
Faculteit Bedrijfseconomische
Wetenschappen
master handelsingenieur in de beleidsinformatica
Masterthesis

Exploring the Impact of DECLARE Constraint Modifications on Data Programming in a
Business Process Context

Torsten Daniels
Scriptie ingediend tot het behalen van de graad van master handelsingenieur in de beleidsinformatica

2022
2023

PROMOTOR :

Prof. dr. Mieke JANS

BEGELEIDER :

Mevrouw Manal LAGHMOUCH



Faculteit Bedrijfseconomische
Wetenschappen
master handelsingenieur in de beleidsinformatica
Masterthesis

Exploring the Impact of DECLARE Constraint Modifications on Data Programming in a
Business Process Context

Torsten Daniels
Scriptie ingediend tot het behalen van de graad van master handelsingenieur in de beleidsinformatica

PROMOTOR :

Prof. dr. Mieke JANS

BEGELEIDER :

Mevrouw Manal LAGHMOUCH





Exploring the Impact of DECLARE Constraint Modifications on
Data Programming in a Business Process Context

Torsten Daniels1, Prof. dr. Mieke Jans1, and Manal Laghmouch1

1Department of business informatics, Hasselt University,
Agoralaan Building D, Diepenbeek, 3590, Belgium

Auditors analyse process deviations in companies to search for anomalous behaviour.

Machine learning can help an auditor by efficiently testing the entire population of

transactions, but labelled training data is required. However, recent research success-

fully used a machine learning paradigm that does not need this training data. Instead,

rules describing the allowed behaviour were used. A reasonable result was achieved

with only a few medium- or high-quality rules. However, methodological approaches

have yet to be known to achieve these rules. We conducted an explorative experiment to

assess the impact of strengthening or weakening rules on the machine learning model’s

performance. This examination was to find correlations that can be considered when

future research tries to develop a methodology to obtain qualitative rules. A rule hi-

erarchy allows us to strengthen or weaken rules individually. This was done in five

different scenarios. In our study, we did not find a correlation between strengthening

or weakening rules and the accuracy or precision of a machine learning model, nor

did these modifications result in a predictable change of a modified rule’s accuracy.

However, our study did find a correlation between strengthening constraints and in-

creased recall of the machine learning model. We also confirmed that only a small

set of medium- or high-quality constraints are needed to achieve a machine-learning

model with reasonable performance. However, since the experiment was conducted

only on the procure-to-pay process, we suggest reviewing the findings with other busi-

ness processes in future research. These can findings help develop a methodological

approach to creating machine learning models for audit purposes in a business process

context.

1



Keywords - Data programming, Labeling, Process deviations, Weak Supervision, DECLARE

constraints, hierarchy of DECLARE constraints

Acknowledgements: I want to express my sincere gratitude to my supervisors, Prof. Dr. Jans and Manal Laghmouch, for

their unwavering support and guidance throughout my thesis. Furthermore, I would like to thank my partner, Eline Maesen, for

her encouragement and motivation to keep me going.

I Introduction

Mature organisations have business processes in place that allow them to work standardised. These

processes describe the sequence and content of employees’ tasks. It allows organisations to implement

automatisation. Business processes make managing product or service quality easier since we can iden-

tify and implement improvements within a process (Cugola, 1998). However, these processes also re-

strict companies in their actions. Therefore, these processes act like guidelines to allow some flexibility.

Actions that do not follow the business process strictly are called process deviations. Although some

process deviations are acceptable, others are mistakes during the execution or indicate fraud (Swinnen et

al., 2011).

Auditors are interested in these process deviations. Since the digital transformation within com-

panies, processes are increasingly digital-based (Nonnenmacher & Marx Gómez, 2021). This increase

implies that companies generate more data than before. To perform an audit, auditors must sample the

data to conclude the entire population. The International Standard on Auditing 530 (ISA 530) states that

the sample set of items must have a reasonable basis for this. However, new technologies could assist an

auditor in testing the entire population of transactions.

Process mining, for example, offers the ability to research company event logs. They can extract

the business process from these event logs and compare it to a normative process model. The normative

process model is the business process model a company wants or needs to follow. It is even possible

to compare the events against different business rules that reflect the business process in a declarative

way. This comparison is called conformance checking. Conformance checking investigates if all events

comply with the business rules. If events are non-compliant, we can label these as variants of the business

process. However, a thorough analysis of the variants is still needed to determine whether the process

deviation is an exception or anomalous behaviour (Jans & Laghmouch, 2023).

Machine learning can automate the analysis of variants while auditing the entire population instead

2



of a sample. In addition, machine learning can speed up and increase the quality of audits (Dickey

et al., 2019). We can train machine learning models to distinguish between exceptional or anomalous

behaviour. However, machine learning algorithms need training data. Obtaining and labelling this data

to train a machine learning model would still be time-consuming and expensive (Ratner et al., 2016).

Thus, to help auditors using machine learning, we must find a way to generate labelled, artificial data to

train machine learning algorithms for auditing purposes.

Data programming is a machine learning paradigm that enables people to generate training data for

machine learning models using noisy rules. These rules are statements about the data set but can be

partially correct. In data programming, knowing the accuracy of such a rule is optional as long as a rule

makes sense to the user (Ratner et al., 2016). For example, a rule that states it is anomalous behaviour

when a purchase order is not signed off can be correct. However, it is only valid if the process has already

performed further activities. The rule is wrong if the process is awaiting a signature. The strength of this

paradigm is that the data programming model relies on weak supervision. Weak supervision means the

model does not need a labelled dataset as a training set and, thus, does not need access to ground truth. A

proof of concept using data programming demonstrates the potential with only a limited amount of noisy

rules (Laghmouch, Jans, & Depaire, 2020). In this study, the researchers used random rules in different

iterations to test the usability. However, a formal method to create such rules has yet to exist.

In this paper, we will experiment with rule modification according to the rule hierarchy of Schunse-

laar et al. (2012). This hierarchy shows how rules can be adapted to reflect stricter behaviour (strength-

ening) or more lenient behaviour (weakening). We will review the impact of such modifications on the

accuracy of the rule and the data programming model. We will identify research gaps that need further

investigation to better understand data programming in the context of business processes. Insights ac-

quired from investigating these research gaps might lead researchers to a methodological approach in

determining sets of constraints that result in highly accurate data programming models.

This experiment suggests that strengthening or weakening rules does not significantly impact the data

programming model, nor does it influence the accuracy of rules in a controlled manner. This implies that

the rule hierarchy cannot be used to create or modify rules to obtain a set of constraints for an accurate

data programming model. However, there is a correlation between strengthened constraints and how well

our data programming model identifies all positive cases (the recall). Furthermore, we can confirm the

study of Laghmouch et al. (2020). We also achieved reasonable performance of the data programming

3



model with enough medium- or high-quality rules. With future research, we might extrapolate these

findings to other business processes. By doing so, we can find out what identifies good heuristics and,

ideally, help find a methodological approach to obtaining qualitative rules to train data programming

models to help auditors in the field.

The paper is structured as follows. Section II will briefly discuss data programming, process devia-

tions, rule expressions, and the hierarchy of rules. We will describe the method used to modify rules and

analyse the impact in Section III. The results are then shown and discussed in Section IV and Section V.

The paper will propose future work in Section VI, and conclude in Section VII.

II Related work

This section provides work related to data labelling, process deviation analysis, and rules in the context

of business processes. The first part introduces data programming. It is a machine-learning paradigm

that aims to train models using heuristics without giving the model access to labels in a training set.

Next, we discuss process deviations and their different types. It helps us understand what deviations we

want to identify during an audit. The following section will describe different representations of process

models to use in our data programming model. Finally, we will discuss the difference between constraint

hierarchies in a declarative and procedural context.

A Data programming

In machine learning, we aim to train models to give us valuable insights into the abundance of available

data. To train such models, we rely on training sets of data that are all labelled. This labelling can be

resourceful, expensive, and time-consuming (Cunningham et al., 2008)(Ratner et al., 2019).

Data programming is a programming paradigm that aims to solve the problem of creating training

data for machine learning without manually labelling each observation in a dataset (Ratner et al., 2016).

Instead, observations are labelled based on heuristics. These heuristics predict the label of a data point

based on its features. For example, a heuristic based on the presence of a signature on a purchase order

can be used to classify processes into correct or incorrect behaviour. However, heuristics can be noisy,

meaning they can misclassify some observations. In the previous example, the heuristic would only be

correct if the process continued without the signature. If the process is awaiting the signature, then the

execution of the process is still allowed. Combining multiple noisy heuristics can increase the accuracy

4



of predictions (Ratner et al., 2017). Heuristics are assigned an accuracy score, and a correlation structure

is created between them to assign a final label. Data programming uses these properties to train a machine

learning model and make it noise-aware (Ratner et al., 2016). By minimising the need for hand-labelled

data, data programming reduces the costs of creating a training dataset (Ratner et al., 2017).

Snorkel is a Python library that uses data programming to generate a training dataset. It allows the

generation of an artificially labelled dataset without manually labelling each case in the dataset. When

we train machine learning models using noisy labelled datasets, we call this weakly supervised machine

learning or machine learning under weak supervision. Hence, the output of data programming can be

used for weak supervision.

Laghmouch et al. (2020) applied data programming in an artificial auditing setting. The authors

show that data programming has the potential to classify process deviations. Only a few medium- or

high-quality heuristics were needed to create a classification model with acceptable accuracy. The quality

of heuristics depends on the accuracy of the heuristic to classify data individually. Although Laghmouch

et al. (2020) used heuristics representing an auditor’s knowledge, no step-by-step guide was used to

create qualitative rules. Finding a method that conveniently creates qualitative rules will allow data

programming in auditing practice by domain experts (Laghmouch et al., 2020).

This paper explores what influences the accuracy of heuristics and, thus, their quality. In addition,

we will explore how this reflects on the performance of data programming. Future research can then

consider these results when searching for a methodological approach to create qualitative rules.

B Process deviation

A process deviation is a difference between an as-is process and the normative process model. The as-is

process is the actual flow of activities a company performs when executing a process. A company records

this as a log. The normative process model is the desired procedure a company wants to follow (Zuhaira

et al., 2017). For example, the normative process model can be a best practice or a standard.

While some deviations allow a company to be flexible, others indicate that a process containing er-

rors, flaws, or fraud is present within a company. When these deviations also potentially impact the

financial statements, we call them anomalies. These anomalies are what interest an auditor. An auditor

wants to explain these anomalies to reassure that the business results reflect reality. We can split the

remaining deviations among explicit exceptions and implicit exceptions (Swinnen et al., 2011). Explicit

5



exceptions are those generally accepted by the company and where guides are present to handle them.

Implicit exceptions do not have these guides; however, they are allowed occasionally. This categorisation

of deviations implies that not all process deviations should be considered malpractice. However, detect-

ing whether a deviation is an anomaly or an implicit exception is hard. A thorough understanding of the

process is needed to make this decision.

This study will focus on deviations in a business process context. We aim to explore how we can

modify heuristics to classify the process deviations as accurately as possible between anomalous and

allowed (exceptional) behaviour.

C Representations of Process Models in a Business Process Context

A step-by-step procedure can describe business processes. This is called an imperative approach. This

approach specifies every step or activity that should be followed but leaves no space for deviations since

every decision is made when designing the process model (Pichler et al., 2011). An example is Petri Net.

The following example applies the imperative approach on the processing of a payroll. Every action

an automation or human performs is encapsulated in a step-by-step procedure. This results in everyone

being paid after all steps are followed. However, by only providing one step-by-step procedure, everyone

will be paid the same amount.

Flexible systems try to overcome this by allowing users to make decisions instead of the process

model. Systems like FLOWer allow flexible behaviour but still use the imperative approach (Pesic,

Schonenberg, & van der Aalst, 2007). This means the user will still need to perform the activities

prescribed in the process model. However, implementing decision points in our previous example allows

us to pay employees according to their function. Certain functions might get a car, while other functions

receive a laptop. However, the possible decisions are still limited to the ones described in the model.

Allowing decision points in the process model creates the opportunity to differentiate executions from

one another, but the activities’ flow is still encapsulated for each decision.

Where an imperative approach provides a step-by-step procedure, a declarative approach provides a

set of constraints that should always be followed. The declarative model can be considered a playground

where the constraints are the boundaries of it. If a boundary is crossed, at least one constraint is violated.

Returning to the example, we can describe boundaries to what certain functions can get paid. This way,

everyone can be paid according to their unique contract if the boundaries are not crossed. Hence, the

6



execution of the process can be different at all times and be adapted to different needs. DECLARE

represents process models and uses the declarative approach by defining DECLARE constraints (Pesic et

al., 2007).

DECLARE allows companies to do their finance tailored to their needs as long as they adhere to

the rules set up by, i.e., the government. Auditors will then audit to see if the company follows the

rules while not enforcing a specific way of working. The company remains flexible, and the auditor can

perform his work. Therefore, DECLARE constraints allow us to describe the allowed behaviour and use

them as heuristics for our data programming model.

D Hierarchy of rules

Introducing a rule hierarchy helps us better interpret how to handle rules. More specifically, it can provide

information on prioritising or adapting rules to suit our needs. In the context of DECLARE constraints,

we can hierarchise rules differently.

The first hierarchy is the procedural constraint hierarchy, which enables us to prioritise rules over

one another. Constraints receive a particular priority, which indicates whether a constraint should hold

above all others or can be ignored if a more critical constraint still needs to be satisfied (Borning et al.,

1989). Constraints with a lower priority will be more lenient and thus more easily violated than those

with a higher priority.

Schunselaar et al. (2012) describe the hierarchy of DECLARE constraints in their research. The

hierarchy defines that constraints can be weakened or strengthened (Schunselaar et al., 2012). Instead

of making a hierarchy between different constraints, we have a hierarchy among the different constraint

types. This hierarchy shows that some constraint types are stricter or looser than others, implying we can

strengthen or weaken DECLARE constraints individually and thus change the allowed behaviour.

In this paper, we are interested in how allowing more or less behaviour impacts the performance of

a data programming model. This will be done by modifying rules separately. The procedural constraint

hierarchy does not allow this since prioritisation modifies all rules. In addition, data programming al-

ready implements its prioritisation technique by assigning weights to the different rules based on their

performance. The DECLARE constraint hierarchy does allow us to modify constraints individually with-

out influencing others. Hence, we will modify constraints using the DECLARE constraint hierarchy of

Schunselaar et al. (2012).

7



III Method

We will conduct an explorative experiment to investigate whether there is a relationship between the

hierarchy of DECLARE constraints and the accuracy of data programming. The aim is to provide insights

and starting points for future research for data programming in a business process context.

We will train a data programming model using Snorkel and conduct our research in an artificial

audit context. More specifically, this experiment will compromise data from a procure-to-pay process.

However, the data does not originate from authentic company data. Our data is generated using an auditor

process model. This model is a subset of the normative process model and represents the constraints

that will correctly classify cases of a process model as anomalous or allowed (exceptional) behaviour.

However, as they are used to generate the data, a different process model is used as the baseline for our

experiment.

The baseline for our data programming model is a process model that exists out of a set of con-

straints that enforces the flow of activities just like the normative process model does. However, the

relationship between activities is random and, thus, does not reflect the same type of relationship as

the normative process model or the auditor process model. With this baseline model, we will train the

data programming model to classify cases as anomalous or allowed. The constraints will also not allow

the data programming model to abstain. This means that the model will always label a case as either

anomalous or allowed. As best practices recommend, we will train on only a third of the cases in the

dataset (Alpaydin, 2010). After training, we will calculate three different metrics of the data program-

ming model on a test set. This test set exists out of the remaining cases from the original dataset and thus

contains cases the algorithm has not seen before. The metrics are accuracy, recall, and precision.

Constraints can be strengthened or weakened. When we strengthen constraints, we allow less be-

haviour, while weakening them allows more behaviour. We will show the impact on the performance of

the data programming model using five different scenarios:

• Scenario 0: This will be the baseline for our experiment. We will measure the accuracy of each

constraint individually and the performance of the entire data programming model. All other

scenarios will be compared to this scenario to see the impact of the constraint modifications we

will perform in each of the following scenarios.

• Scenario 1: Using the constraint hierarchy of Schunselaar et al. (2012), we will strengthen each

8



baseline constraint individually by one level. One level indicates that no DECLARE constraint

exists between the strengthened and baseline constraint. The performance of the data programming

model and the constraint will be compared to scenario 0.

• Scenario 2: The same will be done in this scenario. However, the baseline constraints will now

be weakened individually. Also, for this scenario, the performance of both the constraint and data

programming model will be compared to scenario 0.

• Scenario 3: We will check if the performance of the data programming model gradually improves

when the baseline constraints are strengthened or weakened level-by-level until they become the

constraints of the auditor process model. This will be done for each constraint individually while

keeping the other constraints constant. The performance of the constraint and the data program-

ming model will be measured throughout every modification and compared.

• Scenario 4: The last scenario shows the capabilities of data programming when using the con-

straints from the auditor process model.

By comparing the performance of the data programming model across different scenarios, we will

look for a correlation between constraint modifications and the performance of the data programming

model. These findings will be of use as starting points for future research.

A Procure-to-pay Process

This experiment will be applied to a procure-to-pay process. The auditor process model is a subset of

the normative process model (Figure 1) and reflects the flow of important activities to the auditor. We

adopt the auditor process model from the work of Laghmouch et al. (2020) (Figure 2). It is assumed that

this model consists of all constraints and that when all constraints are satisfied, an auditor will label the

process execution as allowed (exceptional) behaviour. An auditor would label it anomalous if one of the

constraints is not satisfied. However, it will not be used to train our model. We will use a third process

model to which we will refer as the experiment process model (Figure 3). Although the activities’ flow

is roughly the same as the normative process model, the relationship type between activities differs from

the normative process model. These types are randomly chosen while keeping the model meaningful.

Therefore, the experiment process model mimics what an auditor might use as a starting point for his

process model. The constraints of this model will be modified to explore its impact on the performance of

9



the data programming model. Therefore, it serves as the baseline for this experiment. It will be modified

in accordance with the four scenarios described above to train the data programming model.

Figure 1: The normative process model

Figure 2: The auditor process model

Figure 3: The experiment process model

B Data

An artificial dataset that reflects a declarative process model is generated using the RuM1 application.

RuM is an online tool that can create traces of events complying (or not complying) with a specific

process model. We used the auditor process model for this experiment to generate 3000 cases. These

cases are all process deviations and mimic the outcome of performing a conformance check. Based on

the auditor process model, these deviations are split into two categories, which we will try to identify

with data programming. Half of the cases are allowed (exceptional) behaviour, while the other half are

anomalous. Every case consists of events. These events indicate which activity was executed, which case

they belong to, when the activity was done, and the label to what class of behaviour the case belongs. The

generated data was then split among two datasets. The first data set is the training set. This set consists

of 2000 cases with an even distribution of behaviour. In order to remove the access to ground truth for

the data programming model, we removed the class label. We did the same for the test set, taking the

remaining 1000 cases from the generated dataset. However, this time we separated the class label instead
1https://rulemining.org

10



of removing it. This separation still denies the data programming model access to ground truth, but by

keeping the labels, we can calculate the performance of the data programming model.

C Independant variables

Every constraint in the experiment process model is an independent variable for this experiment. The

independent variables are the constraints we will modify during our experiment. We will strengthen or

weaken them using the hierarchy of DECLARE constraints from Schunselaar et al. (2012).

Our experiment’s baseline is the process model described in Figure 3. Table 1 shows the relationship

between the activities. This also forms the base value of our independent variables. These independent

variables will be strengthened or weakened according to the abovementioned scenarios.

Activity A Activity B Baseline value - Relationship(A [, B])
Create PR Approve PR Responded Existence(A, B)
Approve PR Create PO Precedence(A, B)
Create PO Sign Response(A, B)
Sign receive goods Precedence(A, B)
Receive goods Receive invoice Alternate Response(A, B)
Receive invoice Pay Precedence(A, B)
Receive goods Receive invoice Co-existence(A, B)
Create PR / Exactly(A, 1)
Approve PR / Exactly(A, 1)
Create PO / Exactly(A, 1)
Sign / Existence(A, 1)

Table 1: The independant variables

D Dependant variables (metrics)

We will use the metrics precision, recall, and accuracy to measure the performance of the data program-

ming model. These are a means to indicate how well the data programming model performs (Vakili et

al., 2020).

Precision tells us how many of the positive predictions made by the model are true positives. It is

the ratio of the true positives to the total number of positive predictions (Hossin & M.N, 2015). For this

experiment, a high precision score means that when the model marks a case as anomalous, it is highly

confident it is anomalous.

Precision =
T P

T P+FP
(1)

11



Recall measures how well our model can identify all anomalous cases. It is the ratio of the true

positives to the total number of positive cases (Hossin & M.N, 2015). It is important for an auditor that

this number is as high as possible because it allows him to trust the model to identify all non-compliant

cases.

Recall =
T P

T P+FN
(2)

Accuracy indicates how well the model performs overall. It is the ratio of correct predictions to the

total number of predictions (Hossin & M.N, 2015). This metric calculates the performance of a data

programming model in an easy-to-understand manner.

Accuracy =
T P+T N

T P+T N +FP+FN
(3)

For all formulas, the TP stands for true positives, FP stands for false positives, TN stands for true

negatives, and FN stands for false negatives.

All three metrics give us an idea of how well the model performs. However, they all emphasise

different aspects of performance. For example, it might be hard to reach a perfectly accurate algorithm,

but if we have a high enough recall, we can conclude that we got the most anomalous cases, which might

be good enough for an auditor. The different metrics give us a broader view of what the independent

variables do when adjusted.

IV Results

This section provides the results of the scenarios described in Section III. For every scenario, we will

describe what has been done, the performance of the DECLARE constraints individually, and the perfor-

mance of the data programming model. Scenarios one, two, and three will be provided with graphs of the

output. The following naming will be used when referring to constraints: "constraint_id.scenario.variant_id".

The constraint ID refers to the first column in Table 2. Since constraints can sometimes be modified in

multiple manners, a variant ID shows the results for each manner separately. The results are summarised

in Appendix A. The results will be discussed in Section V.

12



A Scenario 0: The baseline

To establish a baseline to compare the different scenarios to, we will first use the experiment model as the

set of constraints for the data programming model. The constraints from the experiment model (Figure

3) result in an accuracy of 48,2%, recall of 21,2%, and precision of 46,09%. The accuracy for each

constraint individually can be found in Table 2. These values will be the baseline for our experiment. We

can see how strengthening or weakening constraints influences the performance of our data programming

model and the performance of the constraint.

ID Activity A Activity B Relationship Type Accuracy
1 Create PR Approve PR Responded existence(A, B) 50,7%
2 Approve PR Create PO Precedence(A, B) 46,2%
3 Create PO Sign Response(A, B) 50,0%
4 Sign receive goods Precedence(A, B) 51,3%
5 receive goods Receive invoice Alternate response(A, B) 36,0%
6 Receive invoice Pay Precedence(A, B) 50,1%
7 Sign Pay Co-existence(A, B) 54,3%
8 Create PR / Exactly(A, 1) 46,1%
9 Approve PR / Exactly(A, 1) 47,7%

10 Create PO / Exactly(A, 1) 81,2%
11 Sign / Existence(A, 1) 52,4%

Table 2: DECLARE constraints of the baseline experiment model along with their accuracy

B Scenario 1: Strengthen one rule at a time

In this scenario, we strengthen every constraint individually by one level while keeping the other con-

straints constant. Figure 4a shows that the accuracy of the data programming model does not change

significantly when strengthening a constraint. The overall mean shift in accuracy of the data program-

ming model is 0,31%. Figure 4b shows that 11 out of 15 strengthened constraints increased recall of the

data programming model. This with a mean of 8,79%. The shift in precision (Figure 4c) has a mean

of 1,73% when compared to the baseline. Figure 4d shows how the strengthened constraints’ accuracy

compares to its baseline version. Constraint 4.1.b grew significantly (+27,80%) compared to its baseline

value. Overall, the accuracy of the strengthened constraints changed only with a mean of 0,72% when

compared to the constraints’ baseline values. Table 4 shows the exact performance metrics for each

strengthened constraint.

13



(a) Accuracy of the data programming model com-
pared to the baseline after strengthening a con-
straint

(b) Recall of the data programming model com-
pared to the baseline after strengthening a con-
straint

(c) Precision of the data programming model com-
pared to the baseline after strengthening a con-
straint

(d) Accuracy of the strengthened constraint com-
pared to its baseline value

Figure 4: Results of strengthening constraints individually (Scenario 1)

C Scenario 2: Weaken one constraint at a time

Instead of strengthening, we will weaken every constraint individually by one level. The accuracy of the

data programming model (Figure 5a) increased with a mean of 1,65%. The recall (Figure 5b) changed

with 2,33%. However, weakened constraints 1.2.a, 9.2.a and 10.2b caused an increase in recall of over

10%. Respectively, they increased the recall by 11,20%, 18,20% and 21,60%. The mean shift in preci-

sion (Figure 5c) is 4,29%. Figure 5d visualises how the weakened constraint performs in accuracy com-

pared to its baseline value. On average, the accuracy of constraints dropped by 0,80% when weakened.

However, constraints 6.2.a, 10.2.a and 10.2.b differ more, respectively 14,10%, -26,10% and -19,60%.

Important to know is that constraints 1.2.a and 11.2.a did not result in an accuracy of 0%. These con-

straints were already at their weakest. The only possibility to weaken them was to remove them. Table 5

shows the exact performance metrics for each weakened constraint.

14



(a) Accuracy of the data programming model com-
pared to the baseline after weakening a constraint

(b) Recall of the data programming model com-
pared to the baseline after weakening a constraint

(c) Precision of the data programming model com-
pared to the baseline after weakening a constraint

(d) Accuracy of the weakened constraint compared
to its baseline value

Figure 5: Results of weakening constraints individually (Scenario 2)

D Scenario 3: Change a constraints’ baseline value towards auditor model value

In this scenario, we modify constraints from their baseline value (Table 2) toward the target value (T)

found in the auditor model (Table 3). This will be done by strengthening or weakening the constraints

to shift the relationship type closer to our target value. While shifting, we will keep all other constraints

constant. However, since only four constraints are present in both the experiment and the auditor process

model, this scenario was only applied to these four constraints.

Figure 6 below shows the performance of the constraints and the data programming model when

modifying the relationship type between activities from baseline value towards the auditor process model

value (referred to as T in the figures below). Modifying constraint three did not change the performance

for both the data programming model and the constraint. Constraint four’s accuracy grew by 27,8% after

modifying the baseline constraint once. The second modification caused it to increase the constraint’s

accuracy by another 9,9%. However, the performance of the data programming model only increased

after the second modification. Modifying constraint five allowed it to increase its accuracy up to 70,1%

gradually. However, the data programming model performance did remain roughly the same throughout

all modifications. Constraint six’s accuracy fluctuated throughout the modifications, but the data pro-

15



gramming model responded the same as the modifications on constraint five. The exact values of each

constraint modification can be found in Table 6.

(a) Change in performance when modifying con-
straint 3

(b) Change in performance when modifying con-
straint 4

(c) Change in performance when modifying con-
straint 5

(d) Change in performance when modifying con-
straint 6

Figure 6: Result of gradually changing a constraint’s baseline value (leftmost data point) towards the
auditor model value (T) (Scenario 3)

E Scenario 4: The auditor model

In this scenario, we insert the DECLARE constraints of the auditor model (Figure 2) into the data pro-

gramming model. We do this to check the capabilities of data programming. Since we used the auditor

model to generate the data, we know it correctly represents allowed (exceptional) behaviour.

When using the auditor model, the data programming model has an accuracy score of 96,4%, recall

of 92,8%, and precision of 100%. The accuracy of the individual DECLARE constraints can be found in

Table 3.

Activity A Activity B Relationship Type Accuracy
Create PO Sign Chain Response 50%
Sign Receive goods Response 89%
Receive goods Receive invoice Co-existence 70,1%
Receive goods Pay Responded existence 50%
Receive invoice Pay Responded existence 50%
Sign Receive invoice Response 88,9%
Create PO / Exactly 1 81,2%

Table 3: DECLARE constraints of Auditor model + accuracy per constraint

16



V Discussion

First, both weakening and strengthening DECLARE constraints did not result in a shift of data program-

ming model accuracy, nor did it shift in a particular direction. In both scenarios, the model’s accuracy

increased on average, but the magnitude is too small to say that the model’s accuracy correlated directly

to the constraint modification. The data programming model compensates for the change in the accu-

racy of the modified constraint. However, this compensation happens when the constraint’s accuracy

increases or decreases. The model shifts the weights of the different constraints so that the impact on the

model’s performance is minimal. If the model only correlated to the altered constraint, then the change

in performance would be much more noticeable. This can be seen in 6.2.a, 10.2.a and 10.2.b. Here, the

constraint accuracy differs significantly from its baseline value, but the accuracy of the data programming

model shifts only minimally. The weights are shifted to minimise the impact of losing a highly accurate

constraint or prevent itself from overestimating a constraint with a jump in accuracy. This phenomenon

can also be seen when we remove constraint three in the third scenario. This constraint has an individual

accuracy of 50%. When the data programming model assigns weight to this constraint, it inserts some

randomness in the model. If we remove this constraint, the data programming model will perform better

because the weights will differ without randomness.

The recall does differ between the different scenarios. For scenario one, the recall improves in most

cases with a mean value of 8,79%. This can be explained since strengthened rules will specify their

constraint more explicitly. If the constraint gains accuracy, the data programming model will assign

more weight to this constraint resulting in the higher recall due to the increased number of identified

true positives. However, if the constraint is too specific, it will become less accurate; hence, other more

generalistic constraints will gain weight. Since both scenarios apply, strengthening constraints does not

directly cause an increase in recall. It does cause a shift in weights the data programming model assigns.

However, it is unknown how these weights are assigned. In scenario two, the recall does not shift that

much. However, on some occasions, it did result in a higher recall. The reason behind this needs to be

clarified. One of the possibilities is that the weakened constraint ensured that another constraint grew

in importance, receiving more weight from the model. When this is the case, the weakening of the

constraint is not directly responsible for the increase. The shift of weights and, thus, the importance of

the constraints shift the performance.

17



The precision of the data programming model follows the same trend as the accuracy but is ampli-

fied. This finding seems to be coincidental. No scientific source states that precision and accuracy are

correlated. Mathematically, we find that when the data programming model can detect more true neg-

atives, the accuracy increases while precision remains the same. However, further research is needed

to confirm that this was coincidental. When strengthening constraints, we expect the precision to rise.

However, in scenario one, the precision of the model increased on average less than when constraints

were weakened. There is no explanation as to why this is the case. The only recommendation is to look

in-depth at what happens with the weight distributions. This might give us a better understanding of why

the data programming model behaves like this.

Furthermore, the individual constraints’ accuracies do not change in any specific direction for sce-

narios one and two. For both scenarios, the constraints accuracies changed on average with less than 1%.

Hence, we cannot state that strengthening or weakening has any predictable influence on the constraint.

This can also be seen in scenario three. For all constraints tested, the constraint’s accuracy either re-

mained the same (constraint three), increased logarithmic (constraint four), increased linearly (constraint

five) or fluctuated (constraint six). They all were strengthened or weakened to become the auditor pro-

cess model value but behaved differently. Remarkable is the sudden increase of accuracy for constraint

4.1.b. There is no evidence that strengthening from a precedence type constraint to a succession type

constraint increases accuracy since 6.1.b did the opposite and decreased by nearly 20%. It might be that

the activities described by constraint 4.1.b are a good pair to label the cases, but the base value was too

generalistic and hence had too many mistakes.

A fifth observation can be seen in scenario three. More specifically, in the case of constraint four

during the third scenario. At first, the constraint grew in accuracy significantly but hurt the performance

of the data programming model. However, slightly increasing the constraint’s accuracy doubled the

model’s performance. A study by Laghmouch M. et al. (2020) explains this through the quality of

the constraints. They claim only a small amount of medium- to high-quality rules are needed to make

acceptable accurate predictions. After the first adaptation, the constraint’s quality turned from low to

medium. After the last adaptation, the medium-quality constraint turned into a high-quality constraint.

The same reasoning applies to constraints four and five in the third scenario. These constraints never

became high-quality rules. Hence the data programming model did not assign enough weight to the

constraint to make it decisive. They did become medium-quality rules. When we changed constraints

18



four and five to their medium quality variant together, the model’s performance did increase. The study

by Laghmouch et al. (2020) achieved reasonable performance with four to six medium- or high-quality

rules. In this experiment, we only needed two high-quality constraints or one high-quality with two

medium-quality rules. Even though both experiments were conducted in a procure-to-pay process with

the same auditor model, fewer constraints were needed. The difference might be explainable due to

two reasons. First, the auditor model is the same in both experiments, but the data used was different.

A second explanation is that in the study of Laghmouch et al. (2020), the data programming model

was allowed to abstain from labelling. This was done by feeding the model with constraints that either

labelled a case if the case passed the constraint or abstained if it did not. In this experiment, we did not

allow the model to abstain by using constraints that labelled cases either way. If the case passed a test, it

was considered allowed behaviour; if it did not, it was considered anomalous.

VI Future work

First, the results in this experiment are specific to the procure-to-pay process, but the results might differ

for other processes and data sets. We suggest that future research experiments on constraint modifica-

tion with different processes and different datasets (i.e., unbalanced datasets). This is to confirm two

hypotheses and extrapolate the findings to other processes: individual constraint modifications do not

significantly impact data programming performance, and strengthening or weakening constraints does

not change the constraint’s accuracy in a specific direction.

There is one exception. This experiment shows a correlation between strengthening constraints and

increased recall performance of the data programming model. However, strengthening constraints does

not cause this increase directly. We suggest looking into the shift of weights instead of the accuracy of

the constraint to understand what happens when constraints are strengthened.

During the experiment, we found multiple sets of constraints that resulted in an accuracy of 90%

for the data programming model. Therefore, we can confirm the study of Laghmouch et al. (2020).

As stated in the discussion, we achieved this with fewer constraints. We propose to research whether

the way we formulate DECLARE constraints does impact the number of constraints needed. As a start,

research can explore the difference in the performance of a data programming model between one that

uses constraints that allow a model to abstain from labelling and one that uses constraints that enforce

the model always to label.

19



VII Conclusion

This paper explored the relationship between constraint modification and data programming performance

in a business process context.

Overall, we did not find a correlation between modifying constraints and the performance of the

data programming model. The only way to improve the model’s accuracy is to obtain enough medium-

or high-quality constraints. This confirms the findings of Laghmouch et al. (2020). However, by us-

ing the constraint hierarchy of Schunselaar et al. (2012), we cannot modify constraints into qualitative

constraints in a controlled manner. One of the reasons is that we cannot show a correlation between

strengthening/weakening constraints and the change in the accuracy of the constraint. More specifically,

strengthening or weakening constraints does influence the accuracy of the constraint but not in a pre-

dictable magnitude or direction. There is, however, a correlation between strengthening constraints and

the recall of the data programming method.

From these findings, we propose three recommendations for future research. First, we cannot extrap-

olate our findings for all business processes since we experimented with only the procure-to-pay process.

Therefore we propose future research to review our findings using different business processes. A second

research recommendation might be the influence of allowing a data programming model to be indecisive

and thus not label a case. Since our experiment forced the model to make a binary classification choice,

this might have influenced the number of constraints needed to achieve reasonable performance.

At last, the correlation between strengthening constraints and the recall of the data programming

model needs to be further investigated. We propose looking at the shift of weight that occurs when

strengthening to find an explanation for this finding.

20



References

Alpaydin, E. (2010). An introduction to machine learning. MIT press.

Borning, A., Maher, M. J., Martindale, A., & Wilson, M. (1989). Constraint hierarchies and logic

programming. In Iclp (Vol. 89, pp. 149–164).

Cugola, G. (1998). Tolerating deviations in process support systems via flexible enactment of process

models. IEEE Transactions on Software Engineering, 24(11), 982-1001. doi: 10.1109/32.730546

Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised learning. Machine learning techniques

for multimedia: case studies on organization and retrieval, 21–49.

Dickey, G., Blanke, S., & Seaton, L. (2019). Machine learning in auditing. The CPA Journal, 89(6),

16–21.

Hossin, M., & M.N, S. (2015, 03). A review on evaluation metrics for data classification evaluations.

International Journal of Data Mining Knowledge Management Process, 5, 01-11. doi: 10.5121/

ijdkp.2015.5201

Jans, M., & Laghmouch, M. (2023). Process mining for detailed process analysis. In E. Berghout, R. Fi-

jneman, L. Hendriks, M. de Boer, & B.-J. Butijn (Eds.), Advanced digital auditing: Theory and

practice of auditing complex information systems and technologies (pp. 237–256). Cham: Springer

International Publishing. Retrieved from https://doi.org/10.1007/978-3-031-11089-4_9

doi: 10.1007/978-3-031-11089-4_9

Laghmouch, M., Jans, M., & Depaire, B. (2020). Classifying process deviations with weak supervision

[Proceedings Paper]. In 2020 2nd international conference on process mining (icpm 2020) (pp.

89–96). 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264

USA: IEEE COMPUTER SOC. (2nd International Conference on Process Mining (ICPM)) doi:

10.1109/ICPM49681.2020.00023

Nonnenmacher, J., & Marx Gómez, J. (2021, 01). Unsupervised anomaly detection for internal auditing:

Literature review and research agenda. The International Journal of Digital Accounting Research,

1-22. doi: 10.4192/1577-8517-v21_1

21

https://doi.org/10.1007/978-3-031-11089-4_9


Pesic, M., Schonenberg, H., & van der Aalst, W. M. (2007). Declare: Full support for loosely-structured

processes. In 11th ieee international enterprise distributed object computing conference (edoc

2007) (p. 287-287). doi: 10.1109/EDOC.2007.14

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., & Reijers, H. A. (2011). Imperative

versus Declarative Process Modeling Languages: An Empirical Investigation. Springer Sci-

ence+Business Media. Retrieved from https://doi.org/10.1007/978-3-642-28108-2_37

doi: 10.1007/978-3-642-28108-2\{_}37

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2017, November). Snorkel: Rapid

training data creation with weak supervision. Proceedings VLDB Endowment, 11(3), 269–282.

Ratner, A., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. (2016). Data programming: Creating large

training sets, quickly. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.),

Advances in neural information processing systems (Vol. 29). Curran Associates, Inc.

Ratner, A., Varma, P., Hancock, B., & other members of Hazy Lab. (2019, 3). Weak Supervision: A New

Programming Paradigm for Machine Learning. Retrieved from https://ai.stanford.edu/

blog/weak-supervision/

Schunselaar, D. M. M., Maggi, F. M., & Sidorova, N. (2012). Patterns for a log-based strengthening

of declarative compliance models. In J. Derrick, S. Gnesi, D. Latella, & H. Treharne (Eds.),

Integrated formal methods (pp. 327–342). Berlin, Heidelberg: Springer Berlin Heidelberg.

Swinnen, J., Depaire, B., Jans, M., & Vanhoof, K. (2011, 08). A process deviation analysis – a case

study. In (Vol. 99, p. 87-98). doi: 10.1007/978-3-642-28108-2_8

Vakili, M., Ghamsari, M., & Rezaei, M. (2020). Performance analysis and comparison of machine

and deep learning algorithms for iot data classification. CoRR, abs/2001.09636. Retrieved from

https://arxiv.org/abs/2001.09636

Zuhaira, B., Ahmad, N., Saba, T., Haseeb, J., Malik, S. U. R., Manzoor, U., . . . Anjum, A. (2017).

Identifying deviations in software processes. IEEE Access, 5, 20319-20332. doi: 10.1109/

ACCESS.2017.2757954

22

https://doi.org/10.1007/978-3-642-28108-2_37
https://ai.stanford.edu/blog/weak-supervision/
https://ai.stanford.edu/blog/weak-supervision/
https://arxiv.org/abs/2001.09636


A Numeric results of the different scenarios

Var. Activity A Activity B Base Relationship Type New Relationship Type Acc. of New Constraint Accuracy Model Recall Model Precision Model

1.1.a Create PR Approve PR Responded existence(A, B) Co existence(A, B) 52% 52% 38,2% 52,76%

1.1.b Create PR Approve PR Responded existence(A, B) Response(A, B) 47,7% 51,5% 32,4% 52,43%

2.1.a Approve PR Create PO Precedence(A, B) Alternate precedence(A, B) 51,5% 50,7% 17,8% 52,05%

2.1.b Approve PR Create PO Precedence(A, B) Succession(A, B) 52,1% 59% 39,8% 64,61%

3.1.a Create PO Sign Response(A, B) Alternate response(A, B) 50% 48,2% 21,2% 46,09%

3.1.b Create PO Sign Response(A, B) Succession(A, B) 50% 46,2% 43,6% 45,99%

4.1.a Sign receive goods Precedence(A, B) Alternate precedence(A, B) 47,2% 42,5% 32,8% 40,69%

4.1.b Sign receive goods Precedence(A, B) Succession(A, B) 79,1% 43,6% 21,4% 38,49%

5.1.a receive goods Receive invoice Alternate response(A, B) Chain response(A, B) 35,1% 47,4% 20,2% 44,3%

5.1.b receive goods Receive invoice Alternate response(A, B) Alternate Succession(A, B) 44,6% 48% 23,8% 46,12%

6.1.a Receive invoice Pay Precedence(A, B) Alternate precedence(A, B) 47,6% 48,1% 23% 46,18%

6.1.b Receive invoice Pay Precedence(A, B) Succession(A, B) 33,7% 46,2% 27,6% 43,95%

7.1.a Sign Pay Co-existence(A, B) Succession(A, B) 45,5% 44,6% 41,2% 44,21%

8.1.a Create PR / Exactly(A, 1) N/A

9.1.a Approve PR / Exactly(A, 1) N/A

10.1.a Create PO / Exactly(A, 1) N/A

11.1.a Sign / Existence(A, 1) Exactly(A, 1) 53,2% 49,6% 26,8% 49,26%

11.1.b Sign / Existence(A, 1) Existence(A, 2) 49,2% 50,1% 40% 50,13%

Table 4: Results of scenario 1

Var. Activity A Activity B Base Relationship Type New Relationship Type Acc. of New Constraint Accuracy Model Recall Model Precision Model

1.2.a Create PR Approve PR Responded existence(A, B) N/A / 51,5% 32,4% 52,43%

2.2.a Approve PR Create PO Precedence(A, B) Responded existence(B, A) 49,6% 51,3% 22,4% 53,08%

3.2.a Create PO Sign Response(A, B) Responded existence(A, B) 50% 48,2% 21,2% 46,09%

4.2.a Sign receive goods Precedence(A, B) Responded existence(B, A) 52,2% 50,6% 17,6% 51,76%

5.2.a receive goods Receive invoice Alternate response(A, B) Response(A, B) 45,1% 49,2% 21,2% 48,18%

6.2.a Receive invoice Pay Precedence(A, B) Responded existence(B, A) 64,2% 50,8% 18% 52,33%

7.2.a Sign Pay Co-existence(A, B) Responded existence(A, B) 51,9% 50,7% 17,8% 52,05%

7.2.b Sign Pay Co-existence(A, B) Responded existence(B, A) 52,4% 50,3% 19,6% 50,78%

8.2.a Create PR / Exactly(A, 1) Absence(A, 2) 45,9% 49,2% 18,2% 47,89%

8.2.b Create PR / Exactly(A, 1) Existence(A, 1) 52,3% 50,7% 17,8% 52,05%

9.2.a Approve PR / Exactly(A, 1) Absence(A, 2) 49,8% 46% 39,4% 45,39%

9.2.b Approve PR / Exactly(A, 1) Existence(A, 1) 51,7% 51,7% 23,2% 53,95%

10.2.a Create PO / Exactly(A, 1) Absence(A, 2) 55,1% 51,4% 21,8% 53,43%

10.2.b Create PO / Exactly(A, 1) Existence(A, 1) 61,6% 45,8% 42,8% 45,53%

11.2.a Sign / Existence(A, 1) N/A / 50,3% 19,6% 50,78%

Table 5: Results of scenario 2

23



Var. Activity A Activity B Base Relationship Type Target relationship type T-3 T-2 T-1 T

const. Acc Rec Pre const. Acc Rec Pre const. Acc Rec Pre const. Acc Rec Pre

3.3.a Create PO Sign Response(A, B) Chain Response(A, B) 50% 48,2% 21,2% 46,09% 50% 48,2% 21,2% 46,09% 50% 48,2% 21,2% 46,09%

4.3.a Sign Receive goods Precedence(A, B) Response(A, B) 51,3% 48,2% 21,2% 46,09% 79,1% 43,6% 21,4% 38,49% 89% 91,8% 83,6% 100%

5.3.a Receive goods Receive invoice Alternate response(A, B) Co-existence(A, B) 36% 48,2% 21,2% 46,09% 45,1% 49,2% 21,2% 48,18% 59,3% 48,2% 24% 46,51% 70,1% 49,8% 18,6% 49,47%

6.3.a Receive invoice Pay Precedence(A, B) Responded existence(A, B) 50,1% 48,2% 21,2% 46,09% 33,7% 46,2% 27,6% 43,95% 64,2% 50,8% 18% 52,33% 50% 50,7% 17,8% 52,05%

Table 6: Results of scenario 3

24


	Introduction
	Related work
	Data programming
	Process deviation
	Representations of Process Models in a Business Process Context
	Hierarchy of rules

	Method
	Procure-to-pay Process
	Data
	Independant variables
	Dependant variables (metrics)

	Results
	Scenario 0: The baseline
	Scenario 1: Strengthen one rule at a time
	Scenario 2: Weaken one constraint at a time
	Scenario 3: Change a constraints' baseline value towards auditor model value
	Scenario 4: The auditor model

	Discussion
	Future work
	Conclusion
	References
	Numeric results of the different scenarios

