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BACKGROUND: Partition classification is a critical step 
in the digital PCR data analysis pipeline. A range of par-
tition classification methods have been developed, many 
motivated by specific experimental setups. An overview 
of these partition classification methods is lacking and 
their comparative properties are often unclear, likely im-
pacting the proper application of these methods.

CONTENT: This review provides a summary of all avail-
able digital PCR partition classification approaches and 
the challenges they aim to overcome, serving as a guide 
for the digital PCR practitioner wishing to apply them. 
We additionally discuss strengths and weaknesses of 
these methods, which can further guide practitioners 
in vigilant application of these existing methods. This re-
view provides method developers with ideas for improv-
ing methods or designing new ones. The latter is further 
stimulated by our identification and discussion of appli-
cation gaps in the literature, for which there are current-
ly no or few methods available.

SUMMARY: This review provides an overview of digital 
PCR partition classification methods, their properties, 
and potential applications. Ideas for further advances 
are presented and may bolster method development.

Background

The polymerase chain reaction (PCR), invented in the 
1980s (1), and the subsequent development of real-time 

quantitative PCR (qPCR) in the 1990s (2) have had a 
transformative impact on in vitro biomolecular studies. 
These techniques have become a cornerstone in labora-
tories studying organisms from all of the branches of the 
tree of life (3–8).

Digital PCR (dPCR) is a method allowing absolute 
quantification of target nucleic acids, with foundations 
dating back to the 1980s (9). It has been heralded for its 
absolute quantification without the need for a calibration 
curve and its high and scalable precision, but it has several 
other advantages such as a higher resistance to suboptimal 
amplification efficiency, for example due to PCR inhibi-
tors (10). On the other hand, some limitations of dPCR 
are its higher costs and lower throughput capabilities 
when compared to qPCR. It has a lower dynamic range 
and is not always more sensitive than qPCR. Because of 
this, qPCR is still the workhorse methodology for many 
applications (11). Yet, motivated by its potential advan-
tages (12), dPCR has been implemented across many dif-
ferent domains. Examples include genetically modified 
organism detection (6); molecular pathology and hematol-
ogy for oncology, such as liquid biopsy analyses (13, 14); 
and clinical and environmental microbiology, such as viral 
load monitoring (11, 12). The recent introduction of in-
struments allowing up to 6 color measurements, facilitat-
ing simultaneous analysis of a larger number of target 
nucleic acids and an increased sample throughput, will 
likely further increase dPCR’s adoption (11).

Another often mentioned advantage of dPCR is its 
ease of reaction readout. Unlike qPCR, which requires 
real-time reaction readout for quantification, quantifica-
tion in dPCR mostly relies only on an end-point fluores-
cence detection. In a dPCR experiment, the sample and 
PCR assay constituents are distributed across many parti-
tions (e.g., droplets, microplates containing capillaries or 
channels), creating isolated reactions. The end readout 
captures the individual partitions’ fluorescence intensities. 
In its simplest implementation, these intensities form 2 
clusters: partitions containing no target nucleic acid with 
a low fluorescence intensity and partitions containing 
the target nucleic acid with a higher fluorescence intensity 
(Fig. 1). By counting the fraction of partitions with high 
intensities (“positive partitions”) and given knowledge of 
the partition volumes, the target nucleic acid concentra-
tion can be determined (10). Thus, a digital absence- 
presence signal suffices for absolute quantification.

An essential step in dPCR analysis is the conversion of 
the partitions’ fluorescence intensities to this digital signal. It 
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is a continuous measure that is a proxy of the presence or 
absence of the target nucleic acid(s) (Fig. 1). Digitization 
of the fluorescence intensities is typically achieved by utiliz-
ing a fluorescence intensity threshold, so that a partition 
with a fluorescence readout below this threshold is consid-
ered to be devoid of target nucleic acid and a partition 
with a fluorescence readout above this threshold to 
contain one or more target nucleic acids (15–18). 
While often straightforward, partition classification can 
be complicated by many factors that alter a partition’s 
fluorescence intensity. Such factors include random 
noise, partition volume variability (19), mismatches in 
primer/probe sequences (16), low-quality nucleic acids 
(20), suboptimal amplification efficiency and template 
accessibility (21), and heterogeneous illumination in in-
struments that rely on imaging (22). Such undesirable 
variability in partition intensities is likely multifactorial, 
and while sample treatment and assay optimization of-
ten reduce this variability, a significant proportion of it 
may remain (17, 23). This often presents in the form 
of a decreased resolution, or of so-called rain: partitions 

with intermediate fluorescence intensities not clearly 
clustering with the clearly negative or positive partitions. 
Such variability may complicate partition classification 
(Fig. 1, C and F).

The improper placement of a threshold ultimately 
results in partition misclassification. Misclassification 
has been demonstrated to be a major contributor to 
quantification bias (24). Consequently, an objective 
and correct partition classification is essential, especially 
for applications for which minor misclassifications may 
have a major impact. In addition, there is a threat of 
investigator-specific bias upon manual thresholding, es-
pecially in experiments with substantial amounts of 
rain or with a low resolution between partition clusters 
(16) (Fig. 1, C and F). An additional motivation for 
adopting automated classification methods is that for 
experiments with up to 6 color measurements and the 
resulting 6-dimensional data, data visualization and 
visualization-based manual thresholding becomes cum-
bersome and laborious, as well as complicated for less ex-
perienced users.
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Fig. 1. Examples of typical dPCR intensity measurements (simulated data). (A–C), 1-color plots; (D–F), 
2-color plots. Red lines represent relaxed (high) or stringent (low) thresholds. (A), No rain; (B), Rare popu-
lation, baseline shift compared to (A); (C), Rain and/or low resolution; (D), No rain, no bleed through; (E), 
Rare population, bleed through; (F) Rain, no bleed through.
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Data-driven partition classification procedures have 
been developed. In this review, we provide a comprehensive 
overview of such methods as well as a glossary (Table 1) and 
commentary on proprietary software. Univariate partition 
classification methods that aim to obtain a partition clas-
sification for a single color are described. Next, a descrip-
tion of bivariate partition classification methods for the 
analysis of experiments using 2 colors is given. We com-
ment on the application of these methods and discuss 
their underlying assumptions, potential strengths, and 
weaknesses.

Methods in dPCR Instrument Software

All instrument manufacturers provide proprietary 
software with their instruments that allow for parti-
tion classification. The partition classification software 
provided by the instrument manufacturers have sev-
eral advantages: they are often intuitive given their 
well-designed user interfaces, and they are a one-stop 
shop to go from the raw intensity measurements to fi-
nal results. This is in stark contrast with some meth-
ods proposed in the literature that do not always 
provide user interfaces or that perform partition clas-
sification only (described later).

Nonetheless, proprietary software comes with its 
own drawbacks: these proprietary partition classification 
methods can result in biased, i.e., under- or overesti-
mated, quantities. For example, Bio-Rad’s QuantaSoft 
software, perhaps the most used software currently, re-
quires data with a sufficiently high resolution [e.g., 
Lievens et al. (17) discuss what can be considered an ap-
propriate resolution] and concentration. With a too-low 
resolution or a low concentration, results are often not 
satisfactory (15, 26–28). Indeed, QuantaSoft tends to 
set the threshold marginally above or even within the 
negative population (16, 29). Additional problems have 
been described for assays displaying some or a significant 
amount of rain. Here, erroneous threshold determination 
may result in underestimation of the target concentration 
(30) or high false-positive rates (28).

While some of these issues may have been (partially) 
resolved since they were pointed out in the literature, de-
tails on the methods used within the proprietary software 
remain undisclosed. This implies that changes or im-
provements to proprietary software are difficult to verify 
or benchmark by the user community. Such changes 
may furthermore impact the replicability of results.

An additional problem is that manual tuning of the 
automatically determined thresholds is often performed 
to address erroneous automated partition classification 
(31). Such manual tuning introduces subjectivity and 
may lead to a lack of reproducibility due to investigator 
bias.

Many of these issues can be addressed by adopting in-
dependently developed partition classification methods, 
and some of the aforementioned issues are already ad-
dressed by methods discussed in the literature (Tables 2 
and 3). Further advantages include peer review of these 
methods and, often, their open-source availability. Still, 
the user-friendly sample-to-result graphical interfaces of 
proprietary software often trump those of the methods 
and software developed by the research community. 
Addressing this issue may further incentivize their 
adoption.

Univariate Methods

Univariate partition classification methods are methods 
designed to classify 1-color partition intensity measure-
ments. Note that while higher-order multiplexing is pos-
sible, none of the univariate methods proposed to date 
are designed to detect more than 2 partition classes.

definetherain (29) classifies partitions into a negative 
or positive cluster using k-means clustering (per the 
method’s implementation, though the article mentions 
a k-nearest neighbor approach) in a 2-step procedure. 
In a first step, a positive control with distinct negative 
and positive clusters is required to determine the nega-
tive and positive cluster center and the SDs of the inten-
sities in these clusters. In a second step, partitions in 
other samples are assigned to the negative or positive 
cluster when the partition’s intensity is less than the 
negative cluster center plus 3 SD or higher than the posi-
tive cluster center minus 3 SD, respectively. Partitions 
with intermediate intensities are classified as rain and 
omitted from further calculations.

Dreo et al. (15) report on 2 partitioning methods. 
In the first method, similar to definetherain, they also 
use a mean plus/minus 3 SD approach for delimiting 
clusters. However, unlike definetherain, they require a 
preliminary threshold for cluster separation, which 
may be a manual threshold, or a threshold provided 
by another method, for example a threshold calculated 
by the instrument manufacturer’s software. They suggest 
a second approach, which they term “manual global 
threshold,” that consists of determining the mean of par-
tition intensities in no-template controls (NTC) or 
negative controls and add a given number of SDs until 
not more than one partition has an intensity above 
this threshold.

ddpcRquant (16) performs classification by deter-
mining an upper bound on NTC or negative control 
partition intensities. First, the data are resampled into 
groups of a specific size, which are called blocks. The 
upper bound is determined by fitting a generalized ex-
treme value distribution to the maxima of these blocks. 
A quantile of this distribution determines the negative 
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Table 1.  Glossary: Overview of frequently used digital PCR terminology, extended from the digital 
MIQE consensus guidelines (25).

Term Description Alternative name

baseline the fluorescence of the negative partitions fluorescence noise, background

bleed through fluorescence of a fluorophore intended to be detected in a 

given channel that is also detected in one or more other 

channels

fluorescence bleed through, 

crosstalk, spectral overlap, 

spillover

channel part of the light spectrum used to detect signal, typically 

annotated as emission wavelength

color, detection channel, emission 

channel

cluster group of partitions that display similar fluorescence 

intensities

(partition) population

duplex or 

multiplex

assay uses 2 or more primer pairs to amplify multiple target 

sequences

fluorescence 

intensity

the fluorescence of a partition fluorescence amplitude, end-point 

fluorescence, relative fluorescence 

unit

higher-order 

multiplexing

assays designed to detect more targets than the number of 

detection channels

intensity multiplexing

negative control complex biological specimen that does not contain the 

target

negative 

population

partition group that contains no target negative cluster

no-template 

control

samples that contain no targets and are used as a general 

control for extraneous nucleic acid contamination or 

nonspecific amplification

NTC, blanco, blank sample

partition the subreaction used for limiting dilution and subsequently 

measured as positive or negative post reaction

droplet, chamber

positive control sample that contains target and is used to test if the assay is 

performing correctly

positive 

population

partition group that contains 1 or more targets. In 

(non-higher-order) multiplex assays, there can be as many 

as 2n to 1 positive clusters, where n is the number of 

targets

positive cluster

rain the partitions that are located within the space between the 

positive and negative clusters

resolution a measure of the separation in fluorescence between 

positive and negative partitions

peak resolution, separability score

rotation cluster principal components (directions of largest variance) 

may not be parallel to the axes, apparent as a so-called 

“rotated” cluster

singleplex assay used to detect one target sequence of DNA or cDNA

threshold the line that separates the partition clusters based on 

fluorescence intensity
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partitions’ upper bound: all partitions with an intensity 
above this bound are classified as positive. This process is 
repeated several times to obtain a more stable upper 
bound estimate. ddpcRquant additionally performs a 
baseline correction, that is, a correction for shifts in par-
tition intensities between reactions. This makes use of 
the robust mode of the negative cluster in each of the 
samples.

Cloudy (17) relies on kernel density estimation for 
identification of clusters. The outermost peaks of the 
density are considered to represent the centers of the 
negative and positive partition clusters. The method al-
lows for accounting for skewness in the intensities using 
an empirical formula that provides a good fit to skewness 
observed in empirical data. Cloudy aims to robustly esti-
mate location and scale using the median and median 
absolute deviation, respectively. Partitions within a cer-
tain number of deviations of the median are assigned 
to the negative or positive cluster, while partitions in be-
tween are said to be rain. The fraction of such rain parti-
tions is reported. A threshold is eventually placed at the 
upper limit of the negative partition cluster.

Umbrella (30) utilizes a model-based clustering ap-
proach. The method nonparametrically estimates the 
density function of the intensities observed in one or 
multiple NTCs. Like ddpcRquant (16), it implements 
a baseline shift correction for aligning NTCs. The 
NTC density function, along with an estimate of the 
density of intensities observed in a sample, can then be 
used to estimate a mixture distribution, which is a com-
bination of intensities deriving from the negative and 
positive partitions. This mixture distribution is then 
used for assigning to each partition a class probability 
of being positive or negative, based on the partition’s in-
tensity. Two concentration estimators are proposed: the 
first relies on the class probabilities (not imposing a hard 
threshold), and the second assigns partitions a positive or 
negative status based on a class probability cutoff (akin 
to hard thresholding).

PoDCall (18, 32) introduces a gaussian mixture mod-
el approach for partition classification. First, a significance 
test for unimodality (the presence of a single mode) is per-
formed to verify the presence of a single cluster, which is 
presumed to be the negative cluster. In case the unimod-
ality hypothesis is not rejected, PoDCall continues to 
check for outliers, defined as partitions with intensities lar-
ger than the upper quartile plus 9 times the interquartile 
range. If no outliers are detected, the threshold is placed 
at the maximum partition intensity observed. If outliers 
are detected, PodCall uses Mclust (33) to identify outliers 
and sets its threshold at the minimum partition intensity 
of outliers detected by Mclust or the interquartile ap-
proach. In case the unimodality hypothesis is rejected, 
an equal-variances gaussian mixture model is fitted to a 
random subset of the partition intensities. The threshold 

is subsequently placed at the average of the first 2 gaussian 
components’ means.

Motivated by amplification inhibition due to ma-
trix effects in environmental samples, Porco et al. (28) 
describe a procedure with which they aim to better de-
lineate the positive cluster. Their procedure aims to re-
duce the impact of rain and “stars” (partitions with 
very high fluorescence intensities) on concentration esti-
mation. They calculate group-specific upper and lower 
thresholds to delineate the positive cluster, where the 
grouping is motivated by the experimental design of 
the experiment. For example, samples from the same lo-
cation are assumed to yield similar results and are as-
signed the same thresholds. These thresholds are 
obtained by what is conceptually a “mean plus/minus 
3 SD” approach but taking into account the difference 
in locations of the negative and positive cluster at the 
sample level. This is akin to a within-group baseline 
correction.

Bivariate Methods

Bivariate partition classification methods are methods 
designed to classify 2 color partition intensity measure-
ments. As opposed to the univariate partition classifica-
tion methods described earlier, these methods do not all 
have the same goal. Analysis of “classical” 2-target, 
4-cluster assays is addressed by Strain et al. (26), Chiu 
et al. (34), Lau et al. (35), and Zhu et al. (36) Attali 
et al. (27) describe analysis of drop-off assays, while 
Dobnik et al. (37) and Brink et al. (38) develop methods 
for higher-order multiplexing analysis.

Strain et al. (26) introduce a “triage” classification 
method. Their method first removes partitions with 
atypical intensities (rain, or very low intensities 
[“hail”]). Large clusters are then identified and modeled 
using bivariate normal distributions. The probability of 
each partition to arise from one of these bivariate normal 
distributions is calculated, and partitions unlikely to be-
long to any of the distributions labeled as ambiguous or 
outlier partitions are then disregarded in the subsequent 
steps. For nonoutlier partitions, independent assortment 
of targets across partitions in both channels is verified 
and a violation of the independent assortment assump-
tion is flagged. Details on the identification of large clus-
ters and the verification of independent assortment are 
not disclosed, and source code is not publicly available.

twoddPCR (34) uses k-means clustering to identify 
the 4 partition clusters. It combines several reactions to 
attain a better performance. A refinement of the clusters 
identified by k-means is achieved by calculating a 
Mahalanobis distance from the cluster centers: partitions 
within this distance are considered as part of the cluster, 
while other partitions are identified as rain and excluded 
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from further calculations. This refinement takes into ac-
count cluster rotations. The Mahalanobis distance 
should be adjusted by the user to ensure that the ellipses 
are large enough to include the majority of partitions in 
a cluster but small enough to exclude ambiguous parti-
tions. twoddPCR further introduces clustering by the 
k-nearest neighbor algorithm, where an initial k-means 
clustering serves as a training set.

Calico (35) refines a standard k-means clustering 
approach by implementing sample space gridding. By 
gridding, differences in density across the 2-color inten-
sity measurement space are reduced. These densities are 
a proxy for the cluster sizes: by implementing gridding, 
the k-means algorithm becomes less susceptible to differ-
ences in cluster sizes. After obtaining cluster centers of 
the gridded data, a second round of k-means clustering 
is performed by initializing the algorithm with the pre-
viously obtained cluster centers. Calico further refines 
its partition classification by removing outliers by taking 
into account the rotation of clusters and by removing 
partitions with low probabilities of belonging to any 
cluster.

Zhu et al. (36) propose the use of a density-watershed 
algorithm for analysis of assays with 2 or 4 expected clus-
ters. First, data are gridded and data densities within each 
of the grids obtained. These data densities are then used in 
the watershed algorithm to assign each of the grids to dis-
tinct regions. The total distance of observations within 

these regions to so-called benchmark points is calculated 
and used to determine the best-fitting number of clusters. 
After the determination of an optimal cluster number, the 
regions are selected to represent one of the clusters and the 
unselected regions are merged to the closest cluster, ultim-
ately resulting in 2 to 4 clusters.

ddPCR (27) is a method for a specific class of single- 
target genotyping, drop-off assays using 2 color- 
readouts. An initial quality control step excludes failed 
reactions and outlying partitions. Next, the negative par-
tition cluster is identified by fitting a 2-component 
gaussian mixture model to one of the colors. The lower 
component is assumed to represent negative partitions 
and the upper component the positive partitions. 
Assuming a normal distribution of both components, 
data is assigned a negative, positive, or rain class. The 
method continues using the positive partitions only. 
Subsequently, the partition intensities in the second 
readout color are modeled using kernel density estima-
tion and heuristic optimization, aiming to identify 2 
clusters that represent the wildtype and mutant parti-
tions. A final threshold is placed at the local minimum 
of the density between both clusters.

ddPCRmulti (37) is an interactive data analysis tool 
for 2-color higher-order multiplexing data, aiming to iden-
tify 4 targets giving rise to 16 clusters. Specifically, 
ddPCRmulti automatically calculates positions of 3 thresh-
olds in the horizontal and in the vertical direction each, 
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orthogonal to one another. The aim is to set the thresholds 
in the middle between the clusters. Dobnik et al. (37) ac-
knowledge susceptibility to nonorthogonal cluster posi-
tions, uneven cluster size and cluster shape. Thresholds 
may be tuned interactively in the accompanying web appli-
cation. The algorithm used for threshold selection is not 
disclosed, and the source code is not publicly available.

ddPCRclust (38) is designed to deal with higher- 
order nonorthogonal multiplexed assays. ddPCRclust 
finds the cluster centers by 3 independent methods: 
flowDensity, SamSPECTRAL, and flowPeaks. For 
each of the methods, first-order clusters are identified 
based on the angle between the negative population 
and the cluster centers. The positions of higher-order 
clusters are subsequently estimated, taking into account 
the location of the lower-order clusters. Partitions that 
are within a specific Mahalanobis distance from the cen-
ters are assigned to that cluster, while remaining parti-
tions are assigned to the cluster for which the 

partitions’ Mahalanobis distance is minimal. In a final 
step, results of the 3 independent approaches are com-
bined by creating a cluster ensemble.

Method Comparison and Assumptions, and 
Their Implications

A total of 15 distinct partition classification methods 
have been developed. It is a natural consequence that 
all these methods have some potential strengths and 
weaknesses.

First, many of these methods make use of positive, 
negative, or no-template controls to incorporate prior 
knowledge for improving partition classification 
(15, 16, 29, 30, 35, 37). While this can improve classi-
fication, relying on control samples introduces the as-
sumption that such samples are representative of the 
samples analyzed next. For example, many of the early 
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methods calculate an intensity threshold based on posi-
tive or NTC samples. Still, there may be significant base-
line variability, for example due to sample- (such as 
matrix), run-, and lot-specific effects (25). Not taking 
baseline variability into account may result in biased 
quantification (Fig. 2, A–D). Another issue is exempli-
fied in (31), where a discrepancy in baseline fluorescence 
between NTCs and subsequently analyzed samples re-
sulted in biased quantification. The use of a negative 
control rather than an NTC can in such cases prove 
useful.

Second, partition classification methods can be di-
vided into parametric and nonparametric methods. 
Many of the parametric methods assume that intensities 
follow a normal distribution (15, 18, 26–29, 34, 35). 
This assumption imposes a constraint on the intensity 
data distribution, which may be a poor fit and lead to par-
tition misclassification (16). Indeed, partition intensities 
may show rain or can be ill-separated and the intensity 
distributions not well described by common distributions 
(Fig. 2, E and G, and Fig. 3, A and D) (16). Contrarily, 
nonparametric methods do not impose distributional as-
sumptions on the intensities. Instead, it is often assumed 
that intensity distributions are similar to negative or posi-
tive control samples. For example, ddpcRquant (16) de-
termines the upper bound of negative partition 
intensities from NTCs. Umbrella (30) estimates the para-
meters of a nonparametric mixture model from negative 
control samples. Such approaches remain sensitive to dif-
ferences in the intensity distribution between controls 
and samples, although this also applies to parametric 
methods relying on control samples.

Another drawback of some of the methods is that they 
require the selection of tuning parameters such as the num-
ber of SDs away from the mean (15, 29, 34, 35) or a distri-
bution’s quantile to use as a threshold (16). Similarly, many 
of the methods rely on k-means clustering (15, 29, 34, 35), 
a method that leans on proper cluster center initialization 
and often does not correctly identify the correct clusters 
when these are of varying sizes and density (Fig. 3, A
and B, and Fig. 3, E and F) (39), as encountered frequently 
in rare event quantification experiments. To improve the 
performance of k-means, Lau et al. (35) grid data before per-
forming k-means clustering. Again, the results heavily de-
pend on a tuning parameter, that is, the chosen grid size: a 
too large grid size may not capture the small clusters and a 
too small grid size will not be very helpful to the follow-up 
k-means clustering. A third example is encountered in the 
methods that rely on density estimation (17, 27): improper 
bandwidth selection may result in the identification of fewer 
or more clusters than expected due to over- and under-
smoothing, respectively, with the risk of placing a threshold 
within the negative or positive cluster (Fig. 2, E and G).

Yet another divide between methods is in the hand-
ling of rain. A minority of methods remove rain (26, 27, 

29). Removal may induce a negative bias, as partitions 
with intermediate intensities often arise because of re-
duced amplification efficiency or template sequence 
variability and are likely to contain target sequences 
(16, 21, 25).

Several methods provide quality control measures 
for the cluster separation resolution (15, 17) or for iden-
tifying discrepancies between control and other samples 
(30). In addition, some methods are accompanied by 
interactive graphical user interfaces, allowing easy appli-
cation of these methods and allowing users to inter-
actively tune parameters and visualize results (16–18, 
27, 34, 38). Such quality control measures and visualiza-
tion capabilities may help in identifying classification 
failure, while user interfaces allow adoption of the meth-
ods by users with no or little programming affinity.

Discussion

Accurate partition classification is a critical step in the 
dPCR data analysis pipeline. Partition classification 
may be straightforward in many cases: a manually placed 
threshold or an automatically calculated one will often 
give a similar result; i.e., the estimated quantity is agnos-
tic to the chosen (appropriate) partition classification 
method (Supplemental Figs. 4 and 5, Supplemental 
Tables 4 and 5). However, in other circumstances, classi-
fication may not be straightforward. An example is the 
quantification of low amounts of target nucleic acid, 
where a low false-positive rate is essential, such as residual 
disease estimation using liquid biopsies (13, 14). Also, in 
the presence of rain, for example due to sequence 
variability in fast-mutating viruses (Supplemental Fig. 
6, Supplemental Table 6) (16), inhibited amplification 
in environmental samples (11), or when clusters have 
low resolution (separability), automated partition classi-
fication may improve the accuracy of the concentration 
estimates (16, 17). Other recommended use cases include 
assays for which subjective manual thresholding is not 
accepted. Companion diagnostics for use in clinical 
practice or clinical trials or assay developers wishing to ob-
tain Conformité Européenne-In Vitro Diagnostic Devices 
Regulation certification may well be obliged to adopt (part-
ly) automated partitioning methods. The same holds true 
for laboratory-developed tests that need to pass accredit-
ation, for example under the ISO15189, ISO17025, or 
College of American Pathologists/Clinical Laboratory 
Improvement Amendments standards, or conducted under 
good laboratory practices.

Accurate and automated partition classification be-
comes increasingly important with the advent of higher 
multiplexing capabilities. With more colors comes in-
creased complexity, as the number of clusters increases ex-
ponentially as the number of colors increases linearly. 
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While recent instruments offer up to 6 colors, the number 
of partitions has not increased substantially. Consequently, 
the number of partitions in the clusters will, on average, de-
crease with an increasing number of colors. This will make 
proper partition classification increasingly complex as smal-
ler clusters are harder to delineate. Further complexity arises 
in higher-order multiplexing.

Partition classification methods beyond 2 colors have 
not been discussed in the literature. While for 2 or more 
colors all methods for univariate analysis can be applied 
repeatedly to each of the channels individually, some 

difficulties arise. Due to bleed through of fluorophores, 
clusters are often not in an orthogonal constellation, neces-
sitating compensation (40). Compensation is often imper-
fect, and adjustment may be needed (30). Remaining 
nonorthogonality may result in a multimodal distribution 
of partition intensities and affect partition classification 
(Fig. 2, E and G). Some of the methods proposed for 2 col-
ors extend readily to settings with more colors. However, 
vigilance is needed as performance of both univariate and 
bivariate methods in settings beyond the one for which 
they were designed remains unexplored, and some threats 

Fig. 4. A guide to method selection and data and method properties to consider before moving on to 
partition classification.  
* These methods can be used in the given setting but are not necessarily appropriate or optimal (notice 
the considerations).
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exist. For example, partition cluster sizes will decrease with 
increasing numbers of colors. This can result in method 
failure. The exploitation of the expected cluster locations 
(38) may prove useful to attain a better partition classifica-
tion performance when moving toward analysis of more 
colors.

Despite the publication of numerous methods, com-
parative method evaluation has been limited. One study 
compared ddPCR, ddPCRclust, and twoddpcr (Table 3), 
noting that 2 of the 3 methods failed to yield results (20). 
Kokkoris et al. (31) compared manual classification with 
the manufacturer’s software, definetherain and ddpcRquant 
(Table 2) for inhibited environmental samples. They found 
that ddpcRquant fails due to a discrepancy of the fluores-
cence intensity distribution between NTCs and that of 
the negative partitions in samples. definetherain did not 
deal with the rain present in their samples. The manufac-
turer’s automatic partitioning failed for samples with non-
specific amplification. These findings may raise questions 
concerning the applicability of the proposed methods, 
though the data provided by Colozza-Gama et al. (20) 
were not in accordance with the ddPCR method require-
ments, and application of ddpcRquant on the more repre-
sentative negative samples instead of NTCs could have 
provided a better partition classification for Kokkoris et al. 
(31). This emphasizes the need for a thorough understand-
ing of automated partition classification methods before 
moving on to their application. Yet, given the different re-
quirements, assumptions, and design considerations of the 
partition classification methods and the assays on which 
they are applied, it will be worthwhile to show which meth-
ods perform well or fail and under which scenarios they do 
so. An elaborate method evaluation study seems warranted 
and should include an assessment of the robustness of these 
methods against frequently occurring issues such as bleed 
through, suboptimal resolution, baseline shifts, and so on. 
This can be achieved with the development of a benchmark-
ing framework, including real and simulated datasets reflect-
ing the levels of difficulty among different applications, 
along with suitable evaluation criteria (41).

An issue related to evaluation and applicability is 
that of method reproducibility. While most authors 
provide access to source code or to web applications 
(Tables 2 and 3), there has been a lack of appropriate 
dissemination for some methods: source code is lack-
ing or the method is not described in sufficient detail 
to allow replication (26, 28, 36), while for others the 
sole dissemination was a web application that is no 
longer available (37). Such reproducibility or avail-
ability issues are a significant barrier to the adoption 
of methods.

So far, there has been a reasonably limited uptake of 
third-party automated partition classification methods. 
Most authors use the automated partitioning algorithms 
available in the software provided by the manufacturer 

or threshold manually (31). Yet, automated partitioning 
in commercial software has been shown to yield ques-
tionable quantification in some cases and to fail in others 
(16, 30, 36). In addition, with higher multiplexing and 
higher throughput instruments now available, manual 
thresholding is becoming increasingly cumbersome.

A final note: a majority of currently available com-
mercial dPCR instruments rely on end-point fluorescence 
detection for quantification (11, 42). Real-time dPCR in-
struments have also been described (11, 42). Data analysis 
strategies different from those used for endpoint dPCR in-
struments may prove useful (43, 44). We did not consider 
specific data analysis or data quality filtering procedures for 
real-time dPCR to be within the scope of this review. The 
methods described in this review can still be applied to 
real-time dPCR data, considering the end point fluores-
cence only.

Conclusion

While many methods have been proposed for a variety of 
often specific applications, many are potentially applicable 
to a wider set of applications. Consequently, there often is 
a choice between several partition classification methods 
for a given experiment. Comparative method performance 
is lacking and complicating the selection of an appropriate 
method. To aid in vigilant method application, Fig. 4 pro-
vides an overview of method aspects and potential issues to 
consider. Some preliminary recommendations can be 
made based on theoretical grounds. Quantification of 
low concentrations may be best approached with methods 
modeling the negative partitions, such as Umbrella or 
ddpcRquant, which will not be susceptible to changes in 
the fluorescence intensities of the positive partitions. 
This will also be true for assays or samples that show a sub-
stantial amount of rain (Fig. 2, Supplemental Fig. 6). In 
such cases, methods that exclude rain (definetherain, ddpcr) 
may be biased and should likely not be used. Umbrella is 
likely a good candidate for analysis of severely inhibited 
samples, as it allows to model the rain, even when it over-
laps with the negative cluster. Care should be taken that 
controls mimic the actual samples as closely as possible. 
Still, baseline shifts may occur, and methods that (a) do 
not rely on control samples (Cloudy, PoDCall, twoddpcr, 
ddPCRclust) or (b) incorporate a baseline correction 
(Umbrella, ddpcRquant) may be better suited to such scen-
arios (Figs. 2 and 3). Methods that do not rely on control 
samples may set their threshold within a cluster (Figs. 2
and 3). In contrast, when a large variation between samples 
occurs, control samples will be of little value and methods 
that do not rely on such samples may provide better results 
(PoDCall, Cloudy, twoddpcr, ddPCRclust). Again, it re-
quires emphasis that these recommendations are purely 
based on reasoning and have not been validated by com-
prehensive, numerical method evaluation. Additionally, 
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manual thresholding can yield reproducible results when 
there is a limited amount of baseline shift, rain, and a clear 
separation of the positive and negative cluster.

Supplemental Material

Supplemental material is available at Clinical Chemistry 
online.

Nonstandard Abbreviations: PCR, polymerase chain reaction; 
qPCR, quantitative polymerase chain reaction; dPCR, digital poly-
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