
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Large-scale benchmarking of circRNA detection tools reveals large

differences in sensitivity but not in precision

Peer-reviewed author version

Vromman, Marieke; Anckaert, Jasper; Bortoluzzi, Stefania; Buratin, Alessia; Chen ,

Chia-Ying; Chu, Qinjie; Chuang, Trees-Juen; Dehghannasiri, Roozbeh; Dieterich,

Christoph; Dong, Xin; Flicek, Paul; Gaffo, Enrico; Gu, Wanjun; He, Chunjiang;

Hoffmann, Steve; Izuogu, Osagie; Jackson, Michael S.; Jakobi, Tobias; Lai, Eric C.;

Nuytens, Justine; Salzman, Julia; Santibanez-Koref, Mauro; THAS, Olivier; Stadler,

Peter; Eynde, Eveline Vanden; Verniers, Kimberly; Wen, Guoxia; Westholm, Jakub;

Yang, Li; Ye, Chu-Yu; Yigit, Nurten; Yuan, Guo-Hua; Zhang, Jinyang; Zhao,

Fangqing; Vandesompele, Jo & VOLDERS, Pieter-Jan (2023) Large-scale

benchmarking of circRNA detection tools reveals large differences in sensitivity but

not in precision. In: NATURE METHODS,  20 (8) , p. 1159 -1169.

DOI: 10.1038/s41592-023-01944-6

Handle: http://hdl.handle.net/1942/40774



   
   
 

1

Large-scale benchmarking of circRNA detection tools reveals large 
differences in sensitivity but not in precision 
 
Marieke Vromman1, Jasper Anckaert1, Stefania Bortoluzzi2, Alessia Buratin2, Chia-Ying 
Chen3, Qinjie Chu4, Trees-Juen Chuang3, Roozbeh Dehghannasiri5, Christoph Dieterich6, Xin 
Dong7, Paul Flicek8, Enrico Gaffo2, Wanjun Gu9, Chunjiang He7, Steve Hoffmann10, Osagie 
Izuogu8, Michael S. Jackson11, Tobias Jakobi12, Eric C. Lai13, Justine Nuytens1, Julia 
Salzman5, Mauro Santibanez-Koref11, Peter Stadler14, Olivier Thas15, Eveline Vanden Eynde1, 
Kimberly Verniers1, Guoxia Wen16, Jakub Westholm17, Li Yang18, Chu-Yu Ye4, Nurten Yigit1, 
Guo-Hua Yuan19, Jinyang Zhang20, Fangqing Zhao20, Jo Vandesompele1*, Pieter-Jan 
Volders1* 
 
* These authors jointly supervised this work. 
 
1 OncoRNALab, Cancer Research Institute Ghent (CRIG), Department of Biomolecular 
Medicine, Ghent University, Belgium 
2 Department of Molecular Medicine, University of Padova, Italy 
3 Genomics Research Center, Academia Sinica, Taiwan 
4 Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, China 
5 Department of Biomedical Data Science and of Biochemistry, Stanford University, USA 
6 Klaus Tschira Institute for Integrative Computational Cardiology, Department of Internal 
Medicine III, University Hospital Heidelberg, German Center for Cardiovascular Research 
(DZHK), Germany 
7 School of Basic Medical Science, Department of Medical Genetics, Wuhan University, 
China 
8 EMBL-EBI, UK 
9 Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment 
of Chinese Medicine, School of Artificial Intelligence and Information Technology, Nanjing 
University of Chinese Medicine, China 
10 Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 
Jena, Germany 
11 Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK 
12 Translational Cardiovascular Research Center, University of Arizona - College of Medicine 
Phoenix, USA 
13 Developmental Biology Program, Sloan Kettering Institute, New York, USA 
14 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for 
Bioinformatics, Universität Leipzig, Germany 
15 Data Science Institute, I-Biostat, Hasselt University, Belgium 
16 State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical 
Engineering, Southeast University, China 
17 Dept of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, 
Science for Life Laboratory, Stockholm University, Sweden 
18 Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key 
Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and 
Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan 
University, China 
19 CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, 
University of Chinese Academy of Sciences, Chinese Academy of Sciences, China 
20 Beijing Institutes of Life Science, Chinese Academy of Sciences, China 
 
 
  



   
   
 

2

ABSTRACT 
 
The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA 
sequencing data processed by computational tools. During the last decade, a plethora of such 
tools has been developed, but a systematic comparison with orthogonal validation is missing. 
Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected over 
315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted 
circRNAs were validated using three orthogonal methods. Generally, tool-specific precisions 
are high and similar (median of 98.8%, 96.3%, and 95.5% for qPCR, RNase R, and amplicon 
sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging 
from 1,372 to 58,032) are the most significant tool differentiators. Of note, precision values 
are lower when evaluating low-abundance circRNAs. We also demonstrate the 
complementarity of tools through the increase in detection sensitivity by considering the union 
of highly-precise tools while keeping the number of false discoveries low. Finally, 
recommendations are put forward for circRNA detection and validation.   
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MAIN TEXT 
 
Introduction 
 
Circular RNAs (circRNAs) are a class of non-coding RNA molecules numerously present in 
humans and other eukaryotic species. For a long time, circRNAs were regarded as 
unimportant byproducts of splicing. However, since the advancement of RNA sequencing 
technologies and the development of circRNA detection bioinformatics pipelines, there has 
been a significant increase in circRNA research, with a compound annual growth rate of 
scientific publications of 58% over the last five years (Figure 1A) (1). 
Although an in vivo function for most circRNAs remains unknown and functional analyses are 
typically restricted to in vitro experiments, some circRNAs have been linked to specific 
diseases, including cancer. CircRNAs have also been reported to be more stable than linear 
transcripts due to the absence of a free 5’ or 3’ end to be recognized by exonucleases (1). In 
line with this, a higher fraction of circRNA relative to linear RNA has been observed in a wide 
range of human biofluids, which makes them interesting biomarker candidates, with the 
potential to be used for minimally-invasive tests for diagnosis or response monitoring (2). 
Wang et al. reviewed 112 differentially expressed circRNAs in various biofluids from patients 
with different cancer types (3). Furthermore, 15 clinical trials incorporating circRNAs as 
disease biomarkers have been initiated (ClinicalTrials.gov, accessed on 20/10/2022). 
Eukaryotic circRNAs are formed through a process called back-splicing, where the 5’ end of 
an RNA molecule forms a covalent bond with its own 3’ end, forming a circular molecule with 
a characteristic back-spliced junction (BSJ) sequence (Figure 1B) (1). CircRNAs comprise of 
one or multiple exons, and analogous to linear RNA, there is alternative splicing of circRNAs, 
where circRNAs with the same BSJ sequence may have a different exon (and/or intron) 
composition (1). 
In a targeted manner, circRNAs can be quantified with RT-qPCR (reverse transcription 
quantitative polymerase chain reaction) using BSJ-spanning primer pairs to amplify the region 
flanking the BSJ (Figure 1C). These primer pairs are divergent (facing away from each other) 
when hybridizing to the linear host transcripts and can therefore only amplify the circRNA (4). 
However, false positives resulting from alignment ambiguity, repeat sequences, trans-splicing, 
or RT template-switching artifacts have been described (5, 6). In all these cases, a linear RNA 
molecule is formed with the same exon orientation and, therefore, the same sequence as the 
circRNA BSJ. To prevent false positive circRNA identifications, linear RNA is often digested 
with the exonuclease ribonuclease R (RNase R) followed by RT-qPCR. RNase R typically 
degrades linear RNA, whereas circRNAs are generally not affected. Of note, it has been 
suggested that long circRNAs may be somewhat sensitive to RNase R degradation and 
various challenges of validating circRNAs have been recognized (7, 8). 
In general, high-throughput or exploratory circRNA detection is performed using bioinformatics 
approaches that analyze total RNA sequencing data. For this, the RNA sequencing reads are 
first mapped against a reference genome. The unmapped reads are subsequently used to 
identify BSJ-spanning reads that map divergently (in reverse order) on the linear genome 
(Figure 1D). 
Over the last decade, numerous computational circRNA detection tools have been developed 
and tested. Whereas multiple sets of circRNA detection tools using a bioinformatics approach 
have been compared (often when a novel tool is published) (9–16), a systematic and 
comprehensive evaluation of many circRNA detection tools using an orthogonal validation 
method is still missing. In our benchmarking study, we aimed to evaluate all currently available 
circRNA detection tools with an orthogonal approach using RT-qPCR, RNase R, and amplicon 
sequencing (Figure 2A). Our study highlights that although the precision of the tools is 
generally excellent, their sensitivities are highly variable.  
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Results 
 
CircRNA detection tools predict a wide variety of circRNAs 
 
CircRNA detection tools differ in detection strategies and filtering 
For this study, 16 different circRNA detection tools were included: CIRCexplorer3 (17), 
CirComPara2 (11), circRNA_finder (18), circseq_cup (19), CircSplice (20), circtools (21), 
CIRI2 (22), CIRIquant (23), ecircscreen (unpublished tool), find_circ (24), KNIFE (15), 
NCLscan (25), NCLcomparator (26), PFv2 (27), Sailfish-cir (28), and segemehl (29) (Table 1, 
Supplementary Table 1). CircRNA detection tools differ in their circRNA detection approach 
(including strand assignment), reliance on linear annotation, and filtering methods. CircRNAs 
can be detected from RNA sequencing data using the pseudo-reference-based approach 
(also called the candidate-based approach) or the fragmented-based approach (also called 
the segmented-read-based approach) (12, 14). The former approach uses a reference list of 
potential BSJ sequences, often based on all possible combinations of known annotated exons 
within a gene. This approach is therefore limited to species with annotated genomes and to 
previously annotated genes and will only detect circRNAs that use the same splicing sites as 
the linear RNAs. The latter approach splits unmapped sequencing reads into shorter 
sequences and remaps these against the reference genome. Lastly, integrative tools, such as 
CirComPara2 and ecircscreen, combine the results of multiple tools. 
 
The number of detected circRNAs differs greatly among tools 
A total of 315,312 unique circRNA predictions (corresponding to 1,137,099 unique 
circRNA/strand/tool/sample tuples) were detected using 16 different tools based on deeply 
sequenced total RNA from three human cancer cell lines (Supplementary Table 2, because of 
large file size, only available on https://github.com/OncoRNALab/circRNA_benchmarking). 
The circRNA detection tools were run by their developers (details in Methods and 
Supplementary Notes). There is a striking almost 40-fold difference between the tool with the 
highest number of predicted circRNAs (circseq_cup with 58,032 circRNAs) and the tool with 
the lowest number of predicted circRNAs (segemehl with 1,372 circRNAs) for one of the cell 
lines (Figure 2B shows results for HLF cells, similar results for the other cell lines are shown 
in Supplementary Figure 1).  
 
Most circRNAs are characterized by low BSJ counts 
CircRNA abundance is reflected by the BSJ count, which is the number of reads uniquely 
assigned to a given circRNA. The majority of circRNAs (86.6%) are detected with a BSJ count 
below 5 (Figure 2B), with only 46.1% of the detected circRNAs being observed with at least 2 
BSJ counts (detailed distribution in Supplementary Figure 2). To increase confidence, 
circRNA_finder and segemehl filtered their results to report only circRNAs with a BSJ count of 
at least 5, and CirComPara2 and KNIFE filtered for circRNAs with a BSJ count of at least 2. 
Circtools filtered circRNAs with at least 2 counts in at least 2 samples. Of note, Sailfish-cir 
does not report raw BSJ counts, but transcripts per million (TPM) instead. The similarity of 
circRNA BSJ counts between tool pairs is reasonable, according to regression analysis (linear 
models with median r2 = 0.86, median slope = 0.70, all p-values < 0.001, Supplementary 
Figure 3). 
 
CircRNA detection tools predict different sets of circRNAs 
Half of all circRNAs in this study (49.9%) are reported only by one tool, which is largely due to 
circseq_cup’s high number of uniquely predicted circRNAs (Figure 2C for HLF cells, similar 
results for the other cell lines are shown in Supplementary Figure 4). The overlap of circRNA 
predictions among different tools is visualized in a heat map for each cell line in Supplementary 
Figure 5. Out of 16 circRNA detection tools, 8 exclusively report circRNAs flanked by canonical 
splice sites (with an AGNGT pattern, where AG is the splice acceptor, N represents the 
circRNA sequence in between, and GT is the splice donor) (Figure 2D). CirComPara2, 
circseq_cup, Sailfish-cir, and segemehl do not report circRNA strand orientation, explaining 
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most of the ACNCT patterns (reverse complement of AGNGT), as all their predicted circRNAs 
were automatically assigned to the positive strand to retrieve the surrounding splicing 
sequence. Two-thirds of all predicted circRNAs in this study (68.5%) are novel compared to a 
set of previously reported circRNAs extracted from 13 published circRNA databases 
(Circ2Disease, circad, CircAtlas, circbank, circBase, CIRCpediav2, CircR2disease, CircRiC, 
circRNADb, CSCD, exoRBase, MiOncoCirc, and TSCD) (Supplementary Figure 6) (30). Of 
note, approximately half of these novel circRNA candidates originate solely from circseq_cup. 
Looking at the tools individually, circseq_cup, KNIFE, NCLscan, and NCLcomparator report a 
higher number of novel circRNAs (87.8%, 53.9%, 53.4%, 53.3%, respectively) compared to 
the other tools (median 19.7%, interquartile range (IQR) 4.9-34.8%). Tools were further 
compared based on the predicted circRNA length, strand information, correspondence to 
linear annotation, and predicted exon composition (Supplementary Data 1-4, Supplementary 
Figure 7-10). No notable differences were observed among tools, except for CIRI2 and PFv2 
having a higher number of circRNAs for which no canonical linear annotation match was found 
compared to the other circRNA detection tools (i.e., the BSJ position of the circRNA did not 
match any known intron-exon splicing position based on the canonical transcripts from 
Ensembl GRCh38.103). Across all tools, 53.7% of circRNAs uniquely match one canonical 
linear transcript, 10.3% match more than one canonical transcript, and 35.9% do not match 
any canonical transcript. CircRNAs were found for 17,461 different canonical human 
transcripts, demonstrating the pervasive nature of back-splicing (28.9% of canonical 
transcripts from Ensembl GRCh38.103). Of note, this is an underestimation, as for 46.3% of 
circRNAs, no (unique) annotation match could be found.  
 
CircRNA validation with empirical methods 
 
CircRNA primer design inherently introduces a selection bias 
Based on previous experiments (Supplementary Data 5, Supplementary Figure 11), for each 
tool, we aimed to select 80 random high-abundance circRNAs with a BSJ count of at least 5 
and 20 random low-abundance circRNAs with a BSJ count below 5. Importantly, the precision 
values for both abundance groups (described in the following paragraphs) cannot be directly 
compared due to the differences in the sample size. Of note, circRNA primer design inherently 
introduces a bias caused by the discarding of primer pairs (and therefore circRNAs) with 
predicted off-target amplification (Supplementary Data 6, Supplementary Figure 12). A 
selection of 1,560 circRNAs was obtained (Supplementary Table 3, BSJ count distribution in 
Supplementary Figure 13). As some circRNAs were selected more than once (by chance, for 
different tools or in different cell lines), the total number of unique circRNAs/sample pairs was 
1,516, from here on termed ‘selected circRNAs’ (detailed description in Supplementary Figure 
14). Furthermore, a second bias is introduced within the group of low-abundant circRNAs, as 
three tools (CirComPara2, circtools, and KNIFE) filter circRNAs with a BSJ count of at least 
two, whereas all other tools in this category also allow circRNAs with a BSJ count of one. 
 
High BSJ detection precision using RT-qPCR validation 
Of the 1,516 selected circRNAs, 1,479 (97.6%) could be validated with RT-qPCR, i.e., the 
primer pair flanking the BSJ site resulted in a detectable amplicon. For the low-abundance 
circRNAs there is some variation in the tool-specific precision values (median 95.0%, range 
80.0-100%), which is expected. High-abundance circRNAs have high RT-qPCR precision 
values for most tools (median 98.8%, range 90.0-100%) (Figure 3A; the cumulative plot of the 
RT-qPCR precision in function of the BSJ count is shown in Supplementary Figure 15). It is 
important to note that RT-qPCR-based validation is the net result of a successful primer pair 
and the actual presence of a sufficiently abundant circRNA in the amount of RNA tested. 
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RNase R treatment degrades one in sixteen predicted circRNAs 
RNase R was used as a second, more stringent validation approach. RNase R selectively 
degrades linear transcripts, ensuring the RT-qPCR primers amplify a circular molecule. For 
112 out of 1,516 selected circRNAs (7.4%), RNase R treatment could not be evaluated, as 
their abundance in the untreated sample was too low, leaving no room to confirm RNase R 
degradation in the event of a false positive circRNA (hence labeled as NAs). In the remaining 
set of 1404 predicted circRNAs, 1319 circRNAs (93.9%) could be successfully validated using 
RT-qPCR on RNase R treated RNA. For most tools, high RNase R precision values were 
observed for high-abundance circRNAs (median 96.3%, range 74.0-100%). PFv2 displays the 
lowest precision (74.0%). For low-abundance circRNAs, lower precision values were observed 
(median 86.7%, range 50.0-100%) (Figure 3A; the cumulative plot of the RNase R precision 
in function of the BSJ count is shown in Supplementary Figure 15). Of note, the number of 
circRNAs per tool in this bin is lower than the original 20 that were selected, as more circRNAs 
were excluded due to too low abundancy (resulting in only 10-18 circRNAs per tool, with a 
median of 14 circRNAs). A comparison with matched RNase R treated and untreated 
sequencing data is described in Supplementary Data 7 and shows that the RNase R precision 
calculated from sequencing results is mostly high and similar among tools, with PFv2 having 
the lowest precision value (Supplementary Figures 16-19, Supplementary Tables 4 and 5, 
because of large file size, only available on 
https://github.com/OncoRNALab/circRNA_benchmarking).  
 
Amplicon sequencing is the most stringent validation method 
The RT-qPCR amplicons of the untreated RNA were sequenced for further validation of the 
circRNAs. A random subset of circRNAs (1,179/1,516, 77.8%) was included in the amplicon 
sequencing experiment, resulting in a variable number of circRNAs per tool instead of 20 or 
80 for low-abundance and high-abundance circRNAs, respectively (range 11-20 or 54-74 
circRNAs per tool, respectively). For the remaining 1,179 circRNAs, 1,014 circRNAs (86.0%) 
could be readily validated with amplicon sequencing, i.e., the majority of reads aligned to the 
expected BSJ sequence. Most tools have similar amplicon sequencing precision values for 
high-abundance circRNAs (median 95.5%, range 30.0-100%), with PFv2 displaying a very low 
(30.0%) amplicon sequencing precision value. Of note, as PFv2 was developed to retain 
repeat sequences, it is expected to result in more false positives. The most obvious are caused 
by linear read-through between exons in neighboring tandemly repeated gene 
clusters/interspersed repeats, and these tend to be abundant. For low-abundance circRNAs, 
performance is more diverse, with generally lower amplicon sequencing precision (median 
73.3%, range 17.6-94.1%) (Figure 3A; the cumulative plot of the amplicon sequencing on-
target amplification rate and the cumulative plot of the amplicon sequencing precision in 
function of the BSJ count are shown in Supplementary Figures 20 and 15, respectively). 
 
Different validation methods should be used in concert 
Although the three validation strategies were used independently, it is interesting to evaluate 
to what extent they support each other (Figure 3B, Supplementary Figures 21 and 22). 
Considering 1,103 circRNAs for which all three validation results are available, 957 circRNAs 
(86.8%) pass all validation methods, 128 circRNAs (11.6%) fail one or two of the validation 
methods, and 18 circRNAs (1.6%) fail all three validation methods. These observations show 
that orthogonal validation with different empirical approaches is important to compensate for 
their inherent limitations. It is beyond the scope of this study to investigate why there are some 
discrepancies among the validation results (some hypotheses are considered in the 
Discussion). First, they are rare (for most circRNAs, the different methods completely agree). 
Second, the same methods are used to compare the tools, whereby no tool should be favored 
over the other.  
The three orthogonal validation methods were combined to label each circRNA as a true or 
false positive result and the compound precision was calculated for each tool. Similar to the 
separate precision values, the compound precision is high and similar for most tools when 
looking at high-abundance circRNAs (median 93.1%, range 27.1-98.3%, IQR 90.5-95.3%), 
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and lower and more variable for low-abundance circRNAs (median 63.6%, range 5.9-88.2%, 
IQR 53.8-76.5%) (Supplementary Figures 15 and 23). 
 
CircRNA detection tools differ greatly in sensitivity 
Tool sensitivity was evaluated using two different methods. First, sensitivity was calculated 
based on the total number of true positive circRNAs (n = 957) (Supplementary Figures 24 and 
25). Of note, this sensitivity metric should be used with caution as it is based on a biased set 
of circRNAs collected from the 100 circRNAs selected per tool, which overlap and are not a 
representative random sample of all circRNAs (see Methods). Second, the theoretical number 
of true positive circRNAs for each tool was computed by multiplying the total number of 
detected circRNAs and the compound precision (i.e., the extrapolated sensitivity) (Figure 3C 
for HLF cells, similar results for the other cell lines are shown in Supplementary Figure 26). 
There is a significant positive correlation between both sensitivity values (Spearman rank 
correlation of 0.84 with p-value < 0.001, S = 58, for low-abundance circRNAs, and a Spearman 
rank correlation of 0.80 with p-value < 0.001, S = 113, for high-abundance circRNAs). Both 
methods show great variability in tool sensitivity, with a median sensitivity of 75.1% (range 
29.7-87.1%) for low-abundance circRNAs and 65.7% (range 18.7-87.4%) for high-abundance 
circRNAs. To visualize the relationship between sensitivity and compound precision, a 
precision-recall (sensitivity) dot plot for all tools is shown in Supplementary Figure 27. 
All metrics described above ((compound) precisions and sensitivity) and the tool ranking for 
each metric are available in Supplementary Table 6. The user can easily filter and order the 
circRNA detection tools based on their preferences. Reproducibility evaluations were 
performed and are described in Supplementary Data 8-10 (Supplementary Figures 28-32). 
 
Evaluation of precision in function of circRNA annotation 
To compare precision values in function of circRNA annotation, we restrict the analyses to 
high-abundance circRNAs with information for all validation techniques. Furthermore, a strict 
validation definition was used, where all circRNAs failing for at least one technique were 
classified as unvalidated. CircRNAs previously described in databases have higher chances 
of getting validated (Chi-squared = 181.0, degrees of freedom (df) = 1, p-value < 0.001, odds 
ratio (OR) = 13.1). Nevertheless, false positive circRNAs according to our data are still present 
in multiple published databases (Supplementary Figures 33-35). For example, false positive 
circRNA chr6:47526627-47554766 (hg38, 0-based) is present in CircAtlas (as hsa-
CD2AP_0048) and in exoRBase (as exo_circ_65199). A difference in validation rate in 
function of the splicing pattern was observed, with better validation of circRNAs surrounded 
by canonical splice sites (Chi-squared = 45.4, df = 1, p-value < 0.001, OR = 5.0). Similarly, 
circRNAs that originate from a region with an annotated linear transcript have higher validation 
rates (Chi-squared = 185.8, df = 1, p-value < 0.001, OR = 17.1). Surprisingly, single-exon 
circRNAs displayed significantly lower validation rates than multi-exon circRNAs (Chi-squared 
= 20.0, df = 1, p-value < 0.001, OR = 3.8). Lastly, while tools with a ‘candidate-based’ approach 
seem more precise than tools using the ‘segmented read-based’ approach (Chi-squared = 
9.4, df = 1, p-value = 0.0022, OR = 2.6), we cannot be sure that these results are not 
confounded by other algorithmic differences. 
 
Evaluation of sensitivity in function of circRNA annotation 
There is a significantly higher sensitivity for tools reporting circRNAs surrounded by canonical 
splice sites, resulting in a median difference in sensitivity of 38.5% (two-sided Mann-Whitney 
U = 55, p-value = 0.0022, large effect size of 0.78, 95% CI [0.56 - 0.85], n1 = 11, n2 = 5, only 
high-abundance circRNAs). However, no link could be found between sensitivity and tool 
approach, use of linear annotation, strand annotation method, or BSJ count filtering. 
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Evaluation of tool combinations to improve performance 
For the combination of two or more tools, both the intersection and the union have been 
proposed (11) (Supplementary Tables 7 and 8). While not evaluated here, the increased time 
and resource consumption should also be taken into account when considering the use of 
multiple tools. A list of the top-performing combinations is available in Supplementary Table 9 
and can be used as a reference. 
 
A circRNA predicted by two tools can be a false result  
Figure 4A shows that circRNAs uniquely detected by a single tool generally have lower 
precision values. In line with this, circRNAs detected by at least two tools have a higher chance 
of getting validated (Chi-squared = 333.1, df = 1, p-value < 0.001, OR = 53.8). On the other 
hand, out of 1,380 unique circRNAs detected by at least two tools, 7 circRNAs (0.5%) failed 
all three validation methods, and 137 (9.9%) failed at least one of the validation methods 
(Supplementary Figure 36), illustrating that the practice of using the intersection is not a 
guarantee to avoid false positive results. 
 
The union of tools increases the number of true circRNAs 
To maximize detection sensitivity and maintain precision, we evaluated the union of pairs or 
triples of circRNA detection tools. Generating all possible combinations of the better tools with 
individual compound precision ≥ 90% for high-abundance circRNAs (n = 12 tools) consistently 
results in higher detection sensitivity while maintaining a high weighted precision value. The 
median increase in the number of detected circRNAs is 37.0% (IQR 16.5-129.7%) and 79.6% 
(IQR 33.1-215.7%) for combinations of 2 or 3 tools, respectively. In other words, when 
combining very precise tools, the number of false positives does not counteract the gain in 
additional true positives. A subset of tool combinations with an increase of at least 1,000 
circRNAs is shown in Figure 4B (shown for HLF cells, similar results for the other cell lines are 
shown in Supplementary Figure 37; the combo of three tools is shown in Supplementary 
Figure 38). One obvious consideration when selecting two different tools is their circRNA 
detection approach, their reliance on linear annotation, and their filtering methods. For 
example, when combining two tools with a different detection approach (pseudo-reference-
based and fragmented-based approach), the median increase in the number of detected 
circRNAs is 61.1%, compared to 35.4% for two tools with the same detection approach (two-
sided Mann-Whitney U = 58554.5, p-value < 0.001, small effect size of 0.16, 95% CI [0.08 - 
0.23], n1 = 336, n2 = 294). Similarly, when combining two tools with the same splice site 
settings (both canonical or both non-canonical), the median increase in the number of detected 
circRNAs (32.6%) is significantly smaller compared to combining two tools with different splice 
site settings (one canonical and one non-canonical) (76.2%) (two-sided Mann-Whitney U = 
65356.5, p-value < 0.001, small effect size of 0.28, 95% CI [0.21 - 0.35], n1 = 300, n2 = 330). 
A similar analysis for the combination of tools that rely or do not rely on linear annotation was 
not significant. 
 
Discussion 
 
Multimodal orthogonal validation of bioinformatics tools that predict circular RNAs from total 
RNA sequencing data is currently lacking. Hence, their precision and sensitivities are unknown 
and scientific data is confounded with false positive and false negative predictions. To 
accommodate this lacune, we set up a large-scale international collaborative circRNA 
detection tool benchmarking study (Figure 2A). First, a deeply sequenced total RNA 
sequencing dataset was processed by the developers of 16 different circRNA detection tools. 
Next, 3 empirical validation strategies were used to evaluate a random selection of 1,560 
circRNAs representing each tool: 1) RT-qPCR to determine if the candidate circRNA BSJ 
(back-spliced junction) sequence was detectable; 2) RNase R treatment to confirm that the 
detected RNA was most likely circular and not linear; and 3) amplicon sequencing to confirm 
the circRNA BSJ sequence. Of note, both circRNA RT-qPCR and RNAse R validation 
protocols were extensively validated (4, 31).  
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The precision values are similarly high among tools (Figure 3A), especially when considering 
the subset of high-abundance circRNAs (with a BSJ count ≥ 5). In contrast, the number of 
predicted circRNAs and the sensitivity varies greatly among tools, in line with previous studies 
based on simulated data (11, 13, 14) (Supplementary Data 11, Supplementary Figures 39 and 
40). The striking differences in sensitivity are in part dependent on the operator applying BSJ 
count filters. 
The three validation methods each have their own strengths and biases, with conflicting results 
for several circRNAs (Figure 3B, discussed in detail in Supplementary Discussion 1). In total, 
22 circRNAs are validated with qPCR and amplicon sequencing but are degraded by RNase 
R for at least 87.5% (i.e., a difference of 3 cycles). A possible explanation could be that some 
bona fide circRNAs are susceptible to RNase R degradation (8) or that the primers amplify a 
mixture of circular and linear RNA. Another subset of 92 circRNAs pass RT-qPCR validation 
and RNase R validation but fail amplicon sequencing. These could be (repetitive) RNAs 
resistant to RNAse R due to secondary structure, either internal or through base pairing with 
orthologs (8). These examples underscore the importance of using different validation 
methods to compensate for their intrinsic limitations and to increase the validation status 
confidence (as previously suggested in (8)). 
Although long-read sequencing has been implemented to study full-length circRNAs (32–35), 
the bulk of currently available data remains short-read sequencing. Therefore, this 
benchmarking study evaluated circRNA detection tools for short-read sequencing data, which 
typically report circRNAs by their BSJ position (chr, start, end, strand). However, it remains 
unknown if the detected BSJ corresponds to one circRNA, or multiple alternatively spliced 
circRNAs with different exon/intron compositions. Henceforth, the prediction precision values 
reported here might be influenced by more than one circRNA with the same BSJ. As this study 
is focused on circRNA detection in short-read sequencing data, the internal circRNA 
composition was not evaluated. Furthermore, no distinction can be made between circRNAs 
on the positive strand or negative strand using RT-qPCR and amplicon sequencing (9.4% of 
circRNAs were reported to originate from different strands according to different tools). 
Based on a pilot study (Supplementary Data 5, Supplementary Figure 11), a cut-off was set 
at BSJ count 5, as circRNAs under this cut-off approached the qPCR limit to reliably detect 
RNase R based degradation of falsely predicted circRNAs. While very deep sequencing of a 
large RNA input amount was performed, it is beyond the scope of this study to evaluate if the 
BSJ count should be reconsidered in function of sequencing depth. However, as the majority 
of predicted circRNAs have a BSJ count below 5, we decided to include at least a subset of 
these low-abundance circRNAs to calculate the corresponding prediction precision. It is no 
surprise that the precision values for low-abundance circRNAs are significantly lower 
compared to high-abundance circRNAs (Chi-squared = 76.7, df = 1, p-value < 0.001, OR = 
3.8). This difference is likely due to the detection limits of the applied validation strategies in 
conjunction with the sampling bias of low-abundance analytes, and not due to inherently more 
false positive predictions for circRNAs with a lower count. Of note, it can be presumed that 
weakly expressed circRNAs are less relevant for both functional studies and biomarker 
research. 
Focusing on high-abundance circRNAs, interesting associations were found between circRNA 
annotation and validation rates. As such, circRNAs had higher validation rates when they were 
detected by multiple tools, when they were previously reported in a circRNA database, when 
they were surrounded by canonical splice sites, and when they originate from a region with an 
annotated linear transcript. CircRNA detection tools with a ‘candidate-based’ approach are 
more precise than tools using the ‘segmented read-based' approach, which is in line with the 
higher validation likelihood of circRNAs originating from known linear genes and surrounded 
by canonical splice sites. 
Based on our study, we compiled a list of recommendations for circRNA detection and 
validation, and for the future development of circRNA detection tools and their performance 
evaluation (Table 2). Ideally, publicly available (spike-in) reference material (consisting of 
known synthetic circRNAs) should be used to benchmark existing and novel circRNA detection 
tools. However, such reference material is currently not available. As the main goal of this 
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study was to perform a neutral assessment of circRNA detection tool sensitivity and precision, 
the developers of the tools were asked to run the tools themselves. Therefore, execution time, 
memory usage, and ease of use could not be compared and were not assessed here.  
Furthermore, this study resulted in a circRNA resource containing > 315,000 circRNAs 
detected by different tools in three human cancer cell lines from different tissue origins and 
provides validation results for 1500 circRNAs that can be used as a reference for the 
development of new or improved circRNA detection tools. Finally, our study can also serve as 
an example framework for empirical validation of benchmarking results from other 
bioinformatics tools in the future. 
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tool approach circRNAs 

detected in ... 
strand assignment+ splicing BSJ count 

filter* 
min 
circRNA 
length* 

max 
circRNA 
length* 

CIRCexplorer3 segmented read-based entire genome based on linear 
annotation 

AGNGT none none none 

CirComPara2 integrativex entire genome no strand reported AGNGT, 
ACNCT 

≥ 2 299 2,304,996 

circRNA_finder segmented read-based entire genome based on mapping 
to genome 

AGNGT ≥ 5 200 100,000 

circseq_cup based on segemehl, with full-
length circRNA assembly 

entire genome no strand reported non-canonical none none 5,000 

CircSplice segmented read-based known splice 
sites 

based on linear 
annotation 

AGNGT, 
ACNCT 

none 78 none 

circtools segmented read-based entire genome based on mapping 
to genome 

AGNGT ≥ 2 in ≥ 2 
samples 

31 1,000,000 

CIRI2 segmented read-based entire genome based on GT-AG 
splice sites 

AGNGT none 135 200,000 

CIRIquant based on CIRI2, with 
improved quantification 

entire genome based on GT-AG 
splice sites 

AGNGT none 135 200,000 

ecircscreen integrativex entire genome based on consensus 
from tools 

AGNGT none none none 

find_circ segmented read-based entire genome- based on mapping 
to genome- 

AGNGT none none 100,000 

KNIFE candidate-based entire genome based on linear 
annotation 

non-canonical ≥ 2 none 1,000,000 

NCLscan candidate-based known splice 
sites 

based on linear 
annotation 

non-canonical none 100 none 

NCLcomparator filtered results of NCLscan known splice 
sites 

based on linear 
annotation 

non-canonical none 100 none 

PFv2 segmented read-based entire genome based on mapping 
to genome 

AGNGT, 
ACNCT 

none 50 1,000,000 

Sailfish-cir based on CIRI2 v2.0.6 entire genome no strand reported AGNGT, 
ACNCT 

no BSJ counts 
reported 

135 200,000 

segemehl segmented read-based entire genome no strand reported non-canonical ≥ 5 none 200,000 
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Table 1 CircRNA detection tools with their circRNA detection approach, strand assignment 
approach, reliance on linear annotation, and filtering approach. x Integrative tools combine the 
results of multiple circRNA detection tools. This includes CirComPara2 (combining 
CIRCexplorer2 (v2.3.8), Segemehl (v0.3.4), CIRI2 (v2.0.6), DCC (v0.4.8), and find_circ (v1.2), 
and the filtering all circRNAs detected by at least two methods) and ecircscreen (combining 
CIRI2 (v2.0.6), circRNA_finder (v1.2), PFv2 (v2.0.0), find_circ (v1.2), and CIRCexplorer 
(v1.1.10), and then filtering all circRNA detected by at least three methods). + Some tools did 
not report strand information for this study, but the (updated) circRNA tool might report 
circRNA strand information. * The BSJ count, and minimum and maximum circRNA length 
filters, are the filters used for this specific study. The user can choose these parameters freely. 
Of note, the minimum and maximum length filters are based on the estimated circRNA length 
with introns, calculated by subtracting the start position from the end position of the BSJ. - 
Inferred based on publication and available code. 
 
circRNA 
detection 

1. An orthogonal validation method must be used to validate a 
predicted circRNA; qPCR validation on its own is not sufficient, at 
least qPCR + RNase R treatment or preferably qPCR + amplicon 
sequencing should be used. 

2. Filtering based on a minimum BSJ count is recommended to 
increase the likelihood of successful empirical validation. 

circRNA 
validation 

3. For a precision-focused approach, the intersection of two tools with 
a high individual precision (for example ≥ 90%) should be used. 

4. For a sensitivity-focused approach, the union of two tools with a 
high individual precision (for example ≥ 90%) should be used. 

5. The choice of tools to be combined may be informed based on the 
tools’ underlying principles (circRNA detection approach, reliance 
on linear annotation and canonical splicing, and filtering). 

circRNA tool 
development 

6. Tools should report the originating strand information, the BSJ 
count evidence, and the chromosomal start and end position of the 
BSJ. 

circRNA tool 
validation 

7. For evaluation of sensitivity, novel and updated tools are 
encouraged to use the empirically validated set of 957 true positive 
circRNAs. 

8. For evaluation of precision, a random set of 100 predicted 
circRNAs should be validated with empirical methods. 

 
Table 2 CircRNA research recommendations 
 
FIGURE LEGENDS 
 
Figure 1 CircRNA scientific relevance, structure, and detection. A. Over the last decade, 
circRNA research has increased rapidly, as illustrated by the proportional growth of 
publications mentioning circRNA in Europe PubMed Central. B. CircRNAs are formed through 
back-splicing, which results in a circular molecule with a back-spliced junction (BSJ). Black 
boxes highlight the BSJ in the circRNA isoforms. C. CircRNAs can be detected with RT-qPCR 
using a BSJ-specific primer pair. The primer pair can only bind in a divergent manner (facing 
away from each other) to linear RNA, where no amplification will be possible, yet binds the 
circRNA in a convergent manner (facing towards each other), amplifying the BSJ sequence. 
D. Large-scale circRNA detection is typically performed using total RNA sequencing datasets 
and specialized computational tools. These tools identify BSJ-spanning reads, which map 
divergently (in reverse order) on the linear reference genome.  
 
Figure 2 CircRNA detection tools predict a wide variety of circRNAs A. This study consists of 
a circRNA detection phase and a circRNA validation phase. For the former, 16 circRNA 
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detection tools were used to predict circRNAs in three deeply sequenced cancer cell lines. For 
the latter, a set of circRNAs was selected per tool and validated using three orthogonal 
methods, generating tool-specific precision values for each method. This was also used to 
compute compound precision and both types of sensitivity values for each circRNA detection 
tool. B. The number of reported circRNAs differs greatly between tools (shown for HLF cells, 
similar results for the other cell lines are shown in Supplementary Figure 1). The tools are 
ordered according to the total number of predicted circRNAs. The vast majority of circRNAs 
are predicted with a BSJ count below 5 (in blue). Two tools, circRNA_finder, and segemehl, 
filtered their results to report only circRNAs with a BSJ count of at least 5 (in orange). C. The 
majority of circRNAs (49.9%) are detected by only one tool. Circseq_cup reports the largest 
set of unique circRNAs (shown for HLF cells, similar results for the other cell lines are shown 
in Supplementary Figure 4). A small set of 55 circRNAs is detected by all tools (column n_db 
in Supplementary Table 2). D. CircRNA splice sites differ among circRNA detection tools. Most 
commonly, the canonical AGNGT pattern is observed, with AG being the splice acceptor, N 
the circRNA, and GT the splice donor. Circseq_cup, CirComPara2, Sailfish-cir, and segemehl 
do not report strand information. To be able to retrieve a splicing sequence for the circRNAs 
from these tools, it was assumed the circRNA originated from the positive strand. This led to 
the ACNCT pattern (reverse complement of AGNGT), most probably from circRNAs that were 
assigned to the positive strand incorrectly. Lastly, there are some tools that also report a 
substantial number of circRNAs BSJ sequences with a GGNGG splicing pattern. 
 
Figure 3 The precision of circRNA detection tools is generally high and similar, whereas tools 
largely differ with respect to the number of predicted circRNAs. The plots are separated based 
on circRNA BSJ count below 5 (low-abundance, in blue, 20 circRNAs selected per tool) or a 
BSJ count of at least 5 (high-abundance, in orange, 80 circRNAs selected per tool). Sailfish-
cir reports TPM (transcripts per million) values instead of BSJ counts, and is therefore depicted 
separately. As circRNA_finder and segemehl do not report any circRNAs with a BSJ count < 
5, these tools are not included in the blue bar plots. A. CircRNAs were validated using three 
different techniques: RT-qPCR detection, resistance to degradation by RNase R, and 
amplicon sequencing. Low-abundance circRNAs are in general more difficult to validate. Of 
note, the precision values for low-abundance circRNAs are based on a limited set of circRNAs. 
High-abundance circRNAs have good precision values for most tools and most validation 
methods. The error bars represent the 95% confidence intervals (CI). * A set of circRNAs was 
excluded as they were too low abundant to assess their resistance to RNase R, resulting in a 
variable number of circRNAs per tool instead of 20 or 80 for low-abundance and high-
abundance circRNAs, respectively (range 10-18 or 71-80 circRNAs per tool, respectively, 
details in Supplementary Table 6). A random subset of circRNAs was included in the amplicon 
sequencing experiment, resulting in a variable number of circRNAs per tool for amplicon 
sequencing validation as well (range 11-20 or 54-74 circRNAs per tool, respectively, details in 
Supplementary Table 6). B. The vast majority of circRNAs obtain the same verdict based on 
the three different validation methods. However, some circRNAs have conflicting results. For 
example, there are 13 circRNAs that are detectable by RT-qPCR but also are degraded upon 
RNase R treatment and for which the primers seem to amplify the wrong product. C. The 
compound precision value is used to compute the theoretical number of true positive circRNAs 
by multiplying it with the original number of circRNAs detected by that tool (i.e., the 
extrapolated sensitivity) (shown for HLF, similar results for the other cell lines are shown in 
Supplementary Figure 26). 
 
Figure 4 The intersection or union of two circRNA detection tools decreases the number of 
false positives, or increases the overall number of detected circRNAs, respectively. A. 
CircRNAs detected by multiple tools generally have higher precision values. However, the 
often-used practice of using the intersection of two tools is not necessarily a guarantee for 
avoiding false positive results. B. By considering the union of two circRNA detection tools, the 
number of circRNAs can be significantly increased, whilst keeping the number of false positive 
predictions low (shown for the HLF cell line, similar results for the other two cell lines are 
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shown in Supplementary Figure 37). For the y-axis, the percentage of detected circRNAs is 
calculated by dividing the number of circRNA detected by that tool combination by the total 
number of predicted circRNAs for that sample taking the union of all tools (13,087 circRNAs 
for the HLF sample). For this analysis, the compound precision value of high-abundance 
circRNAs was used. Some circRNA detection tools are integrative and combine the results of 
multiple other tools. It is therefore assumed an integrative tool would have large similarities 
with its integrated tools. However, a difference in tool version and filtering can still give a 
different set of circRNAs. For example, CirComPara2 is an integrative tool that combines 
CIRCexplorer2, CIRI2, DCC, and find_circ, nevertheless, the combination of CirComPara2 
and CIRCexplorer3 still gives a significant increase in detected circRNAs (corresponding to 
10% of all circRNA predictions for that cell line). 
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METHODS 
 
Study set-up 
As this study includes executing and evaluating circRNA detection tools, the co-authors can 
be divided into two groups 1) a first independent group (with no circRNA detection tool of their 
own) which initiated and designed the study and performed all the wet-lab work and data 
analysis (the validation co-author group), and 2) a second group of tool developer co-authors, 
which detected circRNAs using their own circRNA detection tools according to their expertise 
(the circRNA prediction co-author group) (details in Author Contribution section). During the 
study, meetings and emails were used to share the results (initially in a blinded manner) and 
discuss the final manuscript with the circRNA prediction co-authors. 
 
Cell culture 
Three cancer cell lines from different cellular origin were randomly chosen as biological 
replicates. Ethical approval was obtained for this study (#EC014-202, Ghent University 
Hospital) and the cell lines were purchased from the JCRB Cell Bank (HLF and NCI-H23) or 
ECCAC (SW480). SW480 cells were cultured at 37 °C, 0% CO2 in Leibovitz’s L-15 medium 
(#31415-029, ThermoFisher). HLF cells and NCI-H23 cells were cultured at 37 °C, 5% CO2 
in DMEM, low glucose, GlutaMAX Supplement, pyruvate (#21,885,025, ThermoFisher) and 
RPMI 1640 Medium, HEPES (#52,400,041, ThermoFisher), respectively. 10% fetal bovine 
serum (FBS) (#F7524, Sigma) and 1% penicillin-streptomycin (10,000 U/mL) (#15,140,122, 
ThermoFisher) were added to all three media.  
 
RNA isolation 
RNA was isolated from the cells using the miRNeasy Mini kit (#217004, Qiagen) according to 
the manufacturer’s instructions, including the optional on-column DNase treatment (#79254, 
Qiagen). For each cell line, a sufficient number of cells was cultured to be able to harvest a 
minimum of 330 µg RNA. The RNA concentration was measured spectrophotometrically using 
a NanoDrop instrument and the RNA integrity was evaluated using a Fragment Analyzer. For 
each cell line, the RNA was pooled and aliquoted (1000 ng RNA in 100 µL nuclease-free water 
per aliquot) and stored at –80 °C, making a uniform RNA collection to use for all downstream 
experiments. 
 
RNase R treatment, library preparation, and sequencing 
For each cell line, two aliquots of 1000 ng input RNA (in 10 µl nuclease-free water) were used. 
First, ribosomal RNA (rRNA) was removed with the NEBNext rRNA Depletion Kit (#E6350X, 
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New England Biolabs), following the manufacturer’s instructions. Next, RNAse R treatment 
was performed according to our previously described protocol (1). In summary, one aliquot of 
each cell line was treated with RNase R (#RNR07250 (250 U), Lucigen), and one aliquot of 
each cell line was treated as a buffer control. This was followed by a clean-up step using 
Vivacon 500, 10,000 MWCO Hydrosart columns (VN01H02, Sartorius). Subsequently, the 
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (#E7760L, New England 
Biolabs) was used in combination with the NEBNext Multiplex Oligos for Illumina (#E7600S, 
New England Biolabs) to index and prepare the samples for sequencing. The library 
preparation protocol was adjusted to obtain relatively long insert sizes (average size of 636 
nucleotides measured using a Fragment Analyzer): RNA fragmentation of 7.5 minutes; first-
strand cDNA synthesis elongation step of 50 minutes instead of 15 minutes. The last bead 
clean-up step was performed twice to completely remove all indexes from the samples. Finally, 
the samples were pooled equimolarly and sequenced on a NovaSeq 6000 instrument using a 
NovaSeq 6000 S1 Reagent Kit v1.5 (300 cycles) (#20028317, Illumina), resulting in 
approximately 300 million paired-end 150-nucleotides reads per sample. Raw FASTQ files are 
stored in the Sequence Read Archive (PRJNA789110: SRX13414572 (untreated HLF), 
SRX13414573 (untreated NCI-H23), SRX13414574 (untreated SW480), SRX13414575 
(RNase R treated HLF), SRX13414576 (RNase R treated NCI-H23), SRX13414577 (RNase 
R treated SW480)). 
 
CircRNA detection 
In November 2020, a comprehensive list of all published circRNA detection tools was 
compiled, and all developers were invited to collaborate. Upon consent, they were asked to 
detect circRNAs using their own circRNA detection tool as they seemed fit for the data that 
was provided. The circRNA detection steps for each tool are detailed in the Supplementary 
Notes. Often, the default parameters were used as most of the methods included in our 
benchmarking underwent continuous development during the last several years and their 
parameters have been optimized for standard RNA sequencing data (as is the case in this 
study). We were unable to get into contact with the authors of find_circ (2) and decided to run 
this tool ourselves, as it is one of the most frequently cited and broadly used circRNA detection 
tools. Unfortunately, other well-performing tools (according to (3, 4)), such as MapSplice (5), 
could not be included. More recent tools, such as Circall (6) and CYCLeR (7), have been 
published after the validation experiments were performed, and are therefore not included. 
After collecting all circRNA detection results, a uniform list of circRNAs defined by their BSJ 
position (chr, start, end, strand) and the BSJ count for each tool was compiled (Hg38, 0-
based).  
 
CircRNA selection and primer design 
Guided by a pilot experiment assessing circRNA RT-qPCR detectability in function of 
abundance and RNA input amount (Supplementary Data 5, Supplementary Figure 11), for 
each tool, 80 high-abundance circRNAs (with a BSJ count of at least 5), and 20 low-
abundance circRNAs (with a BSJ count below 5) were selected (as two separate count bins). 
Primer pairs were designed using our primer design tool CIRCprimerXL (8). All primer 
sequences are available in Supplementary Table 3. If no primer pair could be designed for a 
given circRNA, a substitution was randomly selected from the complete dataset, considering 
the BSJ count bin. In total, 1,560 circRNA/tool/cell line tuples were selected. As some 
circRNAs were selected more than once (for different tools) the total number of unique 
circRNA/cell line pairs is 1,516, and the number of unique circRNAs (not taking into account 
the strand) is 1,457 (Supplementary Figure 14). Additionally, most of the selected circRNAs 
are detected by multiple tools (for which they were not selected). For the precision 
calculations, only the 20 + 80 selected circRNAs for a specific tool were used to evaluate that 
tool to keep the number of observations equal for each tool, even though more of its predicted 
circRNAs might have been validated. However, for the sensitivity calculations, the complete 
set of circRNAs had to be used (vide infra). 
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RNase R and RT-qPCR 
The RNA aliquots derived from the three cell lines were used for the circRNA RT-qPCR 
validation. A total of 1,080, 900, and 780 µl RNA (100 ng/µL) was required to validate 579, 
500, and 437 circRNAs in HLF, NCI-H23, and SW480 cells, respectively. RNase R treatment 
was performed according to our previously reported protocol (1), adapted for this large-scale 
experiment. In summary, one RNA aliquot of a given cell line was treated with RNase R 
(#RNR07250 (250 U), Lucigen) and another was treated as a buffer control, for a total of 92 
RNase R treated replicates and 92 buffer control replicates (2 * 36 for HLF, 2 * 30 for NCI-
H23, and 2 * 26 for SW480 RNA). All volumes were doubled during the buffer and RNase R 
reaction (total reaction volume of 20 µL). This was followed by a clean-up step using Vivacon 
500, 10,000 MWCO Hydrosart columns (#VN01H02, Sartorius). Next, the RT reaction was 
performed on the 184 separate replicates using the iScript Advanced cDNA Synthesis Kit 
(#172-5038, Bio-Rad), according to the manufacturer’s instructions. After RT, the cDNA was 
diluted 1:2 and an aliquot (2.5 µL) was further diluted 1:4 to evaluate the success of the RNase 
R reaction for each individual replicate. For this, ACTB and a known circRNA 
(chr1:117402185-117420649) previously described (1) (primer sequences available in 
Supplementary Table 10) were measured with qPCR using 2.5 µL 2x SsoAdvanced Universal 
SYBR Green Supermix (#172-5274, Bio-Rad), 0.5 µL forward and reverse primer (5 nM), and 
2 µl cDNA per well, with qPCR duplicates. Once the RNase R treatment was successfully 
validated, all cDNA replicates were pooled per cell line and treatment condition. The cDNA 
was diluted 1:5 in 2× SsoAdvanced Universal SYBR Green Supermix (#172-5274, Bio-Rad). 
All 1,560 circRNA primer pairs were ordered from IDT in 96-well plates at a concentration of 
100 µM in nuclease-free water. All primers were diluted 1:160 to obtain a 0.625 µM 
concentration. In each well of a qPCR plate, 2 µl diluted primers and 3 µl cDNA-master mix 
combination were added, resulting in an equivalent of 25 ng input RNA per qPCR reaction. 
Each assay (circRNA) was measured 4 times to include qPCR duplicates and to measure the 
abundance in both an RNase R untreated and treated sample, resulting in a total of more than 
6000 qPCR reactions. A pipetting robot (EVO100, TECAN L) was used to dilute the primers 
and fill the qPCR plates. The qPCR reactions were run on a CFX384 instrument (Bio-Rad). 
Cq calling was done using the Bio-Rad CFX Manager (v3.1), with the ’regression’ settings. 
The plates were stored at -20 °C prior to amplicon sequencing.  
 
Amplicon sequencing 
After RT-qPCR, ~80% of the circRNAs were randomly included for amplicon sequencing. To 
make the sequencing library, the amplicons were pooled by combining 2 µL of the PCR 
reaction from one of the untreated qPCR duplicates, per cell line. Next, the 3 samples were 
cleaned using Vivacon 500, 10,000 MWCO Hydrosart columns (#VN01H02, Sartorius). The 
PCR product pools were analyzed using a TapeStation 4150 (Agilent) and the concentration 
was measured using a Qubit fluorometer (ThermoFisher). Next, the three pools were diluted 
in nuclease-free water to obtain 50 µl samples with a concentration of 20 ng/µl. Finally, the 
samples were prepared for sequencing using the NEBNext Ultra II DNA Library Prep Kit for 
Illumina (#E7645S, New England Biolabs) and NEBNext Multiplex Oligos for Illumina (Dual 
Index Primers Set 1) (#E7600S, New England Biolabs). To retain all amplicons, no size 
selection was performed after adaptor ligation, and 1.0x AMPure XP beads (#A63881, 
Beckman Coulter) in a 1:1 sample:beads ratio was used instead. After library preparation, the 
samples were pooled equimolarly. The pool was sequenced on a NextSeq 500 instrument 
using a Mid Output Kit v2.5 (150 cycles) (#20024904, Illumina), resulting in approximately 25-
30 million paired-end 75-nucleotides reads per library. 
 
Data analysis 
Data analysis was mostly done using R (9) (v4.2.1) in RStudio (10) (v2022.07.1). The following 
R packages were used: tidyverse (v1.3.2), conflicted (v1.1.0), ggrepel (v0.9.1), ggseqlogo 
(v0.1), europepmc (v0.4.1), gplots (v3.1.3), ggpubr (v0.4.0), quantreg (v5.94), rstatix (v0.7.0) 
and UpSetR (v1.4.0). For sequencing data analyses, including circRNA detection and 
amplicon sequencing analysis, the Ghent University high-performance cluster was used. For 
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this, Python3 (v3.6.8) (11), Bowtie2 (v2.3.4.1) (12), fastahack (v1.0.0), SAMtools (v1.11) (13), 
and BEDTools (v2.30.0) (14) were used. The human reference transcriptome was 
downloaded as a GTF file from Ensembl (15). All data analysis scripts are available at 
https://github.com/OncoRNALab/circRNA_benchmarking.  
 
Amplicon sequencing data analysis 
For the amplicon sequencing data analysis, first, a custom Python script matches the primer 
sequences with the first 16-mer of each read (forward and reversed) and generates a separate 
FASTQ file per primer pair, containing all reads starting with that primer sequence. The 
FASTQ reads are then clipped to remove the primer sequences. Next, all FASTQ files are 
mapped against the reference genome (Ensembl GRCh38.101) supplemented with the 
theoretical BSJ amplicon sequences using Bowtie2 with default settings. Lastly, the Bowtie2 
BAM files are converted to counts using another custom Python script and the percentage on-
target amplification was calculated for each primer pair. 
 
Determination of orthogonal precision values and sensitivity 
Several strategies to filter the data prior to precision and sensitivity calculations were explored. 
For RT-qPCR, a circRNA was considered validated when at least one of the untreated RNA 
samples had a Cq value above 10. Multiple variations of this threshold and a potential upper 
Cq threshold were evaluated. For RNase R validation, a subset of circRNAs with at least one 
untreated replicate with a Cq value below 32 was selected to ensure that the enzymatic 
degradation of a false positive circRNA could be measured. A circRNA was considered 
validated upon RNase R treatment if the difference in Cq between the untreated and treated 
RNA sample was equal to or less than 3 cycles, based on a previous study (1). As there were 
two qPCR replicates available for each (un)treated sample, the ‘best-case scenario’ was used 
to calculate the difference in Cq by subtracting the maximum untreated Cq replicate from the 
minimum treated Cq replicate. A circRNA with both untreated replicates having a Cq value 
above 32 was labeled as NA. For amplicon sequencing, a circRNA was considered validated 
if the primer pair was found in at least 1000 reads and if at least 50% of these reads matched 
the expected amplicon upon mapping with Bowtie2. For a random subset of circRNAs, 
unintentionally no amplicon sequencing was performed; these were labeled as NA. A detailed 
description of the choice of performance metrics is available in Supplementary Data 12 and 
13. To calculate precision values per tool, BSJ count bin, and validation method, the number 
of circRNAs that passed the validation was divided by the total number of circRNAs that were 
not NA for that validation method. We also determined a compound precision value by 
considering both qPCR, RNase R treatment, and amplicon sequencing. For this, each circRNA 
was labeled as a true positive (i.e., validated by all three methods), as a false positive (i.e., 
not validated by at least one of the methods), or as NA (i.e., not included in the amplicon 
sequencing run). Based on this summarizing label, compound precision values were 
computed for each tool and BSJ count bin. The number of theoretically true positive circRNAs 
was calculated by multiplying the total number of circRNAs predicted by that tool for that 
sample with the compound precision value (i.e., the extrapolated sensitivity). The sensitivity 
was also calculated as the percentage of circRNAs each tool detected from the validated set 
of true positive circRNAs (i.e., the circRNAs labeled as true positives over all three methods). 
This metric should be used with caution as it is based on a biased selection of circRNAs due 
to the overlap among tools (Supplementary Data 12). To calculate the sensitivity per BSJ 
count group, the median BSJ count of each circRNA was used (as most circRNAs are detected 
by multiple tools and have therefore multiple BSJ count values). 
 
Annotation of circRNAs 
To obtain the circRNA splice site information, the BSJ-flanking nucleotides were extracted 
from the reference genome using fastahack (Ensembl GRCh38.104). To compare BSJ 
positions with known linear annotation, BEDtools intersect was used with a list of canonical 
transcripts from Ensembl with their positions based on the corresponding Ensembl GTF file 
(Ensembl GRCh38.103). When a circRNA mapped to multiple isoforms, the annotation was 
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labeled as ‘ambiguous’ and the circRNA was not taken into account for further annotation-
based calculations and figures. The annotation was used to compute the length of each 
circRNA excluding introns, and the number of exons per circRNA. CircRNAs smaller than their 
host gene exon were labeled ‘single-exon’ circRNAs. For the length of each circRNA including 
introns, the BSJ start position was simply subtracted from the BSJ end position. Furthermore, 
for each circRNA, annotation was added to indicate if the BSJ start and end positions match 
known exon boundaries. When comparing predicted circRNAs to circRNAs previously 
described in databases, strand information was discarded. 
 
Combination of tools 
To compare the circRNA tools, the union and intersection of all circRNAs predicted by each 
tool pair and triple were calculated. A weighted precision value was calculated for each 
combination of tools as follows: ((compound_precision_1 * total_n_1) + 
(compound_precision_2 * total_n_2)) / (total_n_1 + total_n_2). For this, strand information 
was discarded, as 4 out of 16 tools did not report circRNA strands and would therefore have 
been excluded. These calculations were performed for each cell line separately. To determine 
the correspondence among tools, the Jaccard distance was calculated and heatmap clusters 
were generated. The tools were compared based on the mere presence or absence of a 
circRNA. Also, for the calculation of how many tools detected a given circRNA, circRNA strand 
information was discarded. 
 
Statistical analyses 
To evaluate the effect of circRNA characteristics on circRNA validation, the Chi-squared test 
was used (chisq.test() function in R). For every test, the set of used circRNAs was slightly 
different depending on the availability of annotation information. All tests had all expected 
values in the contingency table above 5, therefore no correction for small sample size was 
necessary. Seven different characteristics were tested, and no multiple testing correction was 
performed. To evaluate the effect of circRNA detection tool methods on sensitivity and to 
evaluate the effect of the combination of tools with different approaches, the two-sided Mann-
Whitney U test was used (rstatix::wilcox_test() function in R). For correlation analysis between 
the sensitivity and the extrapolated sensitivity, the Spearman rank correlation was used 
(cor.test(method = 'spearman') function in R). For correlation analysis between circRNA BSJ 
counts from different tools, or between circRNA BSJ counts and Cq values, or between Cq 
values in different cell lines, linear models were used (lm() function in R). To evaluate the 
contribution of the cell lines (in contrast to the tools) to the precisions and sensitivity values, 
an ANOVA test was used (aov() function in R). 
 
DATA AVAILABILITY 
 
We anticipate this study will serve as a future resource for the circRNA community. The 
information on all predicted circRNAs (n = 315,312), including the large extensively validated 
circRNA set (n = 1,516), along with the validation results are available in the GitHub repository 
https://github.com/OncoRNALab/circRNA_benchmarking and as Supplementary Tables. The 
set of circRNAs previously described in databases (Circ2Disease, circad, CircAtlas, circbank, 
circBase, CIRCpediav2, CircR2disease, CircRiC, circRNADb, CSCD, exoRBase, MiOncoCirc, 
and TSCD) is also included in the GitHub repository. All databases were accessed in the 
context of a previous study (30). Raw FASTQ files are stored in the Sequence Read Archive 
(PRJNA789110: SRX13414572 (untreated HLF), SRX13414573 (untreated NCI-H23), 
SRX13414574 (untreated SW480), SRX13414575 (RNase R treated HLF), SRX13414576 
(RNase R treated NCI-H23), SRX13414577 (RNase R treated SW480)). 
 
CODE AVAILABILITY 
 
All the scripts used to compute the metrics described in the study and generate the figures 
are available at https://github.com/OncoRNALab/circRNA_benchmarking. 
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