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Abstract

Despite their involvement in many cognitive functions, b oscillations are among the least understood brain
rhythms. Reports on whether the functional role of b is primarily inhibitory or excitatory have been contradic-
tory. Our framework attempts to reconcile these findings and proposes that several b rhythms co-exist at dif-
ferent frequencies. b Frequency shifts and their potential influence on behavior have thus far received little
attention. In this human magnetoencephalography (MEG) experiment, we asked whether changes in b power
or frequency in auditory cortex and motor cortex influence behavior (reaction times) during an auditory sweep
discrimination task. We found that in motor cortex, increased b power slowed down responses, while in audi-
tory cortex, increased b frequency slowed down responses. We further characterized b as transient burst
events with distinct spectro-temporal profiles influencing reaction times. Finally, we found that increased
motor-to-auditory b connectivity also slowed down responses. In sum, b power, frequency, bursting proper-
ties, cortical focus, and connectivity profile all influenced behavioral outcomes. Our results imply that the
study of b oscillations requires caution as b dynamics are multifaceted phenomena, and that several dynam-
ics must be taken into account to reconcile mixed findings in the literature.
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Significance Statement

Spontaneous changes in brain rhythms can bias performance on perceptual tasks. Here we focus on
human beta band rhythms (;13–30 Hz) and find that not only their power, but also their frequency are re-
lated to reaction times. We observe different effects in sensory and motor cortices, suggesting there could
be multiple dynamics by which beta rhythms influence behavior.

Introduction
b Rhythms (;13–30Hz) are traditionally associated with

the sensorimotor system where they are prominent
(Pfurtscheller and Lopes da Silva, 1999). Beyond this
sensorimotor role, b has been implicated in a wide
range of cognitive phenomena including visual percep-
tion (Piantoni et al., 2010; Kloosterman et al., 2015),
language processing (Weiss and Mueller, 2012), working
memory (Axmacher et al., 2008; Siegel et al., 2009), long-

term memory (Hanslmayr et al., 2016), decision-making
(Wimmer et al., 2016; Wong et al., 2016), and reward proc-
essing (Marco-Pallarés et al., 2015). In nonhuman primates,
b was shown to reflect top-down attention (Buschman and
Miller, 2007), and in rodents, b was linked to working memo-
ry (Parnaudeau et al., 2013; Bolkan et al., 2017). However,
the functional role of b is still unclear (Engel and Fries, 2010;
Kilavik et al., 2012), as some studies report decreased b with
task engagement (Hanslmayr et al., 2009), suggesting an
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inhibitory function, while others report the opposite (Kornblith
et al., 2016), suggesting an excitatory function. Similarly, on
the neural level, there have been mixed and contradictory
findings on the relationship between b and other neural
measures such as firing rate (Rule et al., 2017) and blood oxy-
genation level-dependent (BOLD) activity (Hanslmayr et al.,
2011).
Current accounts of b mechanism and function have

tried to reconcile these findings (Engel and Fries, 2010;
Spitzer and Haegens, 2017). One account states that b
band activity is related to the maintenance of the current
sensorimotor or cognitive state via a top-down mecha-
nism (Engel and Fries, 2010). Our account suggests that
b band activity is involved in (re)activating latent sensorimo-
tor and cognitive states (Spitzer and Haegens, 2017). We fur-
ther propose that several b rhythms co-exist, including
functionally inhibitory b as predominantly observed in senso-
rimotor regions, and functionally excitatory b as observed
throughout cortex. These different b rhythms possibly oper-
ate at different frequencies (Spitzer and Haegens, 2017). At
the neurophysiological level, we posit that while b events are
likely excitatory in nature, there are several biologically plausi-
ble ways they could lead to functional inhibition, for example
by activating inhibitory neurons or saturating excitatory neu-
rons (Shin et al., 2017; Spitzer and Haegens, 2017).
b Activity has been characterized and modeled as tran-

sient, high-amplitude events or “bursts,” which can be
detected at the single-trial level (Lundqvist et al., 2016;
Sherman et al., 2016). b Bursts have been observed both
focally (Bonaiuto et al., 2021) and as part of long-range
communication between brain regions, where b band
synchrony is assumed to facilitate interareal connectivity
(Seedat et al., 2020). One property of b that has received
little attention is instantaneous variability in its peak fre-
quency (Cohen, 2014). Here, we asked how frequency
shifts within the b band influence behavior.
The influence of b on behavioral outcomes might depend

on several factors such as b power, frequency, bursting
properties, cortical focus, and connectivity profile. In
the current experiment we investigated the relationship
between single-trial b activity and behavior, specifically
reaction times. Since analyzing neural activity in a pres-
timulus or pretarget interval is a convenient method to
uncover the influence of ongoing neural activity on sub-
sequent behavior (Rassi et al., 2019b), we made use of

magnetoencephalography (MEG) data recorded during
an auditory sweep discrimination task. To test how the var-
ious characteristics of b relate to behavior, we analyzed
reaction times as a function of pretarget b differences in
power, shifts in frequency, and bursting profiles, within
and between motor and auditory cortices.

Materials and Methods
Participants
We recorded MEG in 35 adult participants, 28 of which we

included in our analyses (22 female; mean age=22.86years,
SD=2.84; three participants excluded because of exces-
sively noisy MEG data and four because of near-chance per-
formance on the task). The study was approved by the local
ethics committee. All participants gave informed consent be-
fore the experiment and were given monetary compensation
for their participation.

Auditory target discrimination task
The auditory target discrimination task consisted of five

rhythmic blocks and five nonrhythmic blocks (60 trials per
block). The order of the blocks was randomized. In the
rhythmic blocks, four cue tones were presented, sepa-
rated by 0.5 s. Following the rhythmic cue, a target tone
was presented at 0.5, 1, 1.5, or 2 s (80% of trials) or at
0.75, 1.25, 1.75 s (20% of trials) after the onset of the last
cue tone. In the nonrhythmic blocks, the cue tone was
presented continuously for a period of 1.5 s, followed by a
target that was presented with a flat probability distribu-
tion within a window of 0.5–2 s after cue offset. The task
for the participant was to determine whether the target
tone (a 40-ms chirp) went up or down in pitch. As we had
previously shown the experimental cueing manipulation
not to produce behaviorally different effects (Wilsch et al.,
2020; Lin et al., 2021), here we pooled all trial types (Fig.
1a).

Stimuli
The cue tones had a pitch frequency of 400Hz, a sam-

ple rate of 44,100Hz, and a duration of 40ms (rhythmic
blocks) or 1.5 s (nonrhythmic blocks). We used a Hanning
taper to remove sharp edges. The target tone consisted
of 30 different frequencies randomly drawn from within
500–1500Hz. The target was a frequency-modulated
sweep created with the MATLAB function chirp and was ei-
ther increasing or decreasing in pitch. The sound had a 10-
ms cosine ramp fading in and fading out to avoid onset and
offset click perception. The resulting target tone had a sample
rate of 44,100Hz and a duration of 40ms.
We normalized all sounds (using peak normalization) to

the same sound pressure level. We individually adjusted
target stimuli to participants’ discrimination threshold,
using a custom adaptive-tracking procedure aiming for a
discrimination performance between 65% and 85% correct
responses. The threshold was the slope of the pitch increase
and decrease, measured as the range from lowest to highest
frequency (starting point to end). We presented each partici-
pant with a pair of sounds (“up” and “down”) consisting of
the a priori randomly generated frequencies, modulated
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depending on their individual threshold, i.e., the 30 base-fre-
quencies were the same for each participant, with the partici-
pant’s individual threshold changing the start and end
frequencies of the sounds.

Data acquisition
Whole-head MEG data were recorded at a 1200-Hz

sampling rate with a 275-channel CTF MEG system with
axial gradiometers (CTF MEG Systems, VSM MedTech
Ltd.) in a magnetically shielded room. To monitor the par-
ticipants’ head movements online and for offline co-regis-
tration of anatomic landmarks, three fiducial coils were
placed at the nasion and both ear canals. Anatomical, T1-
weighted MRI scans for source localization purposes
were obtained in a separate session, using either a 1.5 or
3 T Siemens MRI system (Siemens). To co-register the
MEG and MRI data, we additionally mapped the scalp
with Polhemus 3D (Polhemus).

MEG andMRI preprocessing
We processed the MEG data offline with the Fieldtrip

toolbox (Oostenveld et al., 2011). First, we down-sampled
the data to a sampling frequency of 300Hz. We then ap-
plied a notch filter at 50Hz to remove line noise. Next, we
segmented trials into 6-s segments starting 1 s before
cue onset. We rejected bad channels (;5%) and bad tri-
als (;10%) via visual inspection before independent com-
ponent analysis (runICA as implemented in Fieldtrip),
which was used to visually detect and remove compo-
nents representing eye blinks and heartbeats.
We co-registered the MRI to the CTF coordinate system

using the fiducial points and the mapped scalp surface, and
segmented the MRI image with SPM8 (as implemented in
Fieldtrip).

MEG source reconstruction
We used the obob_ownft toolbox for source recon-

struction (https://gitlab.com/obob/obob_ownft). In order
to model virtual sensors at the locations of maximum
evoked activity in both the auditory and motor sources in
the right and left hemispheres respectively, we used a lin-
early constrained minimum variance (LCMV) beamformer
approach (Van Veen et al., 1997). We first constructed vol-
ume conduction models of the participants’ brains using
a single-shell model of their individual anatomic scans
(Nolte, 2003), which we then used to compute leadfields
for each of 3000 gridpoints. Using these leadfields, we
computed common spatial filters for each participant
using time windows that included a baseline period and
the evoked responses.
For the auditory source, we used a time window of 100ms

centered at the peak of the individual auditory evoked re-
sponse, time-locked to the onset of the auditory cue, and a
100-ms baseline window before cue onset. For the motor
source, we used an activation time window of 100ms cen-
tered at the peak of the individual motor response, time-
locked to the button press, and a 100-ms baseline window
before the activation window). We then normalized the differ-
ence of the sources of the pre and post windows and pro-
jected onto their co-registered anatomic scans (Fig. 1b).
For visualization, we normalized each participant’s brain to
Montreal Neurologic Institute space. We then identified the
location of maximum pre versus post differences in audi-
tory and motor sources in the right and left hemispheres,
respectively. Using the spatial filters for these positions, we
then extracted the time series for these two virtual channels.

Data analysis
We performed all further data analysis using the

Fieldtrip toolbox (Oostenveld et al., 2011) and custom
MATLAB code. We time-locked the source-reconstructed

a

b

Figure 1. Trial sequence and region of interest definition. a, After a variable baseline delay (1–2 s), an auditory cue lasting 1.5 s
played, followed by a variable pretarget delay (0.5–2 s). This pretarget delay was our analysis window. After target onset, partici-
pants responded as fast as possible, indicating via button press whether the target tone shifted upward or downward in pitch. b,
Regions of interest (ROIs) were defined as the source location with maximum evoked activation versus baseline, based on the
evoked response to the auditory cue for the auditory cortex ROI (left panel) and based on the evoked response to the button press
for the motor cortex ROI (right). Showing source reconstruction for one representative subject (with a 95%-maximum activity thresh-
old applied for illustrative purposes).
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signals from auditory and motor cortices to the onset of
the target tones and analyzed a 700-ms pretarget interval.
To counteract the 1/f effect in the data, we took the deriv-
ative of the time-series data (Thomson and Emery, 2014).
Note that whether or not we removed the 1/f component
had no influence on any of our results. However, b activity
in the resulting flattened spectra was more visually salient,
so we used those for visualization.

Spectral power
To compare pretarget b power with baseline (i.e., the

precue period) activity, and to test the relationship be-
tween reaction times and b power, we extracted 700ms
of precue and pretarget data and computed single-trial
Fourier spectra (0–30Hz) with a fast Fourier approach and
a Hanning taper, padded to 2 s for a frequency resolution
of 0.5Hz. We log-transformed the single-trial power data
and extracted power in the b frequency range (13–30Hz).
For the reaction time contrast, we split the pretarget data
along the median reaction time, and averaged the power
spectra for faster and slower reaction times. We tested for
group-level differences in both contrasts with a cluster-
based permutation approach (Maris and Oostenveld,
2007), clustering across b frequencies. We estimated ef-
fect sizes by calculating Cohen’s d based on the average
difference in the data within a cluster (Meyer et al., 2021).
For time-resolved analyses, we performed time-fre-

quency transformation based on multiplication in the fre-
quency domain, using a sliding time window of 250ms in
steps of 20ms from �750 to 1250ms relative to target
onset, in steps of 0.5Hz between 13 and 30Hz. We then
averaged power within this window to obtain a per-region
normalization factor and divided each time-frequency
point by that factor. Finally, we averaged across the fre-
quency dimension within the b band and extracted sin-
gle-trial b time-courses for the 700-ms pretarget window.
To test the relationship between the b time course and

reaction time, we z-scored the power values and reaction
times, removed those with z-values above three and
below �3, and used linear regression (reaction time = b
power * slope 1 intercept), relating each single-trial, pre-
target time point of b power with the subsequent reaction
time on that trial. This provided a time course of regression
slopes per participant. We then generated time-courses of
slopes obtained by randomly shuffling the correspondence
between power values and reaction times, and tested for
group-level differences between the real and shuffled data
with a cluster-based permutation approach (Maris and
Oostenveld, 2007), clustering across the time dimension
(�700–0ms). We estimated effect sizes by calculating
Cohen’s d based on the average difference in the data
within a cluster (Meyer et al., 2021). We also obtained
the R2 values associated with each of those regres-
sions, took the maximum across time points per partici-
pant, and reported the average across participants.

Burst properties
To examine b burst properties in the source-reconstructed

signals, we used the time-frequency representations as
described above. We computed the mean and standard

deviation of power within a trial for each frequency, and
marked the time-frequency points that exceeded two
standard deviations above the mean and that lasted at
least the duration of one cycle (defined as 1/frequency).
We zoomed in on the precue and pretarget delays, and
based on temporal and spectral adjacency, we clustered
the marked time-frequency points into burst events. We
then extracted six parameters of interest from these burst
events: for each trial, we counted the number of burst
events. Focusing on the event that contained the time-fre-
quency point with the highest power, we extracted the
maximum power, the time point with maximum power, the
frequency with maximum power, the frequency range, and
the time range. This gave us single-trial estimates of burst
properties during the precue and pretarget intervals.
To contrast precue and pretarget burst properties at the

group level, we used paired t tests, and estimated effect
sizes by calculating Cohen’s d. To examine the relation-
ship between reaction times and burst properties, we z-
scored the burst properties in the pretarget interval and
reaction times, and used linear regression analysis to re-
late them. To test for group-level relationships, we used
paired t tests contrasting the regression slopes against a
shuffled distribution.

Instantaneous frequency
To investigate the time course of the peak b frequency

in the source-reconstructed signals, we analyzed instan-
taneous frequency as detailed by Cohen (Cohen, 2014).
Briefly, we band-passed the single-trial data within the b
frequency range, applied the Hilbert transform, extracted
the phase angle time series, took the temporal derivative,
and applied ten median filters. This resulted in single-trial
time-series of instantaneous frequency during the precue
and pretarget interval.
To compare pretarget instantaneous frequency with

baseline, and to test the relationship between pretarget
b frequency and reaction times (based on median split),
we used a cluster-based permutation approach (Maris
and Oostenveld, 2007), and estimated effect size by
calculating Cohen’s d based on the average difference
in the data within a cluster (Meyer et al., 2021). To relate
single-trial time-series of instantaneous frequency with
reaction times, we used the same regression approach
detailed above (see Spectral power) to obtain a time
course of regression slopes, and tested them at the
group level with a cluster-based permutation approach
(Maris and Oostenveld, 2007).
To test the relationship between reaction time and peak

frequencies in the power spectra, we averaged power
spectra separately for slower and faster trials (based on
median split), and detected the peaks of maximum power
within the b range. We then contrasted the peaks at the
group level with a paired t test, and estimated effect sizes
by calculating Cohen’s d.

Connectivity
To estimate the connectivity between auditory and motor

cortices, we used the Fourier coefficients that we obtained
in the spectral power analysis. As connectivity measures are
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not resolved on single-trials, we estimated them after split-
ting the data along the median reaction time. We computed
the pairwise phase consistency (Vinck et al., 2010), a bias-
free method of rhythmic synchronization. We also computed
bi-variate, nonparametric Granger causality (Dhamala et al.,
2008a,b), which gave us separate estimates of the connec-
tion strengths from motor to auditory cortex and vice versa.
We finally contrasted slower versus faster trials on the group
level with a cluster-based permutation approach (Maris
and Oostenveld, 2007), clustering across the b band. We
estimated effect sizes by calculating Cohen’s d based on
the average difference in the data within a cluster (Meyer et
al., 2021).

Data and code availability
The data and code supporting the findings of this

study can be found here: https://doi.org/10.17605/OSF.IO/
4AYS5.

Results
Pretarget versus precue power, frequency, and burst
properties
First, we examined pretarget b properties in relation to

a baseline (i.e., precue) interval (Fig. 2). We found that in

motor cortex, b power decreased, and in both motor and
auditory cortex, b frequency increased from baseline to
pretarget interval.
In motor cortex, we observed the pretarget power de-

crease across the whole range of b frequencies (Fig. 2a;
cluster-based permutation test across frequencies 13–
30Hz; p=1e-6, d = �0.78; see also Extended Data Fig. 2-
1, top row, for time-frequency representations), and the
upward shift in b frequency across the whole interval (Fig.
2b; cluster-based permutation test across time �700–
0ms; p=2e-4, d=0.85). Consistently, there were fewer
bursts (t(27) = �5.6, p=6e-6, d = �1.06; Wilcoxon signed
rank z-value = �3.9, p=9e-5), with narrower time spans
(t(27) = �9.0, p=1.3e-9, d = �1.70) and narrower fre-
quency spans (t(27) = �12.4, p=1.4e-12, d = �2.35), and
the peak burst frequency was also increased (t(27) =
5.4, p = 1.3e-5, d = 1.01) during the pretarget delay as
compared with baseline (Fig. 2c). In addition, bursts in
motor cortex happened closer in time to target onset
than they did to cue onset (t(27) = 3.6, p = 0.001, d =
0.69). There were no differences in the maximum
power of the bursts.
In auditory cortex, we observed the upward shift in b

frequency primarily from 210 to 75ms before target onset
(Fig. 2e; p=0.038, d=0.52).In addition, there were more

a b c

d e f

Figure 2. b Dynamics. a, Power spectra in motor cortex during the pretarget versus precue delays. For a time-frequency represen-
tation of the same contrast, see Extended Data Figure 2-1, top. b, Instantaneous b frequency in motor cortex during the pretarget
versus precue delays. c, b Burst properties in motor cortex during the pretarget versus precue delays: frequency range, time range,
timing relative to target onset, peak amplitude, number of events, and peak frequency. d–f, Same as a–c for auditory cortex. For a
time-frequency representation of d, see Extended Data Figure 2-1, bottom. Shaded regions around the line graphs represent the SEM.
Horizontal dotted lines represent significant clusters (p, 0.05). Spectra in a and d were detrended by removing 1/f slope. Note that in
b and e, the vertical dotted lines corresponding to time point zero represent the cue onset for the precue time courses (blue) and target
onset for the pretarget time courses (red). Asterisks in c and f represent significant differences between distributions.
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bursts (t(27) = 5.3, p=1.5e-5, d=0.99; Wilcoxon signed
rank z-value =3.7, p=2e-4) with wider time spans (t(27) =
4.6, p=1e-4, d=0.86) and wider frequency spans (t(27) =
5.1, p=2.5e-5, d=0.96) during the pretarget delay as
compared with baseline (Fig. 2f). There were no differen-
ces in spectral power (Fig. 2d; Extended Data Fig. 2-1,
bottom row), maximum power of the bursts, their peak
frequency, or their timing relative to stimulus onset.
Next, we tested whether pretarget b properties related

to reaction times using two complementary approaches:
a median-split approach to relate b measures to slow ver-
sus fast reaction times, and a regression approach to re-
late single-trial b measures to reaction times. The two
approaches yielded the same results: in motor cortex,
slower reaction times were related with higher b power,
while in auditory cortex, slower reaction times were re-
lated with higher b frequency.

Spectral power
In motor cortex (Fig. 3a–c), slower reaction times were

preceded by higher b power. Splitting the power spectra
across the median reaction time revealed the effect was
driven by differences in the 20- to 26-Hz frequency range
(Fig. 3a; cluster-based permutation test across frequen-
cies: p=1e-5, d=0.65). This effect was present throughout
the whole pretarget interval when looking at the time-

resolved power envelopes (Fig. 3b; cluster-based per-
mutation test across time: p = 6e-4, d = 0.58). A time-
resolved single-trial regression approach confirmed
this effect as well (Fig. 3c; slope=0.030; cluster-corrected
p=4e-4; R2 = 0.016). To further characterize this differ-
ence, we zoomed in on the b bursting profile and found
that slower reaction times were preceded by more bursts
(slope=0.040; p=0.0017) with wider time spans (slope=
0.037; p = 0.0277) and wider frequency spans (slope =
0.039; p = 0.0143).
In auditory cortex, when splitting the data along the me-

dian reaction time and contrasting the power spectra, we
found an effect opposite to that observed in motor cortex,
such that faster reaction times were preceded by higher
b power (Fig. 3d; cluster-corrected p=0.016, d= �0.63),
an effect driven by differences in the 17- to 19-Hz fre-
quency range. However, pretarget b power was not re-
lated to reaction times when using the time-resolved
regression approach (slope = �0.008, no clusters). Given
the discrepancy in results between the two approaches,
we further investigated the observed difference in audi-
tory cortex as a possible shift in peak frequency.

b Frequency
In auditory cortex (Fig. 3d–f), slower reaction times were

preceded by a higher peak b frequency when splitting the

a b c

d e f

Figure 3. Relation between b dynamics and reaction times. a, Power spectra in motor cortex for trials with slow versus fast reaction
times. b, Time-resolved b power in motor cortex for trials with slow versus fast reaction times. c, Regression slopes for the relation-
ship between reaction times and time-resolved b power in auditory cortex. d, Same as a for auditory cortex. e, Instantaneous b fre-
quency in auditory cortex for trials with slow versus fast reaction times. f, Regression slopes for the relationship between reaction
times and instantaneous frequency in auditory cortex. Shaded regions around the line graphs represent the SEM. Horizontal dotted
lines represent significant clusters (p, 0.05). Vertical dashed lines represent time point zero (target onset). Spectra in a and d were
detrended by removing 1/f slope.
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power spectra across the median reaction time and de-
tecting participants’ individual peak b frequencies (t(24) =
2.4, p=0.026, d=0.48). This effect was most pronounced
around 660–450ms before target onset when looking at
instantaneous frequency (Fig. 3e; cluster-based permuta-
tion test across time: p=0.006, d=0.64). A time-resolved
single-trial regression approach confirmed the same re-
sult (Fig. 3f; slope=0.011; cluster-corrected p=0.032; R2 =
0.019). When zooming in on the peak burst frequencies,
we found the same relationship again (slope = 0.029;
p = 0.030). In motor cortex, b frequency was not related
to reaction times (slope =�0.005; no significant clusters).

Connectivity
We then asked whether auditory-motor b connectiv-

ity was related to reaction times (using the median-split
approach). Slower reaction times were preceded by in-
creased b connectivity between auditory and motor
cortices, as quantified with pairwise phase consistency
(p = 0.027, d = 0.57). The difference was most prominent
at frequencies from 19 to 20Hz (Fig. 4a). We then used
Granger causality to check the directionality of this ef-
fect. There were no differences in auditory-to-motor b
connectivity (Fig. 4b; no significant clusters), but slower
reaction times were preceded by increased motor-to-audi-
tory b connectivity (p=0.047, d=0.31), most prominently at
frequencies from 20 to 21Hz (Fig. 4c).

Discussion
In an auditory target discrimination task, we sought to

uncover the relationship between reaction times and vari-
ous characteristics of the b rhythm. We found that slower
(as compared with faster) reaction times were preceded
by increased b power in motor cortex, increased b fre-
quency in auditory cortex, and increased motor-to-audi-
tory connectivity in the b range. The results were robust
across our analysis approaches. We used a regression
approach to relate single-trial reaction times to b meas-
ures, as well as a median-split approach to relate slower
versus faster trials to changes in b measures, with both

approaches yielding the same pattern of results. We fur-
ther analyzed b activity separately in a time-resolved
manner, a frequency-resolved manner, and by character-
izing its burst profile, with all approaches yielding the
same pattern of results.
b Activity over somato-motor cortex is traditionally

viewed as a component of them rhythm (the other compo-
nent being motor alpha activity). This b rhythm has been
associated with slower movement (or lack of movement)
and therefore thought to reflect cortical inhibition (Jasper
and Penfield, 1949; Gastaut, 1952; Hari, 2006). More re-
cently, b activity has been found to occur in “bursts” of
high-amplitude activity, and its bursting properties have
been linked to impaired performance in somatosensory
perception and attention tasks (Shin et al., 2017). Our re-
sults are consistent with the literature on somato-motor b
activity, as we observed increased motor b before slower
responses, and we found this increased activity likely re-
flected an increased number of pretarget bursts with
wider time and frequency ranges.
In auditory cortex, b activity has been observed in tan-

dem with alpha activity, and assumed to serve a similarly
inhibitory function (Weisz et al., 2011, 2014; Leske et al.,
2014). However, in the current dataset, pretarget auditory
b power was not robustly related to reaction times. This
null finding precludes us from drawing decisive conclu-
sions about auditory b power modulations. Instead, we
found that an upward shift in b frequency and increased
connectivity with motor cortex were related to slower re-
action times. This result can be interpreted in light of the
frequency-matching notion (Lowet et al., 2017). That is,
on trials with slow responses, the difference in peak fre-
quencies between auditory and motor cortex is reduced,
resulting in stronger inhibitory synchronization.
Based on this set of results, we speculate that the b

rhythm potentially serves different functions and operates
via different mechanisms in different cortical locations. On
the one hand, a local change in b power could relate to
the local excitability of a brain region in an “a-like” way
(Spitzer and Haegens, 2017), meaning it could reflect in-
hibitory processes (Klimesch et al., 2007; Jensen and

a b c

Figure 4. Auditory-motor cortex connectivity. a, Pairwise phase consistency between auditory and motor cortices for slow versus
fast reaction times. b, Granger causality from auditory to motor cortex for slow versus fast reaction times. c, Granger causality from
motor to auditory cortex for slow versus fast reaction times. Shaded regions around the line graphs represent the SEM. Dotted lines
represent significant clusters (p, 0.05).
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Mazaheri, 2010). On the other hand, a change in b fre-
quency could relate to b ’s possible role in interareal syn-
chrony (Bressler and Richter, 2015). For example, a shift
in the frequency of b connectivity was recently shown to
reflect categorical decisions (Rassi et al., 2022). It is also
possible that b rhythms at different frequencies serve dif-
ferent functions. Although a crude distinction between
“higher” and “lower” b across cortical locations has been
previously made (Kopell et al., 2011), attempts to assign
them different functional roles have had mixed success
(Spitzer and Haegens, 2017).
The nonstationarity of b rhythm (and cortical rhythms in

general) frequencies across time has so far received little
attention. Models of b function account for the potential
of different b rhythms occurring at different frequencies,
assuming different cortical locations or different genera-
tors within a location. But it is so far under-appreciated
that a single rhythm can shift in frequency over time
(Cohen, 2014; Rassi et al., 2019a). Frequency shifts ac-
cording to task demands have been observed in human
EEG/MEG data for the alpha rhythm (Haegens et al.,
2014; Samaha and Postle, 2015; Mierau et al., 2017; Wutz
et al., 2018), and in nonhuman primate LFP data for the b
rhythm (Kilavik et al., 2012). It has also been reported that
slower a rhythms correlate with slower responses across
subjects (Surwillo, 1961), but to our knowledge the rela-
tionship between b frequency and reaction times has not
yet been investigated. We here report the opposite rela-
tionship for the b rhythm, such that faster (auditory) b
correlated with slower reaction times within subjects.
Beyond local b dynamics, b has also been shown to

be involved in long-range communication between corti-
cal sites (Seedat et al., 2020). Here, we found increased b
connectivity between motor and auditory cortex, specifi-
cally in the direction of motor to auditory cortex, before
slower (vs faster) responses. It is unlikely that this effect
was confounded by the power difference in motor cortex
as we used a phase-based connectivity measure, and in
addition, there were no robust power differences in audi-
tory cortex. This finding is in line with the notion of covert
active sensing, where the motor system actively coordi-
nates sensory systems (Schroeder et al., 2010). In addi-
tion, oscillatory bursts have been described as channels
for selective communication between brain regions, via a
mechanism called frequency-division multiplexing (Akam
and Kullmann, 2014). In this view, bursts at different fre-
quencies act as distinct channels to selectively transmit
neural codes to networks (regions) with appropriate filter
settings that can selectively read out the codes. This inter-
pretation links our connectivity results with the perspec-
tive that b is occurring in bursts.
Finally, our results imply that the analysis of b oscilla-

tions requires caution as b dynamics are multifaceted
phenomena. For example, it is possible that observed
power modulations are better explained as frequency
shifts (as is the case for our results). It is also possible that
the b rhythm serves different functions (i.e., inhibitory or
excitatory) depending on the cortical region where it is
found or depending on whether it is local or interareal.
Future investigations could focus on interareal variability

in b peak frequency, for example in intracranial human
electrophysiological recordings.
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