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Abstract: Introduction. Spatiotemporal gait parameters, e.g., gait stride length, are measurements
that are classically derived from instrumented gait analysis. Today, different solutions are available
for gait assessment outside the laboratory, specifically for spatiotemporal gait parameters. Such
solutions are wearable devices that comprise an inertial measurement unit (IMU) sensor and a
microcontroller (MCU). However, these existing wearable devices are resource-constrained. They
contain a processing unit with limited processing and memory capabilities which limit the use of
machine learning to estimate spatiotemporal gait parameters directly on the device. The solution for
this limitation is embedded machine learning or tiny machine learning (tinyML). This study aims to
create a machine-learning model for gait stride length estimation deployable on a microcontroller.
Materials and Method. Starting from a dataset consisting of 4467 gait strides from 15 healthy people,
measured by IMU sensor, and using state-of-the-art machine learning frameworks and machine
learning operations (MLOps) tools, a multilayer 1D convolutional float32 and int8 model for gait
stride length estimation was developed. Results. The developed float32 model demonstrated a mean
accuracy and precision of 0.23 £ 4.3 cm, and the int8 model demonstrated a mean accuracy and
precision of 0.07 + 4.3 cm. The memory usage for the float32 model was 284.5 kB flash and 31.9 kB
RAM. The int8 model memory usage was 91.6 kB flash and 13.6 kB RAM. Both models were able to
be deployed on a Cortex-M4F 64 MHz microcontroller with 1 MB flash memory and 256 kB RAM.
Conclusions. This study shows that estimating gait stride length directly on a microcontroller is
feasible and demonstrates the potential of embedded machine learning, or tinyML, in designing
wearable sensor devices for gait analysis.

Keywords: embedded machine learning; tinyML; machine learning; regression; neural network;
healthcare; gait analysis; gait stride length; inertial measurement unit; IMU; microcontroller; MCU;
wearable sensors

1. Introduction

Spatiotemporal gait parameters refer to the measurements obtained from the analysis
of the walking pattern, which includes the gait stride length parameter. Gait analysis is
crucial in clinical applications such as physical medicine and rehabilitation. Usually, it pro-
vides information about movements (kinematics); the forces involved in moving (kinetics),
gait parameters related to the size and timing of the gait pattern (spatiotemporal parame-
ters); and sometimes the muscle activity (electromyography). It provides a comprehensive
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understanding of an individual’s walking ability, including their gait pattern, speed, and
balance. In addition, it allows for the identification of abnormalities or deviations from
typical gait patterns, which can aid in diagnosing and treating various conditions, includ-
ing neurological disorders, musculoskeletal injuries, and developmental disorders. Gait
analysis can also help to monitor the effectiveness of treatment interventions, providing
valuable information for optimizing therapy and rehabilitation programs [1].

Today, there are different systems available for instrumented gait analysis. However,
these systems are expensive laboratory setups which mainly rely on multiple cameras.
Therefore, these systems cannot be used outside of the laboratory. For spatiotemporal
gait parameters, more specifically, solutions do exist for gait assessment outside of the
laboratory. Such a solution is often a wearable device that comprises a sensor, an inertial
measurement unit (IMU), and a processing unit (microcontroller, MCU). For example,
the wearable Gait Up Physilog® sensor [2] combined with the GaitUP LAB software can
perform gait assessment. The Xsens DOT [3] is a wearable IMU sensor platform used to
develop mobile motion analysis applications.

However, these existing wearable sensor devices are resource-constrained. They
contain processing units with limited processing and memory capabilities. Furthermore,
they are battery-powered and have low battery capacity; therefore, continuous sending of
raw sensor data for an extended period will result in fast battery depletion. The solution
which we propose is to perform data analytics and data processing locally on the wearable
device. However, designing these data processing and efficient energy algorithms is a
significant challenge for gait analysis [4]. Our proposed solution includes embedded or
tiny machine learning (tinyML) [5,6].

Spatiotemporal parameters can be estimated by a machine or deep learning
model [7-11]. Although the memory footprint of a deep learning model during infer-
ence is smaller than that while training the model, it can still lie outside of a processor’s
available memory. Therefore, today’s challenge is the development of accurate machine
and deep learning models for deployment on resource-constrained embedded devices. The
design of these models requires a different design approach; namely, creating embedded
machine learning or deep learning models is a trade-off between memory, latency, energy
requirements, and model accuracy. These requirements must be considered at the initial
phase of the design process. This article aims to design a machine learning model for gait
stride length estimation which is deployable on a microcontroller.

A multilayer 1D convolutional neural network model is presented herein for gait
stride length estimation using IMU sensor data in combination with a microcontroller as
the processor. The proposed model can be deployed on a microcontroller, i.e., a Cortex-M4F
64 MHz with 1 MB Flash and 256 kB RAM. The model, the data and machine learning
pipeline, and the state-of-the-art software tools (libraries and frameworks) which were
utilized are explained in detail. In this article, a proof of concept is provided which
indicates that accurate models for deployment on resource-constrained embedded devices
are feasible. The results are directly relevant to the development of new wearables in gait
analysis.

2. Related Work

This study uses the convolution neural network (CNN) topology as the model ar-
chitecture with which to design a machine learning model to achieve gait stride length
estimation for the purpose of gait analysis. A deployable model on a microcontroller, using
relevant clinical gait data from an IMU sensor, was utilized.

Hannink et al. [9] described two CNN models which were used to extract eight spa-
tiotemporal gait parameters. In the study, they obtained measurements from 99 geriatric
inpatients using a free walking test at a comfortable speed. The IMU sensors were at-
tached laterally below the ankle joint on both the left and right feet, and the data were
captured at a sample rate of 102.4 Hz. The data split was performed depending on the
patient identifier. The data pre-processing consisted of extracting the annotated stride
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(from heel strike to heel strike), sensor calibration, and coordinate system transformation.
Before feeding the data into the neural network, the signals were normalized to the re-
spective sensor range and zero padding to a fixed length of 256 samples were performed.
Two deep-learning models were built. Model A estimated the complete set of output vari-
ables with a combined model, and Model B comprised an ensemble of smaller networks.
The model architecture for model A consisted of three convolutional layers with max-
pooling, followed by three densely connected layers and a readout layer. Model B consisted
of two convolutional layers with max-pooling, one dense layer, and a readout layer. The
study demonstrated that, according to the unseen test data, that the mean accuracy and
precision for the stride length was —0.34 £ 8.10 cm for model A and —0.15 % 6.09 cm for
model B. The model performance evaluation for the two models was based on a 10-fold
cross-validation scheme, and as a reference, the GAITRite was used. During the design of
both models, no hyperparameter tuning was performed.

Hannink et al. [10] described a deep convolution neural network (DCNN) for stride
length estimation in their geriatric analysis. The dataset was the same as that described
in [9]; however, data from 101 patients were taken for the neural network design. The data
split was performed depending on the patient identifier, and the same pre-processing steps
were performed as those described in [9]. The trained network consisted of
two convolutional layers and one dense layer. The study showed a mean accuracy and
precision of 0.27 & 5.43 cm for the stride length; the evaluation was based on a 10-fold
cross-validation scheme; and the GAITRite was used as a reference. In the study, no
hyperparameter tuning was performed.

Zrenner et al. [11] described a DCNN. This model was trained on 27 (amateur) runners.
The subjects were asked to run at different velocities. As IMU, an in-house developed
sensor was used, and the IMU data were captured at a sample rate of 200 Hz. The sensors
were located in the midsoles of the running shoe. Gait segmentation was performed
before the data were fed to the deep learning network; no extra signal processing was
performed. The deep learning model was a modified version described in [8]. It consisted
of two convolutional layers, two max pool layers, one flatting layer, one dense layer, and
a readout layer. The authors also noted that they increased the number of epochs and
modified the batch size. However, this did not improve the model performance nor its
generalization. Apart from increasing the number of epochs and changing the batch size,
no further hyperparameter tuning was performed. The mean accuracy and precision of the
stride length was 1.3 & 19.4 cm, and the evaluation was based on leave-one-subject-out
cross-validation. This study used a motion capture system (Vicon Motion Systems Inc,
Oxford, UK) as a gold standard for gait stride length.

Hannink et al. and Zrenner et al. showed that a CNN model combined with IMU data
was able to estimate the gait stride length. However, embedded machine learning was not
applied in any of the three studies.

3. Materials and Methods
3.1. Solution for an Intelligent Gait Monitoring System

Figure 1 illustrates our proposed solution for an intelligent gait monitoring system for
gait analysis outside the lab environment using embedded machine learning. A wearable
device attached to the human body would estimate the spatiotemporal parameters locally
on the device, and then send these parameters to, e.g., a mobile device. Optional spatiotem-
poral parameters would be sent to a secure Cloud platform and shared with the healthcare
provider. This article focuses on the design of the embedded machine-learning model for
gait stride length estimation, deployable on a microcontroller processor located inside a
wearable device.
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Figure 1. Design of our solution of an intelligent wearable device inside a gait-monitoring healthcare
system.

3.2. Dataset

The study presented in this article used the data from the TRIPOD—Treadmill, IMU,
Pedobarographic and Photoelectric Dataset [12] study, available upon request for scientific
research purposes. The measurements were obtained from 15 young and healthy partici-
pants (8 males, 7 females) who walked on a treadmill for two minutes at three different
speeds (Table 1). After two minutes, the treadmill slowed down until it stopped. The
dataset also included data from seven IMU sensors (Physilog® 5 IMUSs from Gait Up,
Lausanne, Switzerland). The sensors were located on the left and right instep, left and right
heel, left and right shank, and one at the sacrum. The data were acquired at a sample rate
of 128 Hz. The IMU data for the three different walking speeds are provided in a CSV file
(RFE.csv).

Table 1. TRIPOD dataset sample characteristics (Table 2 in reference [12]) (SD: standard deviation,
PWS: preferred walking speed on the treadmill).

Minimum Mean + SD Maximum
Age (y) 20 264 +37 34
Mass (kg) 53.5 69.7 +12.1 103
Height (cm) 157.5 176.2 + 8.8 190
Leg length ! (cm) 76 86.2 + 4.3 95
PWS (km/h) 3.1 39+05 49

! between the greater trochanter and lateral malleolus.

Table 2. Grid search parameter values.

Parameter Value

batch size {32, 64, 128, 256}
Adam—Tlearning rate (o) {0.001, 0.0001, 0.00001}
Convl1D filters {16, 32}
Conv1D kernel size {5, 15}

Dense units {128, 256, 512, 1024}

Additionally, one file (SyncInfo.csv) contains the timestamp of the initial contact. The
ground truth was measured by a pressure-sensitive Zebris (zebris Medical GmbH, Isny,
Germany) and photoelectric OptoGait (Microgate, Bolzano, Italy) system. In the multilayer
1D convolutional neural network design, only data from the IMU sensor attached to the
right foot, instep position, were used. As ground truth, we used the stride length from the
OptoGait system, which is provided in a CSV file (optogait.csv).
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3.3. Data Pre-Processing and Machine Learning Workflow

The model development workflow (Figure 2) consists mainly of 4 parts: data process-
ing, model training, model testing (including statistical analysis), and deployment.
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Figure 2. The data processing and machine learning workflow.

3.3.1. Data Processing

While constructing the labeled dataset, we only used the first two minutes of the IMU
data, starting from the first estimated initial contact. Different pre-processing steps were
performed before the labeled sensor data was applied to the multilayer convolutional neural
network. The data pre-processing was written in Python 3.10 [13] and SciPy v.1.9.3 [14].
The following pre-processing steps were performed:

e Normalize. The signals from the gyroscope and accelerometer were normalized to the
respective sensor ranges. The sensor range was 16 g for the accelerometer [12] and
1000° /s [12] for the gyroscope.

e  Resampling. In this study, we developed a model for an IMU signal sampled at 60 Hz;
the data were down-sampled to 60 Hz.

e  Estimation Initial Contact (IC). The triaxial accelerometer and the triaxial gyroscope
data were fed to a second-order low-pass Butterworth filter with a cut-off frequency of
10 Hz [15]. Zero-phase filtering was applied to preserve the features of the waveform.
Using the detection algorithm described by Magbool et al. [15], the initial contact (IC)
time was estimated.

e  Gait cycle segmentation and labelling. Gait cycle segmentation was performed based
on the estimated IC time. Next, the data were labeled and stored in a JSON format [16].
Additionally, the first measured gait cycle was removed for each trial to avoid potential
artefacts due to motion initiation.

The pre-processing of the data resulted in a dataset of 4467 gait strides. The dataset
was divided, depending on the participants’ identifier (SUB <xx>), into a training set
(12 subjects, 3581 gait strides) and a testing set (3 subjects, 886 gait strides).

3.3.2. Training

The model training consisted of two phases. First, hyperparameter optimization was
performed. We used the machine learning operation (MLOps) platform Weights & Biases,
wandb version 0.12.20 [17], for experiment tracking. The training was performed on a 64-bit
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Intel® Core™ i9-10900K CPU (20 cores), 3.70 GHz, 128 GB RAM, and an NVIDIA GeForce
RTX3080 GPU type. The OS which we utilized was Ubuntu 20.04.5 LTS. The TensorFlow
(version 2.10.0) deep learning framework, using the Keras high-level API [18], was used in
this study.

The model architecture, Figure 3, consists of three 1D convolutional (Conv1D) and
max-pooling layers, followed by a fully connected layer (Dense Layer) and an output layer.
For optimization, the Adam optimizer was used (31 =0.9, 3, =0.999 and ¢ = 1le78). The
number of epochs was set to 1500. Kernel initialization (truncated normal, mean = 0, stdev
=0.1) and bias (constant = 0.1) initialization were applied to the Conv1D layer and the
dense layer, respectively. The Conv1D filters and kernel size, the number of units for the
dense layer, and the learning rate and batch size were the hyperparameters in the model
design (Table 2). As a search strategy, the grid search method was applied. The training
and validation mean squared error as well as the model parameters, filters, kernel sizes,
units, learning rates, and batch sizes were logged and summarized in a table on weights
and biases.

Conv1D layer arguments
filters: hyperparameter
kernel size: hyperparameter
padding; ‘same’

activation: ‘relu’

Layer 1

i

v

Flatten

Dense layer

Output layer

Il

kernel initializer = TruncatedNormal (mean = 0, standard deviation = 0.1)
bias initializer = constant(0.1)
MaxPooling1D

MaxPooling1D layer arguments
pool size: 2
strides: 2

padding: ‘same’

Dense layer arguments

units: hyperparameter

activation: ‘relu’

kernel initializer = TruncatedNormal (mean = 0, standard deviation = 0.1)

bias initializer = constant(0.1)

Output layer arguments
units: 1

activation: ‘linear’
Figure 3. Model architecture.

Hold-out cross-validation was used during hyperparameter tuning. Therefore, the
training set (12 subjects, 3581 gait strides) obtained during the data processing step was
further divided depending on the participants’ identifiers (SUB <xx>), into a training subset
(9 subjects, 2698 gait strides) and a validation set (3 subjects, 883 gait strides). Before the
data were fed into the neural network, zero padding was applied, fixing the signal length
for each sensor axis to 108 samples.

After ending the hyperparameter tuning, the model was retrained using the cloud-
based MLOps platform Edge Impulse Studio [19] (Figure 4) (Edge Impulse, San Jose, CA,
USA). The projects in Edge Impulse studio were divided into a series of blocks representing
the data flow. The different blocks combined resulted in an impulse. Figure 4 shows the
workflow, in Edge Impulse Studio, with the various blocks. The left block, “Time series
data”, represents the labeled data. The window size was set to 1.8 sec, and zero padding
was applied. The zero padding fixed the length for each axis to the same signal length
(108 samples) used during the hyperparameter tuning phase. The middle block was the
processing block. The raw data processing block was selected in this study. The scale axis
in the processing block was set to one because normalization was already applied during
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the data pre-processing step. The output of the raw data processing block provided data
without pre-processing or signal processing being applied. The learning block followed the
raw data processing; a regression learning block was selected. The training settings and
neural network architecture were defined in the learning block.
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Figure 4. The complete impulse for the gait stride length estimation in Edge Impulse Studio.

During the retraining phase in Edge Impulse Studio, the training set (12 subjects,
3581 gait strides) obtained during the data processing step was divided into a ‘train dataset’
(80%) and a “validation dataset’ (20%). No further model optimizations, i.e., hyperparameter
tuning, were performed. The retraining in Edge Impulse Studio resulted in a TensorFlow
Lite model transformed into a float32 and a quantized int8 model. The int8 model required
a representative dataset for its quantization [20]. In this study, the validation dataset was
used as the representative dataset.

3.3.3. Model Testing and Statistical Analysis

Given the testing set (from the three subjects, 886 gait strides) obtained during the data
processing step, the stride length was predicted using the float32 and the int8 models. This
testing set was never used during hyperparameter optimization nor the retraining phase
in Edge Impulse Studio. The Band—Altman plot [21] assessed the float32, the int8 model
prediction, and the ground truth agreement. The bias (mean error), the upper and lower
limits of agreement (LoA), and the minimal detectable change (MDC) were calculated [22].
Additionally, the mean square error (MSE) and R-squared (R?) were provided.

3.3.4. Deployment

Edge Impulse Studio provides optimized source code libraries. This source code
library can be further customized and integrated into an application. In this study, we
selected the Arduino library and used PlatformIO [23] (Core 6.1.6, Home 3.4.3) to build
the firmware. The embedded platform which we selected and used for evaluation was
the SparkFun MicroMod with an nRF52840 Processor Board (v1.0) [24] mounted on a
SparkFun MicroMod Data Logging Carrier Board (v1.2) [25] (SparkFun, Colorado, USA).
The nRF52840 was an Arm® Cortex®-M4F 64 MHz processor from Nordic Semiconductor,
with 1 MB internal flash and 256 kB internal RAM.

We used the static buffer implementation example from Edge Impulse (Figure 5) to
test the model on the device. In this implementation, the raw features from one gait cycle
were copied into a static buffer. These features were fed to the input neural network. This
implementation allowed us to test the model inference without connecting a microcontroller
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to an actual IMU sensor. Using Edge Impulse Studio, an estimation of memory usage (RAM
and flash) and latency was performed. Afterwards, the PlatformlO tool was used to
estimate the RAM and Flash memory of the deployed model on the nRF52840 processor.

main.cpp - Gait_stride_length_Demo - Visual Studio Code

Sub_HA-PWS-20-RF-67-stride-length-cm-101.3m9u2qdg

Figure 5. The static buffer code snippet, using Edge Impulse C++ SDK.
4. Results
4.1. Training—Hyperparameter Tuning

The hyperparameter tuning resulted in an optimal model for the given TRIPOD
dataset. The outcome of the hyperparameter tuning showed a batch size of 64 and a
learning rate of 0.0001; the obtained filter and kernel size for the three Conv1D layers and
the units for the dense layer are shown in Table 3.

Table 3. Model parameters (batch size = 64, learning rate = 0.0001, epochs = 1500).

Parameters

Conv1D Layer 1 filter 32
Conv1D Layer 1 kernel size 5

Conv1D Layer 2 filter 16
Conv1D Layer 2 kernel size 5

Conv1D Layer 3 filter 32
Conv1D Layer 3 kernel size 15
Dense Layer units 128

4.2. Retraining Using Edge Impulse Studio and Deployment

The model architecture (Figure 3), using the model parameters shown in Table 3, was
retrained and tested using Edge Impulse Studio. For model evaluation, we used a testing
set of 3 subjects (886 gait strides). The testing set was never used during hyperparameter
optimization nor the retraining phase in Edge Impulse Studio. Table 4 shows the calculated
MSE, limits of agreement, mean error, and R?. Figure 6 compares the estimated and the
measured stride length. Additionally, the Bland—Altman plot for the stride length estimated
for float32 and the int8 is provided. Table 5 shows the memory estimate by Edge Impulse
Studio for float32 and the int8 model, Table 6 shows the model performance using leave-
one-out cross-validation, and Table 7 shows the memory estimation by the PlatformlIO tool.
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Table 4. Statistical analyses: float32 vs. int8 model (testing dataset).

float32 int8
ME + stdev 0.23 £ 4.3 cm 0.07 £ 4.3 cm
Upper LoA 8.69 cm 8.5 cm
Lower LoA —8.24 cm —8.37 cm
MDC 8.46 cm 8.43 cm
MSE 18.7 18.5
R? 0.89 0.89
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Figure 6. float32 vs. int8. (a) Comparison of the estimated and the measured stride length from the
float32 model and the OptoGait; (b) Bland—Altman plot for the stride length, estimated by float32
on the testing set (c) comparison of the estimated and the measured stride length from quantized int8
model and the OptoGait; (d) Bland—-Altman plot for the stride length estimated by int8 on the testing set.

Table 5. Memory (RAM and flash) and latency, float32 vs. int8 model—provided by Edge Impulse
studio using EON™ Compiler, an estimate for the nRF52840 (testing dataset).

float32 int8
RAM 319 kB 13.6 kB
Flash 284.5 kB 91.6 kB
Latency 769 ms 80 ms

Table 6. Model’s performance using leave-one-out cross-validation.

ME + stdev Population and Methods

healthy subjects—treadmill walking

1.07£8.35 cm ground truth for stride length: Optogait

Table 7. Memory (RAM and flash) and latency, float32 vs. int8 model—the memory is an estimate

provided by PlatformIO.
Available float32 int8
RAM (bytes) 262,144 46,816 (17.9%) 47,096 (18%)
Flash (bytes) 983,040 370,912 (37.7%) 175,544 (17.9%)
Latency (ms) / 322 47

5. Discussion

This study aimed to create a model design for gait stride length estimation that could
be deployed on a microcontroller. The final model architecture consisted of three 1D
convolutional (Conv1lD) and max-pooling layers, followed by a fully connected layer
(dense layer) and an output layer (Figure 3). The outcome of the hyperparameter tuning
resulted in a model architecture with model parameters as presented in Table 3.

In this study, leave-one-out cross-validation was used to evaluate the model’s perfor-
mance, Table 8. Compared to Zrenner et al. [11], this led to an improvement in standard
deviation: 8.35 cm vs. 19.4 cm (Table 8). It must be noted, however, that the dataset used
in the study of Zrenner et al. comprised data from runners running overground, and no
hyperparameter tuning was performed. Compared to Hannink et al. [9,10], the multilayer
1D convolutional model presented in this study still had a slight bias of 1.7 cm and a higher
standard deviation. However, making a fair comparison was difficult due to differences
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in the dataset (geriatric inpatients vs. healthy subjects) and in the model performance
evaluation (10-fold cross-validation vs. leave-one-out cross-validation). For future research,
a more standardized model performance comparison for embedded machine learning will
be needed in order to make a fairer comparison.

Table 8. Overview of related work and this study.

Study ME =+ Stdev Population and Methods
Hannink et al. [9] —0.34 £8.10 cm geriatric inpatients, walking overground,
model A HS-HS, 10-fold cross-validation, stride length
ground truth from the GAITRIite.
Hannink et al. [9] —0.15 £ 6.09 cm geriatric inpatients, walking overground,
model B HS-HS, 10-fold cross-validation, stride length
ground truth from the GAITRIite.
Hannink et al. [10] 0.27 £5.43 cm geriatric patients walking overground,

HS-HS, 10-fold cross-validation, stride length
ground truth from the GAITRIite.

Zrenner et al. [11] 1.3 +£194 cm amateur runners, running overground,
HS-HS, leave-one-out cross-validation, stride
length ground truth motion capture system

This study 1.07 £ 8.35 cm healthy subjects, treadmill walking, HS-HS,
leave-one-out cross-validation, stride length
ground truth from the Optogait

It should be emphasized that unlike the studies of Zrenner et al. and Hannink et al., the
model presented herein needed to be deployed on a resource-constrained device. Therefore,
during the model’s optimization and the selection of the final model, not only does MSE
need to be taken into consideration, but the memory and latency requirements must also
be examined.

The model’s architecture (Figure 3), with its parameters provided in Table 3, was
retrained in Edge Impulse Studio, resulting in a float32 and int8 quantized model. Quan-
tization to an int8 model results in a smaller model size, occupying less memory and
decreasing inference time. Quantization can potentially reduce the accuracy of the model.
However, in the present study, as shown in Table 4, for the given model architecture,
model parameters, and dataset, no MSE decrease was observed between the float32 and
the quantized int8 model. The float32 model had a mean error of 0.23 + 4.3 cm, a memory
usage of 284.5 kB flash and 31.9 kB RAM, and an inference time of 769 ms. The int8 model
had a mean error of 0.07 + 4.3 cm, a memory usage of 91.6 kB flash and 13.6 kB RAM, and
an inference time of 80 ms. Various pre-processing steps were required before the data
were fed to the multilayer convolutional neural network. In this study, the pre-processing
block, consisting of filtering, initial contact detection, and gait segmentation, was not im-
plemented on the embedded devices and, therefore, was not included in the latency or
memory calculations.

Both models were able to be deployed on the nRF52840, an Arm® Cortex®-M4F
64 MHz processor from Nordic Semiconductor, with 1 MB internal flash and 256 kB internal
RAM. The memory consumption estimated by PlatformlIO (Table 7) was higher than the
values shown in Table 5. This difference was caused by the necessary code dependencies.

6. Study Limitations

The study’s main limitation was the limited available data. The TRIPOD dataset
consisted of only 15 young (average age of 26.4 & 3.7 years) healthy participants (8 males,
7 females) walking on a treadmill. The pre-processing of the data resulted in a dataset of
4467 gait strides which was divided into a training set (12 subjects, 3581 gait strides) and a
testing set (3 subjects, 886 gait strides). In order to estimate the performance, only a limited
portion of the dataset was used for testing; it consisted of a limited number of gait strides
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(886) from only three subjects. Moreover, we did not investigate the generalization of the
model to a different clinical population.

7. Conclusions

In this study, we aimed to create an embedded machine-learning model for gait
stride length estimation that could be deployed on a microcontroller. A float32 and int8
multilayer 1D convolutional neural network is presented. The float32 model developed
herein demonstrated a mean accuracy and precision of 0.23 & 4.3 cm, and the int8 model
showed a mean accuracy and precision of 0.07 & 4.3 cm. For the given model’s architecture,
parameters, and dataset, no MSE decrease was observed between the float32 and the
quantized int8 model. The memory usage for the float32 model was 284.5 kB flash and
31.9 kB RAM. The int8 model memory usage was 91.6 kB flash and 13.6 kB RAM. Both
models were able to be deployed on a microcontroller. In this study, the nRF52840, an Arm®
Cortex®-M4F 64 MHz processor from Nordic Semiconductor with 1 MB internal flash and
256 kB internal RAM, was selected as the processor for evaluation.

The study’s outcome shows that a gait stride length estimation directly on a resource-
constrained embedded device is feasible and demonstrates the potential of embedded
machine learning in designing wearable devices for gait analysis. However, to unlock the
full potential of embedded machine learning for gait analysis, we need more standardized
clinical datasets from different populations which are measured by various IMU sensors
and at different on-body locations. Additionally, a more standardized method of comparing
the performances of embedded machine learning techniques is required in order to make a
fairer comparison of models, given their training datasets.
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