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Abstract

 

The validation of surrogate endpoints has been studied by Prentice, who presented a definition as
well as a set of criteria that are equivalent if the surrogate and true endpoints are binary. Freedman et
al. supplemented these criteria with the so-called proportion explained. Buyse and Molenberghs pro-
posed to replace the proportion explained by two quantities: (1) the relative effect, linking the effect of
treatment on both endpoints, and (2) the adjusted association, an individual-level measure of agree-
ment between both endpoints. In a multiunit setting, these quantities can be generalized to a trial-level
measure of surrogacy and an individual-level measure of surrogacy. In this paper, we argue that such a
multiunit approach should be adopted because it overcomes difficulties that necessarily surround vali-
dation efforts based on a single trial. These difficulties are highlighted. © 2002 Elsevier Science Inc.
All rights reserved.
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Introduction

 

Surrogate endpoints are endpoints that can replace or supplement other endpoints in the
evaluation of experimental treatments or other interventions. For example, surrogate end-
points are useful when they can be measured earlier, more conveniently, or more frequently
than the endpoints of interest, which are referred to as the “true” endpoints [1].
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Prentice [2] proposed a formal definition of surrogate endpoints and outlined how poten-
tial surrogate endpoints could be validated. Much debate ensued, for the criteria set out by
Prentice are not straightforward to verify [3]. In addition, Prentice’s operational criteria are
only equivalent to his definition in the case of binary endpoints [4]. Freedman et al. [5] sup-
plemented Prentice’s approach by introducing the proportion explained (PE), which is the
proportion of the treatment effect mediated by the surrogate. Buyse and Molenberghs [4]
proposed to replace it with two new measures. The first one, defined at the population level
and termed “relative effect” (RE), is the ratio of the overall treatment effect on the true end-
point over that on the surrogate endpoint. The second one is the individual-level association
between both endpoints, after accounting for the effect of treatment, and is referred to as “ad-
justed association.”

In turn, a drawback of the RE is that, when calculated from a single trial, its use depends
on strong unverifiable assumptions, the main one being that it should be constant across a
class of trials. A way out of this problem is to combine information from several groups of
patients (multicenter trials or meta-analyses). Such an approach was suggested by Albert et
al. [6] and was implemented by Daniels and Hughes [7] and by Buyse et al. [8]. Gail et al. [9]
contrast the work of Daniels and Hughes [7] and Buyse et al. [8] and address several impor-
tant issues. The latter extended the adjusted association and the RE to an individual-level
measure of association and a trial-level measure of association, respectively. They suggest
the use of these or similar measures as an alternative way to assess the usefulness of a surro-
gate endpoint. An important aspect of such measures is that they allow one to quantify the
quality of a surrogate. Thus, one is not confined to an “all or nothing” situation where a can-
didate endpoint is either perfect or no surrogate at all.

A question that then arises naturally is whether, in addition to these new measures, single-
trial based quantities such as the PE or the RE still convey useful information. In this paper,
we show that these quantities may be misleading.

 

Data from a single unit

 

In this section, we will discuss the single-unit setting (e.g., a single trial). The notation and
modeling concepts introduced are useful to present and discuss critically the key ingredients
of the Prentice-Freedman framework. Therefore, this section should not be seen as setting
the scene for the rest of the paper. This is reserved for the multiunit case (discussed later).

Throughout the paper, we will adopt the following notation: 

 

T

 

 and 

 

S

 

 are random variables
that denote the true and surrogate endpoints, respectively, and 

 

Z

 

 is an indicator variable for
treatment. For ease of exposition, we will assume that 

 

S

 

 and 

 

T

 

 are normally distributed. The
effect of treatment on 

 

S

 

 and 

 

T

 

 can be modeled as follows:

(1)

(2)

 

where 

 

j

 

�

 

1, . . . , 

 

n

 

 indicates patients, and the error terms have a joint zero-mean normal dis-
tribution with covariance matrix

S j µS αZ j εSj,+ +=

T j µT βZ j εTj,+ +=
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(3)

In addition, the relationship between 

 

S

 

 and 

 

T

 

 can be described by a regression of the form

(4)

Note that this model is introduced because it is a component of the Prentice-Freedman
framework. Given that the fourth criterion will involve a dependence on the treatment as
well, as in Eq. (5), it is of legitimate concern to doubt whether Eqs. (4) and (5) are simulta-
neously plausible. Also, the introduction of Eq. (4) should 

 

not

 

 be seen as an implicit or ex-
plicit assumption about the absence of treatment effect in the regression relationship, but
rather as a model that can be used when the uncorrected association between both endpoints
is of interest.

We will assume later that the 

 

n

 

 patients come from 

 

N

 

 different experimental units, but for
now the simple situation of a single experiment will suffice to explore some fundamental dif-
ficulties with the validation of surrogate endpoints.

 

Definition and criteria

 

Prentice proposed to define a surrogate endpoint as “a response variable for which a test
of the null hypothesis of no relationship to the treatment groups under comparison is also a
valid test of the corresponding null hypothesis based on the true endpoint” [2]. In terms of
our simple model, Eqs. (1) and (2), the definition states that for 

 

S

 

 to be a valid surrogate for

 

T

 

, parameters 

 

�

 

 and 

 

�

 

 must simultaneously be equal to, or different from, zero. This defini-
tion is not consistent with the availability of a single experiment only, since it requires a
large number of experiments to be available, each with tests of hypothesis on both the surro-
gate and true endpoints. An important drawback is also that evidence from trials with nonsig-
nificant treatment effects cannot be used, even though such trials may be consistent with a
desirable relationship between both endpoints. Prentice derived operational criteria that are
equivalent to his definition. These criteria require that

• treatment has a significant impact on the surrogate endpoint [parameter 

 

�

 

 differs signif-
icantly from zero in Eq. (1)],

• treatment has a significant impact on the true endpoint [parameter 

 

�

 

 differs significantly
from zero in Eq. (2)],

• the surrogate endpoint has a significant impact on the true endpoint [parameter 

 

�

 

 differs
significantly from zero in Eq. (4)], and

• the full effect of treatment upon the true endpoint is captured by the surrogate.

The last criterion is verified through the conditional distribution of the true endpoint, given
treatment 

 

and

 

 surrogate endpoint, derived from Eqs. (1) and (2):

(5)

 

where the treatment effect (corrected for the surrogate 

 

S

 

), 

 

�

 

S

 

, and the surrogate effect (cor-
rected for treatment 

 

Z

 

), 

 

�

 

Z

 

, are

Σ 
σSS σST

σTT 
  .=

T j µ γ S j ε j.+ +=

T j µ̃T βSZ j γ ZS j ε̃Tj,+ + +=
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(6)

(7)

and the variance of 

 

Tj

 

 is given by

(8)

It is usually stated that the fourth criterion requires that the parameter 

 

�

 

S

 

 be equal to zero
(we return to this notion later). Essentially, this last criterion states that the true endpoint 

 

T

 

 is
completely determined by knowledge of the surrogate endpoint 

 

S

 

. Buyse and Molenberghs
[4] showed that the last two criteria are necessary and sufficient for binary responses, but not
in general. Several authors, including Prentice, pointed out that the criteria are too stringent
to be fulfilled in real situations [2,10].

In spite of these criticisms, the spirit of the fourth criterion is very appealing. This is espe-
cially true if it can be considered in the light of an underlying biological mechanism. For ex-
ample, it is interesting to explore whether the surrogate is part of the causal chain leading
from treatment exposure to the final endpoint. While this issue is beyond the scope of the
current paper, the connection between statistical validation (with emphasis on association)
and biological relevance (with emphasis on causation) deserves further reflection.

 

The proportion explained

 

Freedman et al. [5] argued that the last Prentice criterion raises a conceptual difficulty
since it requires the statistical test for treatment effect on the true endpoint to be nonsignifi-
cant after adjustment for the surrogate. The nonsignificance of this test does not prove that
the effect of treatment upon the true endpoint is fully captured by the surrogate, and therefore
Freedman et al. [5] proposed to calculate the proportion of the treatment effect mediated by
the surrogate:

with 

 

�

 

S

 

 and 

 

�

 

 obtained respectively from Eq. (5) and Eq. (2). In this paradigm, a valid surro-
gate would be one for which the PE is equal to one. In practice, a surrogate would be deemed
acceptable if the lower limit of its confidence interval of PE was “sufficiently” large.

Some difficulties surrounding the PE have been described in the literature [4,7,11–14]. PE
will tend to be unstable when 

 

�

 

 is close to zero, a situation that is likely to occur in practice.
As Freedman et al. [5] themselves acknowledged, the confidence limits of PE will tend to be
rather wide (and sometimes even unbounded if Fieller confidence intervals are used), unless
large sample sizes are available or a very strong effect of treatment on the true endpoint is
observed. Note that large sample sizes are typically available in epidemiologic studies or in
meta-analyses of clinical trials. Another complication arises when Eq. (5) is not the correct
conditional model, and an interaction term between 

 

Z

 

i

 

 and 

 

S

 

i needs to be included. In that
case, defining the PE becomes problematic.

βS β σTSσSS
1– α,–=

γ Z σTSσSS
1–
,=

ε̃

σTT σTS
2 σSS

1–
.–

PE
β βS–

β
---------------,=
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The relative effect

Buyse and Molenberghs [4] suggested calculating another quantity for the validation of a
surrogate endpoint: the RE, which is the ratio of the effects of treatment upon the final and
the surrogate endpoint. Formally:

(9)

They also considered the treatment-adjusted association between the surrogate and the
true endpoint, �Z:

(10)

Now, a simple relationship can be derived between PE, RE, and �Z. Let us define
�2�	TT	SS


1. It follows that ��Z�	ST	SS

1 and, from Eq. (6), �S��
�Z��. As a result, we

obtain

(11)

A similar relationship was derived by Buyse and Molenberghs [4] and by Begg and Leung
[15] for standardized surrogate and true endpoints. This relationship will be studied in some
detail later in the paper. First, our proposed multiunit framework is introduced.

Data from several units

Using ideas from Buyse et al. [8], we now extend the setting and notation by supposing
we have data from i�1, . . ., N units (e.g., centers, investigators, trials), in the ith of which
j�1, . . . ,ni subjects are enrolled. We now denote the true and surrogate endpoints by Tij and
Sij, respectively, and by Zij, the indicator variable for treatment.

The linear models, Eqs. (1) and (2), can be rewritten as:

(12)

(13)

where �Si and �Ti are trial-specific intercepts, �i and �i are trial-specific effects of treatment
Zij on the endpoints in trial i, and εSi and εTi are correlated error terms, assumed to be of zero
mean and normally distributed with covariance matrix, Eq. (3), as before. Due to the replica-
tion at the trial level, we can impose a distribution on the trial-specific parameters:

(14)

RE
β
α
---,=

ρZ

σST

σSSσTT

-----------------------.=

PE λρZ
α
β
--- λρZ

1
RE
-------.= =

Sij µSi αiZij εSij,+ +=

T ij µTi βiZij εTij,+ +=

µSi

µTi

αi

βi 
 
 
 
 
 
 
 

µS

µT

α
β 

 
 
 
 
 
  mSi

mTi

ai

bi 
 
 
 
 
 
 
 

+=
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where the second term on the right-hand side of Eq. (14) is assumed to follow a zero-mean
normal distribution with covariance matrix

(15)

This setting lends itself naturally to introduce the concept of surrogacy at both the trial level
as well as the individual level. We discuss them in turn.

Trial-level surrogacy

As indicated previously, the key motivation for validating a surrogate endpoint is to be
able to predict the effect of treatment on the true endpoint based on the observed effect of
treatment on the surrogate endpoint at the trial level. It is essential, therefore, to explore the
quality of the prediction of the treatment effect on the true endpoint in trial i by (1) informa-
tion obtained in the validation process based on trials i�1, . . . ,N and (2) the estimate of the
effect of Z on S in a new trial i�0. Fitting models (12) and (13) to data from a meta-analysis
provides estimates for the parameters and the variance components. Suppose then the new
trial i�0 is considered for which data are available on the surrogate endpoint but not on the
true endpoint. We then fit the following linear model to the surrogate outcomes S0j:

(16)

Estimates for mS0 and a0 are

(17)

(18)

Note that such an approach is closely related to leave-one-out regression diagnostics [16,17].
We are interested in the estimated effect of Z on T, given the effect of Z on S. To this end,

observe that (��b0|mS0, a0) follows a normal distribution with mean and variance:

(19)

(20)

In practice, these equations can be used as follows. Using Eqs. (17) and (18), a prediction can
be made using Eq. (19), with prediction variance, Eq. (20). Of course, one has to acknowl-
edge properly the uncertainty resulting from the fact that the parameters in Eqs. (17) and (18)
are not known but merely estimated. This follows from a straightforward application of the
iterated expectation law.

D

dSS dST dSa dSb

 dTT dTa dTb

  daa dab

   dbb 
 
 
 
 
 
 
 

.=

S0 j µS0 α0Z0 j εS0 j+ +=

m̂S0 µ̂S0 µ̂S,–=

â0 α̂0 α̂.–=

E β b0 mS0, a0+( ) β
dSb

dab 
 
 
  T

dSS dSa

dSa daa 
 
 
  1–

µS0 µS–

α0 α– 
 
 
 

,+=

Var β b0 mS0, a0+( ) dbb

dSb

dab 
 
 
  T

dSS dSa

dSa daa 
 
 
  1–

dSb

dab 
 
 
 

.–=
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A surrogate could thus be called perfect at the trial level if the conditional variance (20)
were equal to zero. A measure to assess the quality of the surrogate at the trial level is the co-
efficient of determination

(21)

Similar to the logic in Eqs. (19) and (20), the conditional model for �i given �Si and �i can
be written:

(22)

where expressions for the coefficient (�0, �a, �m) follow from Eqs. (14) and (15). In case the
surrogate is perfect at the trial level ( �1), the error term in Eq. (22) vanishes and the
linear relationship becomes deterministic, implying that �i equals the systematic component
of Eq. (22).

This approach avoids problems surrounding the RE, since the relationship between �i and
�i is studied across a family of units, rather than in a single unit. Even if the posited linear re-
lationships do not hold, it is possible to consider alternative regression functions, although
one has to be aware of a potentially low power to discriminate between candidate regression
functions. By virtue of replication, it is possible to check the stated relationships for the treat-
ment effects. Moreover, the use of a measure of association to assess surrogacy is more in
line with the adjusted association suggested in the single trial case.

A key issue when using the proposed meta-analytic framework, and in particular its pre-
diction facility, Eq. (19), is the coding of the treatment indicators Zij. While the framework is
invariant to coding reversal of all treatment indicators at the same time, more caution is
needed when the coding of a single trial is considered, such as in Eq. (16). In such a case, in-
variance is obtained only when the fixed effects in Eqs. (12) and (13) are equal to zero. This
issue is intimately linked to the question as to how broad the class of units to be included in a
validation study can be. Clearly, the issue disappears when the same or similar treatments are
considered across units (e.g., in multicenter or multi-investigator studies, or when data are
used from a family of related study such as in a single drug development line). In a more
loosely connected, meta-analytic setting it is important to ensure that treatment assignments
are logically consistent. This is possible, for example, when the same standard treatment is
compared to members of a class of experimental therapies.

Next, we will show that the adjusted association carries over naturally to the multiunit set-
ting as well.

Individual-level surrogacy

We now return to the association between the surrogate and the final endpoints after ad-
justment for treatment. As described earlier, we need to construct the conditional distribution
of T, given S and Z. From Eqs. (12) and (13) we derive

Rtrial
2

Rbi mSi, ai

2

dSb

dab 
 
 
  T

dSS dSa

dSa daa 
 
 
  1–

dSb

dab 
 
 
 

dbb
----------------------------------------------------------------------------.= =

βi θ0 θaαi θmµSi εi,+ + +=

Rtrial
2
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(23)

which is an extension of Eq. (5). Note that

(24)

The association between both endpoints after adjustment for the treatment effect is cap-
tured by

the squared correlation between S and T after adjustment for both the trial effects and the
treatment effect.  generalizes  as described earlier by adjusting the association both
for treatment and for trial. We call a surrogate perfect at the individual level if

� �1.
Taken together, the R2 measures allow one to quantify the properties of a candidate surro-

gate endpoint. In addition, by using a hierarchical model such as Eqs. (12) and (13), mea-
surement error in the surrogate is automatically taken into account. When a two-stage ap-
proximation (i.e., fitting a separate model to each unit in the first stage and fitting a
regression on the resulting treatment-effect parameters in the second stage) is used for such a
model [8], this is no longer true. Burzykowski et al. [18] illustrate how measurement error
can be incorporated in such a context.

Problems with the proportion explained

In this section, we will discuss issues with Prentice’s framework in general and the PE in
particular. Of course, we acknowledge that Prentice proposed a paradigm rather than a “take it
or leave it” model. Further, his work has laid the foundation for all further thinking. The same
holds true, to some extent, for the work of Freedman et al. [5] and Buyse and Molenberghs [4].

Expression (11) allows us to make several useful observations. It is clear from Eq. (11)
that the PE is not a proportion. Indeed, each of � and RE can take values over the entire real
line. Further, it is hard to interpret PE because it amalgamates three sources of information:

• the adjusted association �Z, which is a measure of association between the surrogate and
the true endpoints at the individual level;

• the RE, which expresses the relationship between the treatment effects on the surrogate
and the true endpoint at the trial level; and

• the variance ratio �2, which is a nuisance parameter, not to be viewed as a useful valida-
tion measure.

The fact that the PE is ill defined, except in trivial cases, and the relationship between the three
measures introduced above will be studied by means of three hypothetical settings. The first two
experiments concentrate on “perfect” conditions, while the last one focuses on general conditions.

T ij Zij, Sij N µTi σTSσSS
1– µSi βi( σTSσSS

1– αi )Zij σTSσSS
1–
Sij;+–+–





∼

σTT σTS
2 σSS

1–





,–

βSi βi σTSσSS
1– αi–=

Rindiv
2

RεTi εSi

2 σST
2

σSSσTT
-------------------,= =

Rindiv
2 ρZ

2

Rindiv
2 ρZ

2
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Hypothetical setting 1

The PE is obviously equal to one in simple situations of perfect surrogacy, for instance if
T is linearly related to S (T�aS�b), then Eqs. (1) and (2) can be rewritten as

(25)

(26)

and obviously �Z�1, ��a, and RE��. Other simple situations are discussed by Begg and
Leung [15] and Day and Duffy [19].

However, it is possible to construct examples where PE can be chosen to take any arbi-
trary (positive) value, depending on the values of �Z, �, and RE. To this end we consider two
additional hypothetical settings.

Hypothetical setting 2

Assume �Z�1 and RE�1, and suppose further that we could reduce (increase) the vari-
ance of the surrogate endpoint while keeping all other quantities unaffected, say by improv-
ing (deteriorating) the precision of its measurement. Then, Eqs. (1) and (2) would become

(27)

(28)

� is arbitrary and hence so is PE, despite the fact that Eqs. (27) and (28) describe a very de-
sirable situation. The key behind this somewhat artificial and counterintuitive hypothetical
setting is that the systematic components are kept constant, and the random error terms are in
perfect correlation. Then, knowledge about the surrogate endpoint enables exact prediction
of the true endpoint: E[Tj|Zj, Sj]�Tj.

Now, we would like to call the situation described by Eqs. (27) and (28) “perfect,” even
though PE may not be equal to one, nor �S equal to zero. This casts doubts on the fourth
Prentice criterion, which states that the full effect of treatment should be captured by the sur-
rogate, even though this criterion has much intuitive appeal. In the above example, the condi-
tional distribution of the true endpoint, given treatment and surrogate endpoint, is

(29)

which shows that the true endpoint does depend on treatment, although the residual unex-
plained variability in the true endpoint has been eliminated. In other words, in this perfect sit-
uation (at the individual level), Eq. (8) vanishes, which is equivalent to stating that �Z�1.
This suggests focusing on the adjusted association rather than on the adjusted treatment ef-
fect upon the true endpoint. Note that perfection in this context has no implication for the
surrogate across units. To study the latter very important quality it is necessary to turn to RE
or even to our multiunit setting.

It should be very clear that the thought experiment conducted here differs fundamentally
from rescaling the true and surrogate endpoints. In such a case, one would divide the true
endpoint by  and the surrogate endpoint by . While this, at first sight, looks like
a useful calibration strategy, it is easy to see that the PE is unaffected by such a transforma-
tion, and so is the adjusted association. The only effect is that the RE is divided by the vari-

S j µS αZ j εSj,+ +=

T j b aµS aαZ j aεSj,+ + +=

S j µS αZ j εSj,+ +=

T j µS αZ j λεSj.+ +=

T j µ̃T α 1 λ–( )Z j λS j,++=

σTT σSS
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ance ratio and ��1. However, there is still no reason to believe that PE will be inside the unit
interval.

Hypothetical setting 3

We will now switch to general conditions and consider two transformations of the surro-
gate endpoint:

(30)

(31)

It is important to realize that the second transformation cannot be conducted through a
simple transformation of a dataset variable. It might refer, for example, to a situation in a se-
quence of trials where at some point the precision changed due to a change in instrument or
method used to measure the surrogate.

Transformation Eq. (30) operates on the fixed and random parts of the surrogate endpoint
alike whereas transformation Eq. (31) operates on the random part only. The second transfor-
mation is similar to the one in the second hypothetical setting, except that we now consider
the general rather than the perfect situation. It is easy to show that the following relationships
hold between the validation measures:

with obvious notation. Thus, for transformation Eq. (30), there is no impact on the PE, but
under Eq. (31), PE is rescaled with an arbitrary amount.

There are also problems with the RE. Indeed, while the adjusted association expresses
agreement between both endpoints at the individual level, the trialist will want to know how
the trial-specific treatment effect on T can be predicted from the treatment effect on S. RE
serves this purpose, but it is typically based on information from only one trial. It might not
be constant for all trials testing the therapeutic question under consideration. The constancy
of RE implies that the relation between � and � is linear through the origin. This assumption
may be untenable in practice, and it cannot be verified from a single trial. Therefore, it is use-
ful to switch to the multiunit situation. In such a context, the regression line may or may not
go through the origin, without affecting the usefulness of the framework. Indeed, the regres-
sion line is concerned with the fixed effects, while the validation measures are based on vari-
ance components. Let us explore the problems with the single-unit validation measures fur-
ther, within the broader context of the multiunit setting.

The PE can be calculated for each unit i:

(32)

where REi��i/�i.

S j
1( ) φS j 
 φµS( 
 ) φαZ j φεSj,+ + +=+=

S j
2( ) µS αZ j φεSj.+ +=

RE
1( )

RE φ, ⁄= ρZ
1( ) ρZ , = λ 1( ) λ φ, ⁄= PE

1( )
PE,=

RE
2( )

RE, = ρZ
2( ) ρZ , = λ 2( ) λ φ, ⁄= PE

2( )
PE φ,⁄=

PEi λρZ
1

REi
---------,=
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Let us now examine how the PEi behaves relative to the R2 measures. To make the point
clearly, it is useful to concentrate on a “perfect” surrogate, i.e., one for which �1 and

� �1.

Perfect surrogate at the trial level

Let us first assume that the surrogate is perfect at the trial level (i.e., �1). Then the
relationship between �i and �i, expressed by Eq. (22), is deterministic, and Eq. (32) becomes

(33)

Thus, even if the important condition �1 is satisfied and one can predict the treatment
effect on the true endpoint without error from the treatment effect on the surrogate endpoint,
PEi cannot be constant across units, and consequently would not be equal to unity in all of
them. Note also that REi is not constant across units. The reason is that for REi to be constant
the relationship between �i and �i must be multiplicative rather than merely linear. 

Perfect surrogate at the individual level

Let us now make the additional assumption that the surrogate is also perfect at the individ-
ual level, i.e., �Z�1. In this case, Eq. (33) becomes

(34)

and the property of nonconstant PEi and REi persists, again due to the linear but nonmultipli-
cative relationship between �i and �i.

Constant relative effect

Let us make the final assumption that a simple multiplicative relationship holds between
�i and �i, i.e., �0��m�0 and hence REi��a. Thus,

(35)

Now, REi is constant and so is PEi, but the latter is still a function of two quantities:

• the multiplicative factor �a linking the treatment effects in each trial, and
• the multiplicative factor � linking the two error terms in each patient.

Clearly, under the three assumptions made above, the surrogate and true endpoints are
identical, up to scaling factors that translate the treatment effects within a trial and the sub-
ject-specific deviations within each patient. Yet, depending on the values of �a and �, the PE
can assume any positive real value.

Thus, the single-unit validation measures can be used, at best, only with the greatest cau-
tion and it seems more desirable to turn to multiunit validation measures. Regarding the
choice of units, one can consider trials, but also centers, investigators, countries, etc.
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Case studies

We will present results from five studies, three of which have been reported earlier: ad-
vanced macular degeneration, advanced ovarian cancer, and advanced colorectal cancer. The
other two studies are in schizophrenia, with the second one of the equivalence trial type. Sin-
gle- as well as multiunit results will be reported. The emphasis will be on validation mea-
sures and on predicting the treatment effect on the true endpoint in a new trial.

Description of the data

The first set of data concerns a clinical trial for patients with age-related macular degener-
ation (ARMD), a condition in which patients progressively lose vision [20]. Overall, 190 pa-
tients from 42 centers participated in the trial. Patients’ visual acuity was assessed using
standardized vision charts displaying lines of five letters of decreasing size, which patients
had to read from top (largest letters) to bottom (smallest letters). The visual acuity was mea-
sured by the total number of letters correctly read. In this example, the binary indicator for
treatment (Zij) is set to 0 for placebo and to 1 for interferon-�. The surrogate endpoint Sij is
the change in the visual acuity (which we assume to be normally distributed) at 6 months af-
ter starting treatment, while the final endpoint Tij is the change in the visual acuity at 1 year.
In the multiunit analyses the centers in which the patients were treated will be considered as
the units of analysis. Six of 42 centers participating in the trial enrolled patients only to one
of the two treatment arms. These centers were excluded from consideration. A total of 36
centers were thus available for analysis, with the number of individual patients per center
ranging from 2 to 18 (183 patients overall).

The second set of data comes from a meta-analysis of four randomized multicenter trials
in advanced ovarian cancer [21]. Individual patient data are available in these four trials for
the comparison of two treatment modalities: cyclophosphamide plus cisplatin (CP) versus
cyclophosphamide plus adriamycin plus cisplatin (CAP). The binary indicator for treatment
(Zij) will be set to 0 for CP and to 1 for CAP. The surrogate endpoint Sij will be progression-
free survival time, defined as the time (in years) from randomization to clinical progression
of the disease or death, while the final endpoint Tij will be survival time, defined as the time
(in years) from randomization to death from any cause. The full results of this meta-analysis
were published with a minimum follow-up of 5 years in all trials [21]. The dataset was sub-
sequently updated to include a minimum follow-up of 10 years in all trials [22]. After such
long follow-up, most patients had a disease progression or had died (980 of 1194 patients,
81.8%). In the majority of cases, death was clearly related to the disease (850 of 952 deaths,
89.2%). The ovarian cancer dataset contains four trials. In the two larger trials of the Gyne-
cologic Oncology Group (n�412 patients) and the Gruppo Interegionale Cooperativo Onco-
logico Ginecologia (n�383 patients), information is also available on the centers in which
the patients had been treated. For the two smaller trials of the Danish Ovarian Cancer Group
(DACOVA, n�274 patients) and the Gruppo Oncologico Nord-Ovest (GONO, n�125 pa-
tients), the information is not available. According to the clinical investigators, the close col-
laboration of the members of the corresponding research groups allows the patients treated in
these trials to be considered as a homogenous group. In the analyses we will then use center
as the unit of analysis for the two larger trials, and the trial as the unit of analysis for the two
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smaller trials. Two centers enrolled only one patient each and were excluded from consider-
ations. A total of 50 “units” are thus available for analysis, with the number of individual pa-
tients per unit ranging from 2 to 274.

The third set contains data from two randomized multicenter trials in advanced colorectal
cancer [23,24]. In one trial, treatment with 5FU plus interferon (5FU/IFN) was compared to
treatment with 5FU plus folinic acid (5FU/LV) [23]. In the other trial, treatment with 5FU/
IFN was compared to treatment with 5FU alone [24]. The binary indicator for treatment (Zij)
will be set to 0 for 5FU/IFN and to 1 for 5FU/LV or 5FU alone. The surrogate endpoint Sij

will be progression-free survival time, defined as the time (in years) from randomization to
clinical progression of the disease or death, while the final endpoint Tij will be survival time,
defined as the time (in years) from randomization to death from any cause. Most patients in
the two trials had a disease progression or died (694 of 736 patients, 94.3%). Similarly to the
previous example, we will consider center as the unit of analysis. However, in eight centers
there were no patients accrued to one of the treatment arms. These eight centers were there-
fore excluded from the analysis. As a result, a total of 68 units were thus available for analy-
sis, with the number of individual patients per unit ranging from 2 to 38 (642 patients over-
all). An analysis exploiting the survival nature of the endpoints in the latter two studies has
been done in Burzykowski et al. [18].

The first of the two psychiatric studies is based on a meta-analysis containing only five tri-
als. This is insufficient to apply the meta-analytic methods. In all of the trials, information is
also available on the investigators who treated the patients. Thus, we can also use investiga-
tor as the unit of analysis. A total of 138 units are thus available for analysis, with the number
of patients per unit ranging from 2 to 30. The true endpoint is Clinician’s Global Impression
(CGI). This is a seven-grade scale used by the treating physician to characterize how well a
subject is doing. As a surrogate measure, we consider the Positive and Negative Syndrome
Scale (PANSS) [25]. The PANSS consists of 30 items that provide an operationalized drug-
sensitive instrument, which is highly useful for both typological and dimensional assessment
of schizophrenia. Table 1 shows the frequency of unit-specific sample sizes. Clearly, the ma-
jority of units consists of less than five patients. Alternatively, one could also consider the
main investigator as unit of analysis. For four of the five trials, only one main investigator
was used, leading to extremely large investigator sites. This leads to a total number of 29
units with the number of patients per unit ranging from 4 to 450, four of which represent tri-

Table 1. Psychiatric study I. Frequency table of the number of units with a given number of patients

Patients per unit (n) Units with n patients Patients per unit (n) Units with n patients

2 29 10 2
3 18 11 4
4 23 12 2
5 16 13 3
6 9 15 1
7 12 18 1
8 10 21 1
9 6 30 1
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als. The comparison of both choices will be used as an empirical assessment as to the impor-
tance the choice of unit can have on the results.

Finally, we will use data from an international equivalence trial on schizophrenic patients
[26]. The trial includes 206 schizophrenic patients. All patients received an equal daily
amount of risperidone during 8 weeks, but 103 patients were randomized to a one-time daily
intake while the remaining 103 patients were randomized to receive risperidone twice a day.
The surrogate and true endpoints are again PANNS and CGI, respectively. A total of 34 units
were thus available for analysis with the number of patients per unit ranging from 2 to 15.
The importance of this example lies in the fact that, due to the equivalence nature, the Pren-
tice-Freedman framework should be expected to break down, since it is based on hypothesis
testing in a superiority-trial setting.

Analysis of case studies

Table 2 presents validation results for the studies described earlier; some of them have
been reported elsewhere [8,18]. The first three Prentice criteria fail in four of five examples.
Note in addition that for psychiatric study I, the p value for the fourth criterion is 0.513,
which is not inconsistent with the framework, but cannot be seen as definitive evidence to
the equivalence testing problem that surrounds the fourth criterion.

The point estimate of PE lies outside the unit interval in two cases (once greater than 1,
once smaller than 0). All confidence intervals are wide and exceed the unit interval; in one
case it is infinitely large. Hence, the Prentice criteria and the PE fail to convey any useful in-
formation on the quality of the proposed surrogates. Other single-trial measures are descrip-
tively useful but also fail to permit a full qualification of the surrogates. All RE estimates ex-
hibit extremely large confidence intervals with, again, one of them infinitely large. In all
cases, the adjusted association is close to the square root of the individual-level R2. Similarly
in all cases, the confidence intervals of the adjusted association are sufficiently narrow to be
of use.

The meta-analytic validation measures allow us to qualify the potential of the surrogates
much better. The highest values of R2s are seen in advanced ovarian cancer, where progres-

Table 2. Single- and multitrial validation measures for various diseases and endpoints

Age-related
macular
degeneration

Advanced
ovarian
cancer

Advanced
colorectal
cancer

Psychiatric
study I
(138 units)

Psychiatric
study I
(29 units)

Psychiatric
study II

Surrogate Visual acuity
(6 months)

Progression-free
survival

Progression-free
survival

PANSS PANSS PANSS

True Visual acuity
(1 year)

Overall survival Overall survival CGI CGI CGI

Prentice criteria 1–3 (p � value)
Association (Z, S) 0.31 0.013 0.90 0.016 0.835
Association (Z, T) 0.22 0.08 0.86 0.007 0.792
Association (S, T) �0.001 �0.001 �0.001 �0.001 �0.001

Single-unit validation measures (estimate and 95% CI)
Proportion explained 0.61[
0.19; 1.41] 1.34[0.73; 1.95] 0.51[
4.97; 5.99] 0.81[0.46; 1.67] 
0.94[∞]
Relative effect 1.51[
0.46; 3.49] 0.65[0.36; 0.95] 1.59[
15.49; 18.67] 0.055[0.01; 0.16] 
0.03[∞]
Adjusted association 0.74[0.68; 0.81] 0.94[0.94; 0.95] 0.73[0.70, 0.76] 0.72[0.69;0.75] 0.74[0.69; 0.79]

Multiunit validation measures (estimate and 95% CI)
R2

trial 0.69[0.52; 0.86] 0.94[0.91; 0.97] 0.57[0.41, 0.72] 0.56[0.43 ;0.68] 0.58[0.45; 0.71] 0.70[0.44; 0.96]
R2

indiv 0.48[0.38; 0.59] 0.89[0.87; 0.90] 0.57[0.52, 0.62] 0.51[0.47; 0.55] 0.52[0.48; 0.56] 0.55[0.47; 0.62]
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sion-free survival has good potential as a surrogate for survival. Note, however, that progres-
sion-free survival would not be practically attractive in this disease since disease progression
may take several years to develop and is typically followed by death within a few months. In
ARMD, the loss of vision at 6 months shows little correlation with the loss of vision at 1
year, although the association between the treatment effects is stronger. This particular anal-
ysis is based upon a small dataset, but it nevertheless suggests that 6-month measurements
cannot satisfactorily replace 1-year measurements in this disease. A weak individual-level
surrogacy, combined with a stronger trial-level surrogacy, might be due to the impact of
measurement error. Likewise, in advanced colorectal cancer, progression-free survival does
not appear to be a good surrogate for survival.

In the first psychiatric study, there is remarkably little difference between the versions
with 138 and 29 units. This similarity supports the use of the multiunit approach. Let us turn
attention to the second psychiatric case study, where data from an equivalence trial are used.
Obviously, the equivalence nature of the study renders the use of the Prentice-Freedman
framework impossible since the p-values merely reflect the absence of treatment effect. Nev-
ertheless, the meta-analytic measures are fairly precise and, importantly, the results from
studies I and II are very close to each other. The latter observation supports that we have
been able to quantify reasonably and accurately the surrogacy of PANSS for CGI in the con-
text of certain compounds for schizophrenia. Of course, the R2 values are not terribly high, so
that a mere replacement of CGI by PANSS may be questionable. An interesting topic of re-
search would be the combination of several surrogates, with a view on better overall surro-
gacy.

Another important advantage of the multiunit framework is the ability to predict the treat-
ment effect on the true endpoint, given the effect on the surrogate endpoint. Results are pre-
sented for both the ovarian study (Table 3) as well as the first psychiatric study (Table 4). In
all cases, the predictions were done on a leave-one-out basis to avoid overly optimistic pre-
dictions. In these tables,  and  are values estimated from the data; E(��b0) is the
predicted treatment effect on the true endpoint, given its effect on the surrogate endpoint. In
the ovarian case, the agreement is very strong, while the agreement is reasonable in the psy-
chiatric study; these findings are in line with the strength of the trial-level surrogacy in these
examples. In the ovarian case, DACOVA and GONO refer to two large “centers,” for which
no subunit information was possible. It is seen that the prediction is good for both these large
centers, as well as for randomly selected small centers.

α̂0 β b0+

)

Table 3. Ovarian cancer. Comparison of estimated and predicted treatment effects on true endpoint

Unit Patients (n) E(��b0|a0)  

6 17 
0.58 (0.33) 
0.45 (0.29) 
0.56 (0.32)
8 10 0.67 (0.76) 0.49 (0.57) 0.76 (0.39)
55 31 1.08 (0.56) 0.80 (0.44) 0.79 (0.45)
DACOVA 274 0.25 (0.15) 0.17 (0.13) 0.14 (0.14)
GON 125 0.15 (0.25) 0.10 (0.20) 0.03 (0.22)

Standard errors are shown in parentheses.

α̂0 β b0+

)
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Discussion

In this paper, we have argued that a classical approach to surrogate marker validation,
based on the Prentice criteria and measures derived therefrom, such as the PE and the RE, is
surrounded with difficulties. The PE attempts to capture the concept that the treatment effect
on the true endpoint is fully explained by the surrogate. In doing so, it focuses on the condi-
tional regression coefficient of the treatment indicator (�S) and requires that �S�0, or equiv-
alently that PE�1. We have discussed cases in which this approach fails because it does not
appropriately distinguish between different sources of variability. PE is in fact an amalgam-
ation of three quantities: the trial-level relative effect, the individual-level adjusted associa-
tion, and a nuisance factor related to the ratio of variances of the true and surrogate end-
points. This conceptual difficulty seems to us more worrisome than the confidence interval
of PE, which, as pointed out by many authors, tends to be too wide to be useful unless trial
sizes are very large or the treatment effect on the true endpoint is very strong [5]. We have
argued that it is more meaningful to view the problem from the multiunit point of view. At

Table 4. Psychiatric study I. Comparison of estimated and predicted treatment effects on true endpoint

Unit Patients (n) E(��b0|a0)

1 8 14.00 (16.35) 0.53 (0.63) 0.50 (1.26)
2 6 
43.33 (29.02) 
1.99 (0.63) 
2.33 (1.25)
3 9 
13.50 (12.75) 
0.75 (0.60) 0.30 (1.18)
4 4 7.50 (35.28) 0.08 (0.58) 1.50 (1.80)
5 9 
7.60 (7.65) 
0.45 (0.63) 
0.40 (0.99)
6 8 
42.00 (18.93) 
1.88 (0.63) 
2.50 (1.04)
7 7 
39.58 (18.71) 
2.07 (0.61) 
1.00 (1.18)
8 6 
13.33 (13.79) 
0.69 (0.62) 
1.33 (1.56)
9 6 
7.33 (23.35) 
0.44 (0.63) 
0.33 (1.33)

10 4 
2.00 (18.06) 
0.18 (0.63) 
0.50 (1.80)
11 68 
4.84 (4.46) 
0.32 (0.63) 
0.47 (0.36)
12 8 
14.25 (30.53) 
0.72 (0.62) 
1.50 (0.89)
13 7 
6.33 (11.24) 
0.37 (0.63) 
0.83 (0.95)
14 4 
36.5 (14.77) 
1.96 (0.58) 
0.50 (0.50)
15 5 
13.00 (26.93) 
0.66 (0.61) 
1.66 (1.72)
16 8 
22.75 (10.45) 
1.13 (0.63) 
1.25 (0.63)
17 8 
9.00 (10.93) 
0.52 (0.63) 
0.50 (0.65)
18 450 
3.57 (2.13) 
0.28 (0.63) 
0.15 (0.13)
19 7 
23.5 (12.02) 
1.16 (0.63) 
1.25 (0.74)
20 5 
5.33 (13.52) 
0.33 (0.63) 
0.83 (0.57)
21 70 2.75 (5.79) 
0.00 (0.63) 0.21 (0.38)
22 7 
7.50 (16.13) 
0.46 (0.63) 
0.25 (1.40)
23 7 
20.66 (15.39) 
1.00 (0.62) 
1.83 (1.06)
24 9 
4.00 (11.06) 
0.31 (0.63) 0.05 (0.93)
25 5 
7.83 (11.16) 
0.43 (0.61) 
1.33 (0.86)
26 45 
20.15 (9.68) 
1.01 (0.63) 
1.18 (0.50)
27 9 1.14 (19.19) 
0.06 (0.63) 0.00 (0.95)
28 5 
10.50 (10.96) 
0.63 (0.59) 0.66 (0.86)
29 8 
3.25 (10.71) 
0.24 (0.63) 
0.49 (0.79)

Standard errors are shown in parentheses.

α̂0 β b0+

)
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the individual level, we have focused on the residual variability of the conditional regression
of T on S and Z, which is captured by the individual-level adjusted association between the
surrogate and true endpoints. If that residual variability vanishes, then knowledge of the sur-
rogate endpoint and treatment indicator allows one to predict the true endpoint without error,
which we consider to be a perfect situation (at the individual level).

At the trial level, we have focused on the prediction of the effect of treatment on the true
endpoint given its effect on the surrogate endpoint. We have called this quantity RE, the ef-
fect of treatment on the true endpoint relative to that on the surrogate endpoint. When only
one trial is available, an estimate of RE is based on the strong assumption that the relation-
ship between the treatment effects on the surrogate and true endpoints is multiplicative, an
assumption that may be too strong to hold and is unverifiable. Again, this difficulty is more
fundamental than the limited precision of RE, which will typically be obtained in trials of
small or moderate size [4]. A more convincing approach to the problem can be worked out
when multiple units are available. The adjusted association generalizes naturally to an R2

measure of individual-level association, and the RE can be supplemented by a corresponding
trial-level measure of association. If the association is perfect, then knowledge of the treat-
ment effect upon the surrogate allows one to predict its effect upon the true endpoint, again a
situation that we would consider perfect (at the trial level). For both levels, there is replica-
tion in the data and hence the posited models can be checked.

In summary, our approach differs from Prentice’s criterion of full capture in that we pro-
pose to use two quantities to measure the quality of a surrogate endpoint. Prediction of the
treatment effect at the trial level is undoubtedly central to the problem of surrogate valida-
tion, and some approaches are in fact based exclusively on trial-level information [7]. Predic-
tion of the true endpoint at the individual level is only incidental to the validation problem,
even though the correlation between the surrogate and the true endpoints is one of the ele-
ments to consider in the evaluation process [27,28]. Although a good correlate may not be a
good surrogate [9], a poor correlate is even less likely to be one.

The conditions of perfect prediction can only be verified if data are available at both the
trial and the individual levels, which implies a multiunit approach based on patient (rather
than summary) data. Note that the “trial” level can be defined by any other sensible grouping
of individual patients (e.g., by treatment type, by hospital, etc.). Note also that the homoge-
neity that is often sought in meta-analyses (same treatment regimens, same patient mix, etc.)
may not be a desirable feature for the purposes of evaluating surrogate endpoints, since the
trial-level association must be investigated over a sufficiently wide range of treatment ef-
fects. This consideration may in turn drive the choice of appropriate groupings of patients at
the “trial” level.

In our evaluation, a subjective assessment is required as to what values of R2 are close
enough to one for the candidate surrogate to be deemed acceptable. Such subjectivity seems
inescapable but will be less of an issue if several endpoints are evaluated simultaneously as
candidate surrogates for the same true endpoint. In the two psychiatric case studies, for ex-
amples, it was found that in spite of two different choices for unit in the first study and with
the second case study of the equivalence-trial type, the trial-level surrogacy for PANSS on
CGI is around 0.60 and the individual-level surrogacy is around 0.50. This provides evidence
for the conclusion that PANSS is a surrogate of a moderately weak type. Perhaps it has po-
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tential to be used in conjunction with other surrogates, but this would require additional re-
search.

A methodological issue is that the choice of an individual-level measure of agreement,
such as the R2, is not universal. In this paper, we have concentrated on the situation where the
true and surrogate endpoints are both normally distributed (in which case the individual-level
R2 follows naturally as the coefficient of determination of the adjusted regression). In prac-
tice, endpoints will often be binary, time-dependent, or repeatedly measured over time, and
so different association measures will have to be used depending on the problem at hand.
Fortunately, in most settings it is possible to retain an R2 measure for the trial-level surro-
gacy. For the individual-level surrogacy, it depends on the type of joint model for the surro-
gate and true outcome that is used. A bivariate probit model for binary data [29] would pro-
duce a tetrachoric correlation, while a Dale model produces odds ratios [30]. For survival
endpoints [18] copula-based models have been used, of which the natural association param-
eters may be quite difficult to interpret. Fortunately, they can often be transformed into Ken-
dall’s tau or Spearman’s rank correlation.
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