Physics in Medicine & Biology

IPEM

Institute of Physics and
Engineering in Medicine

PAPER « OPEN ACCESS

A deep-learning assisted bioluminescence
tomography method to enable radiation targeting

in rat glioblastoma

To cite this article: Behzad Rezaeifar et al 2023 Phys. Med. Biol. 68 155013

View the article online for updates and enhancements.

You may also like

- Fabrication and characterization of

ferroelectric-gate thin-film transistors with
an amorphous oxide semiconductor
amorphous In-Ga—-Zn-0

Ken-ichi Haga and Eisuke Tokumitsu

- ABPO-TVSCAD: alternating Bregman

proximity operators approach based on
TVSCAD reqularization for

bioluminescence tomography
Yi Chen, Mengfei Du, Weitong Li et al.

- Multi-modal molecular diffuse optical

tomography system for small animal
imaging

James A Guggenheim, Hector R A Basevi,
Jon Frampton et al.

This content was downloaded from IP address 193.190.2.252 on 28/08/2023 at 09:34



10P Publishing

® CrossMark

OPENACCESS

RECEIVED
9March 2023

REVISED
12 June 2023

ACCEPTED FOR PUBLICATION
29]June 2023

PUBLISHED
24 July 2023

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Phys. Med. Biol. 68 (2023) 155013 https://doi.org/10.1088/1361-6560/ace308

Physics in Medicine & Biology IPEM

Institute of Physics and
Engineering in Medicine

PAPER

A deep-learning assisted bioluminescence tomography method to
enable radiation targeting in rat glioblastoma

Behzad Rezaeifar* @, Cecile ] A Wolfs' ©, Natasja G Lieuwes’, Rianne Biemans’, Brigitte Reniers™*®,
Ludwig ] Dubois™*® and Frank Verhaegen'**

1

Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Centre,
Maastricht, The Netherlands

Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium

The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The
Netherlands

Senior authors with equal contribution.

Author to whom any correspondence should be addressed.

w

4

E-mail: frank.verhaegen@maastro.nl

Keywords: small animal precision radiotherapy, bioluminescence tomography reconstruction, deep learning, 3D convolutional neural
network, Monte Carlo simulation

Supplementary material for this article is available online

Abstract

Objective. A novel solution is required for accurate 3D bioluminescence tomography (BLT) based
glioblastoma (GBM) targeting. The provided solution should be computationally efficient to support
real-time treatment planning, thus reducing the x-ray imaging dose imposed by high-resolution micro
cone-beam CT. Approach. A novel deep-learning approach is developed to enable BLT-based tumor
targeting and treatment planning for orthotopic rat GBM models. The proposed framework is trained
and validated on a set of realistic Monte Carlo simulations. Finally, the trained deep learning model is
tested on a limited set of BLI measurements of real rat GBM models. Significance. Bioluminescence
imaging (BLI) is a 2D non-invasive optical imaging modality geared toward preclinical cancer research.
It can be used to monitor tumor growth in small animal tumor models effectively and without radiation
burden. However, the current state-of-the-art does not allow accurate radiation treatment planning
using BLI, hence limiting BLI’s value in preclinical radiobiology research. Results. The proposed
solution can achieve sub-millimeter targeting accuracy on the simulated dataset, with a median dice
similarity coefficient (DSC) of 61%. The provided BLT-based planning volume achieves a median
encapsulation of more than 97% of the tumor while keeping the median geometrical brain coverage
below 4.2%. For the real BLI measurements, the proposed solution provided median geometrical
tumor coverage of 95% and a median DSC 0f42%. Dose planning using a dedicated small animal
treatment planning system indicated good BLT-based treatment planning accuracy compared to
ground-truth CT-based planning, where dose-volume metrics for the tumor fall within the limit of
agreement for more than 95% of cases. Conclusion. The combination of flexibility, accuracy, and speed
of the deep learning solutions make them a viable option for the BLT reconstruction problem and can
provide BLT-based tumor targeting for the rat GBM models.

1. Introduction

In the past decades, image-guided small animal precision irradiation systems have found their way into the
preclinical cancer research (Brown et al 2022, Verhaegen et al 2023). These systems mainly use micro cone-beam
computed tomography (CBCT) as their primary image guidance and allow clinically relevant conformal
irradiation for small animals. However, to visualize small tumors with high spatial resolution, it is often necessary to
increase the x-ray imaging dose in these systems. In general, a voxel size of approximately 100 ym is required to
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visualize the anatomical structures of rats or mice. Achieving such a high resolution usually imposes high imaging
x-ray doses in the range of 10-100 cGy to the animal (Verhaegen et al 2011, Vaniqui etal 2017). Native xCBCT
images, without the use of contrast media, result in poor imaging contrast, especially for preclinical glioblastoma
(GBM). Hence, contrast-enhanced CBCT (CE-CBCT) is often employed to improve tumor visualization
(Yahyanejad et al 2014, Mowday et al 2020, Stegen et al 2020). The accumulated x-ray imaging radiation dose limits
the number of imaging sessions within a longitudinal study and therefore hinders effective preclinical research.

Bioluminescence imaging (BLI) has been introduced as an alternative to other functional imaging
modalities, such as positron emission tomography (PET). BLI allows functional tumor imaging without any
radiation burden for the animal. In addition, it often constitutes a cheaper functional imaging solution without
any background noise. Hence, recently BLI has become a very attractive imaging modality for small animal
preclinical cancer research.

However, at the time of this publication, most commercially available systems do not fully utilize BLI-based
targeting and irradiation possibilities (Verhaegen et al 2018). This is mainly due to the lack of 3D information
based on 2D bioluminescence images. Many groups, including ours, have tried various solutions to tackle the
bioluminescence tomography (BLT) reconstruction problem (Deng et al 2020, 2022, Rapic et al 2022, Rezaeifar
etal2022).

In contrast to other mathematically-driven solutions (Dehghani et al 2018, Deng et al 2020, 2022, Rapic
etal2022), our efforts have mainly been focused on deep learning (DL) based solutions. Previously, we
proposed a 3D convolutional neural network (CNN) to predict the tumor’s center of mass (CoM) and to
construct a spherical volume around the CoM as the targeting volume (Rezaeifar et al 2022). Although the
CoM-based method provides an effective solution to enable DL-assisted BLI-based tumor targeting in
preclinical practice, it has several shortcomings due to its simplified spherical targeting geometry. In this
paper, anovel artificial intelligence (AI) based algorithm is developed to predict the 3D shape and location of
the tumor for rat GBM models. The proposed solution relies on a 3D ResNet architecture adopted from the
RatLesNet model, originally developed by Valverde et al (2020) for lesion detection in rodent magnetic
resonance images (MRI). Furthermore, the proposed solution employs Monte Carlo simulations (MCS) to
provide a realistic training database for the DL model as an alternative to alarge set of acquired images. The
performance of the trained model is then evaluated on the MCS database and a smaller set of real measured
BLI using a variety of objective quality metrics, such as dice similarity coefficient, geometrical convergence
metrics, and dose-volume metrics.

2. Materials and methods

2.1. Problem formulation

To solve the BLT reconstruction problem, an accurate model of optical light propagation in the biological tissue
is needed. The diffusion approximation (DA) of the radiative transport equation is the most commonly used
forward model in the literature. Following the notation used by He et al (2010), the DA is expressed as

—V.D@)VE([T) + p,(n)@(r) = Sx) (r € W), ()]

[where D is the optical diffusion coefficient depending on the 3D position r € R?inside the region of interest (2,
® represents the photon density (Watt mm ) and S denotes the power density of the internally located light
source (Watt mm ). Furthermore, the optical diffusion coefficient is defined as D(r) = 1/3(p/(r) + 1, (1)),
where 1, and j', are the absorption and reduced scattering coefficients (mm ).

The DA equation is solved using the following Robin boundary condition:

D(r) + 2A(r; n, ”)D(x)(v(r).VO(r)) = 0(r € 90), 2)
where A(r; n, n’) represent the boundary mismatch resulting from the two different refractive indexes at the
boundary, and v is the unit outer normal at the boundary 0.

Once this forward model is properly solved using the finite element method (FEM), the DA equation can be
reduced to the following discretized linear equation:
M® = FS, (€)
where M and F are positive system matrices resulting from FEM. Equation (3) can be rewritten as:
® = M'FS = AS. 4

Most mathematically derived approaches then define a cost function with a specific regularization term and
attempt to locate the optimal light source by minimizing this cost function. In this paper, however, following the
same notation, the BLT reconstruction inverse problem can be expressed as

S = FYd). (5)
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Figure 1. Overview of the proposed DL-based framework for the BLT reconstruction problem: the raw Monte Carlo (MC) output and
bioluminescence skin fluence (BSF) overlaid on top of the CT scan in the second box just for visualization.

In equation (5), F~!isanonlinear function that links the measured photon flux to the corresponding source,
resulting from the solution to the inverse problem.

It has been proven that the BLT reconstruction problem is highly ill-posed (Gao et al 2018). Often various
prior information or regularization methods are utilized to decrease the ill-posedness of the problem. In this
paper, a DL model is used to directly learn a novel solution for S based on the best fit to the observations.
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Figure 2. Different Materials in the MCS: the brain optical properties are extracted from Mesradi et al (2013), The skull optical
properties from Soleimanzad et al (2017). Everything other than that, i.e. body and air, are assigned to water and air.
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Figure 3. Graphical representation of the 9-fold cross-validation method used in this study: in each fold (other than the last one) five
samples are reserved for test and the rest are shuffled into five validation and 32 training samples.

Following the notation of (Weinan et al 2020), the output of a multi-layered DL model can be expressed as:

&L & N < 0
Y= g(x) = Z WiLH Z WiLiL-lH -H Z Wi H Z WiigXio > (6)
=0 i_1=0 i1=0 ip=0
where W,ﬁ i with k € [0, L]are the weights of the network in different layers. Furthermore, x;, indicates the

input of the DL model, i.e. bioluminescence surface photon count. The activation function H is an arbitrary
nonlinear function that gives the DL model further degrees of freedom in modeling nonlinear phenomena. In
this notation, the bias term in each layer is generalized as a weight.

DL models can be considered as universal function approximators and thus if the DL model is designed and
trained properly, it can learn a mathematical model %, in equation (6), that best fits the provided data and, in
theory, can be an estimation for 7! in equation (5). Figure 1 depicts the overview of the DL-based proposed
framework in this paper to solve the BLT inverse problem.
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2.2.Monte Carlo simulations

MCS is considered the gold standard for photon transport simulations and can provide more accurate ground-
truth data for the Al model than other analytical model counterparts. Therefore, due to the lack of a considerable
amount of ground-truth labeled BLI measurements (which is a common problem in biological experiments), a
larger database of MCS is generated and utilized to train and validate the Al model.

To build the MC database representative of the real GBM BLI measurements, a database of CE-CBCT images
of real GBM is employed. This database, hereinafter called the F98 database, consists of 57 cases with CE-CBCT
images of an orthotopic F98 rat GBM animal model, imaged at several time points in our previous work
(Mowday et al 2020). Each of the cases within the F98 database further includes hand-delineated contours for
normal brain and tumor tissue by a trained biologist. In addition to these contours, two separate thresholds are
applied to the mass density image, obtained from the original CE-CBCT, to generate bone and air masks. The
resulting contours are combined to create the MCS geometry, as shown in figure 2 and explained in our previous
publication (Rezaeifar ef al 2022) in more detail. The hand-delineated tumor contour is then used to constitute a
uniformly and isotropically-emitting light source with a similar light emission spectrum to the firefly luciferase
light emerging from the tumor. In other words, in this study, substructures within the tumor, such as necrotic
and hypoxic regions, are ignored. Therefore, the uniformly emitting tumor approximates the real emission of
the bioluminescence-enabled tumor.

The simulation geometry and the light-emitting source are presented to the MCS engine, namely the Geant4
application for tomographic emission (GATE) (Cuplov ef al 2014). In this study, various wavelength-dependent
optical properties are assigned to each tissue in the MCS geometry. These properties included a tissue-dependent
absorption and scattering coefficient, presented in figure 3 of our previous work (Rezaeifar et al 2022), which was
obtained from previous work (Zhao et al 2005, Mesradi et al 2013, Soleimanzad et al 2017). Furthermore, two
simplifications are included in the MCS: (a) tumor tissue has the same optical properties as the brain tissue, and
(b) everything other than the brain, air, skull, and the tumor is considered water since its contribution to the
simulation output is negligible. The water regions account for the small regions in the medial longitudinal
fissure, the space between the brain and the skull, and the rest of the soft tissue in the head and neck region. As
shown in figure 2, the aforementioned water-equivalent region is either filled with cerebrospinal fluid, which has
similar optical properties to water or located far from the relevant scoring region of interest, which causes its
optical properties to be insignificant.

The MCS output is scored using the GATE fluence actor which tracks photons entering or exiting a specified
geometry. In a voxelized geometry, such as the one used in this study, the fluence actor registers the photons
passing through each individual voxel and saves them as a raw 3D image volume. Furthermore, the constant
number of emitted photons per unit volume, i.e. voxels inside the tumor volume, is set to provide an average
statistical simulation uncertainty below 0.2% for an average-sized tumor.

2.3.Deep learning solution

2.3.1. Pre-processing of the MCS output

Two main pre-processing steps are considered to create the training database from the MCS output: (a)
converting the raw 3D MCS output to the 3D bioluminescence skin fluence (BSF) by applying the corresponding
skin mask and (b) normalizing the BSF data.

As mentioned previously, raw MCS output includes the resulting photon count at every voxel in the
voxelized geometry. To consider only the MCS output for voxels visible to the camera, and thus creating the
subsequent BSF, a skin mask is constituted based on the original CT scan and the location of a hypothetical
camera. This is done by a three-step process: (a) obtaining an air mask from the original CT image by using a
constant HU threshold, (b) computing an approximate skin contour by applying morphological operators to the
air mask and (c) removing any unwanted voxels that are not visible to the camera such as voxels located in the
inner part of ears using a simplified ray-tracing algorithm. The location of a hypothetical rotating camera used in
this study corresponds to the commercially available small animal irradiating platform (X-RAD 225Cx,
Precision x-ray Inc., North Branford, CT, USA). Furthermore, a set of five camera viewing angles is considered,
based on real animal experiments, to obtain the visible skin voxels. Details of the algorithm used for computing
the skin mask can be found in supplementary materials, sub-section S1.

Once the BSF is obtained for every case in the MCS database, the volumetric images are normalized in both
intensity and size. Intensity normalization is performed by normalizing the volumetric images to have a median
of zero and a standard deviation of one. In addition to the intensity normalizers, all the volumetric images in the
database are moved to a fixed input grid of 375 x 450 x 375 voxels, by padding or cropping the original input, to
have equal image dimensions required by the DL algorithm. Thereafter, all the samples in the database are
down-scaled to a smaller 250 x 300 x 250 volume to minimize the GPU memory needed for training.

5
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2.3.2. Training and validation of the Al model

In this study, a previously developed fully convolutional neural network architecture, namely RatLesNet
(Valverde et al 2020), is employed to solve the BLT reconstruction problem. The RatLesNet model was originally
developed to segment small brain lesions in rodent magnetic resonance images (MRI). Therefore, it is a suitable
candidate for the BLT reconstruction problem since the final aim of the current study is also the segmentation of
small tumors from 3D BSF images. Furthermore, an automatic hyperparameter optimization algorithm
(Optuna, Akiba et al 2019) is used to obtain the best set of hyperparameters by solving an optimization problem
that samples hyperparameters from a pre-defined search space using the tree-structured Parzen estimator
algorithm (Bergstra et al 2011). The hyperparameters included in the search space consist of the number of filters
in convolutional layers, loss function, and the optimization algorithm. Hence, the original architecture of the
RatLesNet is kept intact. More details on the hyperparameter optimization and the search space for each
hyperparameter are shown in supplementary materials, supplementary table 1.

An exclusion criterion based on the tumor volume is defined removing tumors smaller than 10 mm?>,
reducing the total number of MCS samples to 42 cases. This is due to the fact that such a small tumor: (a) requires
collimated beams smaller than 3 mm for targeting, which will increase the dose delivery uncertainty, (b) emits
fewer bioluminescence photons, and (c) cause additional challenges for the DL model due to high level of class
imbalance in the prediction image.

Once the exclusion criteria are applied and the optimal set of hyperparameters is obtained, the remaining
MCS database is shuffled randomly and divided into different subsets for training, validation, and test. A 9-fold
cross-validation algorithm is used to train, validate and test the model on all the cases in the database. In other
words, as shown in figure 3, for each fold five cases (12% of total samples) are reserved for testing and five more
for validation. The rest of the samples are used to train the model. During the training phase, one DL model is
trained for each fold using the training and validation set, keeping the test set unobserved. This results in nine
distinct trained models for each fold and allows the model to be tested on all 42 cases using the corresponding
fold in which the specific case is in the test database.

2.4. Robustness evaluation using synthetic cases

A set of 42 cases is artificially generated to evaluate the robustness of the proposed deep-learning solution for
cases outside the initial training distribution and quantify the performance gain upon retraining the network
with newly added samples. The synthetic case database includes randomly augmented tumor shapes inside
randomly selected rat MCS geometry, placed in either (a) a random location in the brain or (b) near the center of
mass of the original tumor with respect to the selected MCS geometry. These two categories of synthetic cases are
further complemented with cases where the original tumor for the selected MCS geometry is either replaced by
(c) the predicted tumor by the proposed deep-learning solution for the same case or (d) one of the two flat
tumors in the F98 database. Therefore, each of the categories represents a true out-of-distribution (OOD)
scenario. For example, category (a) represents cases where differently shaped tumors are implanted in
anatomical locations far from the standard implantation site in the F98 database. In contrast, categories (b) and
(c) represent cases where new variations of tumor shapes are located around the same implantation site.

Once the MCS geometry for the synthetic cases is obtained, a fast MCS is performed for each case with fewer
photons per unit volume of tumors. This also enables the investigation of the model’s sensitivity with respect to
the statistical noise in the MCS output. Thereafter, the same pre-processing steps, introduced in section 2.3.1,
are applied, and a new synthetic case database is generated. The synthetic case database is then utilized in two
scenarios: (a) as the test data for the network trained with original F98 cases to establish robustness against new
cases, and (b) added to the training data to obtain the performance gain when the model observes such OOD
cases. For scenario (a), where the synthetic cases are used as test data without further training, all nine models
obtained from the 9-fold cross-validation are utilized, and the final prediction is considered as the result of the
majority voting of all models.

2.5. Geometrical evaluation
To quantify the model’s absolute performance, the BLT problem is considered analogous to the auto-contouring
problem (Lappas et al 2022). This is possible by converting the raw prediction output of the Al model for the
location of the photon source to a binary mask using a pre-defined constant threshold. Hence, segmentation
quality evaluation metrics, consisting of ACoM, dice similarity coefficient (DSC), and a set of geometrical
coverage scores are used to evaluate this aspect of the solution.

DSC s defined as the ratio of the overlapping region between the two contours, the ground-truth tumor and
the predicted BLT source, and the overall volume covered by both contours:

6
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BLT-based planning

CT-based planning

Figure 4. Treatment planning visualization using two anterior/posterior parallel opposed circular beams around specific isocenter: in
(a)—(c) the isocenter is located in the center of the BLI-based tumor prediction (bGTV) while (e)—(g) depicts the CT-based tumor
(cGTV)and its associated planning. In both cases, doses are scored at the brain, cGTV and bGTV.

2TP

DSC= ——M,
2TP + FN + FP

Where TP (True Positive) is the overlap region between the ground-truth tumor contour and the predicted BLT
source, FP (False Positive) is the part of the predicted BLT source which is not in the ground truth, and FN (False
Negative) is the missing part of the ground truth in the BLT predictions. ACoM, on the other hand, quantitively
measures the Euclidean distance between the centers of mass of the predicted BLT source and the ground-truth
tumor contour.

The output of the RatLesNet is the binary 3D BLT source prediction and can be considered as the BLI-based
gross tumor volume (bGTV). In this paper, a 3D uniform margin is added to the bGTV to construct the BLI-
based planning target volume (bPTV). The size of the added margin is optimized using the MCS database. More
details are provided in supplementary material, section S3. Furthermore, healthy brain tissue is computed by
subtracting the CT-based gross tumor volume (cGTV) from the brain contour used in the MCS.

Thereafter, geometrical coverage scores for corresponding tissues are computed as the percentage of tissue
that falls within the bPTV with respect to the total volume of the tissue

volume(bPTV N tissue) y
volume(tissue)

Ctissue -

100.

Therefore, the ideal results will be Cyymor = 100% and Cprain = 0%, meaning that the predicted BLT-based
planning volume includes all the tumor tissue while not targeting any normal brain tissue. However, in practice,
this is not feasible with external radiation beams traversing the brain and often the added margin will impose
normal tissue coverage intentionally to avoid tumor recurrence.

2.6. BLT-based irradiation planning evaluation

Another important aspect of the BLI-based tumor predictions is the evaluation of irradiation planning with
photon beams. Therefore, a set of dose metrics are used to evaluate the BLI-based tumor irradiation, including
dose-volume metrics (DVM) and dose-volume histograms (DVH) for each tissue. Here, in order to avoid
uncertainties in margin selection in small animal radiotherapy, conformal radiation treatment delivery plans are
made based on the cGTV or on the bGTV by two independent observers using the small animal radiotherapy

7
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treatment planning software (SmART-ATP version 2.0, SmART Scientific Solutions B.V., Maastricht,
Netherlands). In other words, no additional margin, other than the imposed margin by choosing a circular
collimator, chosen from areal set of available collimators with diameters of 1, 3, 5, 8, and 10 mm, is considered
for the treatment plans.

In routine preclinical practice, the objectives of the study determine the configuration of the beams in a case-
dependent manner. Therefore, biologists have to select proper beam configurations per case. However, to
normalize the beam configuration in this study, treatment plans are limited to two anterior/posterior parallel
opposed beams with the isocenter located at the center of the target volume. This beam configuration is chosen
based on the work of Mowday et al (2020), proving it to have the highest healthy tissue spearing effect. In each
case, as shown in figure 4, the isocenter and width of two parallel-opposed circular-collimated beams are selected
based on the ground truth cGTV or on the result of the proposed method, i.e. bGTV.

Photon dose calculations were done using the DOSXYZnrc Monte Carlo transport code (National Research
Council Canada) within SmART-ATP with a constant statistical dose uncertainty of 5% to the target volume.
The plans used 225 kVp x-rays (0.3 mm Cu filter) and were made to deliver 20 Gy to the isocenter located at the
center of the target volume in the brain.

Once the treatment planning is completed, a set of DVM is computed for each case. These metrics include:
(a) mean dose (Dyyean), and (b) dose to 95% (Dys) of the CT-delineated tumor and dose to 5% (Ds) of the brain
tissue. DVM for all the cases in the MCS database are presented in scatter plots, allowing quantitative comparison
between the reference CT-based plan and the resulting BLI-based plan. In addition to DVM, for a handful of
representative cases, the DVH is also presented.

2.7. Case study: real BLI measurements

To underline the performance of the novel method, developed using MC simulations, on real BLI
measurements, a set of 5 real BLI measurements from two animals are used. The 2D BLI readings are obtained
using the small animal radiotherapy unit equipped with a highly sensitive optical camera (iXon Ultra 897, Andor
Technology Ltd, Belfast, United Kingdom). Although the optical system is fitted with a filter wheel enabling
multispectral readings, the measurements used in this study are obtained using the open-filter option capturing
the full spectrum of bioluminescence emission. In addition to the tested cases, numerous BLI-CT pairs have
been acquired previously. However, the aforementioned data is not included in this study since the animals were
taken out of the cabinet in between the two scans and are prone to displacement errors.

Following the same implantation procedure explained previously (Mowday et al 2020), a total of 20 000
firefly luciferase-positive GBM tumor cells are slowly injected into the brain. At each time point within the study,
the animals are injected with both contrast-enhanced agents for CT (60 mg kg~ ' Omnipaque, GE Healthcare,
Eindhoven, Netherlands) and D-luciferin for BLI (150 mg kg_l, Perkin Elmer, Rotterdam, Netherlands),
according to the same protocol. Thereafter, animals are placed under isoflurane anesthesia and consecutive
CBCT and BLI scans of the skull are obtained without moving or relocating the animal. 2D BLI projections are
acquired at five angles (0°, +-30°, and £60°) with 60 s exposure time and an electrical gain of 5. Thereafter, the
2D projections are processed using the provided software (Pilot, version 1.18.5.2, Precision X-Ray, Inc.) to
obtain the 3D bioluminescence skin fluence (Weersink et al 2014). The output of the BLI is therefore saved as a
3D surface mesh where the BSF is expressed as an attribute for each node, which then is converted to a 3D
volumetric image on the fixed grid, used for DL model training, by triangulation of the mesh. The resulting 3D
BSFimage is dilated by a 3 x 3 x 3 structure element to increase the thickness of the skin and further resemble
the MC simulations.

The 3D BSF image for each of the five real cases is fed into the DL algorithm and the output prediction is
compared to the ground truth tumor mask provided by hand-delineating 3D CE-CBCT for the corresponding
case. The real BSF images are considered out-of-database samples for all the folds. Hence, allowing all different
models trained as part of the k-fold cross-validation method to be used, thus providing 9 different predictions
per case. Furthermore, the final output for the real BSF image results from majority voting on all different
predictions, enabling a more accurate result.

The prediction accuracy is then evaluated using DSC and ACoM, as explained in section 2.4. Furthermore,
the BLI-based planning quality is scored both using the DVM and DVH from SmART-ATP.

3. Results

3.1. Prediction evaluation on Monte Carlo simulations

Figure 5 includes the two segmentation quality metrics, namely ACoM and DSC. As shown in figures 5(a)—(b)
and further visualized in figure 7, the network prediction provides a good agreement with the ground truth with
amedian ACoM and DSC of 0.61 mm and 61%, respectively. Furthermore, the DL algorithm, on average,

8
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Figure 6. Geometrical coverage evaluation of the proposed solution: (a)—(b) depicts the optimization of the geometrical uniform
margin, and (c)—(d) visualizes the resulting geometrical tumor and brain coverage with 0.8 mm added margin. The red arrow in (a)—
(b) presents the selected margin, and the crosses illustrate outliers. The red dashed line in (c)—(d) shows the median value and two blue
squares in each figure represent the two samples with extremely flat tumors.

predicted a contour with ACoM 0f 0.69 £ 0.47 mm and DSC of 59 £ 17%. Therefore, the proposed DL
framework can infer the light source, i.e. tumor segmentation, from the surface photon count with sub-
millimeter accuracy.
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Figure 7. Visualization of the network prediction and the resulting dose planning in selected cases: (a) is the best DSC, (b), (c) represent
cases with average DSC, and (d), (e) depict the worst cases.

Figures 6(a)—(b) represents the effect of the added margin on the geometrical coverage scores. As can be seen,
with only 0.8 mm of uniform margin, the median tumor coverage score increases to more than 97% while
keeping the geometrical brain coverage below 5%. Therefore, 0.8 mm of uniformly added margin is considered
as the optimal margin and the resulting geometrical coverage scores are depicted in detail in figures 6(c)—(d). As
can be seen, the proposed solution on the median can achieve 97.4% geometrical tumor coverage and 4.2%
geometrical brain coverage, considering a 0.8 mm of uniformly added margin.

In this study, two of the samples within the database were extremely flat tumors seated near the edges of the
brain along the ventral-dorsal axis, as depicted with blue squares in figure 5 and visualized in figures 7(d), (e).
Such flat tumors were misclassified as deeper implanted tumors beneath the ground truth volume.

The resulting BLI-based treatment planning for representative MCS cases is presented in figure 7. As shown,
the provided BLI-based treatment planning is identical to the CT-based treatment planning in cases with high
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DSC (figure 7(a)). For cases with a median DSC, two different scenarios were observed: figure 7(b) represents
cases where the predicted bGTV is slightly bigger than the ground-truth ¢cGTV and figure 7(c) is a case with
median dice where the prediction is slightly smaller than the cGTV. As can be seen in the DVH plot for these
cases, both result in good BLI-based planning. Figure 7(b) resulted in full dose coverage for the tumor but a slight
increase in the healthy tissue, which is still acceptable. Figure 7(c), on the other hand, caused a reduced healthy
tissue dose with the cost of slightly less tumor coverage. Finally, for the cases with the lowest DSC, i.e. the two flat
tumors, the parallel opposed anterior-posterior treatment planning provides an acceptable plan compared to
the CT-based planning (figures 7(d), (e)) since the placement of the predicted bGTV is directly beneath the

actual tumor in the axial plane.
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Figure 10. Performance evaluation on 5 real BLI measurements of glioblastoma rat models using an X-RAD 225Cx irradiator: (a)—(b)
segmentation quality metrics per sample and k-fold model and the aggregated prediction by majority voting shown as a red ‘+” marker
(c)—(d) tumor and brain coverage of the aggregated predicted BLT source plus 0.7 mm margin.

Figure 8 shows the resulting DVM for the tumor and brain tissues. Since there is a considerable variation in
tumor sizes within the MCS database, different collimator sizes were needed to target the respective volumes in
each planning, ranging from 3 mm up to 10 mm circular beams. In most cases (shown with circles in figure 8),
the circular collimator used for BLI-based and CT-based plans are of the same sizes, which underlines the
similarity in the volume of cGTV and bGTV. Nevertheless, 25% of the database (shown with triangles in figure 8)
resulted in a larger BLI-based collimator than the CT-based collimator, because bGTV was larger than cGTV.
There were 22.5% of the total cases for which the bGTV was smaller than the cGTV and resulted in a smaller
collimator, shown in figure 8 with squares.

DSC, on the other hand, has aless descriptive role in the treatment planning outcome with regard to the
DVM for the tumor and brain. As can be seen in figure 8, some cases with average to high DSC scores did not
provide the prescribed mean dose to the tumor, either due to a smaller collimator or alarger ACoM error. On
the contrary, a number of cases with low DSC provided the prescribed mean dose to the tumor but at the expense
of ahigher mean dose to the brain tissue.

3.2.Robustness evaluation

The robustness of the proposed solution is measured against artificially generated samples with additional
variations outside the training database. As shown in figure 9, the proposed solution provides less accurate
predictions for OOD samples, i.e. samples with additional variations than those inside the training database.
Categories (d) and (a), namely flat and randomly located tumors, constitute the worst performance with a
median DSC of 24% and 30%, respectively. However, both categories also advantage from the highest
performance gain upon training, with a median DSC of 37% and 42%. The Category (b) cases, new tumor
shapes in the proximity of the original CoM, yield a median DSC of 46% before training and 53% after training.
Furthermore, the performance of Category (c) remained almost constant, with a median DSC of 68% in both
scenarios. Finally, the original MCS database, which was utilized in training without the new synthetic cases and
provided a median DSC of 61%, demonstrated a reduction in performance upon the new training and provided
amedian DSC of 55%.

12



10P Publishing

Phys. Med. Biol. 68 (2023) 155013 B Rezaeifar et al

Sagittal Coronal AVAE]

Volume (%)

Volume (%)

Volume (%)

Volume (%)

Volume (%)

10
Dose (Gy)

Contours
CT-based GTV (cGTV) CT-based GTV (cGTV)
BLI-based GTV (bGTV) BLI-based GTV (bGTV)
Overlap Region — Organ at risk (Brain) — e—

CT-based planning sssmm1
BLI-based planning s
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planning for each contour.

3.3. Case study: real BLI measurement

The performance evaluation of the proposed method on five different real BLI measurements is summarized in
figures 10(a)—(b). As shown in this figure, the overall performance of the proposed method is slightly reduced
when applying it to the real BLI measurements, with a median DSC of 42.4 + 14.8 percentand ACoM of 1.6 £+
0.4 mm. Furthermore, the coverage metrics for the real BLI measurements are visualized in figures 10(c)—(d),
underlining the agreement between the predicted BLT source and the ground truth tumor mask, with a median
geometrical tumor coverage of 95.1 & 11.2% and geometrical brain coverage of 7.5 £ 2.0%.
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The visualizations of the predictions are shown in figure 11 for the real BLI acquisitions underlining the
agreement between the predictions and the ground-truth tumor mask. As can be seen, in three of the total five
cases, BLI-based treatment planning provides identical results to CT-based planning. For the other two cases,
however, the dose to the tumor is slightly decreased when using BLI images, which can be compensated by
considering a margin around the BLI-based tumor prediction.

The DVM for the real BLI acquisitions are presented in figure 12. As shown, the proposed DL-based
framework provides good planning accuracy compared to ground-truth CT-based planning. Four of the five
cases resulted in nearly perfect agreement with the CT-based plans and only one of the cases (shown in
figure 11(a)) predicted a bigger BLI-based volume which necessitated use of a larger collimator.

4. Discussion

In this study, a novel deep-learning approach is developed to enable BLI-based irradiation planning for the GBM
orthotopic rat models. The proposed framework is a good candidate to facilitate BLI-based planning for other
kinds of tumor models, both in rats and mice, providing small-animal image-guided radiotherapy without
excess x-ray imaging dose on animals. This can be further studied and developed using the same framework, i.e.
by developing a suitable MC-based training database and training a similar deep-learning model.

The results of this study show the feasibility of BLI-based precision radiotherapy. The proposed deep-
learning algorithm works well in a large variety of simulated cases, with tumors ranging from 10-270 mm” in
size. Tumors smaller than 10 mm” were excluded from this study since they are too small to be targeted
accurately using the BLI signal.

The performance of the proposed method can be quantified in two distinct tasks: (a) tumor position
accuracy, and (b) tumor shape prediction accuracy. The proposed DL-based solution provided excellent sub-
millimeter accuracy for the tumor position. Despite this, the proposed method cannot fully capture the detailed
shape characteristics of a tumor and often provides a smoothed-out prediction compared to the ground-truth
tumor mask. In addition, the overly smoothed prediction is not necessarily a drawback of the proposed method
since it is often needed to add a margin to the ground-truth contours. The effect of the added margin and the
trade-off between the coverage and the excess treatment is presented in figures 6(a)—(b). As shown, a margin of
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0.8 mm provides the best trade-off between good tumor coverage and limited healthy tissue exposure in the
MCS database. Finally, most commercially available precision radiotherapy systems for small animals cannot
irradiate such small detailed shape variations conformally.

The proposed solution, with median DSC and ACoM of 61% and 0.61 mm, exceeds our previous
publication (Rezaeifar et al 2022), which used an Al solution to predict the tumor’s CoM. Specifically, the CoM
method provided median DSC and ACoM of 56% and 1.01 mm on the same database (excluding tumors below
10 mm?). The proposed solution is also superior to the mathematical solution in a similar GBM mouse model
(Xuetal2021). Xu et al reported an average DSC and ACoM of 55% and 0.62 mm, which is slightly lower than
the performance of the proposed solution. Nonetheless, Xu reported the results using real GBM mouse
experiments, while the proposed solution in this study is evaluated using the MCS database of rat experiments,
which makes a direct comparison between the two methods challenging.

The DVMs for the MCS database, shown in figure 8, reveal that the proposed DL-based solution can provide
acceptable tumor dose coverage for most cases while delivering a limited dose to the organ at risk. However, in
this study, no margin scheme is considered for planning. Therefore, both the cGTV and bGTV are considered
without added margin and only the imposed margins by the circular collimator of fixed sizes are considered.
Nevertheless, the effect of margins is investigated in the geometrical coverage evaluation, and it is likely to
assume that adding a treatment margin would control the spread in the tumor dose coverage with the cost of an
additional brain dose. In other words, the spread of points in figures 8(a), (b) below the identity line can be
avoided by including a proper margin. It is shown that a margin of 0.8 mm can increase the median geometrical
tumor coverage to 97%. Furthermore, the results suggest that using BLI-based collimators smaller than 8 mm
will increase the probability of delivering less dose to the tumor. Additionally, it is important to note that the
tested beam configuration might influence the dose coverage greatly. Although the parallel opposed beam
configuration is selected based on a previous study without any correlation to the proposed BLI-based solution,
the beam configuration seems to compensate for the BLI-based targeting error. This is especially apparent for
the real measurement cases where the displacement error in the anterior-posterior direction is mitigated by the
proposed beam configuration.

It is worth mentioning that in some of the cases, both in the MCS database and real BLI acquisitions, the
predicted bGTV slightly overlaps with the skull, as can be seen in figure 11(b). Such overlap will cause along flat
tail in the DVH due to the high dose in the bone when irradiating with 225 kV x-rays (when calculating dose-to-
medium-in-medium in Monte Carlo dose calculations). This can be easily removed in the post-processing steps
by automatically removing the skull from the bGTV and only considering overlapping regions with the brain.

The robustness analysis provided valuable insights about the proposed Al-based solution. The trained model
using the initial samples performs mediocre for OOD cases, especially flat tumors and tumors located at random
locations inside the brain. It is speculated that poor performance for randomly located tumors is most likely
related to the wrong location of the implantation drill hole with respect to the location of the synthetic tumor. In
other words, the trained network has observed an indirect effect of the punctured skull since most MCS
observations included such an effect as a hotspot in the BSF directly above the drill hole. Therefore, some of the
synthetic cases provided unrealistic and unfamiliar samples for which the tumors were not located directly below
the punctured location in the skull. In addition, another important observation from the robustness analysis is
the reduced performance on the original cases once the network is trained with the additional synthetic cases,
which again can be the result of unrealistic cases.

The performance of the proposed solution decreased slightly for a small set of real BLI measurements
compared to the MC simulated data. This is believed to be a direct outcome of the limitations of artificial
intelligence methods, such as the proposed algorithm, and their dependence on the quality of the training data.
Therefore, the trained model on the MC simulations struggles with the increased level of variations in the real
measurements. The provided normalization and preprocessing steps restricted the adverse effect of the
measurement noise on the predictions. In spite of this, a larger set of real BLI measurements is required to
enhance the model’s robustness and reduce uncertainties, especially for unseen samples.

The fully convolutional ResNet architecture enables more efficient use of limited hardware resources,
especially the GPU, compared to the fully-connected multi-layer perceptron counterparts. Furthermore, the
computational efficiency of the developed method is far superior to analytical models in the inference phase,
making the proposed method a viable option for real-time BLI-based treatment planning for small animals. The
proposed DL model, on the median, takes 532 + 6 ms to predict the 3D tumor contour on an NVIDIA RTX
A6000 GPU. This is of great importance for the small animal precision radiotherapy workflow since animals are
required to remain under anesthesia during the whole imaging, planning, and treatment workflow, which makes
rapid BLI reconstruction necessary.

The main drawback and challenge of the proposed deep-learning approach is the availability and quality of
the training database. Despite our best efforts to address this problem with a high-quality MC-simulated
database, the provided training database is considered small in the field of Al and can increase the probability of
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overfitting. This is frequently an issue for preclinical Al imaging applications. Although the proposed solution is
optimized to decrease the effect of such a small-sized training database on the predictions, the epistemic
uncertainty remains high, which specifies the performance of any machine-learning model in regard to out-of-
database samples.

The proposed solution does not fully exploit the current capabilities of the BLI and only relies on a time and
spectral-integrated acquisition. However, we believe that adding spectral information (using the available light
filters) in the form of either adding more input channels or an ensemble of Al models per spectrum can yield
better performance. In addition to multispectral-enabled Al, physics-informed deep-learning models are
another potential candidate for improving the outcomes of this study. These models can couple the flexibility of
the Al solutions with the explainability of physics models and provide a synergy between the two.

5. Conclusion

In this paper, a novel real-time DL solution is presented to accelerate the BLI-based treatment planning problem.
The proposed method can achieve good quality planning for the majority of the cases presented here, and
therefore demonstrates the proof of concept of using Al-based BLI volumetric reconstruction. However, this
study is just a starting point for the use of fully convolutional deep-learning approaches in this field, and like
many other deep-learning solutions, the quality of the proposed solution can be improved with more data
generated from similar studies, and from using other information derived from the BLI images such as multi-
spectral BLL.
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