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As mentioned in a previous article,1 unsupervised
learning involves using datasets without clearly
noticing the dependent (response) variable.

Thus, in principle, all variables are treated in the same
way. In supervised learning, 1 variable receives special
focus. It is the response that determines the scope of
the learning task variable. The response variable is the
dependent variable, outcome, explained variable,
output, label, or target. In principle, the response is
not any different than the other variables. It is just a var-
iable of interest for predicting its value when the other
(explanatory) variables are given.

In general, supervised learning distinguishes 2 types
of tasks:

1. Regression: in this task, the response is a continuous
variable. For example, we want to predict the dura-
tion of the orthodontic treatment on the basis of the
amount of crowding.

2. Classification: in this task, the response is a categor-
ical variable. For example, we want to predict canine
impaction on the basis of the position or angle of
the tooth in the maxilla.

How is it possible that a computer can learn from a
dataset? Algorithms mimic the learning process of hu-
mans via various mathematical techniques. The main
principle here is to teach by example. Consider the
following analogy. A person who has never seen a
vehicle before is confronted with pictures of trucks,
cars, and motorbikes. The labels are provided along
with the pictures so the person knows exactly to which
class each vehicle belongs. This person must learn rules
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from these examples to categorize the vehicle. Toward
this aim, the person will try to look for characteristics
in the pictures that are different between the 3 classes
allowing them to understand the definition of a truck,
car, and motorbike to explain why a picture belongs to
a certain vehicle category. For instance, the number of
wheels, the size of the vehicle, the presence of interior
space, speed, weight, etc, are good characteristics to
categorize these vehicles. However, the first issue with
supervised learning tasks is whether the examples are
representative enough to cover the learning objective.
Consider that, by coincidence, we have provided the per-
son with only pictures of red motorbikes, blue cars, and
yellow trucks. From this limited dataset, the person
could incorrectly reason that color is a good discrimi-
nating variable to classify a vehicle.

A second issue is that the person could overempha-
size the examples and memorize all the vehicles pre-
sented to them. By memorization, the person cannot
anticipate a new situation. Thus, the concepts learned
have limited value as the person could only apply the
knowledge correctly on this limited “learning” dataset.
The latter 2 examples indicate the risk of overfitting. In
such a case, the relationship inferred by a person or com-
puter algorithm is not generalizable. Generalizability
means that the concepts learned can be applied else-
where in different situations within a different context.
Thus, smart persons are people that can generalize well.

A similar thing can be said about machine learning
(ML) models. However, we do not call these models smart
but flexible. A flexible model can detect and use subtle
patterns present in a dataset. In contrast, a rigid, inflexible
model will only capture general trends in a dataset. The
concept of flexibility is further explained in Figure 1.
Consider a continuous explanatory variable (covariate) x
and a response variable y. The dependence of the true
value of y on x can be expressed by using the function
f(x), denoted by the line in Figure 1. We can learn about
this relationship via an experiment by controlling the co-
variate x andmeasuring the response y. Themeasurement
is affected by uncertainty because of unobserved factors
that influence the value of the response or just random
errors caused by the measurement process. The term ε de-
notes this random error and is sometimes regarded as
normally distributed. The dots surrounding the line in



Fig 1. Hypothetical regression example. The line indi-
cates the true relation between the covariate x and
response y. The dots are measurements taken from this
system and are influenced by random error. The red re-
sults from fitting a simple linear model to the dots,
whereas the red results from fitting a flexible model to
the data points.
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Figure 1 are the observations from the experiment and are
affected by this random error. Mathematically, the depen-
dence of the observed response value y on x can then be
presented as follows:

y 5 fðxÞ1ε

The main assumption in ML is that the unknown
function f(x) can be approximated by presenting examples
to the machine learner. The obtained approximation
(estimate) of the unknown function is usually denoted
by adding a caret to the function bf ðxÞ. Ideally, the esti-
mate is so good that we can use bf ðxÞ to predict the value
of the response variable by for a particular value of x.
Figure 1 presents 2 different ML models that are fitted
to the data. The red presents predictions from an inflexible
model, whereas the green presents a flexible one. The
green model can follow the dots in Figure 1 accurately.
In this case, the difference (y� byÞ between the observed
and the predicted response value is very small. Minimizing
this difference (prediction error) is exactly the objective of
the model fitting procedure. Note that this error should be
minimized for all subjects in the dataset, and often this
difference is squared such that underpredictions and
overpredictions are not canceled out by differences in
the sign. As a result, we arrive at the sum of squared errors
by taking the sum of ðy� byÞ2 across all subjects, also
known as a residual sum of squares.

In contrast, the red cannot accurately predict the
response values, yielding a larger residual sum of squares.
Based on this criterion, the green (flexible model) is
preferred over the red (inflexible model). However, one
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could argue that, although the red is off most of the
time, it can capture the global trend of the data better
than the green without being unduly influenced by indi-
vidual observations. Put differently, the green, corre-
sponding to the more flexible model, is subject to the
risk of overfitting.2 Informally, the flexible model memo-
rizes the example dataset, which may lead to bad gener-
alizations. Be aware of a seemingly contradictory
statement here, although the flexible model can accu-
rately learn the presented data, this does not mean that
the model is also flexible to translate the learned concepts
to different situations. This lack of generalization and
measures to prevent overfitting will be discussed in
more detail in the next article in this series on ML.

Let us consider a clinical orthodontic example. The
dataset of Konstantonis et al.3 has been collected to sup-
port the orthodontist in their decision-making process
on the basis of the measured explanatory variables (26
cephalometric, 6 models, and 2 demographics).

Ignoring, for now, the extraction or nonextraction
treatment, it could be of interest to model the relation-
ship between the Frankfort plane to mandibular incisor
angle (FMIA), which can be treated as the response,
and the covariate Incisor mandibular plane angle
(IMPA). Do note that by selecting these 2 variables, we
can expect a dependency as both angles are computed
with respect to a common line. Therefore, the orthodon-
tic applicability might be limited, but the covariates are
well suited to explain regression as a toy example.

Many machine learners could be considered for this
regression task. Here, we consider simple polynomial
regression models, which try to describe the relationship
between a continuous response variable and a covariate
in an additive way by incorporating different powers of
the covariate. In this case, a first-order polynomial offers
optimal model flexibility using cross-validation, which
will be introduced in the next article. The resulting esti-
mated linear regression model has the following form:

dFMIA 5 124:99� 0:686563IMPA:

Figure 2 presents a scatter plot of the observed
values of the response and the covariate along with
the regression line (black) corresponding to the linear
regression model.

The linear model may seem to be inflexible. However,
using a more flexible, higher-polynomial model might
lead to overfitting. To illustrate the issue, Figure 2 includes
the result (red) of a model that uses the 10th-order poly-
nomial of the covariate. Note that the red behaves unpre-
dictably at the boundaries of the x-axis in that it follows
the few data points near the boundaries too closely. The
predictions providedby themodel at the boundariesmight
ics July 2023 � Vol 164 � Issue 1



Fig 2. Relationship between the IMPA and FMIA of the
subjects in the dataset of Konstantonis et al.3 Each circle
indicates a patient. The line is a simple model with only
intercept and slope able to capture the overall trend in
the dataset. The red is a 10th-order polynomial model
behaving unpredictably near the boundaries of the x-
axis. The highlighted bar indicates the 10-nearest data
points around an IMPA of 90. This selection of 10 points
will be used to calculate their FMIA values, resulting in
an average FMIA of 64.8. This result of the KNN model
can be contrasted with the result of the simple linear
model, which yields a prediction for the FMIA of 63.2.
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be problematic if the model is applied to a new set of ob-
servations. Again, this example illustrates that model flex-
ibility is the capability of a machine learner to bend into
some of the presented data points, and it is not about
the capability of adjusting to different situations.

Thus, a flexible model can fit a particular dataset bet-
ter than an inflexible one (rigid). However, one must
evaluate which model can adequately generalize the
learned concept to new, unseen situations.

Note that the dataset of Konstantonis et al3 included,
in fact, a binary response variable (ie, extraction or non-
extraction treatment). It was interesting to build a model
capable of predicting treatment on the basis of a subset
of the measured explanatory variables for a new patient.
This was a classification task. The principles discussed
for regression also hold for a classification task. The ma-
jor difference is that the calculation of the residual sum
of squares or, equivalently, the error is replaced by the
misclassification error. The misclassification error
denotes the percentage of misclassified subjects in a
dataset. Another term to indicate the performance of a
classification model is accuracy which denotes the per-
centage of correctly classified subjects. A well-known
classification model is, for instance, a logistic regression
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model. The model is an example of a generalized linear
model. Generalized linear models will be discussed in
more detail in one of the next articles in this series on
ML. The misclassification error or accuracy is not always
the best metric to describe the performance of the clas-
sification. Other metrics, such as sensitivity and speci-
ficity, can be more informative and will be explained
later in this series on ML.

In the regression and classification examples discussed
previously, the learning effort is materialized in a model
that describes the underlying relationships in a compact
mathematical manner. Such ML models are called eager
learners as they replace the data set with a mathematical
formulation. Another choice for a model could be a lazy
learner. For example, a typical lazy learner is the K-near-
est-neighbor (KNN) model.4 A KNN model considers
nearby subjects regarding their covariates and a particular
distance measure. When a user-specified number of KNN
subjects are found, the average of their responses is taken
in the case of a regression task, or a majority vote is con-
ducted in the case of a classification task. The flexibility of
the model is controlled by K, the number of the nearest
neighbors to be considered. KNN is a lazy learner because
no formal description exists for the underlying relation-
ship. Therefore, for each new prediction, we need to con-
sult the data again, like a lazy student who needs to
consult his textbook every time a question needs to be
answered. Although the KNN model does not learn any-
thing and adheres to very simple principles, it is often
worth considering as it can be used as a baseline model
compared with more advanced supervised methods. In
Figure 2, the highlighted data points indicate the 10 near-
est neighbors to an IMPA of 90. Averaging their FMIA
values yields a value of 64.8. This result of the KNNmodel
can be contrasted with the simple linear model,
which yields a prediction for the FMIA of 63.2. The
KNN method is also an intuitive ML model to exemplify
the so-called curse of dimensionality when the data is
of high dimensionality (ie, many covariates). These phe-
nomena will be further elaborated on in an upcoming
article in this series.

In contrast, instead of lazy, some ML models are very
eager (eg, artificial neural networks, which will be dis-
cussed in more detail in one of the next articles in this se-
ries on ML) and include many explanatory variables or
coefficients. As a result, many coefficients in the model
formally describe the underlying relationship between
covariates and the response. Such ML models are
extremely flexible, prone to overfitting and may appear
as black boxes, as no meaningful interpretation can be
attached to their coefficients. Therefore, specialized
methods are needed to explain those black boxes. This
research domain is called explainable artificial
Journal of Orthodontics and Dentofacial Orthopedics
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intelligence. It will be discussed in more detail in one of
the next articles in this series on ML.
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