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In this work, we develop a class of high-order multiderivative time integration methods that is able to preserve certain func-

tionals discretely. Important ingredients are the recently developed Hermite-Birkhoff-Predictor-Corrector methods and the

technique of relaxation for numerical methods of ODEs. We explain the algorithm in detail and show numerical results for

two- and three-derivative methods, comparing relaxed and unrelaxed methods. The numerical results demonstrate that, at the

slight cost of the relaxation, an improved scheme is obtained.
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1 Introduction

The efficient and accurate numerical solution of time-dependent differential equations is ubiquitous in the computational

sciences; examples of practical interest stem from meteorology, aerospace engineering, porous media flow and many more.

There are several challenges associated to high-order temporal integration, such as efficiency and stability, which are obviously

intertwined. In classical numerical schemes, high-order has been reached through an increase in either stages or steps, or both,

see, e.g., [1]. By now, Runge-Kutta schemes and linear multistep schemes are a de-facto standard in, e.g., the computational

fluid dynamics community (CFD), see [2] for an overview on the use of implicit methods in CFD. Although also a rather

classical approach, see [3], the multiderivative paradigm has only been rediscovered rather recently; for some examples

see [4–9] and the references therein.

To illustrate the approach, let us assume that the underlying differential equation is given by

w′(t) = Φ(w(t)), t ∈ [0, Tend], w(0) = w0, (1)

for some unknown function w : [0, Tend] → R
dim and a given smooth function Φ : Rdim → R

dim. Obviously, the second

derivative of w can be computed from Φ and its Jacobian through

w′′(t) = Φ′(w(t))Φ(w(t)) =: Φ̇(w(t)). (2)

Obviously, also the third temporal derivative Φ̈(w) and higher derivatives of w can be computed. Multiderivative time in-

tegrators explicitly take the quantities Φ, Φ̇, . . . into account, which results for, e.g., a given number of stages, in a higher

order than in a classical approach. In this work, we consider a peculiar predictor-corrector form of the implicit multiderivative

method, inspired by spectrally deferred correction methods [10]. This HBPC (Hermite-Birkhoff-Predictor-Corrector) method

was initially developed and motivated as an IMEX scheme in [11] and then subsequently extended to higher orders in [12,13].

HBPC has shown favorable behavior for the solution of compressible flow equations [9, 14, 15].

While linear stability of HBPC has been tackled in [13], the behaviour of the method for large values of Tend has not been

investigated yet. As for most schemes, it is to be expected that the numerical error grows tremendously with growing Tend. In

this work, we consider the case of a functional η : Rdim → R that is preserved under the solution, i.e.,

d

dt
η(w(t)) ≡ 0. (3)

For Hamiltonian problems, η could simply be the Hamiltonian function; for smooth flow problems, it could be entropy and

so on. First, we show how the classical HBPC method behaves in terms of η and in terms of the numerical error growth over

time. Second, we extend the HBPC method with a relaxation procedure, originally developed in [16–18]; based on an older

idea from [19]. This relaxation procedure, outlined below, enforces the preservation of η through an additional projection

step. This projection step necessitates the solution of a scalar equation, typically through Newton’s method or more efficient

variants of the bisection method. While for explicit low-order schemes, this might constitute a significant overhead [20], it

is negligible in our setting of implicit schemes. We show that with this very simple addendum to the algorithm, both error

growth in time is reduced and the functional η is preserved for several testcases.
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2 Numerical tools

In this chapter, we describe the underlying time integration algorithm as well as its combination with relaxation. In the

following, tn refers to the time instance tn := n∆t with some fixed (only for the ease of presentation) timestep ∆t > 0.

2.1 Hermite-Birkhoff predictor-corrector time integration

The algorithm to be explained in the following is of the predictor-corrector type, iterating towards a background, fully implicit

multiderivative Runge-Kutta scheme using m ∈ N temporal derivatives of w. For the ease of presentation, we first define

this background scheme. Please note that this scheme is not actually used in our computations, only through the use of the

corresponding quadrature rule. The scheme is of the classical multiderivative Runge-Kutta type, with s stages wn,l, 1 ≤ l ≤ s,

and update wn+1
RK defined by:

wn,l := wn +

m
∑

d=1

∆td
s

∑

j=1

B
(d)
lj

dd−1

dtd−1
Φ(wn,j), wn+1

RK := wn +

m
∑

d=1

∆td
s

∑

j=1

b
(d)
j

dd−1

dtd−1
Φ(wn,j). (4)

The matrices B(d), 1 ≤ d ≤ m, form the Butcher tableaux. It is assumed that the l−th stage value of time is tn + cl∆t, for

values cl ≡
∑s

j=1 B
(1)
lj . The coefficients for the Runge-Kutta update are denoted by b

(d)
l , 1 ≤ l ≤ s. We assume that the

Runge-Kutta scheme associated with this Butcher tableau is of order q. Please note that we have defined

d0

dt0
Φ(wn,j) := Φ(wn,j),

d1

dt1
Φ(wn,j) := Φ̇(wn,j),

d2

dt2
Φ(wn,j) := Φ̈(wn,j),

and so on. In this work, we rely on three Runge-Kutta schemes, two with two-derivatives, see [12, Eq. (2) and Eq. (3),

respectively, for the Butcher tableaux], and a two-point three-derivative scheme with Butcher tableau

c =

(

0
1

)

, B(1) =

(

0 0
1
2

1
2

)

, B(2) =

(

0 0
1
10 − 1

10

)

, B(3) =

(

0 0
1

120
1

120

)

.

The final HBPC scheme to be presented here relies on a predictor (k = 0) and correction steps (1 ≤ k ≤ kmax) for the

quantities wn,l. For short, the notation here is wn,[k],l. The predictor is a straightforward implicit Taylor scheme making use

of m temporal derivatives of w, the corrector is very similar in structure plus it additionally relies on the quadrature formula

Il defined through the Runge-Kutta scheme (4) by

Il :=

m
∑

d=1

∆td
s

∑

j=1

B
(d)
lj

dd−1

dtd−1
Φn,[k],j .

Note the shorthand notation Φn,[k],j := Φ(wn,[k],j). Finally, we obtain

Algorithm 1 (HBPC(m, q, kmax) [11, 12]) The algorithm consists of the following three steps:

1. Predict. Solve the following expression for wn,[0],l and 1 ≤ l ≤ s:

wn,[0],l := wn +

m
∑

d=1

(−1)d−1(cl∆t)d

d!

dd−1

dtd−1
Φn,[0],l. (5)

Subsequently:

2. Correct. Solve the following for wn,[k+1],l, for each 1 ≤ l ≤ s and each 0 ≤ k < kmax:

wn,[k+1],l := wn +

m
∑

d=1

(−1)d−1∆td

d!

(

dd−1

dtd−1
Φn,[k+1],l −

dd−1

dtd−1
Φn,[k],l

)

+ Il (6)

3. Update. Set

wn+1 := wn +

m
∑

d=1

(−1)d−1∆td

d!

dd−1

dtd−1

(

Φn,[kmax],l − Φn,[kmax−1],l
)

+

m
∑

d=1

∆td
s

∑

j=1

b
(d)
j

dd−1

dtd−1
Φn,[kmax−1],j .

(7)

Remark 2.1 Please note that whenever the background Runge-Kutta scheme is globally stiffly accurate, i.e., there holds

b
(d)
j = B

(d)
sj , 1 ≤ j ≤ s, 1 ≤ d ≤ m,

then the update step reduces to wn+1 := wn,[kmax],s. It is hence a slight generalization of [11, 12], where only schemes with

cs = 1 are treated. In any case, the update step is explicit.

Remark 2.2 The order of convergence p of this scheme is the minimum of kmax + m and the order q of the underlying

Runge-Kutta scheme; hence, p := min{kmax +m, q}.
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2.2 Relaxation procedure

The idea of a relaxation procedure as introduced in [16–18] is to consider a scalar parameter γ ∈ R and form a linear

combination of wn and wn+1 to obtain the quantity wn+1
γ = wn + γ(wn+1 − wn). The relaxation parameter γ gives the

flexibility to enforce the preservation of the functional η, just as for the continuous case, see Eq. (3), through the equation (in

γ)

η
(

wn + γ(wn+1 − wn)
)

= η(wn). (8)

After having found a suitable γ – typically through a scalar Newton algorithm –, the relaxed update wn+1
γ = wn + γ(wn+1 −

wn) is considered the new update step at time level tn + γ∆t. Computation with Alg. 1 then continues from this adapted

point in time and the corresponding linear combination of wn and wn+1 as usual. Note that ∆t is a constant throughout the

computation (although adaptive timesteps are a possibility as well), however, the resulting time instances are not necessarily

spaced equidistantly.

Obviously, γ = 0 is a (meaningless) solution to (8). It has been shown in [18] that under rather mild conditions on the

timestep ∆t and the functional η, there is also a unique solution γ which is close to one, in fact, it is O(∆tp+1) away from

one. Here, p denotes the order of the method. With this solution, the relaxation approach keeps at least the order of the

baseline methods. The relaxation approach is not restricted to invariants and has also been extended to general functionals η
in [16–18], resulting for example in efficient, fully-discrete, and locally entropy-stable numerical methods for computational

fluid dynamics [21] and nonlinear dispersive wave equations [22–24].

3 Numerical experiments

In this section, we present numerical findings of the HBPC method for a couple of test problems. As we are dealing with

implicit time integration, both linear and nonlinear solvers are important ingredients. In all the numerical results to follow, we

use a damped Newton procedure for the nonlinear equations, together with the standard backslash operator in Matlab to solve

the linear systems. The Newton tolerance is always set to a very fine tolerance 10−14, and a maximum of 1000 iterations is

allowed. Obviously, we did not go for the most efficient solution here. For considerations regarding Newton efficiency, we

refer the reader to [14]. In all the numerical results, ’error’ is defined as the Euclidean error of the discrete solution at the final

time Tend.

3.1 Nonlinear oscillator

As a first numerical example, we consider the nonlinear oscillator of [25, 26], given by

Φ(w) :=
1

‖w‖22

(

−w2

w1

)

, w(0) =

(

1
0

)

.

The standard squared Euclidean norm is a conservative functional for this problem, i.e., η(w) := ‖w‖22 is a constant along the

solution for all times t ∈ R
+.

Error growth In a first step, we consider the error growth for the HBPC scheme in dependency of time with and without

relaxation. As final time, the rather large Tend = 100 is chosen in combination with the large timesteps ∆t = 0.5 and

∆t = 0.2, respectively. As a time integrator, the HBPC(2,6,4) method is used, i.e., order six is to be expected. Please note

that the behavior of this method is representative. Time against error can be seen in the top of Fig. 1 for the algorithm with

and without relaxation. It can be clearly seen that the numerical error for the relaxed HBPC method behaves linearly in both

cases. At least for smaller t, the error of the unrelaxed method behaves quadratically. For ∆t = 0.5, it starts to oscillate at

some point. This is also reflected in the fact that Newton’s algorithm did not converge for the unrelaxed method and ∆t = 0.5.

In this sense, the relaxation improved the algorithm tremendously, even if one is not interested in an accurate representation

of η. The bottom of Fig. 1 shows the evolution of η − η0 (η0 := η(w(0))) for the two values of ∆t. As expected, the relaxed

version preserves η, even if the error level, at least for ∆t = 0.5, is also rather high for the relaxed method. All these results

are very much in line with the results from literature as presented in [27–29].

Convergence properties In a subsequent step, we analyze the convergence properties of the method. Fig. 2 shows conver-

gence results for two two-derivative and one three-derivative scheme, each with and without relaxation. From Rem. 2.2, the

order of convergence is supposed to be the minimum of kmax + m and the ultimate order q of the background Runge-Kutta

scheme. It can be seen for the unrelaxed case, that this order is indeed met. For the relaxed version, we see an odd-even

decoupling of the order, i.e., for an odd value of kmax, the order is one order better than expected. The maximum order of

consistency, however, remains q. This has been proved in [20] for general B-series methods and the special situation of Eu-

clidean Hamiltonian problems as in this case. In any case, the error constants seem to be tremendously lower for the relaxed

version which is obviously also backed up through the findings from Fig. 1.

Copyright line will be provided by the publisher
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Fig. 1 The (serial) HBPC(2, 6, 4) predictor-

corrector scheme of [13], see also [12], applied

to the entropy-conserving nonlinear oscillator with

Tend = 100. Left are numerical results for ∆t =

0.5, right are results for ∆t = 0.2. Top: numerical

error as a function of time; bottom: the deviation in

the functional η evaluated for the discrete solution. It

is clearly visible that in all cases, the relaxed method

behaves significantly better than its unrelaxed coun-

terpart.
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HBPC(3,6,kmax) with relaxation
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Fig. 2: The (serial) HBPC(2, 6, kmax) (left), HBPC(2, 8, kmax) (middle) and HBPC(3, 6, kmax) (right) predictor-corrector scheme of [13],

see also [12], applied to the entropy-conserving nonlinear oscillator at Tend = 10 for various values of kmax. Top: without a relaxation

procedure. Bottom: with relaxation procedure. The order of convergence to be expected, see Rem. 2.2, is min{6, kmax+2} for the HBPC(2,

6, kmax) scheme, min{8, kmax + 2} for the HBPC(2, 8, kmax) scheme and min{6, kmax + 3} for the HBPC(3, 6, kmax) scheme. This

expected order is met for the unrelaxed version. The relaxed version shows an odd-even decoupling, so for odd kmax, the order is increased

by one.
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3.2 Kepler’s problem

To confirm some of the results from the previous section, and to show that the odd-even decoupling is not so much a feature

of the method, but more of the underlying problem, we consider here Kepler’s problem as in [20]. The problem is given by

Φ(w) :=











w3

w4

− w1

(w2

1
+w2

2
)
3

2

− w2

(w2

1
+w2

2
)
3

2











, w(0) =









1/2
0
0

√

1/3.









.

The angular momentum

η(w) := w1w4 − w2w3

is a conserved quantity. For this example, ∆t = 0.5 is way too coarse, and the relaxed version was not able to run due to the

fact that at some point, the relaxation parameter γ from (8) could not be computed anymore. In this way, the relaxed algorithm

also gives some extra information on the quality of the solution. Hence, we use smaller ∆t here. As in the example before,

we start with error growth as a function of t for two values of ∆t, in this case ∆t = 0.2 and ∆t = 0.05, see Fig. 3. Again, we

can see that the error growth for the relaxed method is slower than for the unrelaxed version. It is not a clear linear / quadratic

relation as before due to periodic effects, but the overall growth seems in fact to be dominated by linear (relaxed) and quadratic

(unrelaxed) terms. Fig. 3, bottom, shows the deviation of the functional η from the value η0 := η(w(0)). As expected, for the

relaxed version, it is preserved, while deviations for the unrelaxed algorithm are visible.

Fig. 4 shows convergence plots for the three different methods used here, two two-derivative and one three-derivative

method. In contrast to the results before, there is no odd-even decoupling anymore, and the order of convergence ofmin{kmax+
m, q} is clearly met. This clearly indicates that this odd-even decoupling of the order for the relaxed version cannot be ex-

pected for all testcases, and is really a feature of the previous problem. Also the reduction of the error constant is only visible

for kmax = 1 (here it is the most prominent) and for kmax = 2 (slightly). For the higher kmax, this effect is not really

significant.

0 2 4 6 8 10

0

0.5

1

1.5

·10−2

Time t

N
u

m
er

ic
al

er
ro

r

Error growth for ∆t = 0.2

With relaxation

Without relaxation

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

·10−6

Time t

Error growth for ∆t = 0.05

With relaxation

Without relaxation

0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

·10−3

Time t

η
(w

n
)
−

η
(w

(0
))

Evolution of η − η0 for ∆t = 0.2

With relaxation

Without relaxation

0 2 4 6 8 10

−4

−2

0

·10−8

Time t

Evolution of η − η0 for ∆t = 0.05

With relaxation

Without relaxation

Fig. 3 The (serial) HBPC(2, 6, 4) predictor-

corrector scheme of [13], see also [12], applied to

Kepler’s problem with Tend = 10. Left are nu-

merical results for ∆t = 0.2, right are results for

∆t = 0.05. Top: numerical error as a function of

time; bottom: the deviation in the functional η eval-

uated for the discrete solution. It is clearly visible

that in all cases, the relaxed method behaves signifi-

cantly better than its unrelaxed counterpart.

4 Conclusion and outlook

In this paper, we have combined recently developed relaxation techniques with also rather recently developed predictor-

corrector time integration schemes. It has been shown that this can reduce error constants, and preserve functionals even if the

general error level is high.

Obviously, many things are left to do. Currently, we are analyzing, both numerically and analytically, the combination of

very general multiderivative methods and relaxation
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HBPC(3,6,kmax) with relaxation
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Fig. 4: The (serial) HBPC(2, 6, kmax) (left), HBPC(2, 8, kmax) (middle) and HBPC(3, 6, kmax) (right) predictor-corrector scheme of [13],

see also [12], applied to Kepler’s problem at Tend = 5 for various values of kmax. Top: without a relaxation procedure. Bottom: with

relaxation procedure. The order of convergence to be expected, see Rem. 2.2, is min{6, kmax + 2} for the HBPC(2, 6, kmax) scheme,

min{8, kmax + 2} for the HBPC(2, 8, kmax) scheme and min{6, kmax + 3} for the HBPC(3, 6, kmax) scheme. This expected order is

met for both the relaxed and the unrelaxed version. In contrast to the oscillator problem, see Fig. 2, only for kmax = 1 and kmax = 2,

one can see significant differences in the error. Please note that the reference solution against which we compute the numerical error is also

computed numerically (with another scheme) on a fine resolution. This explains why at about an error level of 10−11, convergence stalls

for all combinations.

• with respect to convergence properties for many different test problems, including suitably discretized PDEs,

• with respect to stability, in particular whether relaxation can change A- and L-stability properties of given methods,

• with respect to existence of γ and order considerations.

Also, dissipative problems, i.e., problems where, contrary to Eq. (3), the functional η is not preserved, but decreases over time,

i.e., where there holds d
dtη(y(t)) ≤ 0, are subject to investigation.
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