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As mentioned in the previous article,1 unsuper-
vised learning involves using datasets without
clear notice of the dependent (response) vari-

able. Unsupervised means that the machine or computer
should learn patterns from the data without referring to
any specific response. Unsupervised learning aims to
explore the data structure and generate a hypothesis
rather than to test any hypothesis by statistical methods
or to construct prediction or classification models on the
basis of a set of conditions and a specified response. Al-
gorithms for unsupervised learning can be subdivided
into 2 categories: (1) clustering algorithms and (2) infor-
mative data transformations

To better illustrate the concepts, we will use the data-
set of Konstantonis et al2 to investigate decisions about
extraction and identification of treatment predictors in
Class I malocclusions. The dataset comprises 542
randomly selected records of patients with a Class I rela-
tionship observed in a university graduate program and
5 private orthodontic offices. For each participant,
several variables are observed: 26 cephalometric vari-
ables, 6 model measurements, 2 demographic variables
(gender, age), and the type of treatment: nonextraction
(397) or extraction of the 4 first premolars (145). More
details about the dataset can be found in Konstantonis
et al.2 The scope of this study is evident as the authors
want to predict the optimal treatment (response) given
the set of explanatory (predictor) variables. Furthermore,
they wanted to identify essential variables in predicting
the treatment. The data can be presented in a tabular
format that organizes all the information, as depicted
in Table I.
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Clustering

A clustering task can be best defined by an example.
Consider the image in Figure 1. A task related to this im-
age could be determining how many herds of animals
with different genera are visible in this picture. On the
basis of the physical characteristics of each animal, you
could try to lump them into homogenous clusters
(groups). In this example, you could cluster (group) the
animals with black and white stripe patterns and place
the horned animals with brownish fur in another cluster.
To execute this task, it is not necessary to be an expert in
wildebeest or zebra, nor is it required to have these an-
imals tagged by a label that explains the genus of the an-
imal. Clustering algorithms can discover this structure in
a dataset without any prior knowledge. Toward this aim,
a clustering algorithm will compute a distance measure
to quantify similarity or dissimilarity between different
subjects in the dataset. On the basis of this measure, sub-
jects will be clustered (grouped) or split from each other
to yield clusters (groups) that have the highest similarity
within the cluster and the largest differences between
the clusters.

Typically, a clustering method has 3 key elements: (1)
a distance measure to quantify the similarity or dissimi-
larity between subjects; (2) an additional distance mea-
sure to quantify the difference between clusters or
between a cluster and a subject (ie, linkage); and (3) a
computer algorithm that maximizes the similarity within
a cluster and the dissimilarity between the clusters. The
variance is often used to measure the heterogeneity in a
dataset. In this case, clustering will minimize the vari-
ance within the clusters and maximize the variance be-
tween the clusters.

The distance is a number that tells us how far 2 sub-
jects are separated by considering the difference for each
observed variable. In the next example, the Frankfort
mandibular incisor angle (FMIA) and the incisor mandib-
ular plane angle (IMPA) are examined for 3 patients in
the dataset of Konstantonis et al.2 Two patients exhibit
an FMIA and IMPA combination of (41.8/113.0) and
(52.0/114.5). These patients seem very alike when
considering these 2 covariates, especially when contrast-
ing these observations with our third patient, who has an
FMIA and IMPA of (89.1/76.0). Intuitively, the third
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Table I. Data layout of Konstantonis et al2

Subject ID Cephalometric (26) Model (6) Demographic (2) Treatment
1 . . . extraction

. . . . .
542 . . . nonextraction

Fig 1. A mock example that illustrates the different clustering paradigms. K-means clustering is de-
picted in yellow as animals are grouped on the basis of their visual characteristics. Agglomerative hi-
erarchical clustering is denoted in red as thismethod first looks for animals which are closest together in
terms of visual approaches before extending the formed subgroups. Black indicates divisive hierarchi-
cal clustering as it will first split the herd into 2 subgroups before further splitting the subgroups up to the
level of the individual animal.
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patient is more distant from the other 2 subjects by eye-
balling these covariates because of the large differences
in FMIA and IMPA. However, when many variables are
recorded in a study, we must compute a formal number
expressing the dissimilarity between patients. Depend-
ing on the nature and the scale of the variables, a dis-
tance can be defined for each variable separately, and
those distances can be subsequently combined in a sin-
gle summary measure. A popular method to combine the
computed distances across the variables is the Euclidean
distance, the square root of the sum of squared
distances. In the case of patients 1 and 2, the distance
would be equal to the following: D 5
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5 10:31. The

Euclidean distance between patients 1 and 3 would
become D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
5 60.05.

Alternatively, other measures (eg, Pearson’s correlation)
can also be used. Elaborate lists of distance measures
exist, and they will yield different clustering results
that will depend on the nature of the data.

Some clusteringmethods require a linkagemeasure to
link a subject to a cluster or link 2 clusters with each
other. Again, several measures are available: average,
centroid, complete, single, or silhouette linkage. A
default choice is the centroid linkage which considers
the distance between the centroids (eg, center of gravity)
Journal of Orthodontics and Dentofacial Orthopedics
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of the clusters. A cluster centroid can be easily computed
by taking themean of each variable over the subjects that
compose the cluster. Again, the optimal choice for the
linkage method depends on the nature of the data.

The clustering algorithm is a computer procedure
that defines how the subjects and clusters are merged
and split up. These algorithms can be divided into 2
groups: partitioning and hierarchical clustering
methods.

Partitioning methods aggregate the data in a prespe-
cified number of clusters, in which k-means clustering3

is among the most common approaches. The main prin-
ciple is that the cluster is nonoverlapping and nonempty
(ie, every subject is a member of only 1 cluster), and every
cluster has at least 1 subject as a member. The partition-
ing algorithm is an iterative procedure that first allocates
subjects into nearby clusters on the basis of a distance
measure. Next, the centroids of each cluster are recom-
puted on the basis of the membership of the subjects.
The previous 2 steps are iterated until the centroids
converge to a particular location in the data space. For
instance, the yellow ellipsoids in Figure 1 indicate a
possible positioning of the centroids if 3 clusters are
specified. Partitioning methods have 2 disadvantages.
First, the number of clusters is unknown, but it must
be defined before the initiation of the algorithm,
contributing to uncertainty in the result. Second, a sto-
chastic mechanism is involved in the procedure, as the
clustering will be initiated by randomly assigning the
membership between subjects and clusters. As such,
another algorithm run on the same dataset can yield
different results because of this random component.

Hierarchical clustering methods4 are deterministic al-
gorithms that generate a dendrogram. A dendrogram is a
tree-like structure drawn with the root on top and
branches developing underneath, further splitting up
the clusters until arriving at the leaves, as indicated in
Figure 2. The leaves at the bottom of a dendrogram pre-
sent the patients in our dataset. The dendrogram reflects
a hierarchy of clusters on the basis of a degree of similar-
ity. The branches (vertical lines from leaves or clusters)
are combined into pairwise nodes (horizontal lines).
The branch’s length indicates the distance between 2
subjects, a subject, and a cluster, or between 2 clusters.
A short branch means a high similarity, whereas a long
branch means a low similarity. The dissimilarity increases
with the vertical distance from the leaves. The top node
is called the root and represents the entire dataset.
A dendrogram or cluster tree can be generated in 2
manners:

1. Agglomerative or bottom-up clustering: This
method is the most popular as it is the least compu-
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tationally demanding. The algorithm starts by
combining the 2 leaves closest to each other. Next,
another leaf can be merged with the cluster, or 2
other leaves can be combined. Leaves and clusters
are combined until the root node entails the entire
dataset. The red connecting lines in Figure 1 visually
depict the first steps of agglomerative clustering.

2. Divisive or top-down clustering: This method con-
siders every possible split in the dataset and splits
the root to maximize the distance between the 2
new clusters. This procedure is repeated until all
clusters are split-up to the level of the individual
leaves. The black line in Figure 1 indicates how a
first split could look for divisive clustering, maxi-
mally separating the species into 2 distinct herds.

An example of agglomerative clustering is presented in
Figure 2 on the 6 model variables from the Konstantonis
et al2 dataset. The dendrogram on the basis of 542 sub-
jects seems cluttered; however, some structure can be
added by coloring the obtained clusters. These clusters
result from applying a user-defined threshold for the sim-
ilarity at the y-axis. This threshold will cut the branches of
the tree in such away that clusters are formed. Figure2 ap-
plies an arbitrary threshold of 5 to limit the number of
clusters. When looking at these clusters, one can notice
that the highlighted clusters have an overrepresentation
of patients with the 4 first premolar extractions.

In contrast, the large yellow cluster on the left, which
encompasses almost two-thirds of the dataset, contains
only 55 patients with premolar extractions. These may
be exciting observations but should not be given too
much attention. Proper statistical or predictive methods
should investigate whether the cooccurrence of clus-
tered patients and the type of treatment they received
(extraction or nonextraction) is meaningful. A common
mistake is to overinterpret these types of dendrograms.
For example, the proximity of leaves in the x-axis is often
interpreted, but this direction has no meaning in hierar-
chical cluster analysis.
Informative data transformations

Another unsupervised learning technique involves a
meaningful transformation of a high-dimensional data
object into a lower dimension object such that the rele-
vant information is preserved. The mathematics behind
data transformations are complex and often involve
concepts from statistics (variance-covariance matrix),
calculus (Lagrange multiplier and constrained optimiza-
tion), and linear algebra (eigenvalues or singular value
decompositions). However, the basic idea can be easily
explained philosophically.
ics June 2023 � Vol 163 � Issue 6



Fig 2. Result of agglomerative clustering on the dataset of Konstantonis et al2 on the basis of the 6
model covariates. The patients that received treatment (ie, extraction) are indicated by the label “T”
on the x-axis. This figure shows that some color-coded clusters are enriched or depleted with this label,
which could trigger further research to investigate the correlation between the label and the respective
patient groups.
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The best way to start this explanation is with the
famous Greek philosopher Plato and his allegory of the
cave. The allegory discusses prisoners trapped inside a
cave, forced to watch shadows projected on a wall
from real-world 3-dimensional objects. These shadows
are the prisoner’s reality, ignoring the existence of a
higher dimension of reality. When confronted with
them outside the cave, would these prisoners recognize
real-world objects? The correct answer is that it depends
on the projection and the shape of the wall. If Plato knew
about informative data transformations, he would have
positioned the 3-dimensional objects in such a way that
the projection maximally would reflect the shape of the
object on a flat wall, as indicated in Figure 3. The projec-
tion on the right-hand side of the figure is an inadequate
representation of how a ring that works in the real world
would look.

In contrast, the projection on the left-hand side is
informative, allowing a viewer to infer details about
the shape of the ring. In this case, the shadow only omits
information about the width of the ring in the higher
dimension, which is information of little importance.
There exist other objects that could cast similar shadows.
Because our objective is to reduce the dimensionality, we
are ignorant about which information is left out exactly
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by the data projection. However, some techniques allow
us to quantify the amount of information loss.

An important concept in data transformation and
dimensionality reduction is meaningful information.
Which information would you like to have retained in
the projection? For example, principal component
analysis (PCA)5 is one of the most popular data trans-
formations that aims at preserving the variance of the
original data. For this purpose, PCA computes principal
components (PC) that are linear combinations of the
variables in the dataset. The linear combination is opti-
mized so that the newly formed PC maximizes the vari-
ance when the data are projected on this PC. After
computing the PCs, we could restrict the representation
to several components such that a prespecified amount
of the original data variance is retained. The plot in
Figure 4 displays the result of a PCA applied to the 6
model variables from the Konstantonis et al2 datasets.
Every point represents a subject in the study and is
color-coded according to the patient’s treatment sta-
tus. Red indicates the patients that have undergone 4
first premolar extractions, and blue means no extrac-
tion. Instead of presenting the data in 6 dimensions
corresponding to the 6 model variables, we can use
the first 2 PCs, as shown in Figure 4. It can be observed
Journal of Orthodontics and Dentofacial Orthopedics



Fig 3. A hypothetical example of informative data transformations. The figure on the left provides a
more informative projection of the ring than on the right.

Fig 4. Result of a PCA on the dataset of Konstantonis et al2 on the basis of the 6 model covariates.
Based on this simple transformation, mild separation of the patient with and without treatment can
be observed.
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from the figure that the first PC (in the horizontal axis)
represents 61.26% of the original data variance. Some
separation of treated and nontreated patients along
this axis seems possible. Adding more dimensions in
the form of PCs and adding more variables to form
linear combinations could improve the split between
treated and nontreated patients.
American Journal of Orthodontics and Dentofacial Orthoped
Many other techniques exist that can reduce the di-
mensions of the data. Examples are self-organizing
maps, autoencoders, t-distributed stochastic neighbor
embedding, and Uniform manifold approximation and
projection. Canonical correlation analysis focuses on
maximizing the correlation between sets of variables.
The mathematical details of these techniques are
ics June 2023 � Vol 163 � Issue 6
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complicated and beyond the scope of this series of articles
on machine learning.
CONCLUSIONS

Unsupervised learning techniques like clustering and
data transformation methods are often confused
because they share the same objective (ie, finding pat-
terns and structures in a dataset) and often present the
results in a similar format that allows discovering some
grouping of the subjects. However, the mathematical
concepts underlying clustering and data transforma-
tions are very different.

Without a well-defined response, the challenge of
unsupervised learning is to interpret the obtained clus-
ters or informative transformations. Toward this aim,
different variables in the dataset are often overlaid
with the result of the unsupervised analysis to cherry-
pick a promising response. This abductive reasoning is
not a good practice. Instead, proper inferential tech-
niques should be used to falsify the generated hypothe-
sis. When a response is present in a dataset, as with the
treatment variable in the Konstantonis et al2 datasets, it
is common to indicate this label in the resulting plots, as
shown in Figures 2 and 4. This visualization verifies
whether the unsupervised analysis can recover the data-
set patterns associated with the response. There is
nothing wrong with such an overlay. However, when
the discovered patterns do not agree with the response,
it is tempting to adjust the hyperparameters of the unsu-
pervised learner so that the results align with the
response labels. This is a dangerous practice that is no
longer considered unsupervised learning. By providing
feedback, the human-in-the-loop directs the unsuper-
vised learner to focus on particular aspects of the data-
set. To be clear, let us not forget that the goal of
unsupervised learning is explorative and that obtained
results should not be overinterpreted.

An important aspect of this data exploration is to
realize that mathematical engines used for unsupervised
learning are agnostic to the scale or unit represented by
the numeric variables. Concepts such as distance mea-
sure or variance are influenced by these numeric values.
For example, expressing a distance of 1000 mm or 1 me-
ter is the same when considering the actual distance, but
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using different numeric scales can lead to different re-
sults from the unsupervised method. Therefore, it is
good practice to center (subtract the mean) and stan-
dardize (divide by standard deviation) the data when var-
iables mix different units. As a result, the mean of the
variable is centered at 0 with a standard deviation of 1,
ensuring that every variable is treated equally by the un-
supervised learner.

In contrast, neither centering nor standardization is
necessary when the variables are presented on the
same scale. For example, when performing an unsuper-
vised analysis of gene expression data, it could be the
goal to focus more on abundant genes than on low-
expression genes. In this case, centering and standardi-
zation would remove this information. In other words,
when variables are on the same scale, it depends on
whether variable centering and standardization is
needed. It is worth keeping in mind that more weight
is given to variables with large numeric values in an un-
supervised analysis.

As a last remark, unsupervised learners are flexible
when interpreting the data. In the analysis of the Kon-
stantonis et al2 dataset (Figs 2 and 4), clustering and
data transformation were used to search for clusters (or
groups) of individual patients. This viewpoint is inspired
by the associated response variable (the treatment) pre-
sent in the dataset. However, instead of focusing on
the patient, an additional analysis could have been
applied to the variables in the dataset to discover possible
correlations. Such flexibility is not allowed in supervised
learning, which focuses more on the response.
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