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Abstract 

Background During the COVID-19 pandemic, the CoMix study, a longitudinal behavioral survey, was designed 
to monitor social contacts and public awareness in multiple countries, including Belgium. As a longitudinal survey, it 
is vulnerable to participants’ “survey fatigue”, which may impact inferences.

Methods A negative binomial generalized additive model for location, scale, and shape (NBI GAMLSS) was adopted 
to estimate the number of contacts reported between age groups and to deal with under-reporting due to fatigue 
within the study. The dropout process was analyzed with first-order auto-regressive logistic regression to identify fac-
tors that influence dropout. Using the so-called next generation principle, we calculated the effect of under-reporting 
due to fatigue on estimating the reproduction number.

Results Fewer contacts were reported as people participated longer in the survey, which suggests under-reporting 
due to survey fatigue. Participant dropout is significantly affected by household size and age categories, but not sig-
nificantly affected by the number of contacts reported in any of the two latest waves. This indicates covariate-
dependent missing completely at random (MCAR) in the dropout pattern, when missing at random (MAR) is the alter-
native. However, we cannot rule out more complex mechanisms such as missing not at random (MNAR). Moreover, 
under-reporting due to fatigue is found to be consistent over time and implies a 15-30% reduction in both the 
number of contacts and the reproduction number ( R0 ) ratio between correcting and not correcting for under-report-
ing. Lastly, we found that correcting for fatigue did not change the pattern of relative incidence between age groups 
also when considering age-specific heterogeneity in susceptibility and infectivity.

Conclusions CoMix data highlights the variability of contact patterns across age groups and time, revealing 
the mechanisms governing the spread/transmission of COVID-19/airborne diseases in the population. Although such 
longitudinal contact surveys are prone to the under-reporting due to participant fatigue and drop-out, we showed 
that these factors can be identified and corrected using NBI GAMLSS. This information can be used to improve 
the design of similar, future surveys.
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Introduction
Infectious respiratory diseases, in particular, are highly 
transmissible and a major cause of morbidity and 
mortality around the world [1]. Understanding the 
symptoms, causes, and transmission routes can help 
prevent and mitigate the resulting public health bur-
den. Research in social networks has shown that the 
intensity of human-to-human interactions determines 
transmissibility and thus the effectiveness of many 
interventions [2]. Social contact information is essen-
tial in this context to understand the dynamics of trans-
mission because these are driven by human behavior. 
Hence, data on close social contact in a population is 
a key component in understanding virus transmis-
sion dynamics, particularly respiratory viruses. Previ-
ous social contact studies have continually shown the 
importance of such data for parameterizing mathemati-
cal disease models, built to describe and understand the 
transmission dynamics of these infectious diseases [3]. 
The transmission parameters are strongly influenced 
by the integrated mixing patterns of a transmission 
model  [4]. Several studies  [5–7] have used social con-
tact surveys to draw insights in how people mix in the 
population, which have then been used to guide the 
implementation of non-pharmaceutical interventions 
(NPI), such as in the context of COVID-19 [8–17].

As COVID-19 is primarily a close-contact transmit-
ted disease, data on social contacts is crucial towards 
understanding the disease’s evolution. Several contact 
studies  [10, 16, 18–21] have been conducted as the 
COVID-19 pandemic began to spread around the world 
to help understand the dynamics of the infections in the 
population, the impact of NPIs, and the optimal alloca-
tion of such measures [8]. The CoMix survey has been 
collecting multiple waves of a representative sample 
of data on social contact behavior since March 2020, 
in order to gain insights into behavioral changes. This 
longitudinal study gathers information on attitudes, 
awareness, and behavior in response to COVID-19 
over time in Europe [16]. Nevertheless, as a long-term 
longitudinal survey, the CoMix survey could be sub-
jected to fatigue effects that might appear when the 
survey’s participant becomes bored or less interested in 
the survey  [22]. Such a respondent’s fatigue effect is a 
well-known phenomenon, leading to deteriorating data 
quality  [23–25]. For example, participants may skip 
questions, spend minimal time answering questions 
(which will lead to increased variability and/or bias, 
e.g., because of under-reporting). Ultimately, survey 
fatigue may even prompt respondents to drop out of 
the survey entirely. As a result, survey response fatigue 
might be a potential threat to panel surveys and to sur-
veys that use diaries to gather information [23, 26]; 

these effects can influence validity of the response and 
impact statistical analysis.

A first-order autoregressive logistic regression model 
was developed to examine how previous measurements 
impact current measurements, in order to enhance 
understanding of the dropout mechanism. This method 
was chosen for its simplicity and ease of interpretation, 
as it can be formulated as an independent-data GLM 
[27]. While previous research has focused on mitigat-
ing survey fatigue through study design [28, 29], our pri-
mary contribution lies in further addressing this issue 
at the data analysis stage. We adapted the approach of 
Backor et al. [26] to a social contact setting. Backor et al. 
described a similar way of correcting for under-report-
ing due to fatigue in a time-use study by calculating the 
number of activities a person would have reported in dif-
ferent time blocks throughout the day if this had been 
asked during the first hours of the survey. In the context 
of CoMix, under-reporting due to fatigue was accounted 
for by estimating fatigue effects and using the obtained 
estimates to predict the number of contacts that would 
have been observed when the survey had been taken for 
the first time. The Generalized Additive Model for Loca-
tion, Scale, and Shape (GAMLSS) was used to model 
the number of reported contacts by taking into account 
this under-reporting. To the best of our knowledge, this 
is the first attempt to address under-reporting caused 
by response fatigue in a longitudinal social contact sur-
vey using this method. The approach we used to estimate 
the effect of under-reporting at various survey waves is 
applicable in any longitudinal survey context. Our find-
ings may improve future analyses of the data that has 
already been collected, or used to assess bias in future 
surveys. Furthermore, we describe changes in social con-
tact behavior from November 2020 to March 2022, both 
with and without correcting for under-reporting due to 
fatigue.

Methodology
CoMix study
CoMix is a longitudinal multi-country behavioral sur-
vey that was designed to monitor public awareness and 
behavior during the COVID-19 pandemic. Survey data 
were collected in the United Kingdom (UK), Belgium, 
and the Netherlands from March 2020 onward [16]. In 
Belgium  [10], the sample was selected bi-weekly from 
existing panels of people who frequently partake in online 
surveys and was chosen to be representative of the Bel-
gian population based on age, gender, and region of resi-
dence. Participants’ age, education level and occupation 
were recorded, together with information regarding their 
socio-economic status, health status, whether they expe-
rienced symptoms, and attitude towards and adherence 
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to NPIs (limited to the first data collection period). In 
each wave, participants were asked to report all contacts 
made on a specific day between 5am on the day preced-
ing the survey day and 5am of the survey day. A contact 
was defined as either an in-person conversation of three 
or more words in the physical presence of another person 
with (such as kiss or handshake) or without skin-to-skin 
contact  [30]. Methodological details have been reported 
elsewhere [10, 12, 16].

The CoMix survey in Belgium spanned two data col-
lection periods. The first period consisted of eight waves 
of data collection (April 2020 to August 2020) in a repre-
sentative panel of adults (18 years and above) in terms of 
age, gender, and geographic area to have the same people 
participate in each wave. Children were omitted in the 
first period in order to get ethical clearance as quickly 
as possible. These 8 waves corresponded to different 
NPI regimes (Fig.  S1). As a result of respondents drop-
ping out in subsequent waves of data collection, the panel 
was supplemented with new members to meet the target 
quota.

The second survey period (November 2020 to March 
2022) included 35 data collection waves (numbered from 
9 to 43) and covers periods of both high and low SARS-
COV-2 circulation and corresponding burden of disease 
in Belgium (for details, see Tables S1–S3). In the second 
period, a change in design was implemented to allow 
children’s data to amass. The questionnaires for chil-
dren were completed by a parent within their household 
as a proxy. Given that the second period of the survey 
involved children, we focused on this part of the longitu-
dinal survey (wave 9 - wave 43) to investigate how fatigue 
affects survey responses throughout the population. 
Therefore, we assume that wave 9 is the first wave of par-
ticipation. Although participants may have taken part in 
the previous data collection, this ended 3 months earlier, 
and we assume that this lag was sufficient to eliminate 
possible fatigue bias from the previous data collection. 
Similarly, the cohort was continuously replenished to 
meet sample size requirements during subsequent waves 
of data collection due to participants dropping out (see 
Figs. 1, 2, and S2 for details).

Degree distribution
Overall degree distribution
While generalized linear mixed models (GLMM) and 
generalized additive mixed models (GAMM) are con-
strained to the exponential family of distributions, 
GAMLSS are an extension of GAMM that allow for 
a broader range of conditional distributions of the 
response  [31]. In GAMLSS, all four parameters (mean, 
variance, skewness, and kurtosis) can be modeled, 
either using linear parametric, non-linear parametric, or 

non-parametric (smooth) functions of the predictors, as 
well as normal or non-parametric random effects  [32]. 
Negative Binomial [6] regression (R package ‘gamlss’ [31]) 
was used to model the reported number of contacts as 
a function of covariates and additive terms. However, as 
an extension of the GAMM model, GAMLSS does not 
provide parametric marginal regression functions by 
default, despite the fact that such functions are required 
for population-averaged inferences. Given that marginal 
and random-effects models have completely distinct 
interpretations  [27], the marginal models are preferable 
when inferences about the population-average are the 
focus  [33]. Marginal interpretation of negative binomial 
(NBI)  [34] GAMLSS model can be derived by build-
ing a connection between the aforementioned model 
with the combined model for count data (See Additional 
file  2)  [35, 36]. Thus, with appropriate precautions, all 
parameters in the NBI GAMLSS model, except the inter-
cept, will have a marginal interpretation.

We defined 3 age groups (0–17 years (Children), 18–69 
years (Adults), and 70 years and over (Elderly)) to build 
age-specific comparisons on the average reported con-
tacts in a day. We selected three age groups because they 
reflect the various social contact patterns found in soci-
ety. For each wave, the average number of contacts with 
and without correcting for the under-reporting due to 
fatigue were compared. Socio-demographic character-
istics (household size [4] and area of residency), num-
ber of waves participation, participants’ health status 
and microscopic time settings (weekdays/weekends and 
regular/holiday period) [6, 37] were included as possible 
determinants, as well as face masks use. Here, the holiday 
periods refer to school holidays (e.g., Christmas, Easter, 
and Summer holidays), as well as a one-day national 
holiday in Belgium (e.g., Armistice Day). To exclude 
demographic inconsistencies, the household sizes are 
categorized based on the age categories (see Table S1 
for detail on variables used in the analysis). Addition-
ally, interactions between microscopic time settings [38], 
household size and area of residency, together with 
household size and holiday period were retained in the 
analyses. These covariates were chosen on the analysis 
to model the reported number of contacts. In addition, 
a random intercept for each participant and smoothing 
parameters (penalized varying coefficient [39] for Adults 
and Elderly, and cubic spline [40–42] for Children) on the 
survey days were used as additive terms (see Fig. S5 for 
detail). We considered socioeconomic status when con-
structing the model to identify factors influencing social 
contacts, but found that its inclusion did not substantially 
improve the model’s performance (see Table S4). As the 
models were already quite complex and considering that 
it was created based on three aggregated age categories, 
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we expect that the remaining variables are more impact-
ful. Additionally, information on vaccination and symp-
tomatic status of Children was limited and as such not 
considered for analysis.

Mixing patterns in the degree of distributions
To attain insight into potential differences in mixing 
behavior between age groups, a NBI GAMLSS approach 
(as described in the previous section) was developed to 
estimate the age-specific average number of contacts for 
all combinations of contacts between age categories. For 
the purpose of inspecting the effect of mixing patterns, 
both age categories for participants and contacted indi-
viduals were taken into account. Socio-demographic 
(household size and area of residency), number of waves 
participated, the health status of participants, micro-
scopic time settings, and face masks use were included as 
possible determinants. Moreover, smoothing parameters 
(penalized varying coefficient including interaction with 
participant symptomatic status) on the survey days, as 
well as random intercept for each participant was used 
as additive terms. Additionally, participant vaccination 
status was excluded from the model as it caused conver-
gence problems.

Using social contact matrices created with the ‘social-
mixr’ package [43], we compare age-group-specific social 
contact rates in the study period. This comparison can 
be used to examine the impact of under-reporting due 
to fatigue on estimating the reported number of contacts 
between age groups. The World Population Prospects of 
the United Nations [44] was used as the population ref-
erence, and weights were limited to a maximum of three 
to limit the influence of single participants, as used by 
Willem et al. [45]. To account for variability in the model 
prediction, contact matrices were produced based on 500 
Negative Binomial simulations from the NBI GAMLSS 
model results (both with and without correction for 
under-reporting due to fatigue) for each predicted value 
of each participant. Then, we generated 500 bootstrap 
samples  [46] with replacement of survey participants 

weighted by the age distribution of the actual population 
and weekdays and weekends to account for the uncer-
tainty of the contact matrices and sample representative-
ness of the contact matrix [11, 21, 45]. The social contact 
matrix M with elements mij corresponding to the average 
contacts reported daily between each age group, which 
can be estimated by:

where wd
ir represents the weight for participant 

r of age categories i who was surveyed on day 
d ∈ {weekday, weekend} and yijr defines the reported 
number of contacts made by participant r of age i with 
someone of age j. Naturally, contacts are reciprocal and 
thus mijNi should be equal to mjiNj . Reciprocity can be 
introduced to resolve reporting differences by:

with Ni and Nj corresponding to the population size in 
age class i and j, respectively [30]. It is necessary to point 
out that the application of reciprocity is optional and 
should not always be imposed since this behavior might 
not be valid for specific contact types [45].

Furthermore, the per capita contact rate for participants 
of age i with individuals of age j in the population can be 
denoted by cij . A matrix C , called the contact rate matrix, 
is made up of the elements cij . This matrix is linked to the 
social contact matrix by cij =

mij

Nj
 . In addition, percentages 

of change will be calculated by dividing the change in the 
number of contacts by the number of contacts before cor-
recting for fatigue, then multiplying by 100.

Fatigue effect, missingness and dropout
Aside from under-reporting due to fatigue, it is possible 
that data are incomplete if respondents intentionally or 
unintentionally skip certain scheduled surveys or even 
drop out entirely. Drop out in a longitudinal study is 

mij =

Ri
r=1 w

d
iryijr

Ri
r=1 w

d
ir

m
reciprocal
ij =

mijNi +mjiNj

2Ni

(See figure on next page.)
Fig. 1 Calendar of non-pharmaceutical interventions (NPIs) and CoMix waves for the second survey period (waves 9-43)

(1) From November 2, 2020, a face mask was required in any public place where a minimum 1.5-metre distance could not be guaranteed 
and was compulsory for everyone aged 12 and over in indoor and outdoor public spaces, catering industries, public transportation, and all 
organised public events. In October 2021; employees who work in Flanders did not have to wear a face mask at work anymore but masks were still 
required in stores, shopping malls, healthcare facilities, concert halls, sports centers, libraries, and places of worship as of October 29. On the other 
hand, masks are not required in locations where the Covid Safe Ticket (CST) is used. From March 2022, the use of face masks was no longer 
compulsory, but still recommended in the workplace. They were only required at that point on public transport,in hospitals and in residential care 
centres. (2) The Covid Safe Ticket (CST) had very limited usage in Belgium in July 2021 (only events > 1500 people) though it started to be used 
more widely as late as mid-October 2021. From early-mid November 2021, CST was needed throughout the country for visiting catering industry, 
theatres, concert halls, cultural centres, cinemas, museums, indoor amusement parks, public and private events for 50 people indoors and 100 
people outdoors
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Fig. 1 (See legend on previous page.)
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defined as a participant terminating the study early due 
to circumstances beyond the investigator’s control  [27]. 
In 1976, Rubin categorized incomplete data into three 
mechanisms: missing completely at random (MCAR), 
missing at random (MAR), and missing not at random 
(MNAR) [47]. In case when the missingness is independ-
ent of both unobserved and observed data, there are no 
systematic differences between observed data, perhaps 
conditional upon covariates, and missing measure-
ments can be referred to as missing completely at ran-
dom (MCAR). In contrast to MCAR, missing at random 
(MAR) occurs when the missingness depends on the 
observed data but not the unobserved data. Missing not 
at random (MNAR) mechanism indicates neither MAR 
nor MCAR, meaning the missingness depends on both 
unobserved data, even given observed data.

In this study, we define under-reporting as the discrep-
ancy between the average number of reported contacts by 
respondents and the average number of contacts under the 
assumption that participants were taking the survey for the 
first time. Under-reporting due to fatigue was accounted 
for by estimating fatigue effects and using the obtained esti-
mates to predict the number of contacts that would have 
been observed when the survey would have been taken for 
the first time. Here, it is assumed that intermittent miss-
ingness did not affect fatigue. Using GAMLSS, the average 
number of reported contacts can be modelled as

log(mitj) = β0 + β1X1t +

k
∑

n=2

βntXnt +

∑

htj(xtj)+ ui

and the average number of reported contacts with fatigue 
correction can be obtained by

with mit corresponding to the number of reported con-
tacts of individual i measured in wave t. β1 corresponds 
to the effect of participation to the first wave, and βn cor-
responds to other covariates used in the model. htj is a 
smooth non-parametric function of the survey date j, 
while ui represents the random effects for each partici-
pant. By substituting the value of X1t with 1, we reflect 
participants are participating for the first time, hence 
correcting for under-reporting due to fatigue.

A first-order auto-regressive logistic regression 
model for the dropout process [27, 48] was developed 
by modelling the outcome as a function of previous 
outcomes for the same subject. This analysis was per-
formed to see if current and previous values, as well 
as other covariates, had an effect on participants drop-
ping out. A data set containing participants dropping 
out with dropout indicator as a response was con-
structed. The dropout indicator was assumed to follow 
a binomial distribution. Socio-demographic features 
such as gender, area of residency, and socio-economic 
status were used as predictors. By utilizing ‘gam’ pack-
age  [49], random intercepts for each participant and 
cubic spline on the standardized days were used as 
smoothing parameters.

log(mitj) = β0 + β1(1)+

k
∑

n=2

βntXnt +

∑

htj(xtj)+ ui

Fig. 2 Participants proportion based on wave of participation in Belgium CoMix survey
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Next generation principle
The next generation matrix G , in which the elements gij 
correspond to the average number of secondary infections 
in age class i induced by the introduction of a single infec-
tious individual from age class j into a fully susceptible pop-
ulation, can be used to model transmission dynamics [50]. 
The next generation matrix is defined by:

with population size N, average duration of infectious-
ness D and life expectancy L  [6, 50]. The matrix of per 
capita rates βij at which a person of age class i makes 
effective contact with a person of age class j is denoted 
by β . Based on the social contact hypothesis  [3], it is 
assumed that individuals are contacted randomly within 
age class, with a proportionality factor q expressing spe-
cific disease infectivity and susceptibility and stipulating 
βij = q · cij  [6]. Two assumptions on the proportionality 
factor (q) can be used in this case: homogeneous and het-
erogeneous proportionality factors. The homogeneous 
proportionality factor assumes that disease infectivity 
and susceptibility are both the same across age groups. 
The transition from a homogeneous proportionality 
factor q to a heterogeneous proportionality factor qij is 
attained by assuming:

with ai being a vector representing q-susceptibility, hj 
representing q-infectivity, and any residual effect is cap-
tured by q̃ , as a remaining global proportionality factor. 
The computation of the relative incidence (w) is unaf-
fected by the remaining factor. The vectors ai and hj , 
however, only have a relative interpretation because of 
the presence of q̃ . For the purpose of this study, we use 
ai = (0.39, 0.83, 0.74) and hj = (0.55, 0.79, 0.99) as the 
average ai and hj used in Franco et al.  [51] for Children, 
Adults, and Elderly age categories, respectively.

The dominant eigenvalue of G matrix can be denoted 
as R0  [50], and is widely used to indicate whether an 
epidemic occurs ( R0 > 1) or dies out ( R0 ≤1). To deter-
mine the relative change in R0 from the one with ( R0,1 ) 
and without ( R0,2 ) correction for under-reporting due to 
fatigue, we calculate

In this case, it can easily be demonstrated that the 
normalizing constants cancel, and thus the ratio only 
applies to contact data  [6]. Additionally, 95% percentile 
confidence intervals for the relative change in R0 were 

G =
ND

L
β ,

qij = q̃aihj ,

R0,1

R0,2
=

max
(

eigen(NDL qc1)
)

max
(

eigen(NDL qc2)
) .

calculated using a non-parametric bootstrap based on 
the aforementioned simulations.

Moreover, the ratio of the eigenvalues of two next 
generation matrices can be used to compare the rela-
tive temporal change in the reproduction number ( Rt ) 
using the next generation approach [51]. Rt was used 
and calculated from the daily number of cases, and 
hospitalizations [52, 53] as a comparison by consid-
ering the time delays associated with the COVID-19 
disease burden. When comparing Rt estimates to the 
reproduction number calculated from the number of 
confirmed cases, a time shift of 7 (14) days is taken 
into account (respectively hospitalizations) [51, 54]. 
We set the reproduction number for CoMix wave 9 
to equal the reproduction number calculated from 
infections or hospitalizations since the reproduction 
number is known up to the overall constant [51, 55]. 
Uncertainty due to sampling variability is estimated 
via non-parametric bootstrap.

Furthermore, the corresponding right and left-
eigenvector of G can be used to estimate the relative 
incidence w and the incidence rate v, respectively 
(see  [51, 56] for details). Because the relative inci-
dence w (usually normalized such that 

∑

i wi = 1 ) is 
independent of disease-specific infectivity and sus-
ceptibility, it can be calculated directly from the 
social contact data. Nevertheless, since the eigenvec-
tor w can only be recovered up to a global constant, 
the age-specific component of the eigenvector has no 
meaning. Relative ratios such as wi

wj
 can be interpreted 

nonetheless, providing an estimate of the relative 
incidence in age class i as compared to the incidence 
within age class j.

The impact of interventions on mixing patterns
Both pharmaceutical (PI) and non-Pharmaceutical 
interventions (NPI) must be taken into account to 
frame and translate contact behavior into transmission 
dynamics. The GAMLSS model takes into account the 
use of face masks as one of the NPIs as well as vaccina-
tion status as a PI to the number of contacts reported 
in the survey. In addition, school and workplace clo-
sures, as well as travel restrictions, had an impact on 
mixing patterns  [37, 57]. Here, we investigate these 
effects by comparing the average number of contacts 
in each survey wave and by investigating the relation 
between the stringency of NPIs in Belgium and the 
number of contacts reported in the CoMix survey.

The stringency index (Government Response Strin-
gency Index) is a composite measure summarizing nine 
response instruments, such as school closures, work-
place closures, and travel restrictions, re-scaled to a 
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value of 0 (no interventions) to 100 (strictest response; 
Oxford COVID-19 Government Response Tracker, 
Blavatnik School of Government) (see  [58] for a full 
description). Stringency index has been proven to corre-
spond with a reduction of contacts in the community [8]. 
Here, we present the results for 35 waves collected with 
different stringency index values throughout the survey 
waves (see Fig.  3). To compare the number of contacts 
with and without correction for under-reporting result-
ing from fatigue, contact matrices representing mixing 
patterns throughout the study period were also esti-
mated. The social contact matrices and their percentages 
of change were calculated in the same way as described 
in the section on mixing patterns, with the exception 
that each survey wave was calculated separately.

Results
CoMix study
A total of 4,592 (47% males and 53% females) partici-
pants reported 42,922 responses over 34 waves. The 

total number of reported contacts was 182,986 with the 
highest number of contacts reported by one participant 
being 744. The average participant age was 36 years, 
and people under the age of 18 made up for 30.4% of 
the sample, while the Elderly (i.e. above 70) represented 
6.9%. The average household size was 3, ranging from 1 
to 12, with 90% of the participants living in a household 
of sizes smaller than 4. More than half of the survey 
participants come from the Flemish Region (55.4%), 
whereas 9.1% come from the Brussels Capital Region, 
in agreement with the regions’ population sizes. The 
participants reported an average of 1.17 contacts per 
day with the median number of reported contacts being 
2 (inter-quantile range (IQR):[1;4]).

Figure  3 depicts the number of cases and hospitalisa-
tions due to COVID-19 in Belgium and the stringency 
index, as well as the average number of contacts reported 
by participants in each wave, from wave 9 (12 November 
2020) to wave 43 (08 March 2022). The gray shades repre-
sent the holiday seasons of Christmas 2020, Easter 2021, 

Fig. 3 Average contacts over time by age categories and participation status with 95% CI. A Number of cases and hospitalisations due to COVID-19 
in Belgium. B Average number of contacts and 95% CIs in Belgium for all participants, elderly only (>70 years), adults only (18–69 years), 
and children only (<18 years). C Average number of contacts and 95% CI in Belgium for different waves for all participants (participating from 1 
up to 34 times), participants who participated for the first time, and participants who participated for the first and second time
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Summer 2021, and Christmas 2021, respectively. Fig-
ure 3A depicts the number of COVID-19 cases and hos-
pitalizations in Belgium. During waves 19 and 20, there is 
a decline in the number of contacts reported by children. 
This could be attributed to the Easter pause that was 
implemented and an overall increase in the stringency 
index during this period [58, 59].

The age-specific contacts reported during the survey 
period are depicted in Fig. 3B, which shows the average 
number of contacts based on the CoMix survey for all 
participants and for the age groups of Elderly (70 years 
and over), Adults (18–69 years), and Children (0–17 
years). It can be seen that Children (7.05 [8.83;5.26]), 
on average, have more contacts than Adults (3.81 
[3.02;1.49]) and the Elderly (2.25 [3.02;1.49]). Adults, in 
comparison to Children and the Elderly, have less vari-
ability in the average number of contacts over time. It 
is worth noting that the average number of children’s 

contacts decreased significantly during both the Easter 
and Summer vacations. In Fig.  3C we also show the 
average number of contacts for participants report-
ing for the first time and for the first two times. It 
can be seen that people who participated for the first 
time (6.95 [3.81;11.3]) and the first two times (6.93 
[3.79;10.2]) reported more contacts than the grand 
average (4.28 [3.50;5.06]). Note also that the total aver-
age of contacts of respondents participating from 1 up 
to 34 times exhibits less variability.

Degree distribution
Figure 4 shows the summary results of the NBI GAMLSS 
model for the average number of contacts in different age 
groups (see Fig. S5 for model performance). The number 
of contacts is consistently influenced by household size 
and the use of a face mask. It is noted that participants 
who live in larger households have a higher number of 

Fig. 4 Relative number of contacts (red dot) and 95% CI based on NBI GAMLSS model; A Elderly, B Adults, and C Children 
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contacts. In addition, the usage of face masks also con-
sistently has a positive association with an increase of 
35.3%, 49.4%, 20.2% for the Elderly, Adults, and Chil-
dren, respectively. Elderly who are not in the high-risk 
category, reported fewer contacts (91.1%; CI = [86.9% 
;95.5%]). Adults who are not in the high-risk category, 
on the other hand, reported more contacts (1.04 times 
higher). This information, however, was not collected 
for the children in the survey. Additionally, microscopic 
time settings (holiday/non-holiday or weekend/weekday 
period) do not significantly affect the number of con-
tacts reported with Adults and Children. Holidays, on the 
other hand, show a negative correlation with the number 
of contacts reported among Elderly (75.1%; CI = [60.9%; 
92.7%]), whereas weekend has no significant impact 
on the number of contacts reported. Equally impor-
tantly, there is a clear downward trend in the number 
of contacts related to the number of waves people par-
ticipate in. These declining patterns appear across all age 

categories; nevertheless, the effect is more noticeable in 
Adults and Children than in the Elderly.

Under‑reporting due to fatigue
Figure 5 shows the difference in the marginal average of 
contacts across age groups with and without correction 
for under-reporting due to fatigue. It is noticeable that 
correction will consistently result in higher average num-
ber of contacts across all age groups.

Missingness and dropout
Out of 4,592 participants, 2,155 participants (46.92%) 
dropped out of the survey; out of these, 1,641 respond-
ents (76%) only participated once in the survey (includ-
ing new participants in Wave 43). Table 1 presents the 
results of the first-order auto-regressive logistic regres-
sion model for the dropout process. The effects ‘ Yi,j ’ and 
‘Dep. on Yi,j−1(1) ’ capture the current measurement 

Fig. 5 Expected average number of contacts. Both uncorrected (green) and corrected for fatigue effect (blue) based on NBI GAMLSS model; A 
Elderly, B Adults, and C Children with 95% Confidence Interval based on Non-parametric bootstrap
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and transition effect for the later measurement, respec-
tively. These parameters have non-significant results, 
implying that the dropout is not dependent on the lat-
est and its penultimate number of contacts reported. 
Given the model framework, this result shows that 
missingness under MCAR applies under the assump-
tion that MAR is the alternative. Recall that ruling out 

MNAR is virtually impossible based on the observed 
data alone.

Mixing patterns
Figure 6 depicts the social contact matrices (waves 9–43) 
weighted for the age and weekdays/weekends categories 
with and without correcting for under-reporting due to 
fatigue. It can be observed that the average number of 
reported contacts is considerably lower without correc-
tion (left) than with correction (right). For participants–
contacted (without correction; correction [95% CI]) age 
groups, most contacts occur between Children–Adults 
(6.70 [6.49; 6.90]; 7.86 [7.69; 8.09]), Adults–Adults (5.29 
[5.15; 5.44]; 6.36 [6.22; 6.50]), and Children–Children 
(4.77 [4.50; 5.04]; 5.59 [5.28; 5.89]). The least interaction 
prevails between Elderly–Children (0.45 [0.40; 0.50]; 0.55 
[0.49; 0.61]). In addition, Fig. S10 shows the average num-
ber of contacts when reciprocity is taken into account, in 
which the largest difference occurs between Children and 
Adult contacts. Additionally, Fig.  7 depicts the percent-
ages of change between the average number of contacts 
with and without correction for under-reporting due 
to fatigue. Note that correcting this in the survey will 
increase the average number of reported contacts by ∼
17% to ∼23%. On average, Children (0.66; 17.9%) receive 
the highest absolute change of correcting the number of 
reported contacts, while the Elderly (0.47; 22.21%) have 
the smallest. Furthermore, Children reporting contacts 
made with Adults receive the largest absolute change 
of correction (1.16; 17.34%), whereas Children and the 
Elderly contacts receive the smallest.

The impact of interventions on mixing patterns
Asymmetric and symmetric wave specific social con-
tact matrices are calculated with and without correction 

Table 1 Parameter estimates of the first-order auto-regressive 
logistic regression model showing the relative incidence (RI), the 
corresponding confidence intervals, and p-values for participant 
dropout. Categories with no values (“-”) are the reference 
categories

(*)p-value <0.05

Estimate RI RI CI

Household size (1) 1.016* (0.056,1.976)

Household size (2) - -

Household size (3) -0.514 (-1.435,0.407)

Household size (4+) -0.682 (-1.609,0.245)

Adult category (Children) - -

Adult category (Adult) 1.715* (0.690,2.740)

Adult category (Elderly) 2.141* (0.644,3.638)

Gender (F) - -

Gender (M) 0.305 (-0.318,0.928)

Area (Brussels Central Region) - -

Area (Flemish Region) 0.056 (-0.948,1.060)

Area (Wallonia Region) -0.320 (-1.363,0.723)

Participant’s social group (1 &2) - -

Participant’s social group (3 &4) 0.222 (-0.652,1.096)

Participant’s social group (5 &6) -0.052 (-0.989,0.885)

Participant’s social group (7 &8) -0.046 (-0.959,0.867)

Yi,j -0.003 (-0.017,0.011)

Dep. on Yi,j−1(1) -0.011 (-0.025,0.003)

Fig. 6 Social contact matrices; average number (wave 9–wave 43) of daily reported contacts; A reported numbers; B corrected for under-reporting due 
to fatigue 
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for under-reporting due to fatigue; they are displayed in 
Figs. S9 and S10. For each wave, in general, the highest 
average number of contacts occurs between Children (as 
survey participant) and Adults (as the person in contact), 
whereas Children (as survey participant) and Elderly (as 
the person in contact) show the least average number of 
contacts. The percentages of change between the num-
ber of contacts reported with and without correcting for 
under-reporting due to fatigue is depicted in Fig.  S11. 
Since all participants participate for the first time on the 
9-th wave, by definition, the percentages of change in the 
reported contacts are set to zero. As the number of sur-
vey waves increases, so does the percentages of change 
in the reported contacts. After Wave 19, the percent-
ages of change begin to stabilize at around 25%-35%. It 
is also worth noting that as the number of new survey 
participants increases (Fig.  2), the average percentages 
of change decrease. As an illustration, in waves 38 and 
42, there are more than 25% new participants, resulting 
in a decrease in the percentages of change in the contact 
matrices; whereas in waves 36 and 41, there is a high per-
centage of change in the number of contacts reported, 
due to a low number of new participants in the survey 
(less than 5%).

The relative changes in R0 , comparing the effect of 
fatigue correction, are depicted in Fig. 8A, together with 
their 95% bootstrap-based confidence intervals. Omitting 
the fatigue correction had a moderate impact on R0 , as 
shown by the fact that it affected around ∼20% of the R0 
ratios, on average across the survey periods. This effect 
grows during the first few survey waves, after which it 
stabilizes until the end of the study period. Furthermore, 
Fig.  8 (Fig.  S14) depicts the effect of correcting under-
reporting due to fatigue on hospitalizations (COVID-19 

incidence rate) reproduction number estimated from 
heterogeneous CoMix data, using the reproduction num-
ber from Wave 9 as a baseline. In addition, comparisons 
of the relative incidences using homogeneous and het-
erogeneous susceptibility and infectivity between age 
categories are depicted in Fig. S15. The relative incidence 
without and with correction for the under-reporting 
due to fatigue are represented in red and blue, respec-
tively, with homogeneous and heterogeneous suscepti-
bility and infectivity represented as a circle and triangle, 
respectively. It can be seen that there is a tiny difference 
in relative incidence with and without correction for both 
heterogeneous and homogeneous assumptions. Moreo-
ver, for each observed wave, the relative incidence among 
Adults is always the highest. Furthermore, it is clear that 
relaxing the homogeneity assumption, results in a change 
in the proportion of relative incidence.

Discussion
In this study, the effect of fatigue in the second part of 
the CoMix survey in Belgium (12 November 2020 – 08 
March 2022) was investigated. We examined the factors 
that influence the number of contacts reported as well 
as the mixing patterns for three age categories (Chil-
dren, Adults, and Elderly). Missingness in the survey was 
also investigated. Note that, rather than considering the 
influence of survey fatigue on non-response and missing 
data, we focused on the impact of survey fatigue on the 
observable response. Furthermore, the impact of lock-
down was estimated using the social contact matrix and 
the next generation matrix, both with and without cor-
recting for under-reporting due to fatigue.

The study indicates that age was associated with num-
ber of contacts. Children reported the highest average 

Fig. 7 Changes between average number of contacts. Absolute change (A) and relative change (B) between average number of contacts 
with and without correction for under-reporting due to fatigue
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number of contacts, a finding that was also found in the 
UK survey [9]. Household size has a coherent impact on 
the number of contacts reported, with a larger household 
size being associated with a higher number of contacts 
reported. This finding is in line with those of other stud-
ies [38, 60–62]; they all emphasize the role of household 
structure as a crucial driver for close-contact interac-
tions. Area of residency also has a significant effect on the 
number of contacts reported, except for the Elderly living 
in Wallonia. People in Flanders are more likely to make 
contacts than those in Brussels and Wallonia, which is 
consistent with the first period of data collection (waves 
1-8)  [10]. Furthermore, there is some association with 
Adults who were not in an elevated risk group reporting 
higher contact rates. This effect, however, is reversed in 
the Elderly. The fact that the majority of Elderly in high-
risk groups live in nursing homes may explain this find-
ing since they have more opportunities to interact with 
others. It was also uncovered that people who wore face 
masks reported more contacts. Several phenomena could 
explain this rise. First, this may represent an increase in 
contacts outside the households, during which wearing a 
face mask may be either mandatory, or more likely if the 
participants perceive these contacts as higher risk and 

hence make a greater effort to guarantee safety. Second, 
people making more contacts may understand the risk of 
infection of this behavior and therefore are more likely to 
wear masks [61].

In addition, microscopic time (weekday/weekend or 
regular day/holiday) does not significantly affect the 
number of contacts reported for Children, although 
visually holidays seemed to be the main determinant 
of children’s contacts (3B). Holiday periods and their 
interaction for Children only show a barely significant 
association with a lower reported number of contacts. 
The Elderly reported less contact during holidays, while 
Adults reported more contact during weekends. In con-
trast to Hoang et al.  [38] we did not find significant dif-
ferences in the number of contacts reported for the 
interactions in microscopic time. This disparity might 
be explained by the study’s use of larger aggregated age 
classes, incurring some loss of information. Likewise, it 
could also be caused by a different way of people making 
contacts, as there is less of a discrepancy between holiday 
periods, weekdays and weekends in the pandemic setting. 
Moreover, there are no statistically significant differences 
in the number of reported contacts between the Elderly 
and Adults based on symptomatic and vaccination 

Fig. 8 Effects on correcting for under-reporting due to fatigue in R0 . A Relative changes in R0 with and without correcting for under-reporting 
due to fatigue and B The impact of correcting for under-reporting due to fatigue on the hospitalizations reproduction number estimated 
from heterogeneous CoMix data



Page 14 of 18Loedy et al. BMC Public Health         (2023) 23:1298 

status. Although these effects are not significant, these 
parameters could be confounders as both of them could 
influence the mixing patterns. We also observed a high 
inter-generational age-mixing between adults and chil-
dren, with most contacts reported in the Children-Adults 
bracket. This aligns with previous studies and can be 
explained by contact networks of families and working-
age groups. Contact between elderly and children was 
the least reported, which is consistent with pre-pandemic 
findings  [38]. These affirm that the reported number of 
contacts is impacted by the disparity in age distributions 
in the population. Finally, our findings highlight that as 
people participate for a longer time period in the survey, 
they tend to report fewer contacts; this effect is less pro-
nounced in the Elderly. This phenomenon is likely attrib-
utable to survey fatigue, a common phenomenon in the 
collection of longitudinal survey data [63].

Given that dropouts were observed in the model, sev-
eral baseline variables were used as covariates to inves-
tigate this pattern. A first-order auto-regressive logistic 
regression model was developed to investigate whether 
the current measurement of the number of contacts has 
any correlation with the previous measurement. There 
is no significant relationship between the dropout pat-
tern and the current and previous number of contacts 
reported, as shown in Table  1. This is evidence for the 
fulfillment of MCAR assumption given that MAR is the 
alternative. Furthermore, participants living alone in a 
household, as well as the age categories have a significant 
influence on the drop out pattern, indicating a covariate-
dependent MCAR. This is a subset of MCAR in which 
dropout is linked to observed covariates measured prior 
to dropout [64]. Given this assumption, one can analyze 
the data using a frequentist, likelihood, or Bayesian pro-
cedure while ignoring the process(es) of generating the 
missing values [27, 65]. However, we must re-emphasize 
that an MNAR process cannot be ruled out. We consider 
a sensitivity analysis to this effect outside of the scope of 
the current paper.

One of the most important findings of our study is that, 
despite the fact that different interventions were used 
throughout the study period, the fatigue effect across ages 
is remarkably consistent over time ( ∼20%) after weighting 
the age and weekdays/weekends categories, with higher 
correction in survey waves with a larger number of new 
participants. This value applies to both the contact in the 
contact matrices and the R0 ratio between correcting and 
not correcting for under-reporting due to fatigue, in which 
the effect can be seen on the reproduction number of hos-
pitalizations and the number of incidence rates. The result 
shows that using the uncorrected contact data would lead 
to underestimated reproduction numbers. Furthermore, 
we also show that under-reporting can be estimated using 

a constant number (instead of as a function of time, for 
example, which might lead to a severe and more compli-
cated effect). Additionally, we acknowledge that the 20% 
under-reporting due to fatigue is a real issue. As a result, 
we demonstrated how this effect is on the COVID-19 sit-
uation, where the effect of 20% is less severe because the 
under-reporting factor was multiplied by a small value of 
R0 . This effect will unarguably have a greater impact as 
the value of R0 increases. Furthermore, as shown in Fig. 8 
(Fig. S14), the relative changes in R0 increase in the first 
few waves and then stabilize until the end of the study 
period. Additionally, it was found that correction for 
under-reporting due to fatigue did not change the pat-
tern of relative incidence between age groups, when both 
homogeneous and heterogeneous infectivity across age 
groups were imposed (Fig. S15). These findings imply that 
under-reporting in the CoMix survey can be relatively 
well understood and corrected, provided some reasonable 
assumptions are made in the analysis.

Differing from the findings of the previous studies [10, 
66], which concluded that lifting lockdowns in various 
periods in 2020-2021 resulted in increased social contact, 
the data from this Belgian contact survey did not demon-
strate an apparent increase in the average number of con-
tacts as interventions were relaxed between May 2021 and 
June 2021, despite the rise in observed mobility (Fig. S16) 
[67]. Although previous work have suggested a strong cor-
relation between Google mobility data and CoMix data in 
an earlier phase of the pandemic [68], the use of Google 
data as a proxy for social contact data requires further 
investigation. One reason is that individuals, although 
resuming their usual mobility pattern to attend work 
and other activities, may still attempt to maintain physi-
cal distance when interacting with others. Additionally, it 
is essential to consider disparities in individuals’ mobile 
phone usage patterns, which can introduce significant 
biases. For example, variations may arise in how individu-
als of different age groups use their phones, potentially 
influencing the validity and reliability of mobile phone 
metrics within these specific populations [69].

The difference in the findings can be attributed to sev-
eral factors. Firstly, participants awareness of the study 
focus on COVID-19 led to a sample that demonstrated 
heightened concern regarding the risks associated with 
the coronavirus, as shown by Kenedy et al. [70]. Consid-
ering the novelty of COVID-19, participants may have 
initially displayed a high level of motivation to contrib-
ute to the survey, thereby minimizing the presence of 
selection bias. However, it is important to acknowledge 
that as time progresses, participants’ perceptions of the 
pandemic severity may undergo changes, which could 
potentially introduce an elevated risk of selection bias in 
online surveys. While our sampling design aims to ensure 
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representativeness regarding age, gender, and region of 
residence, it is important to acknowledge that there may 
be potential influence from other factors [61, 71], which 
could impede the ability to draw accurate conclusions 
[72, 73]. Secondly, Coletti et al. (2020) conducted a study 
that revealed a highly stringent lockdown measure with a 
stringency index above 80 in the first wave of the study. 
This included mandatory school and work-from-home 
policies, the closure of non-essential shops, and restric-
tions on non-essential travel outside Belgium [74]. Subse-
quently, there was a period of moderate stringency from 
early June to the end of July 2020, with the stringency 
index hovering around 50. During this time, there were 
partial reopenings of schools and workplaces, and shops 
were allowed to operate at maximum capacity [75]. Here, 
fluctuations in the stringency index can lead to significant 
variations in contact patterns. In April 2021, there was a 
relatively brief increase in stringency during the Easter 
pause. The stringency index rose to 76, accompanied by 
mandatory working from home, permission for non-
essential shopping by appointment, a curfew, restrictions 
on social gatherings, and closure of non-medical profes-
sions. Subsequently, in May 2021, the stringency level 
decreased to 50. Non-medical contact professions were 
allowed to operate, curfews were replaced with restric-
tions on gathering sizes, and outdoor bars and restau-
rants were permitted to reopen [76]. Considering the mild 
change in the stringency index and in conjunction with 
a mild version of the aforementioned bias, it is plausible 
that the CoMix study did not reveal a substantial change.

The CoMix survey has some limitations, including 
the possibility of bias due to social desirability in self-
completed surveys during the pandemic. This is based 
on the fact that such surveys specifically attract partici-
pants who adhere to social distancing rules. Participants 
may provide responses that they believe are socially 
desirable rather than reflecting their true behaviors, 
which can lead to an inaccurate representation of real-
ity and affect the validity of study findings [77–79]. We 
sought to reduce this bias by setting up CoMix with an 
established online panel that did not focus on health-
care-related questions [12], and by ensuring participant 
anonymity. The retrospective nature of reporting social 
contacts may introduce another form of bias [9, 16, 70]. 
The accuracy of retrospective data, such as the number 
of contacts reported, may be compromised as partici-
pants face challenges in accurately recalling past events, 
resulting in inaccurate recollections and reduced reliabil-
ity. Nevertheless, we believe the ramifications are limited 
since participants only reported contacts made within 
a recent time frame [10]. While this study successfully 
describes contact patterns for age categories throughout 
the study periods, these three age classes do not allow 

to fully capture the heterogeneity in the population con-
tacts. However, including more age classes would result 
in data sparsity in some age classes. Furthermore, vacci-
nation status was excluded from the mixing pattern anal-
ysis because it causes a convergence problem, despite the 
fact that it may be an important confounder. This con-
vergence problem might be explained by constant val-
ues recorded in the vaccination status, though a deeper 
investigation is needed. Additionally, a more in-depth 
analysis of the missing data mechanism could be under-
taken. A more complex method based on multiple impu-
tation methods, for example, can be developed to adjust 
the analysis for the occurrence of non-response in sev-
eral ways. However, doing so with the proposed model is 
computationally expensive. Lastly, we are aware that the 
CoMix data contains many individuals who only partici-
pate in the survey once and subsequently drop out, which 
we refer to as singletons [80]. Several studies have shown 
that small cluster sizes, when the number of subjects 
within the units is small, leads to biased estimates of both 
residual and random-effects variances in the linear mixed 
model [81]. Fortunately, both fixed-effects estimates and 
their standard errors were unbiased in the presence of 
small clusters [82, 83]. Here, we evaluate the significance 
of the presence of random-intercepts in the model using 
the Best Linear Unbiased Predictors Based Permutation 
Test  [84] as an extension of the permutation test. The 
permutation-based test was used since it offers a more 
reliable alternative than the F test when many single-
tons are present [81]. Despite the presence of singletons, 
the test demonstrates a significant effect on the random 
intercept (result not shown). However, it should be noted 
that the majority of these studies were conducted in the 
linear-mixed model context, whereas this study was con-
ducted in the GAMLSS context.

Conclusion
This study highlights the importance of acknowledging 
the presence of under-reporting due to fatigue in lon-
gitudinal contact surveys in Belgium, which provided 
valuable information on human behavior in the trans-
mission of airborne diseases. As the CoMix study can 
describe how people mix in the population, during the 
second data collection period, we discovered that there 
are, on average 20% under-reported contacts due to 
survey fatigue. This effect is more pronounced in waves 
with a small number of new participants than in waves 
with many new participants and vice versa. However, the 
effect is consistent throughout the study and can be well 
understood. Therefore, upon making reasonable assump-
tions in future analyses, the survey fatigue effect can be 
managed and will not unduly affect the epidemiological 
conclusions drawn from the survey.
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