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ABSTRACT  
Traditional imaging approaches in mental 

health conditions assume homogeneity within 
clinical groups, obscuring the heterogeneity 
observed in autism spectrum disorder (ASD). 
This study aimed to identify clusters of 
individuals with ASD based on socio-
emotional processes using the emotion 
regulation task (ERT) during functional 
magnetic resonance imaging. Blood-oxygen-
level-dependent signals from predefined 
regions (inferior frontal gyrus and 
supplementary motor area) were utilized for 
unsupervised machine learning via Latent 
Profile Analysis. The study included 38 
participants with ASD and 62 controls. Three 
clusters emerged: normative, low distinction, 
and high distinction, reflecting variations in 
brain activation across four different 
conditions during the ERT. The normative 
clustering showed no significant difference in 
brain activation compared to the control 
group. The low distinction cluster exhibits 
significant differences in brain activation in all 
conditions and behavioral responses during 
the regulation and non-regulation of positive 
emotions. The high distinction cluster showed 
significant differences in brain activation in all 
conditions and behavioral responses during 
not regulating positive emotions. No 
significant differences were found in age nor 
gender. Nonetheless, questionnaires showed 
significant differences among the clusters 
compared to the control group, except for the 
emotion regulation questionnaire, the social 
responsiveness scale, and the Duke Social 
Stress Scale. This study highlights the 
importance of individual variability to prove 

the heterogeneity. Additionally, these findings 
challenge traditional imaging approaches 
emphasizing the need to acknowledge 
heterogeneity in the clinical population. 
Further research is necessary to further 
validate the identified clusters, as 
understanding these diverse clusters within 
ASD may enhance personalized interventions 
for these individuals. 
 
INTRODUCTION  

Autism spectrum disorder (ASD) is a 
neurodevelopmental condition diagnosed in 1% 
of the global population. ASD is a heterogeneous 
condition characterized by core features in two 
domains: 1) social communication, which is 
characterized by deficits in socio-emotional 
reciprocity, non-verbal communicative 
behaviors, and the ability to develop, maintain, 
and understand relationships, and 2) restricted, 
repetitive sensory-motor behaviors, which are 
characterized by stereotyped or repetitive motor 
movements of objects, ritualized patterns of 
(non-)verbal behavior, restricted, fixated interests 
that are abnormal in intensity or focus and hypo- 
or hyperreactivity to sensory input. These 
features are believed to result from early altered 
brain development and neural reorganization [1-
7]. 

Despite extensive research, the etiology of 
ASD remains largely unknown. However, it is 
known that there is heterogeneity among 
individuals with ASD due to the impairments in 
different core regions of the brain [8]. These 
impairments implicate the behavioral 
manifestations observed in individuals with ASD. 
Impairments in these core regions, such as the 
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frontal lobe, superior temporal cortex, and 
amygdala, have been linked with deficits in social 
behavior. Other impairments, e.g. in the caudate 
nucleus and orbitofrontal cortex, have been 
linked to repetitive behavior [9, 10]. Furthermore, 
studies have proven that individuals with ASD 
often exhibit motor difficulties, linked to 
impairments in the motor cortex, including the 
supplementary motor cortex (SMA) and caudal 
motor cingulate area [11]. Neuroimaging studies 
have also revealed abnormal activation in the 
medial prefrontal cortex and various subcortical 
regions in individuals with ASD, which have 
been connected to cognitive and socio-emotional 
deficits. Notably, alterations in the frontal 
regions, such as the inferior frontal gyrus (IFG), 
including an enlargement in the gray matter, have 
been associated with language difficulties in ASD 
[12, 13]. Several studies have indicated that 
emotion regulation (ER) has been linked with the 
IFG and SMA. In individuals without ASD 
diagnosis, the IFG showed higher activation in 
ER using cognitive reappraisal, and SMA showed 
higher activation during tasks regarding ER [14, 
15]. In ASD, individuals commonly encounter 
challenges related to ER [7]. 

ER refers to the capacity to purposefully 
modulate the intensity of affective reaction and 
their emotional state to facilitate adaptive 
functioning, representing a crucial adaptive 
response to changing environmental demands [3, 
7]. ER encompasses an individual’s ability to 
manage and modify emotional responses, such as 
duration and intensity, using behavioral strategies 
and cognitive processes to regulate continuous 
affective states and achieve personal goals. This 
skill is crucial for individuals who exhibit 
increased negative emotionality, characterized by 
a propensity for intense negative emotional 
responses to stimuli [7]. Proficiency in ER has 
been associated with increased positive social 
interactions and prosocial behaviors. Moreover, it 
is especially important for individuals who 
experience more significant negative affect, as 
negative emotionality is inversely related to 
prosocial behaviors and social competence [7]. 
ER skills rely on several prefrontal cortical areas 
involved in attention selection, working memory, 
and brain areas involved in processing emotional 
stimuli, including the amygdala or insula [14]. 

Impaired ER may serve as a potential 
explanatory framework for the observed deficits 
in individuals with ASD [3]. Furthermore, this 
impairment may also explain the increased 
prevalence of co-occurring conditions (e.g., 

attention deficit hyperactivity disorder or social 
anxiety disorder (SAD)) characterized by 
impaired ER in individuals with ASD [3, 16, 17]. 
Previous research has shown that individuals with 
ASD exhibit fewer increases in nucleus 
accumbens and amygdala activation during 
positive and negative emotional responses, 
respectively, resulting in a reduced change in 
dorsolateral prefrontal cortex activation 
compared to non-autistic individuals [3]. 
However, limited research has been conducted 
regarding difficulties with ER in adults with ASD 
and their potential treatment target in this 
population [7]. Thus, further research is needed to 
investigate deficits in ER among adults with 
ASD. 

A feasible approach to investigate this is 
employing the research domain criteria (RDoC) 
framework. This RDoC represents a framework 
that focuses on a novel classification system for 
psychopathology. It is based on self-reports, 
observable behaviors, genetic traits, and 
neurobiological measurements [18]. The long-
term goal of the RDoC framework is to achieve 
precision medicine in psychiatry by optimizing 
treatment outcomes for individual patients. The 
framework assumes that a diagnosis based solely 
on observable signs and symptoms cannot reflect 
heterogeneity in psychiatric disorders. The data 
from the RDoC fields of genetics and clinical 
neuroscience are valuable in identifying 
meaningful biomarkers which can be utilized for 
personalized treatment. However, the framework 
is now primarily valuable for explaining the 
neurobiology of psychiatric conditions such as 
ASD.  

The RDoC matrix comprises six domains, 
including negative valence (e.g., anxiety, loss), 
positive valence (e.g., reward), cognitive systems 
(e.g., attention, working memory), social 
processes (e.g., affiliation), arousal/regulatory 
system (e.g., sleep-wake), and sensorimotor 
system (e.g., motor actions) [19-21]. These 
domains cover a range of processes involved in 
mental function, such as ER, cognitive control, 
and sensory-motor integration [21, 22]. The 
domains can be examined via molecules, genes, 
cells, circuits, physiology, behavior analysis, and 
self-reports. The six domains of the RDoC matrix 
are not intended to be comprehensive but rather 
represent a starting point for research into the 
biology of mental illness. The framework is 
currently only used to investigate emotions, post-
traumatic stress disorder, and substance use 
disorder,  but its potential  application extends  to 
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other mental illnesses, including ASD [19, 20].  
This study focuses on investigating the 

differences in individuals with ASD according to 
the social processes domain of the RDoC, 
highlighting the existence of heterogeneity at the 
neural level, which could indicate the existence of 
clusters. Traditional imaging approaches, such as 
meta-analysis, pool limited effects across 
multiple studies and considers the most consistent 
on group average, which could obscure the 
possible difference on an individual level. The 
obscuring of heterogeneity within a population is 
still observed in imagining data in, e.g., the spatial 
location difference and signal’s magnitude 
conceal different response patterns [23, 24]. To 
consider this issue, unsupervised machine 
learning (ML) techniques, specifically Latent 
Profile Analysis (LPA), were used to identify 
clusters of individuals with ASD who underwent 
an “emotion regulation task” (ERT) during 
functional magnetic resonance imaging (fMRI). 
Traditional regression-based models often 
address neural targets sequentially, ignoring 
heterogeneity and neglecting important 
multivariate patterns. This results in average 
effects that are less useful for informing diagnosis 
and treatment selection for individual patients 
[25]. In contrast, unsupervised ML can integrate 
multiple inputs across activated network 
components leading to personalized profiles that 
could inform treatment recommendations by 
predicting differential treatment responses to 
varying intervention approaches [23]. The 
resulting task-based fMRI data could offer a more 
comprehensive understanding of ASD 
heterogeneity and aid in personalized treatment 
selection for individuals with ASD [23, 25]. The 
ERT will be utilized as previous research has 
demonstrated deficits in ER among individuals 
with ASD [7]. The used ERT paradigm 
introduced a social regulation component. This 
social component contrasts with the commonly 
used ERT, which induces ER without including 
the social component. In the task used in this 
study, participants were presented with videos 
featuring individuals displaying specific facial 
expressions, such as smiling, to induce the social 
regulation component of their emotional 
responses.  

Overall, our study aims to reveal the 
existence of clusters within ASD based on 
functional brain signals and compare these 
clusters with a brain-based profile derived from 
non-autistic controls. This will be done using 
unsupervised ML (LPA) to identify the brain-

based cluster and comparison with the control 
group will be done via statistical analysis. We 
hypothesized that unsupervised ML applied to 
task-based fMRI data could identify multiple 
brain-based patient clusters. Additionally, we 
examined the potential relationship for validation 
of the identified clusters between brain-based 
patient clusters and the non-autistic controls 
based on self-reported behavioral responses 
during the ERT, age, gender, and self-reported 
questionnaires.  
 
EXPERIMENTAL PROCEDURES 

Participants – 100 participants, aged 
between 16 and 60, were recruited from the 
general population of Berlin and Freiburg. These 
participants group comprised participants 
diagnosed with ASD (N=38) and non-autistic 
control participants (N=62). Diagnosis of ASD 
was confirmed based on the Autism Diagnostic 
Observation Schedule (ADOS), conducted by 
researchers with formal training in conducting the 
ADOS [26]. Inclusion and exclusion criteria were 
applied to ensure homogeneity and appropriate 
representation in the study sample 
(Supplementary Table S1). All participants 
provided written informed consent prior to the 
investigation. The study was approved by the 
ethics committee of Humboldt-Universität, 
Berlin, and carried out according to the 
Declaration of Helsinki guidelines. 

Self-questionnaires – Subjects completed 
online self-report questionnaires assessing socio-
emotional functioning and regulation aspects. 
The questionnaires regarding social assessment 
included: 1) Autism Spectrum Quotient (AQ), 
which provides assessment traits associated with 
autism spectrum conditions, including 50 items 
using a 4-point Likert scale. 2) Social 
Responsiveness Scale (SRS), which assesses 
social responsiveness and impairment associated 
with ASD, including 65 items using a 5-point 
Likert scale. 3) Duke Social Support Stress Scale 
(DUSOCS), which measures perceived social 
support and stress, including 23 items using a 5-
point Likert scale. 4) Social Anxiety 
Questionnaire (SASKO), which measures social 
anxiety symptoms, including 20 items using a 4-
point Likert scale. The questionnaires for 
investigating emotional regulation and well-being 
included: 1) Beck Depression Inventory (BDI), 
which measures depressive symptoms, including 
21 items using a 4-point Likert scale. 2) 
Difficulties in Emotional Regulation Scale 
(DERS), which assesses emotional regulation 
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difficulties, including 36 items using a 5-point 
Likert scale. 3) Emotion Regulation 
Questionnaire (ERQ), which assesses individual 
differences in ER strategies, including 10 items 
using a 7-point Likert scale. 4) Satisfaction with 
Life Scale (SWL-5), which measures global life 
satisfaction, including 5 items using a 7-point 
Likert scale. 5) Toronto Alexithymia Scale (TAS-
20), which measures alexithymia, difficulty 
recognizing and describing emotions, including 
20 items using a 5-point Likert scale. The Trier 
Inventory for Chronic Stress (TICS) was used to 
investigate the stress assessment. The TICS 
measures chronic stress, alexithymia, and 
difficulty recognizing and describing emotions, 
including 57 items using a 5-point Likert scale. 
These measures were chosen based on their 
established reliability and validity in assessing 
relevant socio-emotional functioning and 
regulation constructs. 
 
RDoC domain – System for social processes  

ERT activation – Subjects underwent the 
emotion regulation task (ERT) in an fMRI 
experiment. In the ERT, participants were asked 
to regulate their emotional reactions while 
watching a set of videos of actors displaying 
either positive or negative facial emotions for 
over 18 minutes. While watching these videos, 
the participants were instructed to regulate their 
emotional responses, with specific instruction to 
increase or decrease their emotions during the 
positive or negative videos respectively (resulting 
in two active regulation conditions, ER_pos = 
upregulating positive emotions, ER_neg = 
downregulating negative emotions). To establish 
a control condition, the same set of videos was 
presented to participants without explicit 
instruction to regulate their emotions. Participants 
watched the videos passively, without engaging 
in deliberate ER (resulting in two emotion 
reactivity conditions, Look_pos = positive 
emotion reactivity, Look_neg = negative emotion 
reactivity). After every set of videos for each 
condition, subjects self-reported their current 
emotional state with a Likert scale from 1 to 7 
[14]. 

Scanning procedure – Brain imaging data 
were acquired using a Siemens 128-channel 3 
Tesla MRI system (Siemens Healthineers, Berlin, 
Germany) with a 32-channel head coil at the 
Berlin Center for Advanced Neuroimaging 
(BCAN) in Berlin, Germany. Structural brain 
images were obtained with a Magnetization-
Prepared Rapid Acquisition Gradient Echo 

(MPRAGE) sequence with a resolution of 1 x 1 x 
1 mm3 resolution, echo time (TE) of 2.22 ms, 
repetition time (TR) of 2500 ms, flip angle of 90° 
and a field of view of 100%. The acquisition 
matrix was set at 64 x 64 x 33 slices, with slice 
thickness, width, and depth of 0.80 mm. Slice 
acquisition was performed in a descending 
manner, resulting in a total of 1050 volumes 
acquired per subject. The functional brain images 
were obtained with the same sequence as the 
structural brain images, except for the TE and TR, 
the TE was 37.00 ms, and the TR was 800 ms. 

Data preprocessing was done using fMRI-
prep [27]. DICOM data was first arranged into 
BIDS format. Head motion correction was 
performed through rigid-body transformations 
using the MCFLIRT function before the time-
domain filtering steps. Slices images were 
realigned to the middle of each TR with 3dTshift. 
Susceptibility-derived distortion correction using 
field map images was done with SDCFlows. 
Functional Echo-planar imaging images were 
registered to the high-resolution structural 
MPRAGE images using gray/white matter 
boundary-based registration (bbregister) and then 
transformed into standard space images 
(MNI_152) using nonlinear registration. Finally, 
non-aggressive ICA-AROMA was used to further 
denoising and control movement artifacts.  

Preprocessed T2*-weighted BOLD images 
were used for statistical analysis. The processed 
images were entered into a general linear model 
(GLM) using SPM software version 12. At the 
individual level, a first-level analysis was 
performed, which involved incorporating 
regressors corresponding to each experimental 
condition. These conditions represented the 20 s 
intervals during which subjects were exposed to a 
video and regulated their emotions (4 conditions 
of interest: ER_pos, ER_neg_ Look_pos, 
Look_neg). These regressors were convolved 
with the canonical hemodynamic response 
function. For the second level of analysis, GLM-
FLE with mixed effects modeling was employed, 
utilizing all first-level analyses as fixed effects. 
Contrasts of interest were formulated to 
investigate the effects of each experimental 
condition and the contrasts of ER_pos > 
Look_pos and ER_neg > Look_neg across the 
entire sample, including participants with ASD 
and control group. Whole-brain analyses were 
conducted separately for each condition (ER_pos, 
ER_neg_ Look_pos, Look_neg) and the specified 
contrasts. Statistic images were thresholded using 
a cluster-defining threshold of p < 0.001 and 
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corrected for multiple comparisons (FWE) using 
a cluster threshold of p < 0.05. Primary regions 
resulting from contrasts of ER_pos > Look_pos 
and ER_neg > Look_neg, derived from the whole 
sample, were subsequently selected as regions of 
interest (ROIs) for further analysis using ML 
analysis. Specifically, IFG and SMA were 
selected as the ROIs for subsequent analyses 
(Supplementary Table S2). 
 
Analytic plan  

To determine clusters of individuals with 
ASD using the selected ROIs, an unsupervised 
ML technique called Latent Profile Analyses 
(LPA), also known as Gaussian mixture 
modeling, was employed using Mplus software 
version 8.0 [28]. LPA was chosen due to its well-
established capability to classify participants into 
qualitatively distinct subgroups or clusters based 
on the observed patterns of Blood-oxygen-level-
dependent (BOLD) signals. It operates on a 
mixture modeling framework, employing 
categorical latent variables to explain observed 
response patterns based on multiple underlying 
distributions. This approach assumes that a set of 
variables can be adequately represented by a 
single distribution by its mean [23, 29].  

Selection of Optimal cluster number – An 
iterative process was utilized to establish the 
appropriate number of patient clusters. Initially, a 
1-cluster model was fitted to the data, followed by 
fitting a 2-cluster model and comparing it with the 
1-cluster model. Subsequently, a 3-cluster model 
was fitted and compared with the 2-cluster model. 
This process continued by comparing each k-
cluster model to a respective k-1 cluster model up 
to a 6-cluster model. Model selection and 
evaluation were based on guidelines proposed by 
Maysn [30]. The determination of the final model 
was based on several factors, including: 1) 
Bayesian Information Criterion (BIC): A BIC of 
10 between models indicates “very strong” 
evidence in favor of the model with the lowest 
BIC value. 2) Entropy: Entropy values ranging 
from 0 to 1 were considered, with values of 0.40, 
0.60, and 0.80 representing low, medium, and 
high degrees of cluster separation, respectively.  

Cluster validation – A comparison was 
conducted between the clusters based on socio-
emotional functioning to validate the identified 
clusters. This comparison involved the 
assessment of behavior response using ERT and 
self-reported questionnaires using analysis of 
variance (ANOVA). Furthermore, demographic 

correlates, namely age, and gender, were 
analyzed using ANOVA for age and Chi-square 
test for gender associations.  

Statistical analysis – Statistical analysis was 
conducted using SPSS software. Two-way 
analysis of variance (ANOVA) and Chi-square 
were employed if the data was continuous and 
categorical, respectively with Tukey HSD post 
hoc tests, after normality was checked with the 
Shapiro-Wilk test. Data were presented as mean 
and standard deviation (SD) with a significance 
level of 5%. Outliers were detected using the 
Grubbs test. 

 
RESULTS 

Optimal Cluster identification – A three 
cluster model was determined for the ASD 
population based on evaluating model fit indices 
in Mplus as the best fit for the data 
(Supplementary Fig. S1). Data for the clustering 
analysis was obtained from the BOLD-fMRI 
signals of the ROIs (IFG and SMA). The entropy 
value of 0.923, exceeding the threshold of 0.80 
for model fit, indicated a high degree of cluster 
separation. The BIC value was 404.87 further 
supporting the selection of the 3-cluster model. 
While the 4-cluster model showed a higher 
entropy (0.938) and a lower BIC value (401.98), 
only one patient was assigned to cluster 4, 
therefore limiting the quality of this clustering. 

Brain activation patterns in brain-based 
clustering – Based on the analysis of the brain 
activation patterns in IFG and SMA during the 
four different conditions (ER_pos, ER_neg_ 
Look_pos, Look_neg) of the ERT, four distinct 
patterns were observed when comparing the 
control group with the three clusters (Table 1, Fig 
1). In the control group and the normative cluster 
(18%), high activation was observed during the 
ER_pos and Look_pos videos in both the IFG and 
SMA. Notably, the highest activation was 
observed in the IFG. No significant differences in 
brain activation were seen between the normative 
cluster and the control group. However, the low 
distinction cluster (58%) exhibited significantly 
(p < 0.05) lower activation across all four 
conditions in both the IFG and SMA compared to 
the control group. The high distinction cluster 
(24%) showed the lowest overall activation 
pattern compared to the control group using two 
group ANOVA. These findings highlight the 
variability in brain activation patterns during ER 
among the different clusters, with low distinction 
and  high  distinction  clusters  showing  different 
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Table 1 – Mean BOLD activation observed in control group and clusters. 
Qualitative description   Clusters 

  Control 
group 

Normative Low  
Distinction 

High 
Distinction 

ER_neg     
 IFG 0.42 0.45 0.29* -0.38* 
 SMA 0.26 0.37 0.39* -0.14* 

ER_pos     
 IFG 1.27 1.02 0.33* -0.39* 
 SMA 0.96 0.95 0.33* -0.26* 

Look_neg     
 IFG 0.58 0.82 0.23* -0.28* 
 SMA 0.47 0.77 0.25* -0.14* 

Look_pos     
 IFG 1.49 1.22 0.31* -0.012* 
 SMA 1.12 1.023 0.26* -0.064* 

Values represent the mean BOLD signal for control group and each cluster concerning the different ROIs 
during ER_neg, ER_pos, Look_neg, and Look_pos in the ERT. 
* = two groups ANOVA comparing each cluster with control group (p < 0.05). BOLD, Blood-oxygen-
level-dependent; IFG, inferior frontal gyrus; SMA, supplementary motor area; ER_neg, downregulating 
negative emotions; ER_pos, upregulating positive emotions; Look_neg, negative emotion reactivity; 
Look_pos, positive emotion reactivity. 

 
 

 
 

Fig. 1 – Brain activation patterns in IFG and SMA during ERT conditions. Brain activation 
patterns are observed among the control group (round), normative cluster (triangle), low distinction cluster 
(diamond), and high distinction cluster (square) during the four different conditions in both the IFG and 
SMA. High activation is observed in the IFG and SMA during ER_pos and Look_pos for the control and 
normative clusters. The low distinction cluster exhibits lower activation in both regions, while the high 
distinction cluster shows the lowest activation pattern compared to the control group. BOLD, Blood-
oxygen-level-dependent; IFG, inferior frontal gyrus; SMA, supplementary motor area; ER_neg, 
downregulating negative emotions; ER_pos, upregulating positive emotions; Look_neg, negative 
emotion reactivity; Look_pos, positive emotion reactivity. 
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patterns of reduced activation compared to the 
control group. 

 Behavioral responses in brain-based 
clustering – Regarding the behavioral self-
reported responses during ER_neg and look_neg 
in the ERT, no significant differences were 
observed with the two groups ANOVA when 
comparing the control group with each cluster. As 
to the behavioral self-reported responses during 
the positive condition (ER_pos and Look_pos) in 
the ERT, no significant differences were 
observed when comparing the normative cluster 
(M = 4.88, 4.08) with the control group (M = 5.24, 
4.48). Additionally, no significant differences 
were found comparing the high distinction cluster 
in the ER_pos condition (M = 4.31) with the 
control group using the two groups ANOVA. 
However, a significant difference (p < 0.05) was 
seen using the two groups ANOVA between the 
control group and the low distinction cluster in 
both conditions (M = 3.82, 3.51), as well as in the 
high distinction cluster during Look_pos (M = 
3.28), suggesting that individuals with ASD in the 
low and high distinction cluster had more 
difficulties regulating their positive emotions 
compared to the controls (Table 2). 

 Additionally, two-way group 
(normative, low distinction and high distinction 
cluster) by condition (ER_pos and Look_pos) 
ANOVA was used for the self-reported 
behavioral response, the main effect for condition 
was significant (p < 0.05), suggesting that in 
general, the participants with ASD can regulate 
their positive emotions. The main effect of the 
group was marginally significant (p = 0.098), this 
was mainly caused by the marginally significant 
(p = 0.098) difference between the normative 
cluster and the low distinction cluster. The group 
by condition interaction was not significant.  

Two-way group (normative, low 
distinction and high distinction) by condition 
(ER_neg and Look_neg) ANOVA was used for 

the self-reported behavioral response, no 
significant difference was seen in the main effect 
and interaction effects. 

Comparing Demographic and 
Questionnaire across brain-based Clusters – The 
demographic characteristics of age and gender 
did not show significant differences when 
comparing the control group with the three 
clusters separately (Table 3). In terms of the self-
reported questionnaire, significant differences 
were found with the two groups ANOVA 
between control group and clusters in the social 
assessment measures (AQ, DUSOCS support, 
and SASKO) (p < 0.05). Regarding the AQ, there 
were significant differences observed between 
control group and the three clusters: the 
normative cluster (M = 7.22), the distinct cluster 
(M = 7.59), and the high distinction cluster (M = 
8.29). Suggesting that in general, the participants 
with ASD have higher prevalence of autistic 
traits. Similarly, for the DUSCOS support, 
significant differences were found between 
control group and the normative cluster (M = 
14.78), the low distinction cluster (M = 12.18), 
and the high distinction cluster (M = 14.00). 
Suggesting in general that participants with ASD 
perceive lower levels of social support. Lastly, the 
SASKO scores revealed significant differences 
between control group and the normative cluster 
(M = 71.78), the low distinction cluster (M = 
70.64), and the high distinction cluster (M= 
77.43). Suggesting in general that participants 
with ASD have a higher severity of social anxiety 
symptoms. However, no significant differences 
were observed in the DUSOCS stress and SRS 
questionnaires.  

Regarding the questionnaires related to 
ER and well-being (BDI, DERS, SWL-5, and 
TAS-20), a significant difference was found 
between the control group and clusters. 
Significant differences were observed regarding 
the BDI between the control group and the 

Table 2 – Self-reported behavioral responses during ERT observed in control group and clusters. 
Qualitative description   Clusters 

  Control 
group 

Normative Low  
Distinction 

High 
Distinction 

ER_neg 2.05 2.02 2.34 2.64 
ER_pos 5.24 4.88 3.82* 4.31 

Look_neg 2.39 2.35 2.46 2.64 
Look_pos 4.48 4.08 3.51* 3.28* 

Values represent the mean scores for control group and each cluster concerning the behavior during 
negative and positive ER versus non-regulation in the ERT. 
* = two groups ANOVA comparing each cluster with control group (p<0.05). ER_neg, downregulating 
negative emotions; ER_pos, upregulating positive emotions; Look_neg, negative emotion reactivity; 
Look_pos, positive emotion reactivity. 
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normative cluster (M = 11.11), the low distinction 
cluster (M = 13.55), and the high distinction 
cluster (M = 13.71). Suggesting in general that 
participants with ASD have a higher severity of 
depression symptoms. Similarly, for the DERS, 
significant differences were found between 
control group and the normative cluster (M = 
48.56), the low distinction cluster (M = 53.77), 
and the high distinction cluster (M = 61.57). 
Suggesting in general that participants with ASD 
have a greater level of challenges in recognizing, 
accepting and effectively regulating emotions. 

Furthermore, for the SWL-5, significant 
differences were found between the control group 
and the normative cluster (M = 20.44), the low 
distinction cluster (M = 17.32), and the high 
distinction cluster (M = 14.86). Suggesting in 
general that participants with ASD have a reduced 
level of overall satisfaction of their life. Lastly, 
the TAS-20 revealed significant differences 
between control group and the normative cluster 
(M = 66.89), the low distinction cluster (M = 
70.50), and the high distinction cluster (M = 
75.57). Suggesting in general that participants 

Table 3 – Demographic and questionnaire data observed in control group and clusters. 
Variables   Clusters 

Control 
group 

Normative Low  
distinction 

High 
distinction 

Demographic     
 Age 33 30 37 34 
 Gender 

 (F-M-NB) 
(%) 

45-55-0 56-44-0 41-50-9 71-29-0 

Questionnaires     
Social Assessment     

 AQ 2.63 
(1.71) 

7.22*  
(1.86) 

7.59* 
(2.48) 

8.29* 
(2.36) 

 SRS 103.60 
(17.63) 

99.56 
(25.66) 

102.41 
(28.25) 

115.14 
(27.25) 

 DUSOCS 
support 

21.39 
(7.05) 

14.78* 
(6.67) 

12.18* 
(6.30) 

14.00* 
(10.94) 

 DUSOCS 
Stress 

8.76 
(4.29) 

10.89  
(6.05) 

10.73  
(4.98) 

8.29 
(8.36) 

 SASKO 27.27 
(14.30) 

71.78* 
(19.56) 

70.64* 
(21.10) 

77.43* 
(29.15) 

Emotion Regulation & 
 Well-being 

    

 BDI 5.11 
(4.97) 

11.11* 
(8.58) 

13.55* 
(11.49) 

13.71* 
(13.65) 

 DERS 34.65 
(9.51) 

48.56* 
(8.44) 

53.77* 
(11.62) 

61.57* 
(13.24) 

 ERQ 39.1 
(9.11) 

38.33  
(14.04) 

38.77  
(9.10) 

34.29 
(10.23) 

 SWL-5 26.47  
(5.30) 

20.44*  
(5.43) 

17.32* 
(5.91) 

14.86* 
(9.67) 

 TAS-20 35.97  
(9.74) 

66.89*  
(8.05) 

70.50*  
(10.20) 

75.57* 
(13.45) 

Stress Assessment     
 TICS 19.63  

(5.17) 
27.00*  
(5.68) 

28.00*  
(7.22) 

30.14* 
(11.54) 

Values represent the mean (SD) for control group and each group concerning age, gender, and self-reported 
questionnaires.  
* = two groups ANOVA and Chi-square comparing each cluster with control group (p<0.05). F, female; 
M, male; NB, non-binary; AQ, Autism Spectrum Quotient; SRS, Social Responsiveness Scale; DUSOCS, 
Duke Social Support Stress Scale; SASKO, Social Anxiety Questionnaire; BDI, Beck Depression 
Inventory; DERS, Difficulties in Emotional Regulation Scale; ERQ, Emotion Regulation Questionnaire; 
SWL-5, Satisfaction with Life Scale; TAS-20, Toronto Alexithymia Scale; TICS, Trier Inventory for 
Chronic Stress. 
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with ASD have a greater level of difficulty in 
identifying and expressing emotions. Only the 
ERQ questionnaire did not show significant 
differences.  

When examining the stress assessment 
using the TICS questionnaire, significant 
differences were observed between the control 
group and the clusters, specifically between the 
control group and the normative cluster (M = 
27.00), the low distinction cluster (M = 28.00), 
and the high distinction cluster (M = 30.14) 
Suggesting in general that participants with ASD 
have a greater level of perceived chronic stress. 
When comparing the three clusters with each 
other based on the socio-emotional functioning, 
no significant differences were found. However, 
a marginally significant difference (p = 0.087) 
was seen regarding the DERS, this was mainly 
caused by the marginally significant (p = 0.071) 
difference between the normative cluster and the 
high distinction cluster.  
 
DISCUSSION 

Our study revealed three brain-based 
clusters (normative cluster, low distinction 
cluster, and high distinction cluster) employing 
the LPA analysis within an ASD population, 
which indicates neural heterogeneity engaged in 
ER monitoring. Analysis of the brain activation 
pattern in the IFG and SMA revealed that the 
normative cluster exhibited activation patterns 
similar to the control group. In contrast, the low 
distinction and high distinction clusters 
demonstrated significantly lower activation in 
these regions. Regarding the self-reported 
behavioral responses during ERT, significant 
differences were seen between the control group 
and the low distinction in the ER_pos and 
Look_pos conditions. A significant difference 
was seen regarding the Look_pos when 
comparing the control group to the high 
distinction cluster. However, no significant 
differences were found between the control group 
and the clusters in the negative conditions 
(ER_neg and Look_neg) and when comparing the 
control group with the high distinction cluster for 
the ER_pos condition. Demographic 
comparisons, including age and gender, between 
the control group and the clusters showed no 
significant differences. Analysis of the self-
reported questionnaires showed significant 
differences between the control group and the 
normative, low distinction, and high distinction 
clusters in various domains, including several 
questionnaires for social functioning, ER and 

well-being, and stress. However, no significant 
differences were observed in the SRS, ER, and 
DUSOCS stress questionnaires.  

The three clusters determined based on these 
brain activation patterns were the normative 
clusters, which exhibited a brain activation 
pattern like that of the control group, as indicated 
by the absence of significant difference in IFG 
and SMA activation across all four experimental 
conditions (ER_pos, ER_neg, Look_pos and 
Look_neg). In contrast, low distinction and high 
distinction clusters displayed significantly lower 
activation in both the ROIs than the control group, 
with the high distinction cluster exhibiting the 
lowest brain activation pattern.  

Our study’s results could indicate potentially 
important differences in the IFG and SMA of 
individuals with ASD during ER. They suggest 
that each process in ER explores a different set of 
deviations from the controls. These findings are 
distinct from the commonly used analytical 
approaches that presume homogeneity within 
clinical groups. Such an assumption is prone to 
producing inconsistent findings and hindered 
replication when different combinations of 
patients are included in diverse samples.  

A study investigating neural mechanisms in 
ER had previously reported lower activation in 
the nucleus accumbens and amygdala when 
individuals with ASD were instructed to increase 
positive and negative emotional responses [3]. 
However, the study only looked at the differences 
between the control and ASD population, not 
including the investigation of the heterogeneity 
seen within the ASD population. The low and 
high distinction cluster support these findings as 
these exhibited a lower activation pattern than the 
control groups in the ER_pos and Look_pos. 
However, no trend was seen comparing activation 
patterns during the negative emotion versus the 
positive emotion in the low and high distinction 
group, contrasting with the control group and the 
normative cluster. These findings could indicate 
differences between the individuals with ASD 
based on positive and negative emotions in the 
IFG and SMA.  

The ERT behavioral self-reported responses 
analysis revealed differences between the control 
group and the identified clusters. Only a 
significant difference was observed between the 
low distinction cluster and control group 
regarding ER_pos and Look_pos and between the 
high distinction cluster and control group in the 
Look_pos conditions. When comparing the 
conditions (ER_pos and Look_pos), a significant 
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difference was seen, suggesting that, in general, 
the participants with ASD can regulate their 
positive emotions, which aligns with expected 
standards. A trend was seen between the 
normative cluster and low distinction cluster 
regarding the ER_pos and Look_pos. However, 
no trend was seen when investigating negative 
emotion conditions.  

The results suggests that individuals with 
ASD during ER differ according to their 
behavioral responses when comparing the 
positive and negative conditions. This indicates 
that the clusters, as seen in the brain activation 
pattern, had different behavioral responses from 
the controls.  

ER studies have proven that individuals with 
ASD have more difficulties using adaptive ER 
strategies. However, other studies report similar 
use of adaptive strategies for non-autistic 
participants [31]. Other studies have reported that 
individuals with ASD struggle to regulate their 
emotions positively [4, 32]. These results suggest 
that individuals from the low distinction and high 
distinction clusters have more difficulties 
upregulating their positive emotions, possibly due 
to inadequate management of emotions [32]. 
These findings could indicate heterogeneity 
within the ASD population, which is proven in the 
brain-based clustering analysis and contribute to 
the growing evidence of neural heterogeneity in 
ASD, accentuating the need to consider within-
group variability when investigating individuals 
with ASD. However, more research needs to be 
done regarding ER in adults. 

Interestingly, no significant differences were 
found between the clusters and control 
concerning age and gender. This lack of 
significant differences was also observed in the 
analysis of self-reported questionnaires SRS, 
DUSOCS stress, and ERQ. No trend was seen 
regarding age and DUSOCS stress. Interestingly, 
concerning gender, the high distinction cluster 
had a higher percentage of females (71%), which 
may reflect developmental factors. A recent study 
suggested that non-autistic females seek 
strategies for more social support, which could be 
more difficult for females with autism [31]. 
Additionally, the high distinction cluster had a 
higher mean in de SRS and a lower mean in the 
ERQ compared to the control group and the other 
clusters. However, because the cluster only 
existed out of 7 participants, no conclusion can be 
made for individuals with ASD. Significant 
differences were found in several questionnaires 
for social functioning, ER, and stress when 

comparing the control group with the three 
clusters separately.  

These findings could not indicate the use of 
questionnaires for clustering an ASD population. 
As all clusters significantly different from the 
control group. Additionally, no significant 
difference between the clusters were seen. 
Noticeably, a trend was seen in the DERS 
between the normative cluster and high 
distinction cluster. Suggesting that individuals 
clustered in the high distinction group have more 
difficulties regarding ER, which supports the 
results seen in the data from the BOLD signals 
and from the self-reported behavioral responses. 
However, more research needs to be done the as 
the cluster only existed out of 7 participants. 
Other research already showed subgroups based 
on self-reported questionnaires, such as AQ and 
ERQ, indicating heterogeneity based on ER [33]. 
Therefore, we should not exclude the use of 
questionnaires for clustering.  

More research should be done regarding 
differences within the cluster, as these were not 
significant based on the socio-emotional 
functioning. This lack of significance suggests 
that the brain-based clusters utilized in this study 
may not effectively capture the severity of 
psychopathology associated with ASD. 
Therefore, more investigation is needed to see if 
alternative measurements can be used for 
clustering an ASD population, as not much 
research has been done regarding the clustering of 
adult individuals with ASD based on ER.  

Most research designs and analytic 
approaches (e.g., meta-analysis) and diagnostic 
processes assume homogeneity within the ASD 
population, focusing mainly on a group 
difference between the control group and the 
ASD population, which may overlook the 
diversity within ASD [31, 34]. This could lead to 
conflicting results and failure to replicate results, 
e.g., when another heterogeneous participant 
composition is included in different samples [23]. 
Our study addresses this limitation by examining 
brain-based clusters, revealing differences in 
neural activation patterns that may not be evident 
when treating ASD as a homogeneous entity. 
These neural findings are significant within our 
analytic approach, incorporating valuable 
information not commonly reported in classical 
unsupervised ML in mental health research. 
Specifically, we utilized a brain-based 
unsupervised ML approach, which offers several 
advantages compared to traditional k-means 
approaches. Our approach not only considers the 
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mean values but also estimates variance and 
provides information regarding the uncertainty in 
the degree of cluster separation and the 
effectiveness of each variable in differentiating 
the clusters [23].  

By employing the RDoC framework to study 
the system of social processes, a comprehensive 
range of investigations encompassing brain 
activation patterns, self-reported behavioral 
responses, and questionnaires were conducted. 
This framework provides an understanding of ER 
in varying degrees of dysfunction. Our findings, 
comparing the three ways of analysis, suggest the 
existence of ASD clusters based on ER, as the 
three clusters showed differences compared to the 
controls at the level of brain activation, self-
reported behavioral responses, and 
questionnaires. Interestingly, the brain-based 
clusters showed a stronger association with the 
ER_pos condition. This finding implies that the 
identified brain clusters may be more closely 
related to the positive emotion condition of ER, 
which is crucial for engaging in social 
interactions.  

A limitation of this study was the use of only 
two ROIs (IFG and SMA) as these are known 
regions in the function of emotion cognition and 
regulation and came out of the contrast between 
conditions; ER_pos and Look_pos and ER_neg 
and Look_neg [15, 35-38]. No significant 
difference was seen in the validation between the 
clusters and compared to the control group when 
analyzing the ER_neg and Look_neg in the ERT 
behavioral self-reported response, age, gender, 
and some self-reported questionnaires. This could 
be due to the limited regions that have been 
investigated. Therefore, a more exploratory 
approach in brain regions that are known to be 
related to ER should be investigated, such as the 
complete ER network, including, for example, the 
amygdala, insula, or the dorsolateral prefrontal 
cortex, instead of only looking at the ROIs based 
on the actual contrast analysis [38, 39]. So 
additional brain regions could better display the 
heterogeneity found in the ASD population. 
Another limitation was that the small sample size, 
with only 38 out of 100 participants being 
diagnosed with ASD. This number is a relatively 
small sample size, as it is known that each 
subgroup should have at least 20 individuals, 
which should improve the power of the statistical 
analysis [40]. Therefore, more people should be 
investigated to have at least 20 individuals in each 
cluster.  

The study only investigated individuals with 

ASD. However, it could be interesting to 
investigate other conditions within ER, such as 
SAD or depression, as it is known that these are 
the most prevalent affective disorder associated 
with ASD. These high rates of co-occurrence 
between these conditions could be due to ER 
deficits [3, 31]. Furthermore, conducting a 
longitudinal study would enable the investigation 
of whether ER could serve as a potential neural 
marker for treatment outcomes in individuals 
with ASD. Such a study could provide insights 
into the possibility of detecting treatment 
responses based on ER patterns over time. 

Our study reveals the presence of clusters 
within the ASD population. These clusters 
showed different brain activation patterns 
indicating that the ASD population should not be 
evaluated as a homogeneous group. Diagnosis 
relies on behavioral criteria outlined in the 
American Psychiatric Association’s Diagnostic 
and Statistical Manual of Mental (DSM)-5, which 
has limitations regarding reliability, validity, and 
specificity for treatment selection. These 
limitations contribute to increased comorbidity, 
overdiagnosis, and insufficient guidance for 
clinicians. [41, 42]. Further research is necessary 
to improve diagnostics accuracy in ASD. The 
RDoC framework, focusing on social processes, 
shows promise in enhancing our understanding of 
the disorder. Therefore, the RDoC could help 
improve the diagnostic approach by gaining more 
information about ASD. This could lead to 
alternative methods to diagnose individuals with 
ASD, such as focusing on the brain activation 
pattern during emotional regulation. Despite 
advancements in various medical fields, the lack 
of understanding of the underlying mechanisms 
of ASD has hindered progress in diagnostic 
approaches and treatment. The heterogeneity and 
comorbidity within diagnostic categories and the 
high rates of co-occurrence among the disorders 
pose significant challenges to effective treatment 
and research in this field [43]. Therefore, our 
findings suggest that considering individual 
variability in neural activation and the behavioral 
pattern could be important for more personalized 
diagnosis and treatment of mental disorders, 
deviating from traditional categorical approaches 
that assume a homogenous clinical population. 
 
CONCLUSION 
This study represents an innovative investigation 
revealing brain-based clusters in an ASD 
population using unsupervised ML based on ER. 
Three distinct neural patterns associated with the 
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ASD population were identified and subsequently 
validated with the positive condition observed in 
the self-reported behavioral responses and 
multiple questionnaires, as the clusters exhibited 
significant differences from the controls. The 
unsupervised ML approach offers unique 
understanding beyond conventional autism 
phenotyping at the level of brain activation and 

socio-emotional function. The conventional 
phenotyping often captures only identifying a 
single phenotype despite multiple underlying 
physiological patterns contributing to ASD. This 
finding underscores the need for further research 
to analyze the heterogeneity within the ASD 
population and prioritize the examination of 
neurobehavior.
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SUPPLEMENTAL 
 

Supplemental Table S1. Including and excluding criteria for participants with autism spectrum 
disorder and the control group. 
 
  Inclusion criteria Exclusion criteria  

Autism spectrum Disorder Diagnosis of autism 

Schizophrenia 

Bipolar disorder 

Suicidality 

Severe depression 

Severe disruptive behaviors not 
allowing group participation 

Control group N/A 

Psychiatric disease(s) 

Taken psychotropic medication 
within the last three months 

All 

Age between 18-65 
Known MRI contraindications such 
as metal implants, pacemakers, and 

claustrophobia 

IQ ≥ 80 	

Fluent German 
Language 

 
Supplemental Table S2. Coordinates of the regions of interest. 
 Region Coordinates  

Left IFG -40, 28, -2 
Right SMA 3, 17, 59 

IFG, inferior frontal gyrus; SMA, supplementary motor area. 
 

 
Supplemental Fig. S1 – T-SNE: Three different brain-based clusters during ER (ER_pos, 
ER_neg_ Look_pos, Look_neg). Three clusters were found via LPA analysis in Mplus software, the 
normative cluster (red), the low distinction cluster (blue), and the high distinction cluster (green). T-SNE 
table was made in the statistical R studio software. 

 


