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Tracking joint centres with the use of DeepLabCut in 

comparison to manual annotation: a study on 

concurrent validity 
“Is DeepLabCut valid for measuring joint centres in the frontal plane in healthy adults during 

gait and jogging when compared to manual annotation with the Kinovea software? 

 

   

Highlights: 
• Phases of gait with greater amplitude of movement cause greater differences 

between systems. 

 
• DeepLabCut is not valid for tracking joint centres in the frontal plane during walking 

and jogging in comparison to manual annotation . 

 

• Further research is recommended to improve the accuracy of deep learning software 

to recognise joint centres in videos and to improve its validity for tracking joint 

centres in the frontal plane. 
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Research context 

 

This master’s thesis is commissioned by the Hasselt University and is part of the 

Biomechanical research domain. This master’s thesis research was conducted under the 

supervision of promotor Prof. Dr. Pieter Meyns and supervisor Dr. Maud van den Bogaart. It 

forms part of a bigger research on the Luxonis OAK-1 cameras, DeepLabCut, Kinovea and 

GaitRite systems for measuring kinematic - and spatiotemporal data during the walking and 

running of healthy adults. 

Technology is a fast evolving field in today’s world. It is getting more common to use in 

different fields. One of these is the field of biomechanics, which is an important part of 

sports - as well as rehabilitation sciences. Movement analysis is becoming easier and more 

accurate because of the advancements in recent technology. To conduct movement 

analysis motion capture can be used. To optimise the analysis of movement, the motion 

capture and the data output should be as accurate as possible. One type of data gathered 

from motion capture is data on the kinematics. Three-dimensional (3D) marker based 

motion capture is the current gold standard for capturing kinematic data. However it has a 

few drawbacks such as the markers applied to the subjects body possibly restricting 

movement or being placed inaccurately. There is also a high financial cost to marker based 

motion capture and it requires trained experts to set up the system and use it (Simon, S.R., 

2004; Harris, G.F. & Smith, P.A., 1996; Grigg et al., 2018; Bahadori et al., 2019; Camomilla et 

al., 2017, Roggio et al., 2021). Markerless motion capture makes the process of capturing 

kinematic data easier since it removes the reliance on physical markers. It also aims to 

expand the environment in which motion capture can be used (Kanko et al., 2021; Kanko et 

al., 2021; Cronin et al., 2019). Because motion capture and movement analysis have their 

place in rehabilitation (Wong et al., 2007) , it could be helpful to have free, accurate and 

valid motion capture solutions to make it more accessible in a functional environment. 

 

The protocol for this study was written by two other students in their first master’s year at 

the University of Hasselt at the faculty of Rehabilitation Sciences and Physical Therapy. The 

experimental set up in this protocol was a conjoined effort of the students who have 

written the protocol and the two students who have conducted and written this master’s 

thesis study. Engineer Geraerts M. supported the technical side of the experimental setup. 
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The recruitment of participants was done via the personal network of the four previously 

mentioned students. The same students were involved in the collection of the data for this 

master’s thesis. The data processing of the manual annotation through the Kinovea 

software was done by the writers of this master’s thesis, supervisor Van Den Bogaart M. 

was responsible for the data processing through DeepLabCut. Supervisor Van Den Bogaart 

M. also executed the Statistical Parametric Mapping in Matlab and provided the required 

output for this master’s thesis. Statistical analysis in SPSS was the responsibility of the 

students and was checked by the supervisor. The students wrote this master’s thesis on 

their own, sending draft versions to their supervisors for feedback on previously agreed 

moments. The feedback received was applied as soon as possible. 
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1. Abstract 

Background DeepLabCut (DLC) is an open-source machine-learning-based video analysis 

software that can be used to measure joint centre locations on simple video recordings. . DLC 

is shown to be valid for measuring joint angles in the sagittal plane during a vertical jump in 

healthy humans but there is no evidence yet for the validity of DLC for tracking frontal plane 

joint centres in humans during gait. 

Objectives To determine the validity of DLC in comparison to manual annotation in Kinovea 

for tracking joint centres during walking and jogging in the frontal plane. 

Participants 20 healthy adults (15 male / 5 female) between the ages of 18 and 65 years old 

were included.  

Methods All participants completed five walking and jogging trials. A video camera at the end 

of the 5.16 meter long walkway recorded these. Kinovea and DLC were used to estimate the 

X- and Y-coordinates of the joint centres from shoulders, elbows, wrists, hips, knees and 

ankles during the first stride of each task. To evaluate the agreement between both systems, 

linear mixed model analysis was performed in SPSS using type III fixed effects tests and two 

way repeated measures ANOVA was used for Statistical Parameter Mapping (SPM). Main 

effects of the systems, tasks and interaction effects between these two were analysed.  

Results Significant differences were found between the two systems. The left hip joint had 

the greatest between-system difference (p < 0.001). Y-axis coordinates showed greater 

differences between the systems when Y-axis displacement during movement was larger (p 

< 0.001). 

Conclusions Frontal plane joint centres assessed with DeepLabCut are not valid with respect 

to manual annotation in Kinovea software. Training the model more could possibly increase 

the performance of the system. 

Keywords Deep learning, joint centres, markerless motion capture, gait 
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2. Introduction 

The aim of human movement analysis is to gather quantitative information about the 

mechanics of the musculo-skeletal system during the performance of a motor task (Cappozzo 

et al., 2005)[3]. Possible applications can be found in a sport- or rehabilitation setting. In the 

first it can be used to measure sport performance (Chiu et al., 2014)[4], for technique 

evaluation (Huchez et al., 2015)[11] and for injury prevention (Sinclair, J. & Bottoms, L., 

2013)[23]. Some examples of how movement analysis can be used in a rehabilitation setting 

include gait analysis, posture and trunk movement - and upper limb movement analysis. 

Observations of different movement strategies and biomechanical constraints could be done 

and afterwards implemented in rehabilitation if needed(Wong et al., 2007)[26]. Kinematic 

data for these analyses can be estimated via motion capture (Sutherland, D.H., 2002)[24]. 

Kinematics cover the geometric description of movements of the individual body segments 

and their positions relative to each other (Oppelt et al., 2020)[18]. Joint centres, which act as 

an axis for connecting segments, form an important part of kinematics since angles can be 

estimated using them. 

 

The current gold standard for motion capture is Three dimensional (3D) marker-based motion 

capture (Krigslund et al., 2012; Munro et al., 2012)[14, 15]. This method captures motion 

using a Optoelectronic stereophotogrammetric multi-camera capturing system by tracking 

physical markers placed on the body (Roggio et al., 2021)[20]. The downsides of marker-

based motion capture are the time consumption, movement restriction by the placed 

markers, incorrect placement of markers by human error, soft tissue artefacts, space 

required for the setup, high financial cost and the need for trained professionals.The 

downsides of marker-based motion capture are the time consumption, movement restriction 

by the placed markers, incorrect placement of markers by human error, soft tissue artefacts, 

space required for the setup, high financial cost and the need for trained professionals. 

(Bahadori et al., 2019; Camomilla et al., 2017; Grigg et al., 2018; Harris, G.F. & Smith, P.A., 

1996)[1-2, 9-10]. 

 

A more affordable method to analyse movement is manual annotation by applying digital 

markers on a video. One of the primary advantages of manual annotation of the markers is 

that there is no need for attaching physical markers to the subject's skin. This makes this 
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method a valuable tool in sports biomechanics as it makes it possible to analyse movements 

in normal training- and competition situations. This method makes it more accessible to 

perform gait analysis in therapeutic settings (Churchill et al., 2002)[5]. But manual annotation 

also has certain drawbacks. Manually annotating joint centres is a time-consuming and 

laborious process, and is liable to subjective errors.An example of a software for manual 

annotation is Kinovea. Schurr et al., 2017 [22] found Kinovea to be comparable to 3D motion 

capture systems for kinematic analyses of all joints in the sagittal plane, but only for the knee 

in the frontal plane. The Kinovea software is found to be valid and reliable for measuring 

angles and distances by using coordinates (Puig-Diví et al., 2019)[19]. 

 

A third method for motion capture is markerless motion capture. These systems estimate 

joint centres in video recordings by using a deep learning algorithm which is trained to 

identify patterns between images and their labels. In this case the labels show the location 

of the corresponding joint centres in the image (Kanko et al., 2021; Cunningham et al., 

2008)[12, 7]. Markerless motion capture makes collecting data easier since it removes the 

reliance on physical markers. It may improve the reliability of data by removing the human 

error in marker placement, but can have a small decrease in pose estimation performance 

(Needham et al. 2021)[17]. It could expand the use of movement analysis to instances where 

marker-based motion capture cannot be used, since the last mentioned can only be used in 

a laboratory-based setting (Cronin et al., 2019; Kanko et al., 2021)[6, 13]. A lot of the 

algorithms such as OpenPose and DeepPose used for markerless motion capture require 

large labelled data-sets to learn. DeepLabCut (DLC) is a markerless motion capture algorithm 

that can be trained on smaller data-sets. Pretrained models can be used to speed up the 

model training process as only the final layer of the algorithm network remains to be trained. 

DLC has been studied on animals ranging from insects such as flies to larger animals such as 

horses for pose estimation outside of a laboratory environment (Nath et al., 2019)[16]. Next 

to that it has been validated for measuring sagittal plane lower body joint angles of healthy 

adults during a vertical jump task, in comparison to a marker based system (Drazan et al., 

2021)[8]. But there is no evidence yet on the validity of DLC to measure kinematic data in the 

frontal plane during everyday tasks such as walking and jogging. 
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The aim of this study is to compare the concurrent validity of a markerless motion tracking 

system (DeepLabCut) with manual annotation software (Kinovea) to track full body joint 

centres during gait and jogging of healthy adults in the frontal plane.  
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3. Methods 

3.1 Research question 

Is DeepLabCut valid for measuring joint centres in the frontal plane in healthy adults during 

gait and jogging when compared to manual annotation with the Kinovea software? 

3.2 Participants 

 Participants were recruited through the personal network of the researchers. They needed 

to be healthy male or females between the ages of 18 and 64 years old and were all able to 

walk independently without assistive devices. They were excluded from the study when they 

had any orthopaedic or neurological disorders, underwent orthopaedic or neurological 

surgery in the last 24 months or if they had symptoms of COVID. All participants included in 

this study signed an informed consent and filled in a questionnaire about the inclusion and 

exclusion criteria of this study. This study was ethically approved by the ethics committee of 

Hasselt University (Martelarenlaan 42 - 3500 Hasselt, 07/04/2022, MOVING; CME2022/006). 

3.3 Materials and setup 

A 5.16m by 0.89m GAITRite walkway was placed in an open space in a research lab of the 

faculty of rehabilitation sciences at Hasselt University, with a start line 1.70m before the mat 

and a stop line 1.40m behind the mat. Two Luxonis OAK-1 cameras were used. These cameras 

are capable of capturing high resolution images (4056 x 3040), running custom Artificial 

Intelligence models and performing advanced computer vision tasks. One camera was placed 

at the middle and 5m to the left of the GAITRite walkway at a height of 0.805m for capturing 

sagittal plane recordings. The other camera was placed 3m behind the end of the GAITRite 

walkway at a height of 0.805m facing the frontal plane of the participants. Both cameras were 

programmed to capture 24 frames per second (fps). Only the camera facing the frontal plane 

was used for this study. A pc was placed next to each OAK-1 camera to run the camera 

software and store the video files. Above the camera in the sagittal plane, a 10000 lumens 

200W Hoftronic floodlight was placed to reduce the motion blur in the recordings. One pc 

was used to collect data of the GAITRite walkway. This pc was placed on a desk at the start of 

the GAITRite walkway behind a screen so the examiner controlling the GAITRite software 
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remained out of sight of the OAK-1 cameras during the test procedure. This prevented 

interference of the examiner with the software.  

The setup is shown in Fig. 1-2.  

1: Screen to cover researcher; 2: 

Chair 

for the subject; 3: Startline; 4: 

GaitRite 

walkway 

Figure 1  
Experimental setup 

4: GaitRite walkway; 5: Stopline; 6: 

Frontal OAK-1 camera and pc 

 

Figure 2 
 Experimental setup 

7: Hoftronic Floodlight; 8: Sagittal OAK-1 

camera and pc 

 

Figure 3 
Experimental setup 

1: Screen to cover researcher; 4: GaitRite walkway;  

9: Desk with pc for GaitRite system 

 

Figure 4 
 Experimental setup 
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3.4 Data collection procedures 

3.4.1 Preparation participants 

Participants signed the written informed consent and filled in a questionnaire to make sure 

criteria for eligibility were met. Afterwards they changed into the required clothes (black 

shorts, black shirt and sneakers or running shoes), were weighed and the height and leg length 

of both legs of the subject were measured before the start of data collection. Finally the 

participant was placed at a chair in front of the start of the GAITRite walkway to start the 

data-collection. 

3.4.2 Preparation materials 

The examiner started the recording on the OAK-1 camera in the frontal plane, followed by the 

start of the recording of the OAK-1 camera in the sagittal plane. The recordings on these 

cameras weren’t stopped until the data collection of the subject was finished.  

 

3.4.3 Data-collection 

The participants were asked to complete five trials of walking and jogging at a comfortable 

pace. Randomisation of the trial order was done by asking the participant to draw a card with 

a number on it, which corresponds with a task. Two practice trials were done for the first task 

at the beginning of the data collection to make sure that the participant understood the 

assignment. The participant started walking or jogging before the GAITRite walkway and 

continued walking or jogging until the marked end point was reached, to make sure there was 

minimal acceleration and deceleration on the Gaitrite walkway. 

3.5 Data processing 

After recording the video, it was cut in separate videos of each trial. Each video started at the 

first heel contact of the left foot on the GaitRite walkway and ended at the last toe off of the 

left foot on the walkway. The first stride of each task was used to compare the validity of 

DeepLabCut to Kinovea. The joint centres of the ankles, knees, hips, wrists, elbow and 

shoulders were annotated in the Kinovea software with the origin being placed in the left 

upper corner of the video screen. Kinovea software has an auto tracking feature which was 
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enabled during manual annotation. The joint centre location was checked on every frame and 

corrected when necessary. The X- and Y-coordinates of the joint centres were exported to a 

Microsoft Excel file, in which the exact times of heel strikes of the left foot were marked by 

synchronising the video time with the heelstrike times reported by the GaitRite system. 

DeepLabCut (DLC) was used for markerless annotation of the joint centres on the exact same 

video files. The coordinates of the joint centres found with DeepLabCut were also exported 

to a Microsoft Excel file to compare the two methods. The DeepLabCut algorithm was trained 

using the pretrained MPII human model. For further training of this biomechanical model, an 

extra 64 frames were labelled with the same joint centres as in Kinovea. These frames came 

from eight video recordings of eight different subjects included in this research. This model 

was then trained to 260000 iterations. A batch size of eight was used in combination with a 

Resnet_101 convolutional neural network and a training fraction of 95%. Only data points 

with a likelihood greater than 0.8 (p >0.8) were used in the analysis. Finally the data of the 

strides was normalised, to make sure that every stride had the exact same duration (1-101). 

Making it possible to compare time-normalised data points at different phases of the gait 

cycle. This was done for analysis in SPM, but not for analysis in SPSS. Not all joints were 

included for the statistical analysis due to the fact that further processing was needed to 

include them in this master thesis. Data of X-values of both elbow and knee joints and the Y-

coordinates of right elbow, left hip and right knee was included. 

 

3.6 Statistical analysis 

Statistical analysis was executed in SPSS (IBM SPSS Statistics v28.0.1.1 (15), www.IBM.com) 

using a linear mixed model on the not time-normalised dataset to evaluate the agreement of 

both methods of joint centre tracking (concurrent validity), taking the interaction effect of 

system and task into consideration. A two-way repeated measures ANOVA Statistical 

Parametric Mapping (SPM) (SPM1d vM.0.4.5, www.spm1D.org) was performed for the 

comparison of time-normalised data points. 

3.6.1 SPSS 

Statistical analysis in SPSS was performed using linear mixed models. The assumption of 

normality was not checked, since fixed effects estimates of mixed models are not severely 

http://www.ibm.com/
http://www.spm1d.org/
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affected by violations of assumptions (Schielzeth et al.,2020)[21]. A priori, an alpha level of 

0.05 was set. Type III tests of fixed effects (F-statistics) were used to evaluate if there was a 

significant difference between the two systems (DLC and Kinovea), via the main effect system, 

and if there was an influence of the task on the agreement between systems, via the 

interaction effect of the system and task (walking and jogging). If there was no significant 

interaction found, the mixed effects analysis was performed again with the non-significant 

effects removed from the model. If a significant interaction was present, a post hoc analysis 

was done for the separate tasks to determine what task held the significant difference 

between the two methods. In this case the level of significance was corrected using a 

Bonferroni correction (p≤ 0.05/2 = p≤ 0.025). 

3.6.2 SPM 

Biomechanical waveforms of all time-normalised data points were plotted for each joint 

included in this research. Normality was checked for the SPM analysis. If the time-normalised 

data of the joint was normally distributed a parametric test was used, if not a non-parametric 

test was performed. Differences between the waveforms were analysed to compare the 

tracking of joint centres of DLC to Kinovea by using SPM analysis in MATLAB (version R2022b; 

9.13). Results were shown for main effect system (DLC and Kinovea), 16main effect task 

(walking and jogging) and the interaction effect between those two in graphs that show where 

the differences between the two systems are significant (p≤ 0.05). If there were significant 

differences found in the interaction graph, post hoc analyses were done for the separate tasks 

and the level of significance was corrected using a Bonferroni correction (p≤ 0.05/2 = p≤ 

0.025). 
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4 Results 

4.1 Participants 

20 participants were found to be eligible for and were included in this study. Five were female 

and fifteen were of the male gender. The ages ranged from 19 to 59 years old (mean age 

27.1±11.72) and the mean BMI was found to be 24.051. All participants completed all the 

trials. Participant characteristics can be found in Table 1. 

Table 1  
Participant Characteristics 

Subjec

t # 

Age  BMI Sex Subjec

t # 

Age  Sex BMI 

0001 26 24.38 M 0011 21 M 19.93 

0002 23 23.99 M 0012 26 F 27.36 

0003 22 24.49 M 0013 21 M 19.15 

0004 51 29.83 M 0014 19 M 22.10 

0005 51 29.41 F 0015 20 F 21.80 

0006 23 19.84 M 0016 20 M 22.99 

0007 59 26.90 F 0017 21 F 22.91 

0008 22 23.33 M 0018 22 M 24.62 

0009 22 21.56 M 0019 22 M 22.80 

0010 25 22.16 M 0020 26 M 31.46 
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4.2 Statistical analysis 

4.2.1 SPSS 

A summary of the SPSS results with corresponding F- and p-values can be found in table 2-3. 

 

4.2.1.1 System comparison 

When comparing DLC with respect to Kinovea, significant differences were observed for all 

included joint centre coordinates, except for the X-coordinates of the right elbow (p: 0.120) 

and right knee (p: 0.117). 

4.2.1.2 Interactions 

A significant interaction was found for the trial- and system effects of the right knee Y-values. 

After the post hoc analysis a significant between-system difference was found during the 

jogging task (p: 0.005), but not for the walking task (p: 0.368). Interactions were not significant 

for the other included joints centres. 

Table 2 
SPSS Type III test outcomes for each joint. (α = 0.05) 

Joint Coordinate Side Statistical outcome 
Elbow X Left System effect: 

F: 8.932 
p: 0.003 
 
Interaction task X system: 
Not significant 
 

Right System effect: 
F: 2.413 
p: 0.120 
 
Interaction task X system: 
Not significant 
 

Y Left Not included in this research 
Right System effect: 

F: 4.882 
p: 0.027 
 
Interaction task X system: 
Not significant 
 



21 
 

Hip Y Left System effect: 
F: 966.630 
p: <0.001 
 
Interaction task X system: 
Not significant 
 

Right Not included in this research 
 

Knee X Left System effect: 
F: 25.249 
p: <0.001 
 
Interaction task X system: 
Not significant 
 

Right System effect: 
F: 2.456 
p: 0.117 
 
Interaction task X system: 
Not significant 
 

Y Left Not included in this research 
 

Right System effect: 
F: 9.191 
p: 0.002 
 
Interaction task X system: 
F: 4.170 
p: 0.041 

 

Table 3 
SPSS Post hoc analysis interaction effect. (α = 0.025) 

Joint Coordinate Task Statistical Outcome 
Knee Right Y Walk System effect: 

F: 0.810 
p: 0.368 

Jog System effect: 
F: 7.988 
p: 0.005 
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4.2.2 SPM 

SPM graphics can be viewed in figure 5-14. The dotted red line corresponds to the p-value of 

0.05 for the main effects and 0.025 for post-hoc analysis. 

 

4.2.2.1 System comparison 

X-axis 

For the X-axis coordinates, there was a significant difference between the systems for the 

right elbow joint centre during the entire gait cycle, except from heel-off to toe-off (p:0.031-

0.033). There was a significant difference in elbow joint centre coordinates between the 

systems at initial-contact (p: 0.048), the transition between loading-response and mid-stance 

(p: 0.050), the transition between mid-stance and terminal-stance (p: 0.048) and throughout 

the swing-phase (p: 0.022). From initial contact to the end of the mid-stance, the right knee 

showed a significant difference between the manual annotation and markerless motion 

capture software (p: 0.001). Halfway through the terminal stance until the end of the swing-

phase the data showed to be significantly different between the two systems (p: 0.001). The 

tracking of the joint-centres on the X-axis had a significant difference between Kinovea and 

DLC for both the left knee and hip, all the way through the gait-cycle (p: 0.001). 

 

Y-axis 

For tracking coordinates of joint centres along the Y-axis of the right elbow, there was only a 

significant difference between the two systems from the mid-stance to halfway through the 

terminal-stance (p: 0.031) and during the first half of the swing-phase (p: 0.026). The right 

knee showed a significant difference between the systems all the way through terminal 

stance (p: 0.001) and during the final part of the swing-phase (p: 0.001). The tracking of the 

left hip joint centre was significantly different between the two systems for the full stride (p 

< 0.001). 
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4.2.2.2 Interactions 

Since there were some significant interactions between the systems and the task executed by 

the participants, post hoc analyses were done for right elbow Y-coordinates, right knee Y-

coordinates and left hip Y-coordinates. In the post hoc analyses of the right elbow Y-

coordinates significant differences can be observed from halfway through the terminal-stance 

to the first part of the swing-phase during walking (p: 0.001). During jogging, there were 

significant differences at initial contact (p: 0.002) and at the end of the swing-phase (p: 0.008). 

Significant differences were also found at the middle part of the swing-phase (p: 0.001). Post 

hoc analysis of the right knee Y-coordinates show significant differences at the start of 

terminal stance during walking (p: 0.004), as well as during the terminal-stance, pre-swing 

and the final part of the swing-phase during jogging (p: 0.001). In the post hoc analyses of the 

left hip Y-coordinates significant between-system differences were found through the whole 

gait cycle for both walking and jogging (p:0.001).  
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Figure 5  
SPM Graph. Right Elbow X-axis 

 

Figure 6 
SPM Graph. Right Elbow Y-axis 
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Figure 7 
SPM Graph. Left Elbow X-axis 

 

Figure 8 
SPM Graph. Right Knee X-axis 
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Figure 9 
SPM Graph. Right Knee Y-axis 

 

Figure 10 
SPM Graph. Left Knee X-axis 
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Figure 11 
SPM Graph. Left Hip Y-axis 

 

Figure 12 
SPM Graph. Right Elbow Post Hoc Analysis Y-axis 
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Figure 13 
SPM Graph. Right Knee Post Hoc Analysis Y-axis 

 

Figure 14 
SPM Graph. Left Hip Post Hoc Analysis Y-axis 
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5 Discussion 

 

We aimed to assess the validity of DeepLabCut for frontal plane joint centre tracking during 

walking and jogging with respect to Kinovea. Our hypothesis that DLC is valid for tracking joint 

centres in the frontal plane when compared to Kinovea was rejected as there were few non-

significant differences found.  

5.1 Results 

Overall, the results show that there are many significant differences between DeepLabCut 

and manual annotation in Kinovea when tracking joint centres. Since there are to our 

knowledge no studies on the validity of DLC for estimating joint centres in the frontal plane, 

it is difficult to compare our results to those of other studies. However Washabaugh et al. 

(2022)[25] reported that DLC misplaced knee joint centres in the sagittal plane during the 

swing phase of gait. This corresponds with our findings, but since this study analysed 

kinematic data in the sagittal plane further research in the frontal is necessary to completely 

confirm these findings. In our study there were no joints for which the results showed a non-

significant difference on both X- and Y-axis coordinates during the full stride length. The left 

hip joint tracking was significantly different between both systems during the entire stride 

length. The cause of this may be the fact that the participants were obligated to wear a dark 

top and dark pair of shorts during the trials. This made for a difficult distinction between upper 

and lower body on the video recordings. A better resolution might positively affect this 

problem, but further research is necessary to confirm this. Next the annotation for the 

training of the markerless model and the annotation in Kinovea was done by different 

persons. This may cause differences in the final joint centre tracking data as well. 

As stated by Needham et al. (2021)[17], lightning may influence the performance of 

markerless motion capture software and manual annotation because of possible noise in the 

form of motion blur. This can be a possible explanation for differences in the accuracy of 

tracking the X-coordinates of the left and right elbow and knee, since the floodlight used 

during data collection was only present on the left side of the subject. 

40% to 100% of the stride contained significant differences for all joints included in this 

research according to the SPM analysis. In our opinion this is not accurate enough to be used 
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in a practical setting. Cronin et al. (2019)[6] observed that training a model with more images 

can positively affect the performance of markerless motion capture for tracking joint centres 

in the sagittal plane during underwater running. They found that 300 images was sufficient 

for the underwater task. There were no references found for jogging and walking in the frontal 

plane, but further training of the MPII human model could enhance the performance of DLC 

to estimate joint centres in this situation.  

When comparing the results from SPM and SPSS to each other different results were found 

for the X-axis values of the joint centres of the right knee and elbow. A possible explanation 

can be found in the fact that stride data was time-normalised for SPM analysis but not for the 

analysis in SPSS. Furthermore SPM analysis shows the differences between the systems and 

tasks throughout the different stages of the gait cycle while SPSS output shows a global result 

of the entire gait cycle.  

When comparing the results during walking and running more differences are found for Y-

axis coordinates. A possible explanation could be the increased vertical displacement of the 

joints during running in comparison to walking. This increased displacement could possibly 

cause greater errors in tracking joint centres. The SPM output also shows greater differences 

between the systems during phases of the gait cycle where joint displacement is greater. 

5.2 Strengths and limitations 

This study compared markerless motion capture with manual annotation of joint centres. To 

our knowledge this is the first study about the validity of joint centre tracking using 

DeepLabCut in the frontal plane during walking and jogging. A new protocol had to be set up 

from the start. Difficulties were encountered during this process, which may have had an 

impact on the results of this study. One of the technical difficulties was the low frame-rate of 

the video recordings caused motion blur. To improve this a floodlight was used but this was 

only possible on one side of the experimental setup. In the future two floodlights could be 

used, one on each side of the experimental set up, to make sure there are no differences in 

lighting on both sides of the subject. 25 fps was the maximum frame rate of the cameras used 

in this protocol. A higher frame rate might positively affect the accuracy of the systems, but 

this should be confirmed in further research. Also the resolution of the video recordings were 

not in full high-definition, which may interfere with the accuracy of manual annotation in 
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Kinovea. The accuracy of manual annotation also depends on the capability of the person who 

annotates the joint centres. This might have influenced the results found in this study since 

manual annotation was done by two independent researchers. Comparing with a marker-

based method might be a solution for this problem. But physical markers can interfere with 

the training of the markerless algorithm, since there would be a high risk of the algorithm 

learning to identify the markers[6]. A strength of this study can be found in the 

synchronisation of the steps with the GaitRite system and normalising the data for the 

statistical analysis, making it possible to interpret results for different stages of the gait cycle. 

Lastly, the small sample size should be mentioned. Only twenty participants were included in 

this study, since it is a part of a larger study that will be conducted over the course of the 

following years. More data on this topic will be acquired via the same protocol, making it 

possible to easily follow up on the progress of technology and possibly confirm our results in 

the future. 
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6 Conclusion 

For tracking joint centres during gait in the frontal plane, DeepLabCut is not valid in 

comparison to manual annotation. Further research is recommended to improve the accuracy 

of deep learning software to recognise joint centres in images and to improve its validity for 

tracking joint centres in the frontal plane. 
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