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a b s t r a c t 

Neural entrainment, defined as unidirectional synchronization of neural oscillations to an external rhythmic 

stimulus, is a topic of major interest in the field of neuroscience. Despite broad scientific consensus on its existence, 

on its pivotal role in sensory and motor processes, and on its fundamental definition, empirical research struggles 

in quantifying it with non-invasive electrophysiology. To this date, broadly adopted state-of-the-art methods still 

fail to capture the dynamic underlying the phenomenon. 

Here, we present event-related frequency adjustment (ERFA) as a methodological framework to induce and to 

measure neural entrainment in human participants, optimized for multivariate EEG datasets. By applying dynamic 

phase and tempo perturbations to isochronous auditory metronomes during a finger-tapping task, we analyzed 

adaptive changes in instantaneous frequency of entrained oscillatory components during error correction. Spatial 

filter design allowed us to untangle, from the multivariate EEG signal, perceptual and sensorimotor oscillatory 

components attuned to the stimulation frequency. 

Both components dynamically adjusted their frequency in response to perturbations, tracking the stimulus 

dynamics by slowing down and speeding up the oscillation over time. Source separation revealed that senso- 

rimotor processing enhanced the entrained response, supporting the notion that the active engagement of the 

motor system plays a critical role in processing rhythmic stimuli. In the case of phase shift, motor engagement 

was a necessary condition to observe any response, whereas sustained tempo changes induced frequency adjust- 

ment even in the perceptual oscillatory component. Although the magnitude of the perturbations was controlled 

across positive and negative direction, we observed a general bias in the frequency adjustments towards positive 

changes, which points at the effect of intrinsic dynamics constraining neural entrainment. 

We conclude that our findings provide compelling evidence for neural entrainment as mechanism underlying 

overt sensorimotor synchronization, and highlight that our methodology offers a paradigm and a measure for 

quantifying its oscillatory dynamics by means of non-invasive electrophysiology, rigorously informed by the 

fundamental definition of entrainment. 
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. Introduction 

Humans exhibit a natural inclination to synchronize their movement

ith rhythmic signals in the environment. The phenomenon can be

bserved across a range of contexts such as music playing and dance

 Leman, 2016 ; Clayton and Eerola, 2020 ), sports ( Cohen et al., 2010 ),

oint rhythmic tasks ( Rosso et al., 2021 ; Rosso et al., 2022 ) and verbal

ommunication ( Richardson and Shockley, 2008 ; Shockley et al., 2003 ).

ow does the human brain represent an external rhythm, how does it

rack it over time, and how does it temporally match motor behavior

o it? These questions are of exceptional interest in neuroscience nowa-
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ays. Evidence converges towards sensorimotor entrainment, namely

he alignment of motor and sensory rhythms at the neural level, as a

lausible answer. 

Neural entrainment is defined as unidirectional synchronization

f neural oscillations to an external rhythmic stimulus ( Haegens and

ion Golumbic, 2018 ; Lakatos et al., 2019 ), and comes with the as-

umption of endogenous oscillatory activity in the brain which can

e driven towards a state of phase- and frequency-locking. From the

iewpoint of perception, oscillations reflect changes in the weight

f sensory inputs via rhythmic fluctuations in neuronal excitability

 Lakatos et al., 2005 ; Fries, 2005 ; Buzsáki and Draguhn, 2004 ). Their
rsity, Ghent, Belgium. 
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ntrainment to rhythmic events is thought to subserve the selection

f relevant information and to reduce the interference of compet-

ng input streams ( Lakatos et al., 2019 ). Perceptual representations

re enhanced via low-frequency rhythmic fluctuations of sensory gain

 Obleser and Kayser, 2019 ), resulting in what is considered to be

 ‘rhythmic mode’ of attention ( Rosso et al., 2022 ; Schroeder and

akatos, 2009 ; Schroeder et al., 2010 ; Obleser et al., 2017 ; Zoefel and

anRullen, 2015 ). Notably, low-frequency oscillations originating from

ortical motor areas ( Morillon et al., 2014 ; Morillon et al., 2015 ;

orillon and Baillet, 2017 ) are thought to guide selection of environ-

ental information and active sampling implemented in motoric rou-

ines ( Schroeder and Lakatos, 2009 ), which leads to perceptual en-

ancement of attended stimuli ( Schroeder et al., 2010 ; Morillon et al.,

014 ; Chemin et al., 2014 ; Park et al., 2015 ; Rimmele et al., 2018 ).

hus, the engagement of the motor system enhances and stabilizes the

nternal representation of environmental rhythms ( Kliger Amrani and

ion Golumbic, 2022 ) by scaffolding the prediction of incoming sensory

vents ( Rosso et al., 2022 ; Morillon et al., 2014 ; Morillon et al., 2015 ;

orillon and Baillet, 2017 ; Rimmele et al., 2018 ; Morillon et al., 2019 ;

rnal and Giraud, 2012 ). A network of cortical and subcortical motor ar-

as was recently put forward as responsible for beat-based time-keeping,

y dynamically tracking the phase of the stimulus cycle and enabling

vert motor alignment ( Cannon and Patel, 2021 ). 

The rationale of current state-of-the-art approaches to quantify neu-

al entrainment is that the frequencies of a rhythmic stimulation can

e tagged in the power spectrum of electrophysiological timeseries

 Nozaradan et al., 2011 ). In practice, ‘frequency tagging’ transforms

he brain signal into the frequency domain, quantifying the power of

timulus-related frequencies over the whole spectrum. The observation

hat target frequencies dominate the spectrum has been commonly taken

s evidence for the underlying entrainment of neural oscillations (e.g.,

ozaradan et al., 2011 ; Nozaradan et al., 2012 ; Lenc et al., 2018 ), which

s not exempt from critiques. The most evident of these highlights that

eriodic stimulation elicits a train of time-locked transient responses in

he brain, resulting in prominent peaks in the power spectrum at the

elated frequencies ( Novembre and Iannetti, 2018 ). Furthermore, allo-

ating attentional resources to a predictable stimulus results in top-down

odulation of the evoked response amplitude ( Legrain et al., 2011 ;

reska and Deouell, 2017 ; Nobre and van Ede, 2018 ) and, in turn, of

ower at the related frequency. Periodic evoked responses hinder the

easurement of real neural entrainment, represent a critical confound

or the empirical investigation with non-invasive electrophysiology, and

ose a major methodological challenge for the researchers in the field

 Haegens and Zion Golumbic, 2018 ). 

Fundamentally, the entrainment of two oscillatory signals cannot be

escribed by their spectral profile alone, because this is not a test for the

nderlying oscillatory process ( Obleser and Kayser, 2019 ). Given that

he temporal structure of a signal strictly depends on the phase of its os-

illatory components ( Rajendran and Schnupp, 2019 ), it is not possible

o make inferences on local oscillatory dynamics of the signal if phase

nformation is neglected. Neural entrainment is just one possible process

eading to the match of two spectral profiles, and therefore frequency

agging is not a sensitive method to its realization. Entrainment in the

trict sense is based on the phase of the signal, and is in principle dis-

ociated from its amplitude. Therefore, the process should be defined

n terms of changes in frequency over time ( Rosenblum et al., 2001 )

ather than being inferred by the power spectrum. It is the unidirec-

ional process that leads to a state of phase-locking with a driving force

 Lakatos et al., 2019 ), not the phase-locked state itself ( Rosenblum et al.,

001 ). 

Motivated by these limitations, we previously proposed the Stabil-

ty Index (SI) as a measure to quantify neural entrainment from elec-

roencephalograpy (EEG) recordings of healthy participants engaged in

nger-tapping to a steady auditory metronome ( Rosso et al., 2021 ). In

ur work, we extracted from the EEG signal a component attuned to the

timulation frequency, and computed the SI based on the fluctuations of
2 
he component’s frequency over time. Critically, we reported significant

orrelations between the SI and behavioral measures of synchronization:

he more stable the neural component, the more stable and more accu-

ate the synchronization performance. We argued that, in contrast to

revious amplitude-based approaches, the measure explicitly captures

he dynamic phase adjustment of entrained neural oscillations. The pu-

ative entrained component would adaptively speed up and slow down,

uctuating around the target center frequency to reach stable synchro-

ization over time ( Rosso et al., 2021 ). However, one main limitation

f our previous work is that we could only provide a global measure

f these fluctuations for a given time window, and correlate it to the

lobal behavioral performance. Further inferences on the dynamics of

he frequency adjustment over time were not possible, due to the fact

hat we did not dispose of an experimental paradigm to induce them in

 controlled fashion. 

With these limitations in mind, we hereby present event-related fre-

uency adjustment ( ERFA ) as a novel experimental paradigm for investi-

ating neural and behavioral entrainment with auditory rhythmic stim-

li. A way to induce controlled frequency adjustment is to manipulate

he frequency of an auditory metronome while experimental subjects

re attempting to synchronize their finger-taps to it. The event discloses

 post-perturbation window wherein the entrained component is ex-

ected to adjust its frequency according to the stimulus dynamics, and

orrect the error to return to a stable state. In finger-tapping studies,

rror correction is traditionally investigated with tempo changes and

hase shifts, in both positive and negative directions (for a review, see

epp and Su, 2013 ). We implemented the former as a step change of + /-

0% from the baseline frequency (1.67 Hz), and the latter as a + /- 90°

hift of the metronome beat along its cycle. Given that control mecha-

isms are thought to underpin error correction depending on the nature

nd the direction of perturbations ( Praamstra et al., 2003 ; Repp, 2001 ;

epp, 2001 ; Bavassi et al., 2017 ; Jantzen et al., 2018 ), these variables

ere expected to reveal different underlying oscillatory dynamics. 

The ERFA curves, which constitute the neural measure within our

xperimental paradigm, were computed in three main blocks: 1) attune-

ent : from the continuous multivariate EEG signal, a single component

aximally attuned to the metronome’s frequency was extracted via spa-

ial filtering ( Rosso et al., 2021 ; Cohen and Gulbinaite, 2017 ); 2) instan-

aneous frequency : changes in frequency over time were computed based

n the rate of change of the component’s phase ( Rosenblum et al., 2001 ;

ohen, 2014 ); 3) event-based segmentation : instantaneous frequency re-

ponses were time-locked to the perturbations, and aggregated by per-

urbation type and direction. The attunement block was carried out sep-

rately on two perturbation-free periods, while actively listening to the

timuli or tapping along, which allowed to untangle a perceptual and a

ensorimotor entrained component within the same rhythmic task, and

o assess their relative contributions in adjusting to perturbations. 

Our aim was to use ERFA to track neural entrainment dynamics

ithin the post-perturbation windows, and to model them as a func-

ion of time. We hypothesized that the instantaneous frequency response

ould track the stimulus dynamics across perturbation types and direc-

ions, and that the active engagement in the behavioral task would boost

he entrainment of the sensorimotor component in the brain signal as

ompared to the perceptual component. Fig. 1 provides a graphical rep-

esentation of paradigm, trial structure and expected results. Procedures

re explained in detail in the Materials and methods section. 

. Materials and methods 

.1. Participants 

Twenty ( N = 20) right-handed healthy participants took part in the

xperiment (11 females, 9 males; mean age = 32.8 years, std = 6.2

ears). All participants had normal hearing and normal or corrected-

o-normal vision; none reported any history of major medical, psychi-

tric or neurological conditions; none reported to be a professional mu-
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Fig. 1. ERFA paradigm workflow. Orange boxes represent the context of the experimental tasks, blue boxes represent data processing. The approach started with 

an attunement phase, where participants were exposed to a perturbation-free auditory metronome for 60 seconds. The purpose was to induce a stable oscillation 

attuned to the stimulation frequency, facilitating its separation from the broadband multivariate EEG signal via generalized eigendecomposition (GED) ( Cohen and 

Gulbinaite, 2017 ; Cohen, 2022 ). Participants underwent this period of steady stimulation under distinct conditions of active listening and finger-tapping: using these 

two datasets, we designed for every participant two different spatial filters to extract a purely perceptual (without movement) and a sensorimotor (with movement) 

entrained component, respectively. After 60 seconds of finger-tapping, metronomes started to be perturbed by introducing unpredictable tempo changes or phase 

shifts during 405 seconds, depending on the experimental condition. During these perturbation tasks , participants were instructed to synchronize their finger-taps 

to the metronome, therefore following the stimulus dynamics. The spatial filters designed based on the attunement phase were applied to the EEG signal recorded 

during the tasks, allowing us to track the dynamic changes in the frequency of both perceptual and sensorimotor oscillatory components. Examples of negative (red) 

and positive (green) perturbation windows are represented for tempo changes and phase shifts, illustrating how the metronomes’ onset were manipulated and how 

neural components and finger-taps were expected to entrain. These figures are presented only as conceptual examples for illustrative purposes, and are not meant 

to be realistic. In order to provide a measure for the neural and behavioral adjustments, the following processing pipeline based on Rosso et al. (2021) was applied. 

Entrained components were narrow-band filtered around the metronome’s center frequency and Hilbert-transformed to produce analytic signals and extract phase 

timeseries. These were then unwrapped to prevent phase resets, differenced and scaled to Hz to produce instantaneous frequency timeseries, namely an estimate of 

the oscillation’s frequency at every timepoint. The processing up to this stage was performed on the continuous EEG recording. Instantaneous frequency timeseries 

were eventually segmented based on perturbation windows, and aggregated by perturbation type and direction. The average of the event-based segments provided 

the event-related frequency adjustment ( ERFA ) curves as our outcome of interest, which were expected to follow the stimulus dynamics as expressed in terms of 

instantaneous frequency. In the rightmost boxes of the figure, we show how we hypothesized the ERFA curves would look like. We expected a gradual and sustained 

response to tempo changes (top box) and a transient response to phase shifts (bottom box), tracking the stimulus dynamic and direction (represented as dashed lines). 
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ician. Upon arrival in the laboratory, they received extensive briefing

n the experimental procedure and signed the informed consent form.

ollowing the administration of the Edinburgh Handedness Inventory

 Oldfield, 1971 ) and a questionnaire to collect information on demo-

raphics and musical training, the experimenter proceeded to prepare

he EEG equipment. 

The study was approved by the Ethics Committee of Ghent Univer-

ity (Faculty of Arts and Philosophy) and informed written consent was

btained from each participant. A 20 € coupon was given to all partici-

ants as economic compensation for their time. 

.2. Experimental tasks 

The experiment consisted of one listening task without perturba-

ions and two finger-tapping tasks with perturbations, performed in a

ully-randomized order. Two different perturbation types were used as

eparate experimental conditions, these were tempo changes and phase

hifts (see Fig. 1 ). The listening task lasted 60 seconds, while both finger-

apping tasks lasted 465 seconds, of which the first 60 seconds were free

f perturbations and the following 405 seconds contained perturbations.
3 
The listening task was used to collect EEG data in the absence of

ovement and design a spatial filter, to extract the perceptual compo-

ent maximally attuned to the auditory stimulus. Stimulation consisted

f a metronome set at 100 Bpm (1.67 Hz), which was chosen as op-

imal rate for sensorimotor synchronization ( Kliger Amrani and Zion

olumbic, 2022 ; London, 2012 ; Zalta et al., 2020 ). To verify that par-

icipants were actively listening, they were instructed that the regular

hythm could be disrupted by a phase shift at any moment, and they

ould have to tap their finger on the pad as fast as possible upon detec-

ion. One single perturbation was presented after 60 seconds of steady

hythm, at a random moment within a 5 second time window, and was

uccessfully detected by all participants except one. The importance of

ot moving any body part during the listening was stressed, as well as

he importance of staring at a black dot painted on the center of the pad

o minimize eye-movement artifacts in the EEG recordings. 

In finger-tapping tasks, participants were instructed to synchronize

heir finger-taps to the metronome all the time, and to keep trying to

ynchronize even in case they would find themselves out of sync. The

mportance of minimizing body and head movements during the task

as stressed, as well as the importance of staring at a black spot (i.e. a

xation point) painted on the tapping pad. Both measures were taken to
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inimize the contamination of EEG recordings. Immediately before the

tart of the experiment, participants were given a simple demonstration

y the experimenter and familiarized themselves with the finger-tapping

o the non-perturbed metronome until they felt confident with the pro-

edure. 

Each finger-tapping task lasted a total of 465 seconds, the first 60

f which were free from perturbations. This steady period was used

o design a spatial filter to extract the sensorimotor component maxi-

ally attuned to the metronome, based on EEG data collected in con-

ition of overt movement. From that moment onwards, perturbations

ere presented at random times every 5 to 15 seconds: perturbation on-

ets were therefore unpredictable while participants had enough time

o re-stabilize behavioral and neural responses. A total of 20 negative

erturbations, 20 positive perturbations, and 40 perturbation-free win-

ows were available to analyze per participant within a time frame

f 405 seconds. The order of perturbations’ direction was randomized

ithin finger-tapping condition, while tempo changes and phase shifts

ere presented in separate experimental conditions. Tempo changes

onsisted of a + /- 10% step change with respect to the baseline tempo

100 bpm, 1.667 Hz), sustained for 3 seconds before a second step

hange back to the baseline. Phase shifts consisted of a discrete + /- 90°

hift on the beat cycle, perceived as a shorter or a longer inter-beat in-

erval, respectively (see Fig. 1 ). The order of the individual conditions

60 seconds of perturbation-free listening, 465 seconds of finger-tapping

ith tempo changes, 465 seconds of finger-tapping with phase shifts)

as fully randomized across participants. 

Besides the experimental conditions hereby presented, participants

lso performed the same tasks with different kinds of ecological musical

timuli. However, these extra conditions were meant to answer research

uestions not relevant to the present paper, hence will be addressed in

uture work. 

.3. Experimental apparatus 

Participants were sitting on a comfortable armrest chair, and a cir-

ular pad was placed on the table in front of them for recording finger-

apping responses. Stimuli were presented via DefenderShield® airtube

arbuds. Volume was adjusted before the beginning of the experiment,

o make sure that stimuli were clearly audible without creating any dis-

omfort. A circular tapping pad, containing a strain gauge pressure sen-

or, was used to detect finger-tapping onsets with a 1 ms resolution. A

olded towel was placed underneath the pad, so that no auditory feed-

ack from the finger-taps was perceivable. The pressure sensor was con-

ected to a Teensy 3.2 microcontroller, which worked as serial/MIDI

ub for data logging and communication between the stimulation com-

uter and the EEG recording computer. Upon occurrence of events of in-

erest (i.e., perturbations), a TTL trigger was sent from the Teensy micro-

ontroller to the EEG amplifier via BNC connection, granting the align-

ent between behavioral and neural timeseries. The EEG signals were

ecorded with an ANT-Neuro eego TM mylab system at a sampling rate of

 kHz. Each participant was equipped with an EEG headset (64-channel

aveguard TM original with Ag/AgCl electrodes). Recordings were per-

ormed with a referential montage, with ‘CPz’ being the reference for

ll electrodes. 

The stimuli sequence was played back by specifically designed soft-

are developed in Max MSP 8 (Cycling ’74, USA), running on the stim-

lation computer (Windows 10, Intel core i7 8th gen, Focusrite Rednet

CIExpress ASIO low-latency soundcard). Prior to each trial, a random-

zed balanced list of perturbations was generated and inspected by the

xperimenter. A pre-generated .wav file, containing a non-perturbed se-

uence of metronome ticks at 1.667 Hz (600 ms inter-beat intervals),

as played back and manipulated in real-time based on the perturba-

ions list and timing configuration (i.e., initial perturbation-free period

nd minimum and maximum time between perturbations). MIDI events

ere generated when a beat was perceived by the listener and when a
4 
erturbation occurred. These MIDI events were logged using the Teensy

.2 microcontroller, along with the finger-tapping timestamps. 

.4. Data analysis 

The data processing pipelines were implemented in Matlab 2019a

MathWorks Inc., USA). Statistical modeling was carried out in R Studio

ersion 4.0.3 (R Core Team), using the lme4 package ( Bates et al., 2014 )

or model fitting. Participant #6 was excluded from the analysis, due to

 technical issue during data acquisition which resulted in the loss of

EG data. 

.4.1. Behavioral data processing 

Finger-taps were processed in order to return timeseries aligned to

he neural ERFA, expressed in the same unit of measure (i.e., Hz over

s). Whenever a timestamp was followed by a second timestamp with

 350 ms interval, it was considered as a false positive and therefore

emoved (false positives could occasionally be recorded when a par-

icipant pushed the tapping pad for too long or accidentally laid the

and on it). The intervals between the remaining timestamps were then

inearly interpolated from 0 to 1 at 1 kHz sampling rate. The result-

ng ramp wave was scaled to 2 𝜋, providing an estimate of the finger-

aps phase with a temporal resolution of 1 ms. Instantaneous frequency

imeseries were computed as the first derivative of the unwrapped phase

ngles time series ( Boashash, 1992 ), and converted to Hz as indicated

n ( Cohen, 2014 ): 

𝑧 𝑡 = 

𝑠 
(
𝜙𝑡 − 𝜙𝑡 −1 

)

2 𝜋
here s indicates the data sampling rate and 𝜙𝑡 indicates the (un-

rapped) phase angle at time t . Unwrapping was necessary in order

o remove discontinuities in the timeseries caused by phase resets. 

.4.2. Neural data processing 

re-processing. The pre-processing pipeline was realized integrating

unctions from the Fieldtrip toolbox ( Oostenveld et al., 2011 ) for Matlab.

ad channels were identified by visually inspecting the raw timeseries

n combination with the distribution of variance across channels. The

ecording was re-referenced to the average of all electrodes after rejec-

ion, to avoid noise leakage into the common average. 3.23 bad channels

er participant were removed on average (std = 1.95). A sixth-order But-

erworth high-pass filter with 1 Hz cut-off was applied to the raw record-

ngs to remove slow drifts. We show in Supplementary material 1 that, for

hese parameters, the high-pass filter does not influence the oscillatory

ynamics of interest in the present work. A low-pass sixth-order Butter-

orth filter with 40 Hz cut-off was applied to remove high-frequency

uscular activity. A fourth-order notch filter centered at 50 Hz was ap-

lied to remove power-line noise up to the 3rd harmonic. 

Subsequently, independent component analysis (ICA) was conducted

nd used to remove stereotyped artifacts by means of visual inspection

f topographical maps and timeseries of component activation, as im-

lemented in the ‘runica’ Fieldtrip algorithm. The reference ‘CPz’ and

he bad channels’ timeseries were excluded from the input matrix. Un-

er optimal conditions, removal was limited to those components which

xhibited the stereotypical frontal distribution generated by blinks and

ateral eye movements, or bilateral temporo-mastoidal distribution with

eriodic peaks in the activation timeseries plausibly generated by heart

eats. Extra components were removed in instances where recurrent ar-

ifacts with clearly abnormal amplitude were detected. 5.03 artifactual

omponents per participant were identified and removed on average

std = 4.36). The dataset was inspected prior to ICA decomposition and

ollowing ICA back-projection to assess the quality of the artifact re-

oval. Special attention was given to the frontal clusters of electrodes

aximally contaminated by eye-related artifacts. Rejected bad channels

ere reconstructed after artifact removal, by computing the average ac-

ivity from neighboring electrodes indicated by the template provided

y ANT-Neuro for 64-channel waveguard TM original caps. 



M. Rosso, B. Moens, M. Leman et al. NeuroImage 277 (2023) 120226 

 

c

S  

(  

m  

d  

d  

d  

fi  

t  

d  

o

 

e  

n  

e  

c  

s  

a  

b  

n  

f

R

w  

r  

e  

(  

v  

t  

t

 

n  

t  

s  

w  

t  

c  

d  

t

 

t  

v  

s  

b  

v  

t  

t  

f  

p  

e  

a

 

m  

i  

I  

b  

d  

(

I  

p  

1  

t  

e  

i  

a

𝐻

 

w  

m  

(

 

t  

t  

T  

t  

s  

n  

W  

a  

e  

2  

c  

o  

s  

i

E  

a  

t  

t  

t  

a  

w  

w  

d  

w  

t  

t

 

t  

a  

b  

n  

s  

E  

m  

w  

p  

t  

p  

t  

F  

b  

p  

f

2

 

fi  

f  

t  

s  

u  

e  

B  

n

No segmentation in epochs was performed up to this point, since

ontinuous recording was needed for performing source separation. 

ource separation. Generalized eigendecomposition (GED)

 Cohen, 2022 ) was used to extract a perceptual and the sensori-

otor components attuned to the stimulation frequency. The procedure

escribed below is the same for both components, with the only

ifference that the respective inputs were 60 seconds of data recorded

uring the listening task, and 60 seconds of data recorded during

nger-tapping in the absence of perturbations. This allowed to design

wo separate spatial filters, which were subsequently applied to the

ata recorded during the 405 seconds of finger-tapping in the presence

f perturbations (see Fig. 1 ). 

As first described in the context of source separation for rhythmic

ntrainment ( Cohen and Gulbinaite, 2017 ), GED allows to avoid chan-

el selection bias while optimizing the signal-to-noise ratio between the

ntrained component and the broadband neural activity. The technique

onsists of a spatial filter to separate sources and reduce data dimen-

ionality, guided by some criteria. In this case, the criterion was the

ttunement to the stimulation frequency. Dimensionality was reduced

y computing the weighted average of the timeseries from all 64 chan-

els, where the set of vectors W (weights) was calculated by solving the

ollowing equation: 

W Λ = SW 

here S is the covariance matrix of the narrow-band signal; R is the

eference covariance matrix of the broad-band signal; Λ is the set of

igenvalues. GED identifies eigenvectors W that best separate the signal

‘S’) covariance from the reference (‘R’) covariance matrix. The eigen-

ector associated to the largest eigenvalue was taken as a spatial filter,

ransposed and multiplied by the broadband data matrix to reconstruct

he time series of our target entrained component. 

Given we were explicitly looking for frequency fluctuations, our

arrow-band filter needed to be wide enough to leave room for fluc-

uations around the target frequency. We designed our filter as a Gaus-

ian function in the frequency domain, with center at 1.667 Hz and a

idth of 0.3 Hz at half of the maximum gain ( Rosso et al., 2021 ). We

hen filtered the broadband data at all channels via spectral multipli-

ation between broadband signal and wavelet kernel in the frequency

omain, and transformed the resulting narrow-band signal back in the

ime domain with inverse fast Fourier transform. 

The S covariance matrix was computed from the narrowband signal,

he R covariance matrix was here computed from the broadband multi-

ariate signal. In this regard, the choice aligns with the approach pre-

ented in ( Rosso et al., 2021 ) rather than ( Cohen and Gulbinaite, 2017 ),

ecause the former is optimized for low target frequencies < 2 Hz. Co-

ariance matrices were computed within 600 ms time windows locked

o the finger-taps onsets, and grand-average S and R covariance ma-

rices were computed. Matrices whose z-normalized Euclidean distance

rom the grand-average exceeded the 2.23 z-scores (corresponding to a

robability of 0.01) were removed, and the grand-average S and R wer-

recalculated free of transient artifactual activity. 1% regularization was

pplied to the R matrix. 

In previous work ( Rosso et al., 2022 ; Rosso et al., 2021 ), we imple-

ented an optimization of GED based on a macro-selection of regions of

nterest, justified by experimental design and some prior assumptions.

n this study, however, we made no prior assumptions on scalp distri-

ution and therefore inputted timeseries from all channels, allowing the

ata collected to drive the source separation in the different conditions

‘listening’ and ‘finger-tapping’). 

nstantaneous frequency. The same Gaussian filter used for GED was ap-

lied to the perceptual and to the sensorimotor components (center at

.667 Hz and 0.3 Hz width at half maximum) to extract reliable phase

imeseries from the analytic signal ( Rosenblum et al., 2001 ). These were
5 
xtracted by means of Hilbert transform. In order to remove discontinu-

ties caused by phase resets, the timeseries were unwrapped, differenced

nd finally converted to Hz ( Cohen, 2014 ): 

𝑧 𝑡 = 

𝑠 
(
𝜙𝑡 − 𝜙𝑡 −1 

)

2 𝜋
The resulting instantaneous frequency timeseries were smoothed

ith a sliding moving median (window width of 400 samples), to re-

ove transient artifactual activity that may distort the phase timeseries

 Cohen, 2014 ). 

It should be to pointed out that, in electrophysiological data, the es-

imation of instantaneous frequency of oscillatory activity is sensitive to

he aperiodic 1/f component of the spectrum ( Donoghue et al., 2020 ).

his feature can result in bias towards lower frequencies under cer-

ain conditions. Samaha and Cohen ( Samaha and Cohen, 2022 ) demon-

trated that a low periodic/aperiodic spectral power ratio, in combi-

ation with broad filter width, is problematic for reliable estimations.

e highlight that our spatial filter application was specifically aimed

t maximizing the target narrowband energy relative to the broadband

nergy ( Rosso et al., 2021 ; Cohen and Gulbinaite, 2017 ; Haufe et al.,

014 ), resulting in outstanding spectral peaks indicating prominent os-

illatory activity (see Fig. 2 ). This, along with our conservative choice

f a narrow filter, complies with the good practices for reducing the

lope of the 1/f, and therefore increases the reliability of the estimated

nstantaneous frequency ( Samaha and Cohen, 2022 ). 

vent-related frequency adjustment (ERFA). In order to analyze neural

nd behavioral responses to perturbations within the same framework,

he following procedure was applied to all instantaneous frequency

imeseries to compute the related instances of ERFAs: one for the finger-

apping (behavioral), one for the EEG perceptual component (neural),

nd one for the EEG sensorimotor component (neural). The approach

as inspired by event-related potentials (ERPs) ( Luck, 2014 ) and shares

ith it most of the features presented in this paragraph. The crucial

ifference is that ERFAs express frequency (y-axis) over time (x-axis),

hile ERPs express amplitude (y-axis) over time (x-axis). Furthermore,

he pre-stimulus baseline of ERFAs requires steady rhythmic stimulation

o provide a stable baseline frequency level. 

Perturbation onsets were identified in the instantaneous frequency

imeseries based on the timestamp logs. Time windows were defined

s the time span from − 500 to + 3000 ms with respect to the pertur-

ation onset, aggregated per perturbation type and direction, baseline-

ormalized and averaged. Baseline normalization was performed by

ubtracting the average of the 500 to 0 ms interval from the rest of the

RFA, dividing by the target stimulation frequency (i.e., 1.667 Hz) and

ultiplied by 100. The resulting ERFA is expressed in percent change

ith respect to the baseline stimulation frequency. For every partici-

ant, 19 ERFA curves were aggregated per perturbation type and direc-

ion, and the average response was computed. The responses to negative

erturbations were sign-flipped in order to avoid trivial results at sta-

istical comparisons with positive perturbations ( Jantzen et al., 2018 ).

inally, the ERFA computation was repeated shifting all time-windows

y − 400 ms along the instantaneous frequency timeseries, namely into

erturbation-free periods. This provided for every participant a baseline

or further statistical comparisons. 

.5. Statistical modeling 

ERFAs to tempo change perturbations were modeled via polynomial

tting to the curves, downsampled by a factor of 10 for computational

easibility. For phase shifts, the discrete integral of the ERFA from 0

o 1500 ms interval was computed via trapezoidal method with unit

pacing, using the trapz() Matlab function. This returned signed areas

nder the curves, which we interpreted as a measure of entity of the

rror correction sensitive to the direction of the corrective response.

aseline normalization is crucial in order to obtain signed areas, as data

eed to be zero-centered. 
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Fig. 2. Source separation. The criteria for the assessment of source separation via GED are here shown at the group level ( N = 19). The spatial pattern of the 

perceptual component did not exhibit the centro-frontal activation expected from EEG auditory evoked responses ( Nozaradan et al., 2011 ; Nozaradan et al., 2012 ; 

Nozaradan et al., 2015 ), whereas the activation of the sensorimotor component exhibited both frontal negativity and a peak of activation over left centroparietal 

regions as previously reported during finger-tapping task performed with the contralateral hand ( Rosso et al., 2021 ). The spectrum of both components was dominated 

by a prominent peak at the stimulation frequency (i.e., 1.67 Hz) and harmonics, indicating that our filter successfully separated from the broad-band signal a 

component oscillating around the center frequency of the metronome. Spectra were computed over the whole finger-tapping session, and normalized to signal-to- 

noise ratio (SNR) units with respect to the neighboring bins to remove the 1/f component. The eigenspectrum showed that the weights associated to the largest 

eigenvalue explained considerably more variance than the others, hence was chosen as spatial filter for our sensor data. We observed a general additive effect 

of the sensorimotor component on all 3 criteria: overt movement resulted in stronger spatial activation, finer attunement to the stimulation frequency and more 

explained variance in the reconstructed sources. Taken together, these criteria support that the source separation successfully extracted two components attuned to 

the metronome’s frequency during listening (perceptual component) and finger-tapping (sensorimotor component), with the latter being more effectively separated 

from the broadband signal. The dynamic frequency adjustment of the two components in response to perturbations was further operationalized as event-related 

frequency adjustment (ERFA). 
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For behavioral ERFAs only, reaction times were computed as the x-

oordinate of the inflexion point of sigmoid function which best fitted

he ERFA from 0 to 800 ms. The fitting was performed with the sigm_fit()

atlab function, defining no fixed parameters. 

For the neural ERFAs, the effects on the response variables of inter-

st were tested in 3 × 2 factorial designs with Direction (Negative, Null,

ositive) and Component (Perceptual, Sensorimotor) as factors. For the

ehavioral ERFAs, the effects on the response variables of interest were

ested in 3 × 1 factorial design with Direction (Negative, Null, Positive)

s the only factor. When pairwise comparisons between Negative and

ositive directions were performed after omnibus tests, Bonferroni cor-

ection was applied for a significance level of 𝛼 = 0.05. 

.5.1. Orthogonal polynomials (for tempo change) 

For tempo changes, growth curve analysis ( Rosso et al., 2021 ;

irman, 2017 ) was used to model the change in instantaneous fre-

uency of the neural entrained components (i.e., the ERFAs) within 3-

econd perturbed windows (i.e., metronomes at + /- 10% of the baseline

requency). Parameters of categorical predictors were estimated rela-

ive to Null Direction and Perceptual Component, respectively. The ra-

ionale of such factor leveling is that no systematic change in instanta-

eous frequency was expected in Null trials, resulting in the flattening

f random fluctuations when averaging over trials. As for the Compo-

ent, we intended to test the significance of additive motor processing in

he Sensorimotor component during entrainment, with respect to purely

erceptual processing. 

The order of the polynomial is ideally chosen based on hypothesis

nd on the nature of the data, should be confirmed by the empirical
6 
ata, and should allow a straightforward interpretation of the effects

 Mirman, 2017 ). A full model based on orthogonal polynomials includes

ll terms up to the chosen order, which in this case was 2: a linear and

 quadratic term were sufficient to capture the effect of our manipula-

ion. In a framework of polynomial fitting, a flat line can be considered

 pure intercept and a ‘zero-order’ polynomial, in the sense that it ex-

ibits zero change in any direction. When instantaneous frequency is

ime-invariant, it indicates a steady oscillation within a given time win-

ow (e.g., the behavior of a non-perturbed metronome). The intercept

f our model provides hence valuable information on the average fre-

uency within the perturbed window, and how it changes across the

actors’ levels: significant main effects of categorical predictors indicate

lobal differences across experimental conditions, independently from

he temporal profile of the response variable. On the other hand, signif-

cant interaction effects on the polynomial terms indicate that instanta-

eous frequency in systematically modulated by the temporal dynamics

f the perturbation. The parameter estimate of the linear component (1st

rder) corresponds to the slope of the line and the consequent shift in

he vertex for the parabola, while the quadratic component (2nd order)

orresponds to the parabolic curvature. In summary, intercepts indicate

verage frequency while polynomial terms of Time are used to model

nstantaneous changes in frequency. Our model also included random

ffects of Subject on all polynomial terms, and their interactions with

he factors: the random effects structure was maximized in order to min-

mize false alarm rates without substantial loss of power ( Barr et al.,

013 ). 

Here, the formulas for the models fitted to neural and behavioral

RFAs, respectively (in R syntax): 
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𝐸𝑅𝐹 𝐴 ∼
(
𝑇 𝑖𝑚𝑒 + 𝑇 𝑖𝑚𝑒 2 

)
∗ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ( 𝑇 𝑖𝑚𝑒 + 𝑇 𝑖𝑚𝑒 2 | 𝑆

𝐸𝑅𝐹 𝐴 ∼
(
𝑇 𝑖𝑚𝑒 + 𝑇 𝑖𝑚𝑒 2 

)
∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ( 𝑇 𝑖𝑚𝑒 + 𝑇 𝑖𝑚𝑒 2 | 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ) + ( 𝑇

.5.2. Integrals (for phase shifts) 

For phase shifts, we deemed a model based on integrals to be more

uited and parsimonious as compared to polynomials. This was moti-

ated by the observation that a parabolic curve did not provide a good

t for transient responses elicited by phase shifts. We therefore opted for

 method insensitive to the particular curve-shape, quantifying instead

he area under the curve within a shorter time window (1500 ms) fol-

owing the perturbation onset. The adoption of integrals in the context

f event-related neural responses was validated in the ERP literature

 Luck, 2014 ), and in principle equally valid in the context of these ER-

As given the comparable post-stimulus window sizes and a response

ore localized in time, in contrast to the more sustained responses to

empo changes. 

The integrals provided us with a measure of ERFA magnitude, which

s sensitive to the direction of the response since the areas are signed

ith respect to the 0% change baseline. Notably, we verified on the

ata logged from the metronomes that the expected absolute area un-

erneath positive and negative phase shifts were equal irrespective of

he difference in shape. 

Here are the formulas for the models fitted to neural and behavioral

RFAs, respectively, plus the behavioral reaction times (in R syntax): 

𝐸𝑅𝐹 𝐴 _ 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ∼ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ( 1 | 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ) 

𝐸𝑅𝐹 𝐴 _ 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ∼ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ( 1 | 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ) 

𝐸𝑅𝐹 𝐴 _ 𝑟𝑡 ∼ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ( 1 | 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ) 
Data and scripts are available upon request to the authors with a

ormal data sharing agreement, in line with the conditions of the local

thics committee which approved the present study. 

. Results 

Event-related frequency adjustments (ERFAs), computed as the in-

tantaneous frequency response within the post-perturbation window,

re the object of our analyses. Neural and behavioral ERFAs were com-

uted from EEG and finger-tapping timeseries, respectively. Two distinct

pproaches were used to model the ERFAs in response to the tempo

hange and phase shift perturbations. For both neural and behavioral

esponses, orthogonal polynomials ( Mirman, 2017 ) were used to model

empo change, and integrals ( Luck, 2014 ) were used to quantify the

ntity of phase shifts. ERFAs in response to all negative perturbations

ere sign-flipped, in order to make the responses directly comparable

ith the positive counterparts ( Jantzen et al., 2018 ). Whereas in the

iterature stimulus rates are often expressed in milliseconds to describe

he duration of inter-stimulus intervals, ERFAs will be consistently ex-

ressed in Hz, or % change with respect to a baseline frequency. There-

ore, increasing values indicate that the oscillatory component is speed-

ng up, and decreasing values indicate that the oscillatory component is

lowing down. 

Below, an assessment of the EEG source separation is provided, fol-

owed by the results of our models presented per perturbation type. 

.1. EEG source separation 

A perceptual and a sensorimotor component were extracted from the

ultivariate signal from separate experimental conditions (see Fig. 1 ).

his represented the attunement phase of our approach, where spatial
7 
𝑐𝑡 ) + ( 𝑇 𝑖𝑚𝑒 + 𝑇 𝑖𝑚𝑒 2 | 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ∶ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∶ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ) 

 𝑇 𝑖𝑚𝑒 2 | 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ∶ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ) 

lters were designed to target the perceptual and sensorimotor compo-

ents maximally entrained to the metronome. We hereby provide the

esults of the qualitative assessment of the GED according to three cri-

eria: (a) spatial activation pattern, (b) spectral profile, and (c) eigen-

pectrum. These results are shown and described in detail in Fig. 2 . 

.2. Tempo change perturbations 

The ERFA response curves of the tempo change conditions were mod-

led with 2nd order orthogonal polynomials, as the timeseries followed

arabolic growth-and-decay, tracking the direction of the perturbation

see Fig. 3A and C ). This parabolic term was capable of capturing the

ost prominent effect in the model. Fixed effects of Direction (Negative,

ull, Positive) and Component (Perceptual, Sensorimotor) on the poly-

omial terms were tested. The Null level (i.e., perturbation-free win-

ows) was treated as a baseline for contrasting Negative and Positive

evels of Direction, while the Perceptual level was treated as a baseline

or contrasting the Sensorimotor level of Component. Model parameters

ere estimated with respect to the levels defined as baseline. The same

olynomial model was fitted to the behavioral ERFA curves, with the

xception that the Component factor was removed. The specifics of our

tatistical modeling are explained in detail in the Materials and methods

ection. 

.2.1. Neural ERFA 

The orthogonal polynomial model revealed a significant main ef-

ect of Positive Direction (Estimate = 1.689, SE = 0.450, p < 0.001) and

 significant two-way interaction between Positive Direction and the

uadratic term of Time (Estimate = − 8.049, SE = 4.039, p = 0.046). The

ormer indicates that both Perceptual and Sensorimotor components os-

illated on average significantly faster within Positive perturbed win-

ows, the latter indicates that the higher average was accompanied

y more parabolic modulation of the ERFA (i.e., inverse U-shape).

hile the main effect of Negative Direction reached significance (Es-

imate = 1.160, SE = 0.450, p = 0.010), no significant two-way interac-

ion with the polynomial terms was found for Negative Direction. Taken

ogether, these effects suggest that oscillations are generally biased to

ollow positive frequency changes, as quantified by the ERFAs of both

erceptual and sensorimotor components. 

The nature of the Component becomes relevant for Negative Di-

ection, as indicated by the significant two-way interaction (Esti-

ate = 1.461, SE = 0.636, p = 0.022): the oscillation was on average sig-

ificantly slower within Negative perturbed windows, but only for the

ensorimotor type. In contrast, in response to Positive perturbations,

oth Component types exhibited significantly faster oscillations. 

A significant three-way interaction was found between quadratic

erm of Time, Component and Direction (Positive: Estimate = − 19.129,

E = 5.711, p < 0.001; Negative: Estimate = − 20.266, SE = 5.711, p <

.001). These effects indicate that the Sensorimotor Component sig-

ificantly boosted the parabolic modulation of the ERFA as compared

o the Perceptual Component, regardless of whether the metronome

as speeding up or slowing down. This additive effect can be seen in

ig. 3A and B . Results from the statistical model are reported in Table 1 .

.2.2. Behavioral ERFA 

The orthogonal polynomial model revealed significant main effects

f both Positive (Estimate = 8.816, SE = 0.567, p < 0.001) and Nega-

ive (Estimate = 9.276, SE = 0.567, p < 0.001) Directions, indicating that

oth signs resulted in an average frequency offset in the expected di-

ection. The dynamic is captured by the significant interaction of the
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Fig. 3. ERFA curves. Results are here represented as grand-averages across ERFA types and perturbation types ( N = 19; 19 trials per participant for every perturbation 

type), and expressed in percentage change with respect to the pre-perturbation stimulation frequency. Positive and negative perturbations are color-coded in green 

and red, respectively. For more visual clarity, the average curves are always represented as a black continuous line, whereas the contour representing the standard 

error of the mean (SEM) is color-coded according to the direction of the perturbation. The black continuous line without contour, approximately flat, represents the 

average frequency change in a sample of 19 non-perturbed time windows, where the frequency of the metronomes was stable. Dashed lines represent the instantaneous 

frequency timeseries of the metronome. Due to different magnitude of neural and behavioral responses, these are shown on different scales to better visualize the 

dynamic. Labels correspond to the following: A- neural ERFA (perceptual component, tempo change); B- neural ERFA (sensorimotor component, tempo change); C- 

behavioral ERFA (tempo change); D- neural ERFA (perceptual component, phase shift); E- neural ERFA (sensorimotor component, phase shift); F- behavioral ERFA 

(phase shift). 

Table 1 

Neural ERFA: tempo change ( N = 19). 

Predictors Estimate SE t value p 

(Intercept) − 0.441 0.318 − 1.388 0.165 

Time − 0.814 2.665 − 0.305 0.760 

Time 2 0.011 2.978 0.003 0.996 

Component (SM) 0.475 0.450 1.057 0.291 

Direction (-) 1.160 ∗ 0.450 2.580 0.010 

Direction ( + ) 1.689 ∗ ∗ ∗ 0.450 3.754 < 0.001 

Time:Component 1.407 3.623 0.388 0.698 

Time 2 :Component 1.540 4.038 0.381 0.703 

Time:Direction (-) − 1.255 3.623 − 0.346 0.729 

Time:Direction ( + ) − 1.936 3.623 − 0.534 0.593 

Time 2 :Direction (-) − 6.141 4.039 − 1.520 0.128 

Time 2 :Direction ( + ) − 8.049 ∗ 4.039 − 1.993 0.046 

Component:Direction (-) 1.461 ∗ 0.636 2.296 0.022 

Component:Direction ( + ) 0.743 0.636 1.167 0.243 

Time:Comp:Dir (-) − 3.250 5.124 − 0.634 0.526 

Time:Comp:Dir ( + ) 1.413 5.124 0.275 0.783 

Time 2 :Comp:Dir (-) − 20.266 ∗ ∗ ∗ 5.711 − 3.548 < 0.001 

Time 2 :Comp:Dir ( + ) − 19.129 ∗ ∗ ∗ 5.711 − 3.349 < 0.001 

∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 

q  

p  

w  

b  

p  

a  

m  

a  

Table 2 

Behavioral ERFA: tempo change ( N = 19). 

Predictors Estimate SE t value p 

(Intercept) − 0.709 0.560 − 1.267 0.205 

Time − 1.018 4.834 − 0.211 0.833 

Time 2 3.957 3.871 1.022 0.307 

Direction (-) 9.276 ∗ ∗ ∗ 0.567 16.345 < 0.001 

Direction ( + ) 8.816 ∗ ∗ ∗ 0.567 15.534 < 0.001 

Time:Direction (-) 9.293 4.971 1.869 0.061 

Time:Direction ( + ) 0.830 4.971 0.167 0.867 

Time 2 :Direction (-) − 85.739 ∗ ∗ ∗ 4.562 − 18.794 < 0.001 

Time 2 :Direction ( + ) − 92.034 ∗ ∗ ∗ 4.562 − 20.174 < 0.001 

∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 
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s  
uadratic term and Direction (Positive: Estimate = − 92.034, SE = 4.562,

 < 0.001; Negative: Estimate = − 85.739, SE = 4.562, p < 0.001), in line

ith the patterns of the neural ERFAs. When testing for the interaction

etween Direction and the linear term of the model, which indicates the

osition of the vertex of the parabolic curve (see Rosso et al., 2021 ), for

pplication and interpretation of orthogonal polynomials fitted to asym-

etric curves), we did not find an asymmetry across levels of Direction

t our significance level alpha = 0.05, only a trend (Estimate = 9.293,
8 
E = 4.971, p = 0.061). The behavioral ERFA to tempo changes is repre-

ented in Fig. 3C . 

No significant difference was found at post-hoc comparisons when

esting for Positive against Negative directions, neither for the main ef-

ect nor for the interaction on the quadratic terms. Results from the sta-

istical model are reported in Table 2 . Note that, since the Null level was

et as a reference for both Positive and Negative in the model, effects of

irection are reported pairwise. 

.3. Phase shift perturbations 

The signed area (i.e., discrete integrals) under the ERFA curves was

omputed as response variable, and a 3 × 2 factorial model was fitted:

irection (Negative, Null, Positive) x Component (Perceptual, Sensori-

otor). In this context, integrals provided a measure of entity of the

hift in instantaneous frequency regardless of the curve shape, while
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Table 3 

Neural ERFA: phase shift ( N = 19). 

Predictors Estimate SE t value p 

(Intercept) 557.929 413.656 1.349 0.177 

Component (SM) − 617.651 552.777 − 1.117 0.264 

Direction (-) − 775.485 552.777 − 1.403 0.161 

Direction ( + ) 297.630 552.777 0.538 0.590 

Component:Direction (-) − 24.904 781.745 − 0.032 0.974 

Component:Direction ( + ) 1763.756 ∗ 781.745 2.256 0.024 

∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 

Table 4 

Behavioral ERFA: phase shift ( N = 19). 

Predictors Estimate SE t value p 

(Intercept) − 372.017 1772.633 − 0.210 0.834 

Direction (-) 10,920.459 ∗ ∗ ∗ 2506.882 4.356 < 0.001 

Direction ( + ) 9197.843 ∗ ∗ ∗ 2506.882 3.670 < 0.001 

∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 
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Table 5 

Reaction times: phase shift ( N = 19). 

Predictors Estimate SE t value p 

(Intercept) 490.789 7.879 62.290 < 0.001 

Direction ( + ) 49.316 ∗ ∗ ∗ 11.143 4.426 < 0.001 

∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 
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eing sensitive to the direction of the shift. This sensitivity is due to

he fact that the area is signed, returning positive or negative values for

ortions above or below the x-axis, respectively. In addition, for behav-

oral ERFAs, reaction times were computed as the intersection of the

urve’s inflection point with the time x-axis. The specifics of our sta-

istical modeling are explained in detail in the Materials and methods

ection. 

.3.1. Neural ERFA 

We found a significant two-way interaction between Component and

ositive Direction (Estimate = 1763.756, SE = 781.745, p < 0.024), indi-

ating that phase shifts in such direction elicited significant ERFAs only

hen the component was Sensorimotor. The difference between compo-

ents can be seen in Fig. 3D and E , where a flat grand-average ERFA is

bserved for the Perceptual component due to the absence of systematic

hanges in instantaneous frequency across participants. It is noteworthy

hat the ERFA of the Sensorimotor component in Negative Direction did

ot mirror its Positive counterpart: rather than dropping below the base-

ine frequency before re-stabilizing, the curve underwent a later transi-

ion and stabilization at a higher frequency ( Fig. 3E ). This resulted in a

ery small area under the ERFA in the defined post-stimulus window,

nd a non-significant effect in our model. Results from the statistical

odel are reported in Table 3 . 

.3.2. Behavioral ERFA 

A significant main effect of Direction with respect to the Null level

Positive: Estimate = 9197.843, SE = 2506.882, p < 0.001; Negative: Es-

imate = 10,920.459, SE = 2506.882, p < 0.001) was found. A post-hoc

omparison between Positive and Negative levels did not yield a signif-

cant effect of Direction. This indicates that there were no differences

n magnitude of error adjustments across perturbation directions. How-

ver, a t -test revealed a significant difference between reaction times

o Positive and Negative perturbations (Estimate = 49.316, SE = 11.143,

 < 0.001), indicating that participants corrected the errors significantly

aster in response to Negative phase shifts. The behavioral ERFA to phase

hifts is represented in Fig. 3C . Results from the statistical model are re-

orted in Tables 4 and 5 . 

. Discussion 

The aim of the present work was to present a paradigm and a mea-

ure capable of quantifying neural entrainment from an electrophysi-

logical brain signal, rigorously informed by the fundamental defini-

ion of the process ( Lakatos et al., 2019 ; Novembre and Iannetti, 2018 ;
9 
ajendran and Schnupp, 2019 ). To tackle this methodological chal-

enge ( Haegens and Zion Golumbic, 2018 ), we moved away from a

requency-domain representation of oscillatory components in the EEG

ignal. Instead, we modeled their frequency adjustment as a function

f time, provided a controlled manipulation of the stimulus dynamics.

n the context of a finger-tapping synchronization task with perturbed

uditory metronomes, event-related frequency adjustments (ERFAs) re-

ealed how oscillatory components entrain to the stimulus by speeding

p and slowing down, tracking dynamic rhythmic changes within criti-

al time windows. 

Crucially, our experimental design allowed us to disentangle in the

rain signal a perceptual and a sensorimotor component, separately at-

uned to the auditory metronome via GED ( Cohen, 2022 ), and to statis-

ically compare their ERFAs (see Fig. 1 ). The results showed that senso-

imotor processing is critical for neural entrainment, if not a necessary

ondition for it to take place. When compared to perceptual ERFAs, sen-

orimotor ERFAs exhibited a significantly stronger modulation, congru-

nt with the direction of the perturbation ( Fig. 3 ). It should be noted

hat, while with tempo changes the effect was observed when either

peeding up or slowing down the stimulus by 10% of its frequency, only

hase shifts of 90° in the positive direction (perceived as a shorter inter-

eat interval) were tracked following the stimulus dynamics ( Fig. 3B

nd E ). These patterns resemble a more smoothed version of the be-

avioral ERFAs computed from finger-tapping data ( Fig. 3E and F ). On

he other hand, negative phase shifts (perceived as a longer inter-beat

nterval) elicited a sensorimotor ERFA qualitatively different than ex-

ected, deviating from both stimulus and behavioral dynamics. Specif-

cally, we observed in this case an initial destabilization followed by a

radual increase in frequency, suggestive of a dissociation between the

bserved behavioral adjustments and their underlying neural mecha-

isms ( Fig. 3E and F ). 

Although in EEG data it is not possible to fully disentangle the en-

rainment of endogenous oscillations from regularly evoked responses

hich are time-locked to the stimulus, we highlight how our approach

ontributes to tackle this hard problem in the investigation of neural en-

rainment ( Haegens and Zion Golumbic, 2018 ). We propose that identi-

ying and statistically contrasting the perceptual and sensorimotor com-

onents serve as an initial progression towards better understanding the

nterplay of the mechanisms involved. Notably, while the perceptual ER-

As can in principle be driven by changes in the stimulation rate, the

dditional modulation observed in the sensorimotor ERFAs cannot be

xplained by a bottom-up processing alone. This is because the only

ifference across the two components is the engagement of the motor

ystem, while the stimulation remains constant. Furthermore, our re-

ults reveal some features in the ERFAs which are not fully explainable

y changes in the physical stimuli, calling into question the functioning

f endogenous sensory rhythms in the brain and their own intrinsic dy-

amics. To elaborate, we reported asymmetries across positive and neg-

tive directions for both perceptual and sensorimotor ERFAs. For tempo

hanges, the perceptual component exhibited a moderate frequency ad-

ustment expected for the positive tempo-change, but not for the nega-

ive tempo-change ( Fig. 3A ). If the perceptual ERFA were entirely driven

ottom-up, we would expect positive and negative responses to mirror

ach other, because the absolute magnitude of the tempo change was

he same in both directions. However, the involvement of sensorimo-

or processing resulted in a significantly more prominent slowing down

f the oscillation in response to negative tempo change (compare the
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epth of the red curves in Fig. 3A and B ). Taken together, we argue that

his evidence points to a general bias towards speeding up, which sug-

ests the presence of intrinsic oscillatory dynamics at play. Following

his argument, we propose that adjusting the frequency to the slowing

etronome requires an extra deployment of neural resources, which are

ecruited by engaging the motor system to a greater extent ( Kliger Am-

ani and Zion Golumbic, 2022 ) and therefore reflected in the enhanced

ensorimotor ERFA. 

We put forward two putative mechanisms to explain the interac-

ion between perceptual and sensorimotor components. The first pos-

ibility (A) is that auditory rhythms do not entrain at all, and instead

ure evoked responses are generated in sensory areas. The function

f these periodic responses may be to form an amplitude-based rep-

esentation of the external rhythm at the cortical level, so that en-

ogenous motor rhythms ( Morillon et al., 2014 ; Morillon et al., 2015 ;

orillon and Baillet, 2017 ) can entrain by dynamically adapting their

requency via phase-based alignment. Alternatively (B), endogenous

uditory rhythms might be effectively entraining to the metronome

 Lakatos et al., 2007 ; Lakatos et al., 2008 ; Lakatos et al., 2009 ;

akatos et al., 2013 ; Lakatos et al., 2016 ), and in turn drive the align-

ent of endogenous motor rhythms. We argue that the evidence hereby

resented leans in favor of the latter mechanism, which is also more

oherent with recent neurophysiological models proposing that neural

ring rates encode an abstract representation of stimulus and move-

ent cycles’, enabling both beat perception and overt synchronization

o the beat ( Cannon and Patel, 2021 ). Backed by evidence from mon-

eys ( Gámez et al., 2019 ; Cadena-Valencia et al., 2018 ) and humans

 Teki et al., 2011 ; Bengtsson et al., 2009 ; Chen et al., 2008 ; Grahn and

rett, 2007 ), the authors proposed that the supplementary motor area

SMA) is the key structure responsible for this cyclic sensorimotor

rocess, working as interface between auditory pathways and motor

reas. 

For the sake of completeness, we provide as Supplementary material

 the grand-average activation timeseries for perceptual and sensorimo-

or components during tempo changes, to give a visual impression of

he evoked responses in the signal from which ERFAs were computed.

lthough our task was not designed for ERPs, it is still noteworthy to

ee that there is no visible pattern of evoked responses expected by the

timulation rates. Additionally, we compared in a series of simulations

RFAs produced by an oscillatory model and ERFAs produced by an

lternative model of evoked responses (see Supplementary material 3 ).

verall, the ERFAs computed from oscillations appear to be more ro-

ust to varying levels of noise and are still reliable in conditions of poor

ignal-to-noise ratio, which better approximates the reality of signals

ecorded with EEG. Given all the above, we argue that the parabolic

RFAs observed in Fig. 3A and B are better explained by an oscillatory

odel, as compared to evoked responses passively tracking changes in

timulation rate. 

For phase shifts, the asymmetry across directions was more radical:

n response to negative perturbations, the sensorimotor ERFA showed a

radual transition towards higher frequency ( Fig. 3E ). Given this class

f perturbation was more localized in time and more prominent than a

ustained − 10% tempo change, it may be less demanding for the brain

o gradually speed up an entrained oscillation and catch up with the

eat over some cycles, rather than suddenly slowing down to track the

ynamic of a phase shift. Evidence from neuropathology supports the

dea that a bias for faster tempi is a feature in healthy adult population,

hich can be impaired by lesions in the cerebellum. When such struc-

ure, critical for event-based timing ( Schwartze et al., 2016 ), is compro-

ised, high stimulation rate becomes detrimental for the neural track-

ng of the beat as quantified by frequency tagging ( Nozaradan et al.,

017 ), while a case study suggests that behavioral synchronization im-

roves when stimulation rate is below the spontaneous rate of move-

ent ( Moumdjian et al., 2022 ). Another observation in favor of the en-

rainment of sensory rhythms is the fact that, while perceptual ERFAs

o tempo changes exhibit a certain degree of curvature ( Fig. 3A ), they
10 
re flat in response to phase shifts ( Fig. 3D ). Endogenous oscillations

ould in fact need several cycles to entrain, a condition that is met with

ustained tempo changes. 

Finally, the topography of the perceptual component ( Fig. 2 )

oes not resemble the fronto-central cluster expected from auditory

voked responses ( Nozaradan et al., 2011 ; Nozaradan et al., 2012 ;

ozaradan et al., 2015 ). We observed instead a more distributed pat-

ern, whose activation was considerably weak compared to the senso-

imotor component. Active motor engagement resulted once again in

n additive effect, with maximal left centro-parietal activation as pre-

iously reported during finger-tapping performed with the right hand

 Rosso et al., 2021 ). Although, in line with recent research ( Kliger Am-

ani and Zion Golumbic, 2022 ; Cheng et al., 2022 ), the evidence hereby

rovided points at a special influence of the motor system on neural

ntrainment, we cannot rule out that the differences observed across

omponents may be partly explained by improved signal-to-noise ratio

n the sensorimotor component. Furthermore, we do not know whether

he same neural adjustments would have been observed in the absence

f the motor requirement of the finger-tapping task, and to what degree.

e emphasize the need for future research to expand on the present ex-

erimental design and better address the role of motor involvement in

eural entrainment. 

Alongside the neural ERFAs discussed so far, we also analyzed be-

avioral ERFAs as the change in the instantaneous frequency of finger-

apping during overt error correction responses to perturbations. We

bserved highly consistent dynamics at the group level, but also some

egree of interindividual variability in response to phase shifts, show-

ng that some participants adopted different strategies to correct the

ynchronization error by deviating from the stimulus dynamic. The sys-

ematic classification of such strategies is out of the scope of this paper.

daptation to tempo changes accurately tracked the stimulus dynamics,

nd results were consistent with the reported neural responses: a signifi-

ant difference in average frequency and parabolic curvature was found

n both positive and negative perturbations as compared to the baseline.

hen testing the two directions at post-hoc comparisons, no significant

ifferences were found in the dynamics of the behavioral responses. As

or the adaptation to phase shifts, participants adapted as expected in

oth directions. Although no significant difference in the entity of the

orrection across directions was found, a test on the reaction times re-

ealed that participants were significantly faster in adapting to negative

hase shifts (perceived as a longer inter-beat interval). 

A strength of ERFA to be highlighted is that it provides an overarch-

ng analysis framework for signals of different nature. The temporal dy-

amics of rhythmic stimulation, behavioral responses and electrophysi-

logical signals were all processed in terms of instantaneous frequency,

llowing direct comparisons across different measurements. In the par-

icular case of finger-tapping, data were processed modeling rhythmic

ehavior as an oscillator ( Rosso et al., 2021 ; Heggli et al., 2019 ), congru-

ntly with a neural oscillatory framework. ERFAs were also comparable

cross perturbation types, namely tempo changes and phase shifts. De-

pite the discussion on different cognitive mechanisms underlying phase

nd tempo corrections ( Repp, 2001 ; Repp and Keller, 2004 ), from a sig-

al processing perspective they can be operationalized as the same phe-

omenon on different timescales, expressed in the same unit of mea-

ure. Instantaneous frequency was in fact computed entirely based on

he rate of change of an oscillation’s phase, and its expression in Hz

nits is just a matter of re-scaling ( Cohen, 2014 ). Phase information is

eeded for estimating changes in frequency, and is a necessary condition

or operationalizing entrainment according to its fundamental definition

 Rajendran and Schnupp, 2019 ). 

Our work was mainly focused on oscillatory dynamics recorded with

EG. Despite the constraints of the poor spatial resolution and low

ignal-to-noise ratio characterizing the technique, we address the im-

ortance of applying our experimental paradigm and metric in popula-

ions affected by neurological deficits, to generate testable predictions

n the functional role of neuroanatomical structures compromised by
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he pathology ( Cannon and Patel, 2021 ). Furthermore, future research

ay deploy the paradigm with magnetoencephalography or intracranial

ecordings, to investigate entrained activity in cortical and subcortical

natomical structure during sensorimotor synchronization. 

. Conclusions 

The major methodological contribution of our work consisted of a

aradigm and a measure for investigating neural entrainment in human

articipants, optimized for non-invasive electrophysiological record-

ngs. By perturbing isochronous auditory metronomes in tempo and

hase during a finger-tapping task, we induced behavioral synchroniza-

ion errors and showed that oscillatory neural components dynamically

djusted their frequency to stimulus changes during error correction re-

ponses. By means of spatial filters design, we were able to disentangle

erceptual and sensorimotor oscillatory components from the multivari-

te EEG signal, revealing that active engagement of the motor system en-

anced neural entrainment. This evidence, along with clues of intrinsic

rain dynamics not explicable by bottom-up processing of the stimuli,

trongly suggests that actual neural entrainment underlies tracking and

ensorimotor synchronization to dynamic auditory rhythms. In addition

o these fundamental findings, ERFA proved to be a sensitive measure of

eural entrainment, reflecting an oscillatory model of brain functioning

hile mitigating the influence of bottom-up evoked responses. 
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