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Abstract

This work investigates whether techniques that are generally used for the validation of surrogate
markers in clinical trials, can be applied in the validation of psychiatric health measurements (often
scales) and more generally to investigate relationships between treatment effects on different measure-
ments. When psychiatric health measurements are either developed or used in a new population, reli-
ability and validity must be investigated. Reliability, more specifically internal consistency, test-retest
reliability and inter-rater reliability, is focused on the reproducibility of the measurement. Validity
on the other hand, is defined as the degree to which the scale measures what it purports to measure.
This can be performed through the analysis of content, construct and criterion validity. We argue
that recent methodology, in particular developed to study surrogate endpoints, can be used to examine
criterion validity, concurrent validity and predictive validity. In concurrent validity, we correlate the
measurement with a criterion measure, both of which are given at the same time. In predictive validity,
the criterion will not be available to some point in time in the future. The surrogate methods were
applied on pooled data from 5 trials in schizophrenia.
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1 INTRODUCTION

In this paper we illustrate how recently proposed criteria for the validation of surrogate markers in clinical
trials can be easily adapted and used to assess the so-called criterion validity of psychiatric symptom scales.

This concept will be described further in this paper.

One feature of psychiatric health sciences literature devoted to measuring subjective states is the

daunting area of available scales (Streiner (1) and Norman). The development of scales to assess subjective



attributes is not easy and subject to many controversial debates. One particular drawback of course lies
in the fact that the filling-in of a scale may vary from one person to another. Because of the subjective
nature of many of these scales, one may encounter scales that are not adequate to assess a particular
concept. Therefore, whenever a mental health measurement scale is developed or translated or used in a
new population, its psychometric properties have to be assessed. Two important properties are reliability

and validity.

Reliability consists in determining the extent to which the measurement is free from random error.
This can be performed through analysing internal consistency and reproducibility of the questionnaire.
Internal consistency is the extent to which individual items are consistent with each other and reflect a
single underlying construct. Essentially, internal consistency represents the average of the correlations
among all the items in the instrument. Several measures that are often used to provide proof of internal
consistency are: Cronbach’s alpha coeflicient (Cronbach(2)), Kuder-Richardson (Kuder(3) and Richardson)
and factorial analyses. Intra-observer or test-retest reliability is the degree to which a measure yields
stable scores at different points in time for patients who are assumed not to have changed clinical status
on the domains being assessed. The calculation of intraclass correlation coefficients (Fleiss(4) and Cohen,
Deyo(5), Dierh and Patrick) is one of the most commonly used methods. For interviewer-administered
questionnaires, the inter-observer reliability is the degree to which a measurement yields stable scores when
administered by different interviewers, rating the same patients. The calculation of interclass correlation

coefficients is also one of the most commonly used methods.

The validity of a questionnaire is defined as the degree to which the questionnaire measures what
it purports to measure. This can be performed through the analysis of content, construct and criterion
validity. Content validity can be defined as the extent to which the instrument assesses all the relevant
or important content or domains. Also the term face validity is used to indicate whether the instrument
appears to be assessing the desired qualities at face. This form of validity consists of a judgement by experts
in the field. Construct validity refers to a wide range of approaches which are used when what we are trying
to measure is a “hypothetical construct” (e.g., anxiety, irritable bowel syndrome, .. .) rather than something
that can be readily observed. The most commonly used methods to explore construct validity are: extreme
groups (apply instrument for example to cases and non-cases), convergent and discriminant validity testing
(correlate with other measures of this construct and not correlate with disimilar or unrelated constructs)

and multitrait-multimethod matrix (Campbell(6) and Fisk). Criterion validity can be divided into two



types: concurrent validity and predictive validity. With concurrent validity we correlate the measurement
with a criterion measure (gold standard), both of which are given at the same time. In predictive validity,
the criterion will not be available until some time in the future. The most commonly used method to assess

the validity is by calculation of the Pearson correlation coefficient.

The idea of the present work is to provide a new way of investigating criterion validity of psychiatric
symptom scales, using the criteria applied in surrogate marker validation for clinical trials. Surrogate
endpoints are loosely referred to as endpoints that can be used instead of other endpoints in the evaluation
of experimental treatments or other interventions. The validation of surrogate endpoints is a controversial
issue (Boissel(7), Collet, Moleur and Haugh; Fleming(8) and DeMets; De Gruttola(9), Fleming, Lin and
Coombs) and should be rigorously established. In a landmark paper, Prentice(10) proposed a formal
definition of surrogate endpoints and outlined how potential surrogate endpoints could be validated. Much
debate ensued, for the criteria set out by Prentice are too stringent (Fleming(11), Prentice, Pepe and
Glidden) and neither necessary nor sufficient for his definition to be fulfilled, except in the special case
of binary outcomes (Buyse(12) and Molenberghs). In addition, Freedman(13), Graubard and Schatzkin
showed that these criteria were not straightforward to verify through statistical hypothesis tests. They
introduced the proportion explained (PE) to quantify how much of the treatment effect is captured by
the surrogate endpoint. The latter proposal is itself surrounded with difficulties, the most dramatic one
being that it is not confined to the unit interval (Molenberghs(14), Buyse, Burzykowski, Renard and
Geys). Buyse(12) and Molenberghs proposed to replace PE by two new measures to assess the quality of
a surrogate. The first one, termed relative effect (RE) is the (population-averaged) effect of the treatment
on the true endpoint relative to that on the surrogate endpoint. The second one is the adjusted association
between both endpoints, an individual measure of agreement between both endpoints after accounting for
the effect of treatment. Technically, a joint model for both endpoints is required. In turn, a drawback of the
RE is that, when calculated from a single trial, its use depends on strong unverifiable assumptions, the main
one being that it should be constant across a class of trials. A way out of this problem is the combination
of information from several groups of patients (multi-center trials or meta-analyses). Such an approach was
suggested by Albert(15) et al., and was implemented by Daniels(16) and Hughes, Buyse(17), Molenberghs,
Burzykowski, Renard and Geys and Gail(18), Pfeiffer, Van Houwelingen and Carroll. Buyse(17) et al.
show that the individual-level association between the surrogate and final endpoints carries over naturally

to this setting. The notion of relative effect, on the other hand, can be extended to a trial-level measure of



association between the effects of treatment on both endpoints. Their approach suggests a new definition
of validity in terms of the quality of both trial-level and individual-level associations between the surrogate

and true endpoints. The quality of a surrogate at the trial level is assessed by means of a coefficient of
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At the individual level the squared correlation R between the surrogate and
true endpoint, after adjustment for both the trial effects and the treatment effects is used. A surrogate

will be said to be valid when it is both trial-level valid (R?
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, ~ 1) and individual-level valid (R, ;, =~ 1).
From a modelling perspective, a two-stage hierarchical model is required. This can be fitted using a
variety of methods, such as linear mixed-effects methodology (Verbeke(19) and Molenberghs), a two-stage
approach, or pseudo-likelihood (Geys(20)). Several methods have been proposed for applications in different
settings. For example, Molenberghs(21), Geys and Buyse developed a pseudo-likelihood approach for the
validation of a surrogate in a randomized trial when the surrogate and the true outcome are of mixed data
types. Renard(22), Geys, Molenberghs, Burzykowski and Buyse extended the meta-analytic setting for
two normally distributed outcomes to the case of two binary outcomes using a pseudo-likelihood approach
for parameter estimation. Burzykowski(23), Molenberghs, Buyse, Geys and Renard extended the meta-
analytic settings for two normally distributed endpoints to the common situation of failure-time endpoints,
using bivariate survival modelling. Here, we will show how the meta-analytic approach of Buyse(17) et
al. can be used to investigate the concurrent validity of two psychiatric rating scales. In cases where a
gold standard scale can be assigned, we can almost directly apply their methodology for the validation of
surrogate markers with the standard scale playing the role of true endpoint. In many psychiatric studies
however, a more “symmetric” situation is encountered where different scales are in conjunction without
knowing their relationships. In that case one will need to “symmetrize” the validation techniques. While
our data setting does not allow us to investigate the predictive validity, the methods proposed here could

be applied to “validate” one scale versus another in that sense as well using clinical trial data.

Section 2 introduces motivating studies on meta-analyses of clinical trials comparing antipsychotic
agents for the treatment of chronic schizophrenia. Section 3 gives a brief overview of different validation
criteria that exist to validate surrogate endpoints in randomized clinical trials and indicates how these
should be adapted to investigate the criterion validity of psychiatric measurement scales. However, it
will be pointed out how some of these approaches are surrounded with severe drawbacks and, as a result,
may best be avoided. In Section 4 we apply the different methods of Section 3 on the data, described in

Section 2. We will show how some of these methods can usefully be applied to investigate the criterion



validity of two rating scales, while others are thus surrounded with difficulties that they may lead to
misleading or inconclusive results. The multi-trial approach of Buyse(17) et al. will turn out to be really

superior. Finally, Section 5 contains some concluding remarks.

2 MOTIVATING STUDIES

2.1 A Meta-analysis of Trials in Schizophrenic Subjects

In this section we introduce individual patient data from a meta-analysis of five double-blind randomized
clinical trials, comparing the effects of risperidone to conventional antipsychotic agents for the treatment
of chronic schizophrenia. Schizophrenia has long been recognised as a heterogeneous disorder with pa-
tients suffering from both “negative” and “positive” symptoms. Negative symptoms are characterized by
deficits in cognitive, affective and social functions such as for example poverty of speech, apathy and emo-
tional withdrawal. Positive symptoms entail more florid symptoms such as delusions, hallucinations, and

disorganized thinking, which are superimposed on the mental status (Kay(24), Fiszbein and Opler).

Several measures can be considered to assess a patient’s global condition. The Clinician’s Global
Impression (CGI) is generally accepted as a subjective clinical measure of change. Here we will consider the
CGI overall change versus baseline. This is a 7-grade scale used by the treating physician to characterize
how well a subject has improved since baseline. Other useful and sufficiently sensitive assessment scales
are the Positive and Negative Syndrome Scale (PANSS) (Kay(25), Opler and Lindenmayer) and the Brief
Psychiatric Rating Scale (BPRS) (Overall(26) and Gorham). The PANSS consists of 30 items that provide
an operationalized, drug-sensitive instrument, which is highly useful for both typological and dimensional
assessment of schizophrenia (Kay(24), Fiszbein and Opler). The BPRS is a 19-item scale, essentially
derived from the PANSS.

Since the package insert in most countries recommend that risperidone is most effective at doses
ranging from 4 to 6 mg/day, we included only patients in our analyses that received either these doses of
risperidone or an active control (haloperidol, levomepromazine, perphenazine, zuclopenthixol). Depending
on the trial, treatment was administered for a duration of 4 to 8 weeks. For example in the international
trials (INT-2 by Peuskens(27) and the Risperidone Study Group, INT-3 by Chounard(28), Jones and
Remington, and Marder(29) and Meibach, and INT-7 by Hoyberg(30), Fensbo, Remvig, Lingjaerde, Slotei-



Nielsen and Salvesen) patients received treatment for 8 weeks; in the study by Blin(31), Azorin and
Bouhours (FRA-3) patients received treatment for 4 weeks, while in the study by Huttunen(32), Piepponen,
Rantanen, Larmo, Nyholm and Raitasuo (FIN-1) patients were treated over a period of 6 weeks. In this

paper we will restrict our attention to the last observed scores during treatment (endpoint).

Interest is to know to which extent the PANSS and BPRS scales are related with each other and
with CGI. We will show that we can use analogous techniques as when validating a surrogate endpoint
from meta-analytic data. Our meta-analysis however contains only five trials. This is insufficient to apply
the meta-analytic methods of Section 3 (Buyse(17) et al.). Fortunately, in all of the trials information is
also available on the investigators which treated the patients. Hence, we can also use investigator as the
unit of analysis. A total of 138 units are thus available for analysis, with the number of patients per unit

ranging from 2 to 30.

2.2 An Equivalence Trial in Schizophrenic Patients

This section describes data from an international equivalence trial (INT-10) on schizophrenic patients,
described by Nair(33) and the Risperidone Study Group. The trial includes 206 schizophrenic patients.
All patients receive an equal daily amount of risperidone during 8 weeks, but 103 patients are randomized
to a one-time daily intake (O.D), while the remaining 103 patients are randomized to receive risperidone
twice a day (B.I.D). Like in the previous study, interest lies in determining the extent to which CGI,
PANSS and BPRS are related with each other. Since we only had information available on a single trial
with one main investigator, we chose to use investigator as the unit of analysis in the multi-trial approach,
described in Section 3. A total of 34 units were thus available for analysis with the number of patients per

unit ranging from 2 to 15.

3 A BRIEF HISTORY ON VALIDATION CRITERIA

Buyse(12) and Molenberghs have given an overview, with discussion, of common practice for validation
of surrogate endpoints. In this section, we summarize their main arguments but in view of assessing the

criterion validity of mental health symptom scales.

Let us first introduce some notation. Throughout this chapter we assume that S; and Sy are



random variables that represent two scales for which we want to assess the criterion validity. Traditional
approaches investigate the concurrent validity by correlating one measurement scale (S2) with the other,
assumed to be a gold standard (S7). In many cases an ordinary Pearson’s correlation coefficient is used.
Here, we propose to assess the criterion validity based on criteria similar to the ones used in surrogate marker
validation in randomized clinical trials. In this section, we will give an overview of possible methods that
can be applied, however many of them are surrounded with severe difficulties and are thus best avoided.
Only the multi-trial approach, described in Section 3.4 will turn out to be really outstanding. While the
methods described below could equally well be applied to investigate the predictive validity (where one of
the two criteria will not be available until some time in the future), this falls beyond the scope of the data
analyses presented in this paper. Further we assume that Z is an indicator variable for treatment. We

restrict attention to a binary treatment indicator (Z =0 or 1).

3.1 Prentice’s Criteria

Following the ideas of Prentice(10) we assume that criterion validity has been assessed when “the tests of
the null hypothesis of no relationship to the treatment groups under comparison are equivalent on either

scale”:

f(5112) = f(S1) = f(S2]Z) = f(S2) (1)
where f(X) denotes the probability distribution of a random variable X and f(X|Z) denotes the probability
distribution of X conditional on the value of Z. Note that this definition involves the triplet (51,52, Z),
hence concurrent validity between any two scales is assessed only with respect to the effect of some specific
treatment Z. Assuming that S; can be regarded as the criterion, following 4 validation criteria can be

proposed (Prentice(10)):

f512) # f(5), (2)
f(S212) # f(S2), 3)
f(51182) # f(S1), (4)
f(51152) = f(51]52,2). ()

Criteria (2) and (3) measure departures from the null hypothesis, implicit in (1). Criterion (4) implies
that Sy has prognostic value for the gold standard. Criterion (5) requires Sa to fully capture the effect of

treatment on Sy, that is: there is no effect of treatment on one scale after correction for the other scale.



Of course, this last condition is so restrictive that it rarely holds in practice and it is hard to verify since
it would formally require equivalence testing. While in many practical applications one of the symptom
scale may be regarded as “the standard”, this is not always evident with psychiatric diagnostic tools. In

that case we may have to add two extra criteria:

f(S2|S1) #  f(S2), (6)
f(S2|S1) = f(S2/51,2). (7)

Further, in an equivalence trial designed to demonstrate the equivalence of a new treatment with a standard
therapy, the first two Prentice criteria are bound not to be fulfilled. Yet, from a clinical perspective there
is no reason why the symptom scales used as responses in such a trial cannot be validated. This will be

illustrated further in this paper.

3.2 Freedman’s Proportion Explained

Freedman(13) et al. argued that criterion (5) (and thus also (7)) raises a conceptual difficulty in that it
would require the statistical test for treatment effect on one scale to be non-significant after adjustment
for the other. The non-significance of this test does not prove that the effect of treatment upon the first
scale is fully captured by the second one. Therefore, they supplemented these criteria with the so-called
proportion explained, the proportion of the treatment effect on one scale that is explained by the other.
Let PE(S1,S52,7) stand for the proportion of the effect of Z on S; which can be explained by S3. An
estimate of PE(S1, 52, Z) is then as follows:

PE(S:,52,7)=1— b5 (8)

Sa
where 0 and (g, are the estimates of the effect of Z on S; without and with adjustment for Ss. Note that
this quantity is subject to the same asymetry as criteria (4)-(7). Therefore one might also have to look
at PE(S2, S1,Z) whenever there is no clear standard among the two considered instruments. Prentice’s
criterion (5) requires that 8s, = 0, and thus PE =1 in (8). An instrument for which PE < 1 explains
only part of the treatment effect on the other instrument. Hence, following the ideas of Freedman(13)
et al. one could suggest that the criterion validity of two instruments is assessed when the PFE is close
to unity. In cases where it is not clear which scale can serve as “the standard”, both PE(S1, S, Z) and
PE(S2,S51,7) should be close to unity. However, this reasoning is not valid. Several conceptual difficulties

surrounding the PE have been outlined in the literature (Lin(34), Fleming and De Gruttola, Buyse(12)
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and Molenberghs, Flandre(35) and Saidi, Buyse(18) et al., Molenberghs(14) et al.), in particular that it is
not a proportion: PFE can be estimated to be anywhere on the real line, which makes its interpretation

problematic.
3.3 Relative Effect and Adjusted Association

Buyse(12) and Molenberghs suggested to replace the PE by two related quantities: the relative effect
(RE), which is the ratio of the treatment effects upon the two instruments and the treatment-adjusted
association, vz, which is the subject-specific association, adjusted for treatment. Formally, the RE can be
written as:

RE(S1, S2) = g

where 3 and « are the estimates of the effect of treatment on S; and S5. Note that the RE is anti-symetric

in the sense that RE(S1, S2) = 1/RE(S2,51), while the adjusted association is fully symetric.
3.4 Multi-trial Approach

Molenberghs(14) et al. point to the difficulties accompanying all previous approaches and note that a
sensible validation strategy can only be expressed in full in a multi-trial setting. Indeed, serious prob-
lems remain in the single trial framework. For instance, when interest lies in predicting the trial-specific

treatment effect on S7 from the treatment effect on Ss, the
RE

could in principle be used. However, this quantity might not be constant for all trials testing the therapeutic
question under consideration. The constancy of RE implies that the relation between o and f is linear
through the origin. This assumption may be untenable in practice, and it cannot be verified from a single
trial. Therefore Buyse(17) et al. adopted an alternative approach based on a meta-analysis of several
trials. We will show that this setting is really the most appropriate one for the validation of psychiatric

symptom scales.
Let us now present their hierarchical approach. At the first stage, they consider

S1ij|Zij = psy, + BiZij + €515, (9)

S2ij|Zij = psy +aiZij +Esy,, (10)
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where a; and ; are trial-specific effects of treatment Z on the endpoints in a trial, ug,, and us,, are

trial-specific intercepts, and eg,, and eg,, are correlated error terms, assumed to be mean-zero normally

vy [ 95151 TSi8;
08182 0835,

Due to the replication at the trial level, they can impose a further model on the trial-specific parameters.

distributed with covariance matrix

At the second stage, they then assume

/”’Sli /"’Sl mSli
HSo; HS, ms,;
= + 11
Bi B b; (11)
(67} (0% Q;

where the second term on the right hand side of (11) is assumed to follow a zero-mean normal distribution

with dispersion matrix
ds,s, ds;s, ds;p dsia
p— | ds:50 dsis; dssp dsaa
dys, dps, dpp  dpa
daSl daSg dab daa

Hence a linear mixed model results. When the efects in (11) are assumed to be fixed, then a so-called
fixed-effects model follows. The setting described above naturally lends itself for the validation of two

scales at both the trial level as well as the individual level.
3.4.1 Trial-Level Surrogacy

In order to investigate the trial-level concurrent and/or predictive validity of two psychiatric scales, it is of
interest to investigate how a change in treatment effect on one measurement scale can be translated into the
other psychiatric measurement instrument. Therefore, it is essential to explore the quality of the prediction
of the treatment effect on S in trial ¢ by (a) information obtained in the validation process based on trials
t=1,...,N, and (b) the estimate of the effect of Z on Sy in a new trial i = 0. Whenever there is no clear
standard but simply relations are studied, as is often the case with psychometric instruments, the reverse

prediction (on S based on the effect on S1) is also important.

To this end, observe that (8 + bo|ms10,ao) follows a normal distribution with mean and variance

s,y \' [ dsys, ds (s Hs
— 2 252 2a 20 — >
E(,@ + b0|m5'207 aO) - ﬁ + ( dab ) ( dsza daa ) ( ap — ) ’ (12)

T —1
d d ds,a d
Var(8 + bo|ms,0,a0) = dpp — ( dsib ) ( ds;sz dS2 ) ( d52bb ) (13)
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Similarly, (a + ag|mso, o) follows a normal distribution with mean and variance:
T -1
ds,a ds,s, ds.p [S,0 — (S
E , b — 1 121 1 1 1 , 14
(a + a0|mS10 0) o+ ( dap ) ( dSlb dpp > ( ﬁO _ ﬁ ( )
Var(a + aglms,0,00) = daa — ( 4510 )T( dsis, dsi >_1 ( @10 ) (15)
e “ dab ds,p  dyp dav )~

To assess the validity of Sy with respect to S1 we propose to follow the suggestion of Buyse(17) et

al. and look at the coefficient of determination:

R2 2 _ L [ dsy T dsys, dssa \ [ dsa (16)
trial(f) bilmsyi,a; dpp dap ds,a doa dap :
Again, when none of the two scales can be assumed to be a standard, we may also have to look at the

second coefficient of determination:

R2 . — R2 — L dSla T dS1S1 dS1b - dS1a (17)
trial(f) a;|msy ;b dua dab d,S’lb dpp dap .
These coefficients are unitless and range in the unit interval, two desirable features for interpretation.

Whenever these quantities are sufficiently close to 1, we can say that one scale is a good surrogate for the

other at trial level.

An attractive special case of (16) applies when the prediction of the treatment effect can be done

independently of the trial-specific random intercept mgo. In that case formulas (12)-(15) respectively

reduce to:
dab
E(B +bolag) = B+ d—(ao—a), (18)
d2
Var(8 + bolag) = dwp — diba (19)
dab
E(a+aglbp) = a+ d_bb(ﬁo_ﬁ)’ (20)
d2
Var(a + aolbg) = doa — =22, (21)
dpp

leading to a simplified coefficient of determination

R} — R, = (22)
trial(r) — “Ybila; — daadbb7

which is now symmetric on both scales. Clearly this is a very attractive property when validating two
psychiometric scales for which in many cases no gold standard can be assigned. In contrast to previous

approaches only one quantity suffices to assess the validity.
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3.4.2 Individual-Level Surrogacy

To validate two scales at the individual level, we follow the suggestion by Buyse(17) et al. and consider
the squared correlation between the two instruments after adjustment for both the trial effects as well as
the treatment effect:

2 _ p2 _ ¢ %152 (23)

R, .. =R = .
indiv esuiless; 0515108585

4 DATA ANALYSES

4.1 A Meta-analysis of Trials in Schizophrenic Subjects

In this section we will apply the methods of Section 3 to the data described in Section 2.1. Evidently, there
is no natural “true endpoint” associated with these kind of data. Nevertheless, we will show how these
methods can be used to investigate the criterion validity between the three scales of interest: PANSS, BPRS
and CGIL. We will successively consider the relationships between (i) PANSS and BPRS (Section 4.1.1), (ii)
PANSS and CGI (Section 4.1.2) and (iii) BPRS and CGI (Section 4.1.3). Within each of these subsections,
missing values (if any) were deleted first. The binary indicator for treatment (Z;;) will be set to 0 for the

conventional antipsychotic agents and to 1 for risperidone.
4.1.1 Relationship between PANSS and BPRS

The relationship between PANSS and BPRS was studied first. Since the BPRS is essentially constructed
from the PANSS by selecting some of its items, there is a natural link between these two scales but it
remains difficult to assign one of the two endpoints as the “true endpoint”. With our notation we assume
PANSS plays the role of S; and BPRS plays the role of Sy. Figure 1 (a) shows a scatterplot of BPRS versus

PANSS. Clearly, both scales are highly correlated. The Pearson’s correlation coefficient equals p = 0.96.

Let us now apply the different validation methods, described in Section 3. Starting with the
Prentice criteria, all them are fulfilled: the treatment is prognostic for both PANSS and BPRS, BPRS is
prognostic for PANSS and vice-versa, and there is no effect of treatment on either scale after correction
for the other scale. A summary of these results is shown in Table 1. However one has to keep the
conceptual difficulties with this formalism in mind. In addition, the lack of symmetry of this approach

is a further drawback. Next, we calculated Freedman’s proportion explained as PE(S1,S2) = 0.875 with
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Figure 1: (a) Scatter Plot of BPRS versus PANSS;(b) Treatment Effects on PANSS by Treatment Effects
on BPRS. The size of each point is proportional to the number of patients examined by the corresponding
investigator; (c¢) Plot of the residuals of BPRS versus PANSS.

95% confidence interval [0.65,1.05]. Because of the symmetry in the endpoints we also needed to calculate
PE(S3,51) = 1.052 with 95% confidence interval [0.87,1.41]. Note that with this approach we might not
only find a value of PE which is larger than 1, but in addition the confidence intervals tend to be rather
wide. The relative effects and adjusted association were respectively calculated as RE(S7,S52) = 1.90
with 95% confidence interval [0.70,5.77], RE(S2,51) = 1/RE(S1,S2) = 0.53 with 95% confidence interval
[0.17,1.43] and vz = 0.96 with confidence interval [0.95,0.97]. The confidence intervals around the REs
may be too large to convey any useful information. In contrast, the adjusted association is very close to
one and estimated with high precision. This implies that, after accounting for treatment, a very large part
of the variability of BPRS can be explained by PANSS (and vice-versa) at the individual level. In addition,
one can observe the closeness with the Pearson’s correlation coefficient p which is traditionally calculated

to investigate the concurrent validity between two psychometric rating scales.
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Prentice Criteria Parameter estimated p-value

(standard error)
(2) —4.63 (1.65) 0.0051
3) —2.43 (0.95) 0.0106
(4) 1.66 (0.01)  0.000
(5) ~0.57 (0.46) 0217
(6) 0.55 (0.01)  0.000
(7) 0.13 (0.27)  0.641

Table 1: Prentice Criteria for the comparison of PANSS versus BPRS

Let us now consider the multi-trial approach of Buyse(17) et al., which is known to be a useful
validation technique (Molenberghs(14) et al.). Throughout, the sample sizes of the units were used to weight
the observations in the calculation of the R? values. Figure 1 (b) shows a plot of the treatment effects on the
PANSS versus the treatment effects on the BPRS for the different units. These seem to be highly correlated.
Indeed, using the multi-trial method we found high conclusive values for the coefficients of determination

at the trial and individual level. Since no clear “true endpoint” could be assigned we calculated both

R?

bilai,ms,

= 0.91 (95% confidence interval: [0.86,0.94]) and R? Jbims, = 0-91 (95% confidence interval:
[0.86,0.94]). However, calculating the estimate (22) based on the reduced model we found R? bila; = 0-92
with 95% confidence interval [0.91,0.93], which is very close to the previous values but has the advantage
of being symetric in both scales. Its value indicates that not much would be gained in the precision of
the prediction if instead of the full model the reduced model were used to predict the treatment effect.
The individual coefficient of determination was calculated as R2 adiy — 092 with 95% confidence interval
[0.91,0.93]. Note that this quantity is symetric in both scales. Graphically this correlation is represented

by the residual plot shown in Figure 1 (c).
4.1.2 Relationship between PANSS and CGI

As pointed out before there is no natural true endpoint associated with these kind of data. Therefore,
we will study the symetric relationship between PANSS (S2) and CGI (S7), i.e. we will let each of the
endpoints play the role of “true” endpoint. This way we will be able to study the impact of changing the

role of surrogate and true endpoints on the scales.

Let us start again from the Prentice Criteria. As can be read from Table 4.1.2, all the criteria were

fulfilled: the treatment is prognostic for both PANSS and CGI, PANSS is prognostic for CGI (and vice-
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versa) and there is no effect of treatment on either scale after correcting for the other scale. However, as

Prentice Criteria Parameter estimated p-value
(standard error)

2) —0.24 (0.103) 0.016
(3) —4.46 (1.656)  0.007
(4) 0.04 (0.001)  0.000
(5) —0.04 (0.071) 0.513
(6) 11.66 (0.402)  0.000
(7) ~1.59 (1.152)  0.167

Table 2: Prentice Criteria for the comparison of PANSS versus CGI

pointed out by Buyse(12) and Molenberghs and Buyse(17) et al., one has to be very careful in interpreting
these results, since Prentice’s Criteria are surrounded with a number of conceptual difficulties, possibly
leading to wrong conclusions. The point estimates for Freedman’s proportions explained were estimated
as PE(S7,52) = 0.81 (95% confidence interval [0.46,1.67]) and PE(Ss, S1) = 0.64 (95% confidence inteval
[0.31,1.12]). Clearly the confidence intervals are too wide to be informative. In addition, the upper
bounds again exceed 1, which is hard to justify for a proportion. The estimated values for the relative
effect were RE(S1, S2) = 0.055 with 95% confidence interval [0.01,0.16] and RE(S2,S1) = 18.07 with 95%
confidence interval [6.24,61.93]. The treatment-adjusted association had an estimated value of vz = 0.72
with confidence interval [0.69,0.75]. While the point estimate for vz is smaller than in the previous case,

which is not so surprising given the nature of the data, it is still estimated with high precision (in contrast

to the RE measures). The meta-analytic approach yielded Rlilms-, o, = 0.56 (95% confidence interval
[0.43,0.68]), Rgme_’bi = 0.56 (95% confidence interval [0.43,0.68]) at the trial level and Ri2ndiv = 0.51

with 95% confidence interval [0.47,0.55] at the individual level. Clearly, these quantities were estimated
with sufficient precision, at the same time indicating that the agreement between PANSS and CGI, is smaller
than would have been anticipated from the classical validation approaches such as the Prentice criteria and
the proportion explained. The individual level correlation between the two endpoints is relatively strong
with a value of 0.71 and a 95% confidence interval, [0.68,0.74]. This agrees closely with the treatment-
adjusted association parameter vz and even the Pearson’s correlation coefficient p = 0.73. Figure 2(a)
and (b) respectively show a scatterplot of CGI versus PANSS and a plot of the treatment effects on CGI
by the treatment effects on PANSS, the latter being a graphical representation of Ry,;,). The R; iy is

graphically represented by the residual plot in Figure 2(c) Clearly, these effects are less correlated than

in the previous section. In addition we calculated the R? measure at the trial level for the “reduced”
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Figure 2: Treatment Effects on CGI by Treatment Effects on PANSS. The size of each point is proportional
to the number of patients examined by the corresponding investigator.

model. This yielded Rgilai = R?ul p, = 0.56 with 95% confidence interval [0.43,0.67] which coincides with
the trial-level values obtained from the “full” model. Apart from the attractive feature that this quantity
is symetric in both scales, the result again indicates that not much would be gained in the precision of the

treatment prediction if instead of the full model, the reduced model were used.

In the above meta-analytic analyses we used the investigator as unit of analysis. As pointed out
in Section 2.1, this lead to a total of 138 units with the number of patients per unit ranging from 2 to
30. Table 3 shows the frequency table of the number of units with a given number of patients. Clearly,
the majority of units consists of less than 5 patients. Alternatively, one could also consider the main
investigator as unit of analysis. For 4 out of the 5 trials only one main investigator was used leading to
extremely large investigator sites. This lead to a total number of 29 units with the number of patients per
unit ranging from 4 to 450, 4 of which represent trials. When redoing the meta-analytic approach for this

setting we found similar results as before (we now only look at the reduced model only); the trial level and
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nr. (n) of patients nr. of units nr. (n) of patients nr. of units
per unit with n patients per unit with n patients
2 29 10 2
3 18 11 4
4 23 12 2
5 16 13 3
6 9 15 1
7 12 18 1
8 10 21 1
9 6 30 1

Table 3: Frequency Table of the Number of Units with a Given Number of Patients

individual level assocation measures are respectively given by R‘irial(r) = 0.58 (95% confidence interval

[0.45,0.71]) and R? = 0.52 (95% confidence interval [0.48,0.56]). While the point estimates of these

indiv(r)
R? values are similar to the ones found in the previous setting, the confidence interval for R‘irial is much

wider, probably due to the lesser amount of trials.

Based on the results of the above meta-analytic method, we are able to predict for example the
treatment effect on the CGI response based on the observed treatment effect on PANSS (or vice versa).
The details hereof have been described in Section 3, equations (18) and (19). Table 4 reports prediction
intervals for the 29 units together with the number of patients per unit. In this table, dy and ﬁ:—\bo are
values estimated from the data; E((3 + bo) is the predicted treatment effect on CGI, given its effect on
PANSS. Clearly, in all cases, the predicted values for 8+ by agree reasonably well with the effects estimated

from the data.

An interesting plot is shown in Figure 3 which indicates how effect changes on one outcome can
be translated on another outcome. Translating effect changes of PANSS or BPRS to the CGI scale is more
or less similar. But, as expected, the translation of an effect change on BPRS to PANSS is much more

precise.
4.1.3 Relationship between BPRS and CGI

When studying the relationship between CGI (S;) and BPRS (S3) we found similar results to the ones
obtained in Section 4.1.2. This is not so surprising given the strong relationship found between BPRS and
PANSS. Since results for the full and reduced models almost coincide, we only present the values for the

reduced model here.
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Unit # patients Yo E(B + bolao) B8+ bo
1 8 14.00 (16.35)  0.53 (0.63)  0.50 (1.26)
2 6 143.33 (20.02)  -1.99 (0.63) -2.33 (1.25)
3 9 _13.50 (12.75)  -0.75 (0.60)  0.30 (1.18)
4 4 7.50 (35.28)  0.08 (0.58)  1.50 (1.80)
5 9 -7.60 ( 7.65) -0.45 (0.63) -0.40 (0.99)
6 8 142.00 (18.93)  -1.88 (0.63) -2.50 (1.04)
7 7 -30.58 (18.71)  -2.07 (0.61) -1.00 (1.18)
8 6 113.33 (13.79)  -0.69 (0.62) -1.33 (1.56)
9 6 -7.33 (23.35)  -0.44 (0.63) -0.33 (1.33)
10 4 -2.00 (18.06)  -0.18 (0.63) -0.50 (1.80)
11 68 -4.84 (4.46)  -0.32 (0.63) -0.47 (0.36)
12 8 114.25 (30.53)  -0.72 (0.62)  -1.50 (0.89
13 7 -6.33 (11.24)  -0.37 (0.63) -0.83 (0.95)
14 4 -36.5 (14.77)  -1.96 (0.58) -0.50 (0.50)
15 5 -13.00 (26.93)  -0.66 (0.61) -1.66 (1.72)
16 8 9275 (10.45)  -1.13 (0.63) -1.25 (0.63)
17 8 -9.00 (10.93)  -0.52 (0.63) -0.50 (0.65)
18 450 357 (2.13)  -0.28 (0.63) -0.15 (0.13)
19 7 935 (12.02)  -1.16 (0.63) -1.25 (0.74)
20 5 533 (13.52)  -0.33 (0.63) -0.83 (0.57)
21 70 275 (5.79)  -0.00 (0.63)  0.21 (0.38)
22 7 -7.50 (16.13)  -0.46 (0.63) -0.25 (1.40)
23 7 -20.66 (15.39)  -1.00 (0.62) -1.83 (1.06)
24 9 ~4.00 (11.06)  -0.31 (0.63)  0.05 (0.93)
25 5 7.83 (11.16)  -0.43 (0.61) -1.33 (0.86)
2% 45 -20.15 (9.68)  -1.01 (0.63) -1.18 (0.50)
27 9 1.14 (19.19)  -0.06 (0.63)  0.00 (0.95)
28 5 210,50 (10.96)  -0.63 (0.59)  0.66 (0.86)
29 8 -3.25 (10.71)  -0.24 (0.63) -0.49 (0.79)

Table 4: Predictions for the treatment effects on CGI based on the observed treatment effects on PANSS.
Estimates (standard errors) are shown.
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Figure 3: Effect Changes on one Outcome by the Effect Changes on Another Qutcome.

Again, the Prentice criteria were fulfilled as can be seen from the summary presented in Table 4.1.3:
Freedman’s proportions explained were estimated as PE(S, S2) = 0.72 with a wide 95% confidence interval
of [0.37,1.49] and PE(Ss,S1) = 0.09 with 95% confidence interval of [0.33,1.34]. The estimated value for
the relative effect RE(S1,S2) is 0.10 with 95% confidence interval [0.03, 0.34] and the treatment-adjusted
association has an estimated value of vz = 0.71 with confidence interval [0.68,0.73]. Using the meta-
analytic approach we find a value of 0.59 for R‘?rial with 95% confidence interval [0.46,0.73] and Ri2n div =

0.49 with 95% confidence interval [0.44,0.53]. Figure 4 (a)-(c), as before, show respectively the scatterplot

of CGI versus BPRS, the treatment effects on CGI by the treatment effects on BPRS and a residual plot.
4.2 An Equivalence Trial in Schizophrenic Patients

In Section 3 we presented a brief history of different validation techniques that have been so far proposed

for surrogate markers. A thorough study of the available literature shows how the classical techniques such
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Prentice Criteria Parameter estimated p-value

(standard error)
@) —0.24 (0.103) 0.016
3) —2.35 (0.954) 0.013
(4) 0.07 (0.002)  0.000
(5) ~0.06 (0.072)  0.363
(6) 6.62(0.235)  0.000
(7) —0.73(0.673)  0.279

Table 5: Prentice Criteria for the comparison of BPRS versus CGI

as Prentice’s criteria and the proportion explained, but also the relative effect and adjusted association
are surrounded by difficulties. Of course, this evolution has been indispensable in the development of new

insights and formalizing new validation approaches.

The present section illustrates on the basis of the data described in Section 2.2 how the classical
approaches can hide the possible “agreement” of variables in an equivalence study and how they can
produce misleading or even wrong results. Like in the previous section we will subsequently consider the
relationships between (i) PANSS and BPRS (Section 4.3) and (ii) PANSS and CGI (Section 4.3.1). Results
about the BPRS versus CGI agreement are not shown. They are very similar to the results obtained in

Section 4.3.1.
4.3 PANSS versus BPRS

Just for sake of illustration we let PANSS play the role of “true” endpoint. The Prentice criteria now
utterly failed to show the high agreement between both scales. Results are summarized in Table 6. By

definition of an equivalence trial, the first two criteria are bound to be unfulfilled.

As always, Freedman’s proportion explained cannot give a conclusive answer, being estimated at
PE = —0.525 with an infinite 95% confidence interval. Apart from the confidence interval which is too wide
to be of any practical use, the PFE is even negative which can hardly be justified for a proportion and makes
it hard to interpret. The relative effect was estimated at RE = —3.14 with an unbounded confidence interval
as well, which makes it inconclusive. However the adjusted association equals vz = 0.97 with confidence
interval [0.97,0.98], giving evidence of a high individual level assocation corrected for treatment. The

meta-analytic approach produced values, R‘irial (r) = 0.96 with 95% confidence interval [0.82,1.09] at the
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Figure 4: Treatment Effects on CGI by Treatment Effects on BPRS. The size of each point is proportional
to the number of patients examined by the corresponding investigator.

trial level, and RiQIl div(r) = 0.94 with 95% confidence interval [0.92,0.95] at the individual level. Both give
conclusive results, which are in agreement with the ones found in Section 4.1.1. This “robust” behaviour
clearly confirms the superiority of the meta-analytic approach. Thus, we have illustrated the meta-analytic
approach is the only that is able to use data from equivalence trials for validation. All other approaches

give inconclusive results, with the Prentice criteria being even utterly useless by definition.

4.3.1 PANSS versus CGI

Let us now investigate the agreement between PANSS and CGI with CGI playing the role of “true”
or “standard” endpoint. A summary of the Prentice criteria is found in Table 7. As could have been
anticipated, the first two criteria are again not fulfilled. Freedman’s proportion explained takes a negative
value of PE = —0.94 with an infinite confidence interval. The relative effect estimate was estimated at

RE = —0.03 with also an infinite confidence interval. The adjusted association was estimated as vz = 0.74
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Prentice Criteria Parameter estimated p-value

(standard error)
(2) 1.06 (4.050)  0.792
3) —0.33 (2.398)  0.887
(4) 1.65 (0.024)  0.000
(5) 1.62 (0.834)  0.052

Table 6: Prentice Criteria for the comparison of PANSS versus BPRS

with confidence interval [0.69, 0.79], which closely corresponds to the value obtained in Section 4.1.2. The
meta-analytic approach yielded values, R‘irial(r) = 0.70 with 95% confidence interval [0.44,0.96] at the
trial level, and Ri2n div(r) = 0.55 with 95% confidence interval [0.47,0.62] at the individual level. This

illustrates again that the multi-trial approach is the only one that seems to give conclusive results, which

are consistent with the ones found in Section 4.1.2.

5 DISCUSSION

In this paper we have shown how a well-known psychometric property such as the criterion validity can
be assessed using techniques that have been recently developed in the field of surrogate marker validation
in clinical trials. While psychiatric studies, such as the ones presented here, differ from clinicical trials by
the fact that no true endpoint can be assigned, we show that the developed methodology can equally well

be applied on softer endpoints.

Traditional psychometric techniques that try to assess the criterion validity are often limited to
the calculation of simple Pearson correlation coefficients. In contrast, the multi-trial approach described
in this paper allows us to relate or predict a treatment effect on one scale with a treatment effect on the
other scale. Further, one is able to distinguish between trial-level and individual-level agreement, which
the classical techniques do not. In addition, treatment effects on aggregate scores can be translated to

effects on more understandable measures.

While we have looked at validation techniques in cross-sectional studies only, it would be of interest
to construct multi-trial techniques when both outcomes have repeated measurements of time. This is the

subject of ongoing research.
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Prentice Criteria Parameter estimated p-value
(standard error)

) —0.03 (1.186) 0.835
(3) 1.06 (4.050)  0.792
(4) 0.03 (0.002)  0.000
(5) —0.07 (0.124)  0.544

Table 7: Prentice Criteria for the comparison of PANSS versus CGI
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