which the estimated standardized regression coe�cients in the

ridge trace �rst appear to be stable and the VIFs have become su�ciently small.

where rXX is the correlation matrix of the X -variables, rYX represents the vector of coe�cients
of simple correlation between Y and each X variable separately, where I denotes the identity
matrix of appropriate order and in which bR is the vector of standardized ridge regression
coe�cients. One method to select an appropriate biasing constant is based on the so-called
ridge trace (Figure 2). A more objective choice of c can be made based on the press score.
In our data set, the minimal press score was obtained for c=0:237. The result of applying

ridge regression with the latter choice of biasing give estimated regression coe�cients that are
more consistent with expectations (Table XI). In particular, the improper sign on the estimates
for RF and AP is eliminated (in contrast to an ordinary least squares regression).
Ridge estimators can also be used in logistic regression to improve the parameter estimates

and to diminish error made by further predictions (Le Cessie et al. [33]).
Another way of mitigating the harmful e�ects of multicollinearity is to delete o�ending

predictor variables from the regression model. This is done on the basis that one or more
variables are redundant. Except perhaps for global QL, it is di�cult to argue for redundancy in
the present context, because despite overlap the variables are designed and assumed to measure
di�erent facets of health-related QL, and therefore all are thought to be important. Fayers

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3865–3884



MULTICOLLINEARITY IN PROGNOSTIC FACTOR ANALYSES 3881

Table XI. Ridge regression coe�cients were back-transformed (based on the biasing
constant c=0:237) to compare with ordinary least squares estimates.

Parameter Ridge Least squares

Intercept 53.848 59.378
PF 0.116 0.135
RF 0.017 −0:031
EF 0.046 0.036
CF −0:030 −0:081
SF 0.179 0.230
FA −0:200 −0:271
NV −0:086 −0:090
PA −0:111 −0:119
DY −0:085 −0:089
SL −0:070 −0:088
AP −0:008 0.020

et al. [34, 35] attempted to identify ‘causal’ and ‘e�ect’ indicators for QL. They suggested
that physical symptoms and side-e�ects can be thought of as causing changes in QL, whereas
psychological variables (for example, EF) might rather re�ect changes in QL and therefore
be classi�ed as e�ect indicators. These classi�cations are not entirely convincing, since it is
possible to argue for CF, SF and RF being both cause and e�ect indicators. Although deletion
of EF, CF, SF and RF on the basis of their being e�ect indicators would remove most of the
sources of multicollinearity identi�ed in the prediction of global QL, it would also remove
important patient-assessed information and defeat the purpose of using the questionnaire for
predicting outcome. When predicting survival or response to treatment, it would make more
sense to delete global QL from the model since it is strongly correlated with 7 of the 11
variables studied. Also note that excluding QL from the bootstrap analyses in Section 3 did not
relevantly change the results. Moreover, a �nding that global QL is predictive of survival or
response is not particularly helpful in the clinical context, since it is not clear how the variable
could be manipulated to improve outcome. On the other hand, postulated causal indicators
such as pain or dyspnoea are responsive to clinical intervention, and therefore potentially
more useful prognostic factors. Of course, as before, care has to be taken with labelling an
associative relation as causal.
Instead of deleting predictor variables, it has been suggested that substituting mathematically

transformed variables for harmful ones or rescaling them may mitigate harmful multicollinear-
ity [17]. Such procedures are di�cult to justify in the case of numerical data derived from
ordered categorical variables such as those from the QLQ-C30. However, we considered that
it might be possible to reduce the number of variables by using principal components analy-
sis to derive fewer variables as substitutes (Section 2). As mentioned before, the main idea
behind any principal component analysis is to reduce the dimensionality of the data, so that
manipulation of the data becomes easier. In other words, the aim is to derive only a few
(new) variables that are still able to ‘explain the data’. These newly de�ned variables are
uncorrelated, removing the intercorrelations present between the original variables. By remov-
ing the correlation structure, the information in the data is fully captured by the variance
structure, the variability say. Hence, if most of the variability can be concentrated on one
new variable, the other variables may be ignored, but does this solve our problem? Only
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at the cost of reducing the data obtained from the patient-completed questionnaire to some-
thing mathematically convenient but, in many cases, clinically di�cult to interpret. Indeed,
while there are several examples where such components lend themselves nicely to clinically
meaningful interpretation, in a majority of cases interpretation is not straightforward or even
impossible.

7. CONCLUDING REMARKS AND RECOMMENDATIONS

In a prognostic factor analysis incorporating clinical and QL variables from the QLQ-C30 in
a clinical trial of patients with advanced breast cancer, we observed instability in the models
predicting response and survival to chemotherapy. This led us to suspect that harmful multi-
collinearity between QL subscales was in�uencing model selection. We therefore undertook
a thorough examination of the QL data used in the prognostic factor analysis, to diagnose
the presence and degree of multicollinearity, and to determine the stability of the predictive
models obtained.
Accepted criteria for diagnosing harmful multicollinearity (for example, variance in�ation

factor ¿10, condition number ¿30) may not apply in the case of QL variables. Two reasons
for this are the inherent design of the questionnaire in which multicollinearity is implicit, and
the structure of the variables themselves (ordered categorical, scaled from 0–100). Therefore,
guided by published principles but recognizing that recommended criteria are arbitrary, we
suggested how to identify and establish the impact of multicollinearity in a QL data set, in
a standard way (for example, via variance in�ation factors, tolerance and condition indices).
Apart from these standard techniques, we used a bootstrap method to account for the fact that
in clinical prognostic practice, QL variables are generally used in dichotomized form, and to
obtain more insight into the stability of the models obtained. One of the major bene�ts of
the approach is that it clearly shows which variables may or may not be important prognostic
factors, by studying the inclusion frequencies. It is also an ideal instrument to put (unusual)
directions of e�ects of predictor variables into perspective.
Patient-completed QL questionnaires constitute a previously unreported situation in which

multicollinearity can occur and have practical importance. Usually, variables that are found to
be signi�cant predictors of the outcome of interest in prognostic factor analyses are described
as ‘independent’ predictors. We question the appropriateness of applying this terminology
to signi�cant prognostic factors derived from patient-completed questionnaires, since these
predictors are certainly not independent of each other. Global QL is particularly problematic
in this respect because it is most highly correlated with all other variables on the questionnaire.
We propose that global QL be excluded from the set of predictor variables when the QLQ-C30
is used in prognostic factor analyses, in order to minimize instability of the �nal multivariate
models. Several results justify this recommendation: the correlation matrix, data reduction
techniques such as principal components analysis or factor analysis which gave similar results
when global QL was included and excluded from the variable pool, and the bootstrap analysis.
Multicollinearity does not invariably indicate the presence of redundant variables. QL ques-

tionnaires are a good illustration of a situation in which variables measure related concepts
that have some overlap but also distinctive features. This can be seen, for example, in the
function variables of the QLQ-C30. PF measures perceived di�culty in performing simple
physical functions of daily living, such as walking, dressing etc. RF measures limitations in
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pursuing work and leisure activities, SF measures the degree of interference by the illness in
one’s family life and social activities, EF measures worry, tension, irritability and depression,
and CF measures memory and concentration. Intuitively it is obvious that in the clinical situ-
ation these functions may be strongly interdependent, but they cannot be said to be measuring
the same thing. Global QL has been described as a latent variable because it is thought to
measure unobserved aspects of QL, although it presumably encompasses measured aspects as
well. For this reason it is both di�cult to interpret and to manipulate in the clinical situation.
In conclusion, we have demonstrated that because strong intercorrelation between variables

is an inherent feature of the EORTC QLQ-C30 questionnaire, the resultant multicollinear-
ity may in�uence model selection in prognostic factor analyses. Harmful multicollinearity is
particularly likely to occur when global QL is included among the predictor variables. For
this reason, and also because it is di�cult to interpret and manipulate clinically, we suggest
that it is better not to include global QL as a predictor variable in such analyses. One can
always attempt to mitigate problems of multicollinearity as shown in Section 6, but since
many of the variables are so highly intercorrelated, we advocate the use of bootstrap models
as illustrated in Section 5 to obtain greater insight into the stability of the models obtained.
Finally, our exploration of the multicollinearity that occurs in the patient-completed EORTC
QLQ-C30 questionnaire highlights the need for thorough analysis and cautious interpretation
of prognostic factor analyses based on such data. Factors that are identi�ed as potentially
important will ultimately need to be tested prospectively in clinical studies.
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