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Abstract
Objective. A novel solution is required for accurate 3Dbioluminescence tomography (BLT) based
glioblastoma (GBM) targeting. The provided solution should be computationally efficient to support
real-time treatment planning, thus reducing the x-ray imaging dose imposed by high-resolutionmicro
cone-beamCT.Approach. A novel deep-learning approach is developed to enable BLT-based tumor
targeting and treatment planning for orthotopic rat GBMmodels. The proposed framework is trained
and validated on a set of realisticMonteCarlo simulations. Finally, the trained deep learningmodel is
tested on a limited set of BLImeasurements of real ratGBMmodels. Significance. Bioluminescence
imaging (BLI) is a 2Dnon-invasive optical imagingmodality geared towardpreclinical cancer research.
It can be used tomonitor tumor growth in small animal tumormodels effectively andwithout radiation
burden.However, the current state-of-the-art does not allowaccurate radiation treatment planning
usingBLI, hence limitingBLI’s value in preclinical radiobiology research.Results. The proposed
solution can achieve sub-millimeter targeting accuracy on the simulated dataset, with amediandice
similarity coefficient (DSC) of 61%.The providedBLT-based planning volume achieves amedian
encapsulation ofmore than97%of the tumorwhile keeping themedian geometrical brain coverage
below4.2%. For the real BLImeasurements, the proposed solutionprovidedmedian geometrical
tumor coverage of 95%and amedianDSCof 42%.Dose planningusing a dedicated small animal
treatment planning system indicated goodBLT-based treatment planning accuracy compared to
ground-truthCT-based planning, where dose-volumemetrics for the tumor fall within the limit of
agreement formore than 95%of cases.Conclusion. The combination offlexibility, accuracy, and speed
of the deep learning solutionsmake thema viable option for the BLT reconstructionproblem and can
provide BLT-based tumor targeting for the ratGBMmodels.

1. Introduction

In thepast decades, image-guided small animal precision irradiation systemshave found theirway into the
preclinical cancer research (Brown et al2022,Verhaegen et al 2023). These systemsmainlyusemicro cone-beam
computed tomography (μCBCT) as their primary image guidance and allow clinically relevant conformal
irradiation for small animals.However, to visualize small tumorswith high spatial resolution, it is often necessary to
increase the x-ray imaging dose in these systems. In general, a voxel size of approximately 100μmis required to
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visualize the anatomical structures of rats ormice. Achieving such ahigh resolutionusually imposes high imaging
x-ray doses in the rangeof 10–100 cGy to the animal (Verhaegen et al 2011,Vaniqui et al2017). NativeμCBCT
images,without theuse of contrastmedia, result inpoor imaging contrast, especially for preclinical glioblastoma
(GBM). Hence, contrast-enhancedCBCT (CE-CBCT) is often employed to improve tumor visualization
(Yahyanejad et al 2014,Mowday et al 2020, Stegen et al2020). The accumulated x-ray imaging radiationdose limits
the number of imaging sessionswithin a longitudinal study and therefore hinders effective preclinical research.

Bioluminescence imaging (BLI) has been introduced as an alternative to other functional imaging
modalities, such as positron emission tomography (PET). BLI allows functional tumor imagingwithout any
radiation burden for the animal. In addition, it often constitutes a cheaper functional imaging solutionwithout
any background noise.Hence, recently BLI has become a very attractive imagingmodality for small animal
preclinical cancer research.

However, at the timeof this publication,most commercially available systemsdonot fully utilize BLI-based
targeting and irradiationpossibilities (Verhaegen et al2018). This ismainly due to the lack of 3D information
based on2Dbioluminescence images.Many groups, including ours, have tried various solutions to tackle the
bioluminescence tomography (BLT) reconstructionproblem (Deng et al 2020, 2022, Rapic et al 2022, Rezaeifar
et al 2022).

In contrast to othermathematically-driven solutions (Dehghani et al 2018, Deng et al 2020, 2022, Rapic
et al 2022), our efforts havemainly been focused on deep learning (DL) based solutions. Previously, we
proposed a 3D convolutional neural network (CNN) to predict the tumor’s center ofmass (CoM) and to
construct a spherical volume around the CoMas the targeting volume (Rezaeifar et al 2022). Although the
CoM-basedmethod provides an effective solution to enable DL-assisted BLI-based tumor targeting in
preclinical practice, it has several shortcomings due to its simplified spherical targeting geometry. In this
paper, a novel artificial intelligence (AI) based algorithm is developed to predict the 3D shape and location of
the tumor for rat GBMmodels. The proposed solution relies on a 3DResNet architecture adopted from the
RatLesNetmodel, originally developed by Valverde et al (2020) for lesion detection in rodentmagnetic
resonance images (MRI). Furthermore, the proposed solution employsMonte Carlo simulations (MCS) to
provide a realistic training database for theDLmodel as an alternative to a large set of acquired images. The
performance of the trainedmodel is then evaluated on theMCS database and a smaller set of realmeasured
BLI using a variety of objective qualitymetrics, such as dice similarity coefficient, geometrical convergence
metrics, and dose-volumemetrics.

2.Materials andmethods

2.1. Problem formulation
To solve the BLT reconstruction problem, an accuratemodel of optical light propagation in the biological tissue
is needed. The diffusion approximation (DA) of the radiative transport equation is themost commonly used
forwardmodel in the literature. Following the notation used byHe et al (2010), theDA is expressed as

( ( ) ( )) ( ) ( ) ( ) ( ) ( )m- F + F = Î WD Sr r r r r r. , 1a

[whereD is the optical diffusion coefficient depending on the 3Dposition Î Rr 3 inside the region of interest W,
F represents the photon density (Wattmm–2) and S denotes the power density of the internally located light
source (Watt mm−3). Furthermore, the optical diffusion coefficient is defined as /( ) ( ( ) ( ))m m= ¢ +D r r r1 3 ,s a
where ma and m¢s are the absorption and reduced scattering coefficients (mm−1).

TheDA equation is solved using the following Robin boundary condition:

( ) ( ) ( )( ( ) ( )) ( ) ( )uF + ¢ F = Î ¶WA n n Dr r r r r r2 ; , . 0 , 2

where ( )¢A n nr; , represent the boundarymismatch resulting from the two different refractive indexes at the
boundary, and u is the unit outer normal at the boundary ¶.

Once this forwardmodel is properly solved using thefinite elementmethod (FEM), theDA equation can be
reduced to the following discretized linear equation:

( )F =M FS, 3

whereM andF are positive systemmatrices resulting fromFEM. Equation (3) can be rewritten as:

( )F = =-M FS AS. 41

Mostmathematically derived approaches then define a cost functionwith a specific regularization term and
attempt to locate the optimal light source byminimizing this cost function. In this paper, however, following the
same notation, the BLT reconstruction inverse problem can be expressed as

( ) ( )= F-S . 51

2

Phys.Med. Biol. 68 (2023) 155013 BRezaeifar et al



In equation (5), - 1 is a nonlinear function that links themeasured photon flux to the corresponding source,
resulting from the solution to the inverse problem.

It has been proven that the BLT reconstruction problem is highly ill-posed (Gao et al 2018). Often various
prior information or regularizationmethods are utilized to decrease the ill-posedness of the problem. In this
paper, a DLmodel is used to directly learn a novel solution for S based on the bestfit to the observations.

Figure 1.Overview of the proposedDL-based framework for the BLT reconstruction problem: the rawMonte Carlo (MC) output and
bioluminescence skin fluence (BSF) overlaid on top of theCT scan in the second box just for visualization.
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Following the notation of (Weinan et al 2020), the output of amulti-layeredDLmodel can be expressed as:
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with [ ]k L0, are theweights of the network in different layers. Furthermore, xi0
indicates the

input of theDLmodel, i.e. bioluminescence surface photon count. The activation function is an arbitrary
nonlinear function that gives theDLmodel further degrees of freedom inmodeling nonlinear phenomena. In
this notation, the bias term in each layer is generalized as aweight.

DLmodels can be considered as universal function approximators and thus if theDLmodel is designed and
trained properly, it can learn amathematicalmodel ,G in equation (6), that bestfits the provided data and, in
theory, can be an estimation for - 1 in equation (5). Figure 1 depicts the overview of theDL-based proposed
framework in this paper to solve the BLT inverse problem.

Figure 2.DifferentMaterials in theMCS: the brain optical properties are extracted fromMesradi et al (2013), The skull optical
properties fromSoleimanzad et al (2017). Everything other than that, i.e. body and air, are assigned towater and air.

Figure 3.Graphical representation of the 9-fold cross-validationmethod used in this study: in each fold (other than the last one)five
samples are reserved for test and the rest are shuffled into five validation and 32 training samples.
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2.2.MonteCarlo simulations
MCS is considered the gold standard for photon transport simulations and can providemore accurate ground-
truth data for the AImodel than other analyticalmodel counterparts. Therefore, due to the lack of a considerable
amount of ground-truth labeled BLImeasurements (which is a commonproblem in biological experiments), a
larger database ofMCS is generated and utilized to train and validate the AImodel.

To build theMCdatabase representative of the real GBMBLImeasurements, a database of CE-CBCT images
of real GBM is employed. This database, hereinafter called the F98 database, consists of 57 cases withCE-CBCT
images of an orthotopic F98 rat GBManimalmodel, imaged at several time points in our previous work
(Mowday et al 2020). Each of the cases within the F98 database further includes hand-delineated contours for
normal brain and tumor tissue by a trained biologist. In addition to these contours, two separate thresholds are
applied to themass density image, obtained from the original CE-CBCT, to generate bone and airmasks. The
resulting contours are combined to create theMCS geometry, as shown infigure 2 and explained in our previous
publication (Rezaeifar et al 2022) inmore detail. The hand-delineated tumor contour is then used to constitute a
uniformly and isotropically-emitting light sourcewith a similar light emission spectrum to the firefly luciferase
light emerging from the tumor. In otherwords, in this study, substructures within the tumor, such as necrotic
and hypoxic regions, are ignored. Therefore, the uniformly emitting tumor approximates the real emission of
the bioluminescence-enabled tumor.

The simulation geometry and the light-emitting source are presented to theMCS engine, namely theGeant4
application for tomographic emission (GATE) (Cuplov et al 2014). In this study, variouswavelength-dependent
optical properties are assigned to each tissue in theMCS geometry. These properties included a tissue-dependent
absorption and scattering coefficient, presented infigure 3 of our previous work (Rezaeifar et al 2022), whichwas
obtained fromprevious work (Zhao et al 2005,Mesradi et al 2013, Soleimanzad et al 2017). Furthermore, two
simplifications are included in theMCS: (a) tumor tissue has the same optical properties as the brain tissue, and
(b) everything other than the brain, air, skull, and the tumor is consideredwater since its contribution to the
simulation output is negligible. Thewater regions account for the small regions in themedial longitudinal
fissure, the space between the brain and the skull, and the rest of the soft tissue in the head and neck region. As
shown infigure 2, the aforementionedwater-equivalent region is either filledwith cerebrospinal fluid, which has
similar optical properties towater or located far from the relevant scoring region of interest, which causes its
optical properties to be insignificant.

TheMCS output is scored using theGATE fluence actor which tracks photons entering or exiting a specified
geometry. In a voxelized geometry, such as the one used in this study, the fluence actor registers the photons
passing through each individual voxel and saves them as a raw 3D image volume. Furthermore, the constant
number of emitted photons per unit volume, i.e. voxels inside the tumor volume, is set to provide an average
statistical simulation uncertainty below 0.2% for an average-sized tumor.

2.3.Deep learning solution
2.3.1. Pre-processing of theMCS output
Twomain pre-processing steps are considered to create the training database from theMCSoutput: (a)
converting the raw 3DMCS output to the 3Dbioluminescence skinfluence (BSF) by applying the corresponding
skinmask and (b)normalizing the BSF data.

Asmentioned previously, rawMCSoutput includes the resulting photon count at every voxel in the
voxelized geometry. To consider only theMCSoutput for voxels visible to the camera, and thus creating the
subsequent BSF, a skinmask is constituted based on the original CT scan and the location of a hypothetical
camera. This is done by a three-step process: (a) obtaining an airmask from the original CT image by using a
constantHU threshold, (b) computing an approximate skin contour by applyingmorphological operators to the
airmask and (c) removing any unwanted voxels that are not visible to the camera such as voxels located in the
inner part of ears using a simplified ray-tracing algorithm. The location of a hypothetical rotating camera used in
this study corresponds to the commercially available small animal irradiating platform (X-RAD225Cx,
Precision x-ray Inc., North Branford, CT,USA). Furthermore, a set offive camera viewing angles is considered,
based on real animal experiments, to obtain the visible skin voxels. Details of the algorithmused for computing
the skinmask can be found in supplementarymaterials, sub-section S1.

Once the BSF is obtained for every case in theMCSdatabase, the volumetric images are normalized in both
intensity and size. Intensity normalization is performed by normalizing the volumetric images to have amedian
of zero and a standard deviation of one. In addition to the intensity normalizers, all the volumetric images in the
database aremoved to afixed input grid of 375× 450× 375 voxels, by padding or cropping the original input, to
have equal image dimensions required by theDL algorithm. Thereafter, all the samples in the database are
down-scaled to a smaller 250× 300× 250 volume tominimize theGPUmemory needed for training.
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2.3.2. Training and validation of the AImodel
In this study, a previously developed fully convolutional neural network architecture, namely RatLesNet
(Valverde et al 2020), is employed to solve the BLT reconstruction problem. TheRatLesNetmodel was originally
developed to segment small brain lesions in rodentmagnetic resonance images (MRI). Therefore, it is a suitable
candidate for the BLT reconstruction problem since thefinal aimof the current study is also the segmentation of
small tumors from3DBSF images. Furthermore, an automatic hyperparameter optimization algorithm
(Optuna, Akiba et al 2019) is used to obtain the best set of hyperparameters by solving an optimization problem
that samples hyperparameters from a pre-defined search space using the tree-structured Parzen estimator
algorithm (Bergstra et al 2011). The hyperparameters included in the search space consist of the number offilters
in convolutional layers, loss function, and the optimization algorithm.Hence, the original architecture of the
RatLesNet is kept intact.More details on the hyperparameter optimization and the search space for each
hyperparameter are shown in supplementarymaterials, supplementary table 1.

An exclusion criterion based on the tumor volume is defined removing tumors smaller than 10mm3,
reducing the total number ofMCS samples to 42 cases. This is due to the fact that such a small tumor: (a) requires
collimated beams smaller than 3mm for targeting, whichwill increase the dose delivery uncertainty, (b) emits
fewer bioluminescence photons, and (c) cause additional challenges for theDLmodel due to high level of class
imbalance in the prediction image.

Once the exclusion criteria are applied and the optimal set of hyperparameters is obtained, the remaining
MCSdatabase is shuffled randomly and divided into different subsets for training, validation, and test. A 9-fold
cross-validation algorithm is used to train, validate and test themodel on all the cases in the database. In other
words, as shown in figure 3, for each foldfive cases (12%of total samples) are reserved for testing and fivemore
for validation. The rest of the samples are used to train themodel. During the training phase, oneDLmodel is
trained for each fold using the training and validation set, keeping the test set unobserved. This results in nine
distinct trainedmodels for each fold and allows themodel to be tested on all 42 cases using the corresponding
fold inwhich the specific case is in the test database.

2.4. Robustness evaluation using synthetic cases
A set of 42 cases is artificially generated to evaluate the robustness of the proposed deep-learning solution for
cases outside the initial training distribution and quantify the performance gain upon retraining the network
with newly added samples. The synthetic case database includes randomly augmented tumor shapes inside
randomly selected ratMCS geometry, placed in either (a) a random location in the brain or (b)near the center of
mass of the original tumorwith respect to the selectedMCS geometry. These two categories of synthetic cases are
further complementedwith cases where the original tumor for the selectedMCS geometry is either replaced by
(c) the predicted tumor by the proposed deep-learning solution for the same case or (d) one of the twoflat
tumors in the F98 database. Therefore, each of the categories represents a true out-of-distribution (OOD)
scenario. For example, category (a) represents cases where differently shaped tumors are implanted in
anatomical locations far from the standard implantation site in the F98 database. In contrast, categories (b) and
(c) represent cases where new variations of tumor shapes are located around the same implantation site.

Once theMCS geometry for the synthetic cases is obtained, a fastMCS is performed for each case with fewer
photons per unit volume of tumors. This also enables the investigation of themodel’s sensitivity with respect to
the statistical noise in theMCS output. Thereafter, the same pre-processing steps, introduced in section 2.3.1,
are applied, and a new synthetic case database is generated. The synthetic case database is then utilized in two
scenarios: (a) as the test data for the network trainedwith original F98 cases to establish robustness against new
cases, and (b) added to the training data to obtain the performance gainwhen themodel observes suchOOD
cases. For scenario (a), where the synthetic cases are used as test data without further training, all ninemodels
obtained from the 9-fold cross-validation are utilized, and the final prediction is considered as the result of the
majority voting of allmodels.

2.5. Geometrical evaluation
Toquantify themodel’s absolute performance, the BLTproblem is considered analogous to the auto-contouring
problem (Lappas et al 2022). This is possible by converting the rawprediction output of the AImodel for the
location of the photon source to a binarymask using a pre-defined constant threshold. Hence, segmentation
quality evaluationmetrics, consisting ofDCoM, dice similarity coefficient (DSC), and a set of geometrical
coverage scores are used to evaluate this aspect of the solution.

DSC is defined as the ratio of the overlapping region between the two contours, the ground-truth tumor and
the predicted BLT source, and the overall volume covered by both contours:
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=
+ +

DSC
2TP

2TP FN FP
,

Where TP (True Positive) is the overlap region between the ground-truth tumor contour and the predicted BLT
source, FP (False Positive) is the part of the predicted BLT sourcewhich is not in the ground truth, and FN (False
Negative) is themissing part of the ground truth in the BLTpredictions.DCoM, on the other hand, quantitively
measures the Euclidean distance between the centers ofmass of the predicted BLT source and the ground-truth
tumor contour.

The output of the RatLesNet is the binary 3DBLT source prediction and can be considered as the BLI-based
gross tumor volume (bGTV). In this paper, a 3Duniformmargin is added to the bGTV to construct the BLI-
based planning target volume (bPTV). The size of the addedmargin is optimized using theMCSdatabase.More
details are provided in supplementarymaterial, section S3. Furthermore, healthy brain tissue is computed by
subtracting theCT-based gross tumor volume (cGTV) from the brain contour used in theMCS.

Thereafter, geometrical coverage scores for corresponding tissues are computed as the percentage of tissue
that falls within the bPTVwith respect to the total volume of the tissue

( )
( )

=
Ç

´C
volume bPTV tissue

volume tissue
100.tissue

Therefore, the ideal results will be =C 100%tumor and =C 0%,brain meaning that the predicted BLT-based
planning volume includes all the tumor tissuewhile not targeting any normal brain tissue.However, in practice,
this is not feasible with external radiation beams traversing the brain and often the addedmarginwill impose
normal tissue coverage intentionally to avoid tumor recurrence.

2.6. BLT-based irradiation planning evaluation
Another important aspect of the BLI-based tumor predictions is the evaluation of irradiation planningwith
photon beams. Therefore, a set of dosemetrics are used to evaluate the BLI-based tumor irradiation, including
dose-volumemetrics (DVM) and dose-volume histograms (DVH) for each tissue.Here, in order to avoid
uncertainties inmargin selection in small animal radiotherapy, conformal radiation treatment delivery plans are
made based on the cGTVor on the bGTVby two independent observers using the small animal radiotherapy

Figure 4.Treatment planning visualization using two anterior/posterior parallel opposed circular beams around specific isocenter: in
(a)–(c) the isocenter is located in the center of the BLI-based tumor prediction (bGTV)while (e)–(g) depicts theCT-based tumor
(cGTV) and its associated planning. In both cases, doses are scored at the brain, cGTV andbGTV.
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treatment planning software (SmART-ATP version 2.0, SmART Scientific Solutions B.V.,Maastricht,
Netherlands). In other words, no additionalmargin, other than the imposedmargin by choosing a circular
collimator, chosen from a real set of available collimators with diameters of 1, 3, 5, 8, and 10mm, is considered
for the treatment plans.

In routine preclinical practice, the objectives of the study determine the configuration of the beams in a case-
dependentmanner. Therefore, biologists have to select proper beam configurations per case. However, to
normalize the beam configuration in this study, treatment plans are limited to two anterior/posterior parallel
opposed beamswith the isocenter located at the center of the target volume. This beam configuration is chosen
based on thework ofMowday et al (2020), proving it to have the highest healthy tissue spearing effect. In each
case, as shown infigure 4, the isocenter andwidth of two parallel-opposed circular-collimated beams are selected
based on the ground truth cGTVor on the result of the proposedmethod, i.e. bGTV.

Photon dose calculations were done using theDOSXYZnrcMonte Carlo transport code (National Research
Council Canada)within SmART-ATPwith a constant statistical dose uncertainty of 5% to the target volume.
The plans used 225 kVp x-rays (0.3mmCufilter) andweremade to deliver 20Gy to the isocenter located at the
center of the target volume in the brain.

Once the treatment planning is completed, a set ofDVM is computed for each case. Thesemetrics include:
(a)mean dose (Dmean), and (b) dose to 95% (D95) of theCT-delineated tumor and dose to 5% (D5) of the brain
tissue.DVMfor all the cases in theMCSdatabase are presented in scatter plots, allowing quantitative comparison
between the reference CT-based plan and the resulting BLI-based plan. In addition toDVM, for a handful of
representative cases, theDVH is also presented.

2.7. Case study: real BLImeasurements
Tounderline the performance of the novelmethod, developed usingMC simulations, on real BLI
measurements, a set of 5 real BLImeasurements from two animals are used. The 2DBLI readings are obtained
using the small animal radiotherapy unit equippedwith a highly sensitive optical camera (iXonUltra 897, Andor
Technology Ltd, Belfast, UnitedKingdom). Although the optical system isfittedwith afilter wheel enabling
multispectral readings, themeasurements used in this study are obtained using the open-filter option capturing
the full spectrumof bioluminescence emission. In addition to the tested cases, numerous BLI-CTpairs have
been acquired previously. However, the aforementioned data is not included in this study since the animals were
taken out of the cabinet in between the two scans and are prone to displacement errors.

Following the same implantation procedure explained previously (Mowday et al 2020), a total of 20 000
firefly luciferase-positive GBM tumor cells are slowly injected into the brain. At each time point within the study,
the animals are injectedwith both contrast-enhanced agents for CT (60 mg kg−1Omnipaque, GEHealthcare,
Eindhoven, Netherlands) andD-luciferin for BLI (150mg kg−1, Perkin Elmer, Rotterdam,Netherlands),
according to the same protocol. Thereafter, animals are placed under isoflurane anesthesia and consecutive
CBCT andBLI scans of the skull are obtainedwithoutmoving or relocating the animal. 2DBLI projections are
acquired atfive angles (0°,±30°, and±60°)with 60 s exposure time and an electrical gain of 5. Thereafter, the
2Dprojections are processed using the provided software (Pilot, version 1.18.5.2, PrecisionX-Ray, Inc.) to
obtain the 3Dbioluminescence skin fluence (Weersink et al 2014). The output of the BLI is therefore saved as a
3D surfacemeshwhere the BSF is expressed as an attribute for each node, which then is converted to a 3D
volumetric image on the fixed grid, used forDLmodel training, by triangulation of themesh. The resulting 3D
BSF image is dilated by a 3× 3× 3 structure element to increase the thickness of the skin and further resemble
theMC simulations.

The 3DBSF image for each of the five real cases is fed into theDL algorithm and the output prediction is
compared to the ground truth tumormask provided by hand-delineating 3DCE-CBCT for the corresponding
case. The real BSF images are considered out-of-database samples for all the folds. Hence, allowing all different
models trained as part of the k-fold cross-validationmethod to be used, thus providing 9 different predictions
per case. Furthermore, the final output for the real BSF image results frommajority voting on all different
predictions, enabling amore accurate result.

The prediction accuracy is then evaluated usingDSC andΔCoM, as explained in section 2.4. Furthermore,
the BLI-based planning quality is scored both using theDVMandDVH fromSmART-ATP.

3. Results

3.1. Prediction evaluation onMonteCarlo simulations
Figure 5 includes the two segmentation qualitymetrics, namelyΔCoMandDSC. As shown infigures 5(a)–(b)
and further visualized infigure 7, the network prediction provides a good agreement with the ground truthwith
amedianΔCoMandDSCof 0.61mmand 61%, respectively. Furthermore, theDL algorithm, on average,
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predicted a contour withΔCoMof 0.69± 0.47mmandDSCof 59± 17%. Therefore, the proposedDL
framework can infer the light source, i.e. tumor segmentation, from the surface photon count with sub-
millimeter accuracy.

Figure 5.Performance evaluation of the proposedmethod onMonte Carlo simulated database: (a) theDCoM evaluationmetric and
(b)DSCbetween the ground truthCT-based tumor and predicted BLI-based contour. The red dashed line shows themedian value
and two blue squares in eachfigure represent the two sampleswith extremely flat tumorswhich have been confused by the network for
a deeper,more spherical tumor, displayed infigure 7.

Figure 6.Geometrical coverage evaluation of the proposed solution: (a)–(b) depicts the optimization of the geometrical uniform
margin, and (c)–(d) visualizes the resulting geometrical tumor and brain coveragewith 0.8mmaddedmargin. The red arrow in (a)–
(b)presents the selectedmargin, and the crosses illustrate outliers. The red dashed line in (c)–(d) shows themedian value and two blue
squares in eachfigure represent the two samples with extremely flat tumors.
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Figures 6(a)–(b) represents the effect of the addedmargin on the geometrical coverage scores. As can be seen,
with only 0.8mmof uniformmargin, themedian tumor coverage score increases tomore than 97%while
keeping the geometrical brain coverage below 5%.Therefore, 0.8mmof uniformly addedmargin is considered
as the optimalmargin and the resulting geometrical coverage scores are depicted in detail in figures 6(c)–(d). As
can be seen, the proposed solution on themedian can achieve 97.4%geometrical tumor coverage and 4.2%
geometrical brain coverage, considering a 0.8mmof uniformly addedmargin.

In this study, two of the samples within the databasewere extremely flat tumors seated near the edges of the
brain along the ventral-dorsal axis, as depictedwith blue squares infigure 5 and visualized infigures 7(d), (e).
Suchflat tumorsweremisclassified as deeper implanted tumors beneath the ground truth volume.

The resulting BLI-based treatment planning for representativeMCS cases is presented infigure 7. As shown,
the provided BLI-based treatment planning is identical to theCT-based treatment planning in cases with high

Figure 7.Visualization of the network prediction and the resulting dose planning in selected cases: (a) is the bestDSC, (b), (c) represent
cases with averageDSC, and (d), (e)depict theworst cases.

10

Phys.Med. Biol. 68 (2023) 155013 BRezaeifar et al



DSC (figure 7(a)). For cases with amedianDSC, two different scenarios were observed: figure 7(b) represents
cases where the predicted bGTV is slightly bigger than the ground-truth cGTV andfigure 7(c) is a case with
median dice where the prediction is slightly smaller than the cGTV. As can be seen in theDVHplot for these
cases, both result in good BLI-based planning. Figure 7(b) resulted in full dose coverage for the tumor but a slight
increase in the healthy tissue, which is still acceptable. Figure 7(c), on the other hand, caused a reduced healthy
tissue dosewith the cost of slightly less tumor coverage. Finally, for the cases with the lowestDSC, i.e. the twoflat
tumors, the parallel opposed anterior-posterior treatment planning provides an acceptable plan compared to
theCT-based planning (figures 7(d), (e)) since the placement of the predicted bGTV is directly beneath the
actual tumor in the axial plane.

Figure 8. Scatter plot for theDVMof tumor (a), (b) and brain (c), (d) in theMCSdatabase. TheDSC is shown as color for individual
cases according to the color bar on the right. The differences in collimator sizes are shown as differentmarkers for each case: circles,
triangles, and squares are representative of cases where BLI-based collimator is equal, larger, and smaller than theCT-based
collimator. Amagnified version of thefigure can be found in supplementarymaterials S4.

Figure 9.Robustness analysis of the proposed solutionwith respect toOOD samples: (a) performancewithout additional training (b)
improvements after trainingwith newdata. Differentmarkers are used for various categories within the database: categories (a) and
(b) are respectively augmented tumor shapes at random locations and near the original location. Category (c) is the predicted tumor
and category (d) is new flat tumors. Colored dashed lines represent the correspondingmedian for each category.

11

Phys.Med. Biol. 68 (2023) 155013 BRezaeifar et al



Figure 8 shows the resultingDVM for the tumor and brain tissues. Since there is a considerable variation in
tumor sizes within theMCSdatabase, different collimator sizes were needed to target the respective volumes in
each planning, ranging from3mmup to 10mmcircular beams. Inmost cases (shownwith circles infigure 8),
the circular collimator used for BLI-based andCT-based plans are of the same sizes, which underlines the
similarity in the volume of cGTV and bGTV.Nevertheless, 25%of the database (shownwith triangles infigure 8)
resulted in a larger BLI-based collimator than theCT-based collimator, because bGTVwas larger than cGTV.
Therewere 22.5%of the total cases for which the bGTVwas smaller than the cGTV and resulted in a smaller
collimator, shown infigure 8with squares.

DSC, on the other hand, has a less descriptive role in the treatment planning outcomewith regard to the
DVM for the tumor and brain. As can be seen infigure 8, some cases with average to highDSC scores did not
provide the prescribedmean dose to the tumor, either due to a smaller collimator or a largerΔCoMerror. On
the contrary, a number of cases with lowDSCprovided the prescribedmean dose to the tumor but at the expense
of a highermean dose to the brain tissue.

3.2. Robustness evaluation
The robustness of the proposed solution ismeasured against artificially generated samples with additional
variations outside the training database. As shown infigure 9, the proposed solution provides less accurate
predictions forOOD samples, i.e. samples with additional variations than those inside the training database.
Categories (d) and (a), namely flat and randomly located tumors, constitute theworst performance with a
medianDSCof 24% and 30%, respectively. However, both categories also advantage from the highest
performance gain upon training, with amedianDSCof 37% and 42%. TheCategory (b) cases, new tumor
shapes in the proximity of the original CoM, yield amedianDSCof 46%before training and 53%after training.
Furthermore, the performance of Category (c) remained almost constant, with amedianDSCof 68% in both
scenarios. Finally, the originalMCS database, whichwas utilized in trainingwithout the new synthetic cases and
provided amedianDSCof 61%, demonstrated a reduction in performance upon the new training and provided
amedianDSCof 55%.

Figure 10.Performance evaluation on 5 real BLImeasurements of glioblastoma ratmodels using anX-RAD225Cx irradiator: (a)–(b)
segmentation qualitymetrics per sample and k-foldmodel and the aggregated prediction bymajority voting shown as a red ‘+’marker
(c)–(d) tumor and brain coverage of the aggregated predicted BLT source plus 0.7mmmargin.
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3.3. Case study: real BLImeasurement
The performance evaluation of the proposedmethod onfive different real BLImeasurements is summarized in
figures 10(a)–(b). As shown in this figure, the overall performance of the proposedmethod is slightly reduced
when applying it to the real BLImeasurements, with amedianDSCof 42.4± 14.8 percent andDCoM of 1.6±
0.4mm. Furthermore, the coveragemetrics for the real BLImeasurements are visualized infigures 10(c)–(d),
underlining the agreement between the predicted BLT source and the ground truth tumormask, with amedian
geometrical tumor coverage of 95.1± 11.2% and geometrical brain coverage of 7.5± 2.0%.

Figure 11.Visualization of the aggregate predicted BLT source using real BLImeasurement without addedmargin: red contour is the
ground-truth cGTV, hand-delineated fromCE-CBCT, and yellow is the predicted bGTV from the BLI data. DVHplot is the resulting
planning for each contour.
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The visualizations of the predictions are shown infigure 11 for the real BLI acquisitions underlining the
agreement between the predictions and the ground-truth tumormask. As can be seen, in three of the totalfive
cases, BLI-based treatment planning provides identical results to CT-based planning. For the other two cases,
however, the dose to the tumor is slightly decreasedwhen using BLI images, which can be compensated by
considering amargin around the BLI-based tumor prediction.

TheDVM for the real BLI acquisitions are presented infigure 12. As shown, the proposedDL-based
framework provides good planning accuracy compared to ground-truth CT-based planning. Four of the five
cases resulted in nearly perfect agreementwith theCT-based plans and only one of the cases (shown in
figure 11(a)) predicted a bigger BLI-based volumewhich necessitated use of a larger collimator.

4.Discussion

In this study, a novel deep-learning approach is developed to enable BLI-based irradiation planning for theGBM
orthotopic ratmodels. The proposed framework is a good candidate to facilitate BLI-based planning for other
kinds of tumormodels, both in rats andmice, providing small-animal image-guided radiotherapywithout
excess x-ray imaging dose on animals. This can be further studied and developed using the same framework, i.e.
by developing a suitableMC-based training database and training a similar deep-learningmodel.

The results of this study show the feasibility of BLI-based precision radiotherapy. The proposed deep-
learning algorithmworkswell in a large variety of simulated cases, with tumors ranging from10–270mm3 in
size. Tumors smaller than 10mm3were excluded from this study since they are too small to be targeted
accurately using the BLI signal.

The performance of the proposedmethod can be quantified in two distinct tasks: (a) tumor position
accuracy, and (b) tumor shape prediction accuracy. The proposedDL-based solution provided excellent sub-
millimeter accuracy for the tumor position. Despite this, the proposedmethod cannot fully capture the detailed
shape characteristics of a tumor and often provides a smoothed-out prediction compared to the ground-truth
tumormask. In addition, the overly smoothed prediction is not necessarily a drawback of the proposedmethod
since it is often needed to add amargin to the ground-truth contours. The effect of the addedmargin and the
trade-off between the coverage and the excess treatment is presented infigures 6(a)–(b). As shown, amargin of

Figure 12.DVM for real BLI acquisitions: (a, b)DVM for tumor, and (c, d)DVM for the brain. DSC is color-coded and differences in
collimator size are shown as differentmarkers: circles or triangles are cases where the BLI-based collimatorwas the same size or larger
than the CT-based collimator.
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0.8mmprovides the best trade-off between good tumor coverage and limited healthy tissue exposure in the
MCSdatabase. Finally,most commercially available precision radiotherapy systems for small animals cannot
irradiate such small detailed shape variations conformally.

The proposed solution, withmedianDSC andDCoM of 61%and 0.61mm, exceeds our previous
publication (Rezaeifar et al 2022), which used anAI solution to predict the tumor’s CoM. Specifically, the CoM
method providedmedianDSC andDCoM of 56% and 1.01mmon the same database (excluding tumors below
10mm3). The proposed solution is also superior to themathematical solution in a similar GBMmousemodel
(Xu et al 2021). Xu et al reported an averageDSC andDCoM of 55% and 0.62mm,which is slightly lower than
the performance of the proposed solution.Nonetheless, Xu reported the results using real GBMmouse
experiments, while the proposed solution in this study is evaluated using theMCSdatabase of rat experiments,
whichmakes a direct comparison between the twomethods challenging.

TheDVMs for theMCSdatabase, shown infigure 8, reveal that the proposedDL-based solution can provide
acceptable tumor dose coverage formost cases while delivering a limited dose to the organ at risk.However, in
this study, nomargin scheme is considered for planning. Therefore, both the cGTV and bGTV are considered
without addedmargin and only the imposedmargins by the circular collimator offixed sizes are considered.
Nevertheless, the effect ofmargins is investigated in the geometrical coverage evaluation, and it is likely to
assume that adding a treatmentmarginwould control the spread in the tumor dose coveragewith the cost of an
additional brain dose. In other words, the spread of points infigures 8(a), (b) below the identity line can be
avoided by including a propermargin. It is shown that amargin of 0.8mmcan increase themedian geometrical
tumor coverage to 97%. Furthermore, the results suggest that using BLI-based collimators smaller than 8mm
will increase the probability of delivering less dose to the tumor. Additionally, it is important to note that the
tested beam configurationmight influence the dose coverage greatly. Although the parallel opposed beam
configuration is selected based on a previous studywithout any correlation to the proposed BLI-based solution,
the beam configuration seems to compensate for the BLI-based targeting error. This is especially apparent for
the realmeasurement cases where the displacement error in the anterior-posterior direction ismitigated by the
proposed beam configuration.

It is worthmentioning that in some of the cases, both in theMCS database and real BLI acquisitions, the
predicted bGTV slightly overlapswith the skull, as can be seen infigure 11(b). Such overlapwill cause a long flat
tail in theDVHdue to the high dose in the bonewhen irradiatingwith 225 kV x-rays (when calculating dose-to-
medium-in-medium inMonte Carlo dose calculations). This can be easily removed in the post-processing steps
by automatically removing the skull from the bGTV and only considering overlapping regionswith the brain.

The robustness analysis provided valuable insights about the proposed AI-based solution. The trainedmodel
using the initial samples performsmediocre forOODcases, especially flat tumors and tumors located at random
locations inside the brain. It is speculated that poor performance for randomly located tumors ismost likely
related to thewrong location of the implantation drill hole with respect to the location of the synthetic tumor. In
otherwords, the trained network has observed an indirect effect of the punctured skull sincemostMCS
observations included such an effect as a hotspot in the BSF directly above the drill hole. Therefore, some of the
synthetic cases provided unrealistic and unfamiliar samples for which the tumorswere not located directly below
the punctured location in the skull. In addition, another important observation from the robustness analysis is
the reduced performance on the original cases once the network is trainedwith the additional synthetic cases,
which again can be the result of unrealistic cases.

The performance of the proposed solution decreased slightly for a small set of real BLImeasurements
compared to theMC simulated data. This is believed to be a direct outcome of the limitations of artificial
intelligencemethods, such as the proposed algorithm, and their dependence on the quality of the training data.
Therefore, the trainedmodel on theMC simulations struggles with the increased level of variations in the real
measurements. The provided normalization and preprocessing steps restricted the adverse effect of the
measurement noise on the predictions. In spite of this, a larger set of real BLImeasurements is required to
enhance themodel’s robustness and reduce uncertainties, especially for unseen samples.

The fully convolutional ResNet architecture enablesmore efficient use of limited hardware resources,
especially theGPU, compared to the fully-connectedmulti-layer perceptron counterparts. Furthermore, the
computational efficiency of the developedmethod is far superior to analyticalmodels in the inference phase,
making the proposedmethod a viable option for real-time BLI-based treatment planning for small animals. The
proposedDLmodel, on themedian, takes 532± 6ms to predict the 3D tumor contour on anNVIDIARTX
A6000GPU. This is of great importance for the small animal precision radiotherapyworkflow since animals are
required to remain under anesthesia during thewhole imaging, planning, and treatment workflow,whichmakes
rapid BLI reconstruction necessary.

Themain drawback and challenge of the proposed deep-learning approach is the availability and quality of
the training database. Despite our best efforts to address this problemwith a high-qualityMC-simulated
database, the provided training database is considered small in thefield of AI and can increase the probability of
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overfitting. This is frequently an issue for preclinical AI imaging applications. Although the proposed solution is
optimized to decrease the effect of such a small-sized training database on the predictions, the epistemic
uncertainty remains high, which specifies the performance of anymachine-learningmodel in regard to out-of-
database samples.

The proposed solution does not fully exploit the current capabilities of the BLI and only relies on a time and
spectral-integrated acquisition.However, we believe that adding spectral information (using the available light
filters) in the formof either addingmore input channels or an ensemble of AImodels per spectrum can yield
better performance. In addition tomultispectral-enabled AI, physics-informed deep-learningmodels are
another potential candidate for improving the outcomes of this study. Thesemodels can couple the flexibility of
the AI solutionswith the explainability of physicsmodels and provide a synergy between the two.

5. Conclusion

In this paper, a novel real-timeDL solution is presented to accelerate the BLI-based treatment planning problem.
The proposedmethod can achieve good quality planning for themajority of the cases presented here, and
therefore demonstrates the proof of concept of usingAI-based BLI volumetric reconstruction.However, this
study is just a starting point for the use of fully convolutional deep-learning approaches in thisfield, and like
many other deep-learning solutions, the quality of the proposed solution can be improvedwithmore data
generated from similar studies, and fromusing other information derived from the BLI images such asmulti-
spectral BLI.
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