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Abstract

Background DNA and RNA molecules are an emerging class of therapeutic agents used by pharmaceutical
companies in developing effective treatments for patients across the globe. A recent and spectacular example
is the DNA and mRNA-based vaccines designed to combat the COVID-19 pandemic. However, pharmaceu-
tical development is a highly complex and, as such, an error-prone process controlled by strict regulatory
rules. In turn, pharmaceutical scientists have widely used mass spectrometry to monitor modifications of
naturally occurring oligonucleotides and process their impurities for drug quality and safety. To identify an
oligonucleotide (and its potential modifications) in a mass spectrum, it is useful to compare its observed
isotope pattern to the one theoretically expected based on its elemental composition (the number of carbon,
hydrogen ,. . . , atoms). Still, it is ambiguous when the molecule’s identity under investigation is unknown.
Aim The primary objective of this study is to develop a novel and parsimonious compositional model ca-
pable of accurately predicting isotope distribution based on the mass of a DNA/RNA molecule.
Methods Polynomial models were fitted to large theoretical databases consisting of isotope distributions of
all DNA/RNA molecules up to a specific mass value generated using the BRAIN algorithm. An interesting
property of the data is its compositionality, where isotope intensities sum up to one. Hence, the modeling
approach was based on the three compositional data transformation techniques; centered log-ratio and iso-
metric log-ratio, and this manuscript’s highlight: the new consecutive ratio transformation.
Results A univariate (consecutive ratio) polynomial regression model of order five is chosen as the fi-
nal model to predict the DNA molecule’s first 20 isotopic peaks based on the monoisotopic and average
mass. Model performance was assessed using real-life data from the 68 observed isotope patterns provided
by Janssen Pharmaceutica using the mean squared error approach and the modified Pearson’s Chi-square
goodness-of-fit measure.
Conclusions In conclusion, the new consecutive ratio approach is a consistent and straightforward com-
positional data transformation technique leading to a novel and parsimonous average compositional DNA
model.

Keywords: DNA/RNA oligonucleotide; mass spectrometry; polynomial regression; isotope distribution
prediction; compositional data transformation
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1 Introduction

Due to an ever-increasing computational power and steadily-improving numerical algorithms, bioinformatics has
found applications in various biological problems. An example application is a deoxyribonucleic acid (DNA)
sequencing - a technique used for determining the order of the four chemical building blocks, called bases, that
make up the DNA molecule [1]. DNA sequencing is often exploited in developing DNA- or ribonucleic acid
(RNA)-based medicines to cure cancer, immunodeficiency, heart disease, high blood pressure, and many others
[2]. For instance, in 2002, scientists reported a successful gene-therapy-based cure for severe combined immun-
odeficiency (SCID) [3]. In 2003, the Chinese drug regulatory agency approved the gene therapy product for
head and neck squamous carcinoma under Gendicine [4]. In our world’s ongoing crisis due to pandemic disease,
the COVID-19, several pharmaceutical companies such as Pfizer, BioNTech, and Moderna produced messenger
RNA-based mRNA COVID-19 vaccines. Another example is ZyCoV-D, developed using DNA plasmid aiming
to decrease the risk of serious COVID-19-related health complications.

DNA and RNA are called polymers made up of long-chain nucleotides of very high molecular weight, and any
polymer sample consists of many chains of different lengths [5]. Hence, it requires high-throughput sequenc-
ing technology. Mass spectrometry is an analytical tool for detecting, determining, and quantifying molecules
present in various biological samples based on their mass-to-charge ratios [6]. In 1910, J.J. Thomson, who
discovered the electron in the 1890s, built the first instrument to measure the mass to charge (m/z) values
of gaseous ionized atoms at Cambridge University. His research extended technology’s use to determine exact
atomic masses, and quantitative analysis of elemental isotopes [7]. In the 1980s, matrix-assisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) mass spectrometry was coined. Since then, it has become one of
the essential analytical tools for biological and biomedical research [8].

Figure 1: Liquid Chromatography- Mass Spectrometry.

Figure 1 shows what a Liquid Chromatography-Mass spectrometry (LC-MS) looks like. Before the sample is
directed to the mass spectrometer, there is a process called liquid chromatography (LC). The solution is pumped
through an LC column by a mobile phase flowing through at high pressure [9]. The chemical interaction between
the sample components, LC column, and mobile phase affects different migrations rates affecting the separation.
Coupling MS with LC is a powerful and attractive technique that combines the separating power of LC and the
highly sensitive analysis capability of mass spectrometry. LC can separate delicate and complex natural mix-
tures in which chemical composition needs to be well established (e.g., biological fluids, environmental samples,
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and drugs) [10]. Afterward, the sample is passed through an inlet of the mass spectrometer in which a heater
vaporizes the sample. The bunch of the samples will float around, and the electron beam source will prepare
the atoms in the sample for ionization by knocking off electrons. This means some of the atoms now have a
charge; hence they can be accelerated through the electric plates. The charged ions will then move swiftly to
the magnetic field, which deflects ions with charge. The deflection for ions with a larger mass will be lesser than
those with a lower mass [11]. Then, the different isotopes deflected different amounts as they went through the
magnetic fields. Last is the detector, where at different detector points, different isotopes will be detected. Take
note that the more ions hit a certain part of the detector, the more occurrence of that isotope in the studied
sample.

The R package called Baffling Recursive Algorithm for Isotopic distributioN calculations (BRAIN) provides
computation- and memory-efficient methods to calculate the aggregated isotopic distribution of peptides and
proteins [12]. Isotope distribution is particularly useful for interpreting the complex patterns observed in mass
spectral data. It reflects the probabilities of the occurrence of different isotope variants of a molecule. It is
visualized in the mass spectrum by the relative heights of the series of peaks related to the molecule. For small
molecules, computing the isotope distribution is easy, but it is not true for larger molecules. The larger the
molecules, the more complex the computation is [12]. Table 1 shows the isotope distribution of a Methane
compound composed of two atoms of Carbon and Hydrogen with two isotope variants each. Computing the
monoisotopic mass or average mass for a given atomic composition using the BRAIN algorithm and manually
computation using equations 1 and 2, the discrepancy is of order 10e-10. This is prudently implying the effi-
ciency of the BRAIN algorithm. Figure 2 illustrates a mass spectrum example with one peak being zoomed
from the study of Bin ma in 2009 [13]. Each isotopic peak stretch over width in the direction of m/z.

Figure 2: a) Mass spectrum model with b) zoomed-in peak. Source: Bin ma [13]
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Table 1: Isotope distribution of Methane compound. Source: Burzykowski et al. [14]

12C 13C 1H 2H Mass Probability Nucleons
1 0 4 0 16.032 0.9888904 16
0 1 4 0 17.035 0.010696 17
1 0 3 1 17.038 0.000099 17
0 1 3 1 18.041 0.000001 18
1 0 2 2 18.044 <10−8 18
0 1 2 2 19.047 <10−9 19
1 0 1 3 19.050 <10−12 19
0 1 1 3 20.053 <10−13 20
1 0 0 4 20.056 <10−16 20
0 1 0 4 21.059 <10−17 21

Table 2: Distribution of naturally occuring isotopes. Source: Coursey et al. [15]

Isotope Mass (Da) Isotopic Composition
Carbon 12 12.0000 0.9893

13 13.003355 0.0107
Hydrogen 1 1.00782503223 0.999885

2 2.01410177812 0.000115
Nitrogen 14 14.00307400443 0.99636

15 15.00010889888 0.00364
Oxygen 16 15.99491461957 0.99757

17 16.99913175650 0.00038
18 17.99915961286 0.00205

Sulfur 32 31.9720711744 0.9499
33 32.9714589098 0.0075
34 33.967867004 0.0425
36 35.96708071 0.0001

Theoretical monoisotopic and average mass can be computed in two ways: 1) Given atomic composition
(equations 1 & 2) CvHwNxOySz [12] and 2) given isotope distribution (equations 3 & 4).

Monoisotopic mass = vMC12 + wMH1 + xMN14 + yMO16 + zMS32 (1)

Average mass = v × (MC12 × PC12 +MC13 × PC13) (2)

+w(MH1 × PH1 +MH2 × PH2)

+ x(MN14 × PN14 +MN15 × PN15

+ y(MO16 × PO16 +MO17 × PO17 +MO18 × PO18)

+ z(MS32 × PS32 +MS33 × PS33 +MS34 × PS34 +MS36 × PS36

where:
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• v: the number of Carbon atoms

• w: the number of Hydrogen atoms

• x:the number of Nitrogen atoms

• y: the number of Oxygen atoms

• z: the number of Sulfur atoms

• P : isotope probability in nature

If the complete set of isotope variants I = (m1, p1), (m2, p2), ....covers 100% of the probability distribution, then
average mass can be computed as follow:

avgmass =

∑#I
i=1 mi × pi∑#I

i=1 pi
(3)

Since we assume that I is complete, the denominator sums to one. However, it is obvious in experimental data
set I is not complete, hence we need to work with an approximation using equation 4.

avgmass =

∑20
i=1 mi × pi∑20

i=1 pi
(4)

where :

• pi → p20 : the isotope intensities

• mi : the mass of isotope peaks

• #I : cardinality (the complete set of isotope peaks)

However, progress in studying DNA and RNA molecules with mass spectrometry is slowed due to the lack of
suitable bioinformatics tools. An area where dedicated bioinformatics tools could improve DNA/RNA data
analysis is mass-spectrometry-based quality control of drug manufacturing processes. For example, to identify
an oligonucleotide (and its potential modifications) in a mass spectrum, it is helpful to compare its observed
isotope pattern to the one theoretically expected based on its elemental composition (the number of carbon,
hydrogen, oxygen. . . , atoms). This is not straightforward when the molecule’s identity under investigation is
unknown.

Several researchers have contributed to the topic of average isotope distribution prediction based on mass
information. For instance, Senko et al. developed a method to calculate the average isotopic distribution for
any mass peptide via multinomial expansion [16] using a scaled version of averagine, which is computationally
involved [17]. Another method by Breen et al. approximates the result by multinomial expansion by a Poisson
model (fast but not accurate for sulfur-containing peptides) [18]. Valkenborg et al. [19] also proposed a method
in which the four-order polynomials of monoisotopic mass are fitted to the first three consecutive isotope ratios.
These methods have their limitations, although they perform well. In some use-cases of mass spectrometry data
having predictions of almost entire isotope probabilities could prove more beneficial than predicting only three
first isotope ratios.

Agten et al. [20] have recently proposed a novel compositional model to predict the average isotope distri-
bution (currently applicable to DNA and RNA oligonucleotides, but extensions to other domains are possible)
based on the observed monoisotopic mass. The model was evaluated on a dataset containing repeated measure-
ments of four DNA/RNA molecules. This approach computed 20 isotope peak probabilities of DNA and RNA
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molecules from an in-silico generated database with an isotope distribution calculator (BRAIN). One artificial
peak capturing the remaining probability was introduced to ensure data compositionality. These peaks were
then transformed with one of the specialized compositional data transformations and subsequently modeled
with polynomial regression, returning predicted peak probabilities that stretch over 20 isotopes. The evaluation
concluded that the predictions made by the model are very close to the actual probabilities and mass values and
that observed error can be ignored given the instrument variability. Furthermore, the model is not demanding
in computational resources as it only requires matrix multiplication and simple back-transformation [20]. Agten
et al. suggest that the same model can be devised with a different covariate like the average mass.

1.1 Thesis scope

This research proposes a novel and parsimonious compositional model constructed upon the new compositional
data transformation technique to predict aggregated isotope distribution of DNA molecules, which can be
extended to the RNA molecules. Specifically, the key problem settings are as follows:

1. The model of Agten et al. is based on the ALR transformation that, for completeness, will be explained
further in the methodology. The disadvantage of this ALR transformation is that it cannot transform
an observed spectrum into compositional data space when the monoisotopic peak is not observed. This
hampers a convenient comparison between the observed and predicted spectrum in Aitchison geometry.

2. The modeling task of Agten et al. assumes that the monoisotopic peak is a covariate in the polynomial
model. However, when the monoisotopic mass of the compound is unknown, the model cannot predict an
average isotope distribution.

Therefore, the scope of this thesis is two-fold:

1. explores different compositional data transformations like, e.g., centered log-ratio or isometric log-ratio
transformations. Alternatively, construct a new transformation more compatible with the mass spectrom-
etry use case envisioned in this dissertation.

2. performs a parameterization of the model such that it can accommodate the average mass as an input. Such
a decision has several consequences on the prediction as the average mass computed from an experimental
spectrum is much more prone to variability that, in turn, might affect the prediction of the average isotope
distribution. The effect should be quantified in this thesis. Another problem associated with this new
parameterization is that we need to devise a procedure to estimate the monoisotopic mass of the molecule
to accurately align the experimental and predicted isotope distribution.

1.2 Data

In this work, two datasets (theoretical and experimental) were utilized for the analysis. Looking at Table 3
theoretical data contained a list of all possible combinations of molecules of length 5 to 92 nucleotides (DNA)
and 5 to 90 nucleotides (RNA). Twenty isotope peaks comprised 95% probability for the largest molecules com-
puted using the BRAIN algorithm. The DNA and RNA data mass range is from 1463.2424 Da to 26,899.3222
Da and 1463.2424 to 27,776 Da with 2,631,058 DNA molecules and 2,557,189 RNA molecules, respectively. For
the theoretical data, monoisotopic mass was immediately available. Still, the average mass had to be computed
based on the atomic composition following the isotope definition presented in Table 2.

Moreover, in the database, the first eight aggregated isotopes cover 100% of the isotope probabilities for low
mass compounds. However, the 20 isotopic variants for high mass compounds do not cover the entire isotope
distribution. Since this study aims to arrive at a model also applicable to molecules with large molecular weight,
a pseudo-isotope (closure term) was introduced to contract the leftover probabilities into one isotope variant
[20]. For the model validation (see Table 4) , the oligonucleotide was analyzed via LC-MS and resulted in the
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Table 3: BRAIN computed theoretical DNA database reproduced from the work of Agten et al. [20]

Name DNA
Type Theoretical database computed by BRAIN
Length 5 to 92 nucleotides (composed of 4 DNA bases: A, C, G, and T)
Number of DNA molecules 2, 631,058
Isotope variants 20 peaks (covers 95% probability for largest molecules)
Mass range 1463.2424 to 26,899.3222 Da

experimental DNA dataset consisting of 70 isotope patterns (elution range from 10.95 min to 11.05 min, giving
ten scans; from each scan, seven charge states were extracted, and for each isotope pattern, 15 peaks were
extracted) of which two were excluded due to missing monoisotopic peak [20]. The DNA molecule’s elemental
formula is C266H334N100O162P26. Before data analysis, masses in the theoretical data and train models were
normalized by subtracting the mean to all monoisotopic and average mass values divided by their standard
deviations. The molecule’s experimental mass was subtracted from the mean and divided by the standard
deviation to get model predictions on real-life data. Both the mean and standard deviation were obtained from
the theoretical data.

Table 4: DNA strand derived from the research of Agten et al. for the proof-of-concept study of isotopic distribution
prediction [20].

Sequence GCC ACA TAT GAG AGT GGA TTT GTC ATT
Elemental formula C266H334N100O162P26
Monoisotopic mass 8325.41493
Average mass 8329.4
Charge states 6 to 12
Elution ranges 10.95 min to 11.05 min (10 scans)
Replicates 7 x 10 = 70
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2 Methodology

2.1 Compositional Data Transformation

Compositional data are measures of proportions or percentages that sum up to 1 or a constant value, called
closed data [21]. Since they are relative measurements, they do not provide an absolute value or measure [20].
To make the compositional data usable and appropriate for statistical analysis, a suitable transformation must
be applied beforehand, including any relevant function focused on the ratios between the components [20]. In
1982, Aitchison proposed methods to transform percentage data into log-ratio data [22]. Three popular choices
for such transformations are additive log-ratio (ALR), centered log-ratio (CLR), and isometric log-ratio (ILR);
ALR was presented in the work of Agten et al., and the last two were investigated in this study along with
the new technique: the consecutive ratio (CR) transformation. These techniques transform the compositional
probability space (simplex) from the theoretical DNA database to a log-ratio space for ALR, CLR, and ILR
and a ratio space for CR, respectively.

2.1.1 Additive Log-Ratio Transformation

ALR is an isomorphism [23]. It maps a composition in the D-part Aitchison-simplex non-isometrically to a D-1
dimensional euclidian vector, treating the last part as a common denominator of the others [24]. All classical
multivariate analysis tools can analyze the data in this transformation, not relying on distance. However in
most types of analysis, distance is an extremely relevant concept, that’s where CLR and ILR transformation
should be preferred, where SD → RD-1 [24]. This is given by [24]:

alr(x) = [log
x1

xD
, ..., log

xD−1

xD
] (5)

Where x is the compositional vector and the D denominator is arbitrary and could be any specified component.
The ALR transform is not an isometry, meaning that distances on transformed values will not be equivalents
to distances on the original composition in the simplex. In Agten et al.’s research outputs, the compositional
model based on ALR revealed a good model performance. However, when using the ALR technique, a reference
peak must be chosen on which the compositional data transformation will be performed. The mono isotopic
mass is an obvious choice for the smaller molecules, whereas this can be under the detection limits for the larger
oligonucleotides. Backtransformation of the predicted ALR-transformed isotopes can be found in Agten et al.’s
paper, p.7 [20].

2.1.2 Centered Log-Ratio Transformation

CLR transformation is both an isomorphism and an isometry [23], and it maps a composition in the D-part
Aitchison-simplex to a D-dimensional Euclidean vector subspace where clr: SD → U,U ⊂ RD [24] . CLR can
be expressed mathematically as [25]:

clr(x) = [log
x1

g(x)
, ..., log

xD

g(x)
] (6)

Where x represents the compositional vector and g(x) is the geometric mean of the composition x. When
interpreting the results, it is relatively easy since the relation between each original part and a transformed
variable is preserved [24].To back-transform ratios, a softmax function can be used. Softmax transformation is
expressed as [25]:

softmax(z) = exp(zi)/

20∑
i=1

(exp(zi)) (7)

Where zi are the predicted CLR transformed isotopes.
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2.1.3 Isometric Log-Ratio Transformation

ILR is an isomorphism and isometry [23] that maps a composition in the D-part Aitchison-simplex to a D-1
dimensional Euclidean vector or SD → RD-1 [24]. The ILR transformation is given by the equation [24]:

ilr(x) := V tclr(x) (8)

With clr(x) being the CLR transformed isotopes and V ∈ Rd×(d−1) is a matrix with which columns form an
orthonormal basis of the CLR-plane [24]. The canonical basis gives a default matrix V in the clr-plane. ILR’s
interpretation of ratios is not as simple as CLR since there is no one-to-one relation between the original and
the transformed variables [24].

All analyses were executed in R and using the same compositions package. The inverse of ILR transforma-
tion was also done in R using the ilrInv function, which generates closed compositions of the transformed data
by taking the transpose of the closed compositions of the inverse of the exponents of the products between the
basis of the clr-plane matrix multiplied and the transpose of the ILR to transform. Given by the formula [24]:

M = (clo((eV×X)t)t (9)

Where t means transpose, clo means closed composition, V is a matrix with columns giving the chosen basis of
the CLR-plane, and X is the transpose of the ILR transformed values.

Neither of the previous methods is fit for mass spectrometry. CLR and ILR require the entire probability
distribution, which is impractical for experimental data and theoretical modeling as many peaks are needed to
cover 100% of the probability distribution. Although ALR is convenient because we can have the closure term,
we need to decide based on which peak we will conduct the compositional data transformation.

2.2 A new compositional data transformation

This study highlights the proposed novel compositional data transformation method that works in theoretical
and experimental settings inspired by the Poisson nature of isotope distribution. Referring to Valkenborg et
al. [19], the method is computationally simple and accurate in predicting isotopic distribution. In their work,
only 3 first consecutive ratios were modeled, which is not equivalent to this novel approach since, in this work,
20 consecutive ratios are considered. However, it inspired this research since the consecutive ratios seem linear
from their results.

The consecutive ratio is computed as the ratio of the consecutive isotope peak intensities. These ratios be-
have linearly as a function of monoisotopic or average mass since the Poisson distribution can approximate the
isotope distribution [19]. Due to its simplicity, these ratios lower degree polynomials. The same as the ILR, it
also transforms the D-dimensional simplex to the D-1 real vector space: SC → RD-1.

The CR can be expressed using the equation:

cr(x) = [
x2

x1
, ...,

xD

xD−1
] (10)

where xD is the pseudo isotopic peak, and xD-1 is the 20th peak. It is easy to carry out the CR transformation
because one divides the succeeding isotope by the preceding isotope peak. Moreover, this compositional data
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transformation does not require log-ratio transformation. Now, the challenge is the backtransformation to the
Aitchison-simplex.

The dummy compositional data is in the following table:

Iso1 Iso2 Iso3 Iso4 Iso5
molecule1 0.38 0.29 0.15 0.01 0.17

After applying the CR transformation, the transformed isotopes is now as follow:

CR1 CR2 CR3 CR4
molecule1 0.7631579 0.5172414 0.06666667 17

The steps in back transforming CR transformed isotopes are bulleted as follows:

1. let the first CR isotope peak (CR1) be denoted as b1 (back transformation). This is to initiate a value to
begin the process. In equation form: b1 = CR1

2. next, let CR2 = b2 multiplied by b1. In equation form: b2 = CR1 × CR2

3. repeat second step. In equation form: b3 = CR1 × CR2 × CR3

4. lastly, b4 = CR1 × CR2 × CR3 × CR4

It can be noticed that the calculation of the bi values follows the mechanics of the chain rule from probability
theory closely.

Now the challenge is that we need to back transform it from D-1 to D-dimensional simplex. This means
the probabilities that should be obtained must be 5 (for five isotope peaks in the simplex). To do that:

1. we sum the bis from 1 to 4, plus we add a column of 1 to control the ratios predicted by the uncon-
strained polynomial regression model to make the final back-transformed predicted ratios sum to one [20].
bsum+constraint = b1+b2+b3+b4+1

2. and so, to obtain the first back-transformed predicted ratio (isotope 1 probability) denoted as p1 =
1/bsum+constraint

3. to compute further, p2 = b1/bsum+constraint , p3 = b2/bsum+constraint , p4 = b3/bsum+constraint , p5 =
b4/bsum+constraint

4. we divided each by the bsum+constraint since we need to obtain the probability of each isotope peak indi-
vidually.

Hence, the backtransformed probabilities for each isotope are:

Iso1 Iso2 Iso3 Iso4 Iso5
molecule1 0.38 0.29 0.15 0.01 0.17

2.3 Modeling approach

Polynomial regression is found to be useful in capturing nonlinear patterns. For CLR and ILR, a univariate
weighted least-squares polynomial regression model, using the squared residuals of the ordinary least squares
model as weights, is fitted on each transformed isotope separately. On the other hand, CR is unweighted. Before
the modeling part, the theoretical data was split into train and test set to select the optimal order of polynomial
models for differently transformed isotopes (CLR, ILR, and CR). The training dataset consists of 95% of all
DNA molecules, while the remaining 5% was assigned to the test data. The lowest test MSE was the basis for
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selecting the final model for each transform. Polynomial degree orders 1 to 11 were explored for the CLR and
ILR methods, and polynomial degree orders up to 10 for the CR. The chosen model per transform was then
retrained on the entire database with training and the test set combined.

Let m i be the monoisotopic mass of i-th molecule in the theoretical database. The resulting polynomial models
of order k are given by [20]:

z1,i = β1,0 + β1,1mi + β1,2m
2
i + ...+ β1,km

k
i + ϵ1,i (11)

z2,i = β2,0 + β2,1mi + β2,2m
2
i + ...+ β2,km

k
i + ϵ2,i

.

.

.
z20,i = β20,0 + β20,1mi + β20,2m

2
i + ...+ β20,km

k
i + ϵ20,i

With

ϵj,i ∼ N(0, σ2
j )forj ∈ (1, ..., 20)

and zi the predicted values of transformed isotopes. The same modeling process was repeated for the CR model
based on average mass covariate. It is important to note that 20 peaks are not sufficient anymore to achieve
100% coverage of the probability distribution. This means that the closure term increases in probability with
increasing mass.

2.4 Goodness-of-fit measure

One research question is to compare the error metrics of the three transformation techniques; since the MSE
depends on the scaling of the method, the different MSEs among the techniques are not comparable. Hence,
two types of goodness-of-fit metrics are proposed:

1. Transformed space: convert observed spectrum to CLR/ILR/CR space and compare against predicted
ratios by means of Mean Squared Error (MSE).

2. Spectral space: compare observed intensities with back-transformed predicted ratios through a new mea-
sure called the Modified Pearson Chi-square Error (MPCSE), defined as a multinomial test.

The MSE can be expressed as [20]:

MSE =
1

k − 1

k−1∑
i=1

(ti − zi)
2 (12)

where zi are the predicted transformed ratios and ti are the transformed ratios. The MPCSE can be expressed
as [20]:

χ2
simplex =

1

k − l + 1

k∑
i=1

(Oi − Ei)
2

Ei
(13)

Where Ei = Nxi is the expected peak intensity, with

N =

k∑
i=1

Oi

xi
(14)
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and xi is the backtransformed predicted ratios. The theoretical models based on monoisotopic mass (CLR, ILR,
CR) and average mass (CR only) were evaluated using scatter, MSE, and MPCSE plots. The CR models were
the simplest in terms of the number of parameters to estimate implying the best among the three transformations
, and therefore only these CR models were validated using real-life data. Model validation was done through
MSE and MPCSE plots to assess the performance of the two CR models in real space.

2.5 Mass prediction

So far, we have focused only on the accurate prediction of average isotope distribution for DNA molecules. What
still has not been discussed is the computation of masses corresponding to those predicted isotope probabilities.
Agten et al. proposed a simple and accurate method based on the monoisotopic mass. Now we present a method
for mass prediction using the average mass. The procedure stems from the simple idea that when given the
experimental spectrum, one can compute the average mass, and the following relationship holds:

avgmass =
m1p1 + (m1 +∆2)p2 + (m1 +∆2 +∆3)p3 + ...+ (m1 +∆2 + ...+∆20)p20∑20

i=1 pi
(15)

Where m1 is the unknown mass vector, pi is the predicted probabilities from the CR avgmass model, and
∆i is the average mass difference between consecutive isotope peaks across all molecules. The following steps
were done to arrive at the mass prediction of the first 20 isotopes:

1. Compute average mass difference denoted as ∆i between consecutive isotope peaks across all molecules in
the theoretical database (this step is done only once) for i = 2 to 20 average differences.

∆i =
1

N

N∑
k=1

(mk,i − mk,i−1) (16)

2. Compute avgmass from the experimental spectrum, predict p1, ...., p20 from the CR avgmass model, and
plug these values (avgmass and pi) in Eq 17 to compute for m1:

m1 =
[avgmass ∗

∑20
i=1 pi]− [∆2(

∑20
i=2 pi) + ∆3(

∑20
i=3 pi) + ∆4(

∑20
i=4 pi) + ....+∆20(p20)]∑20

i=1 pi
(17)

Where:

avgmass = average mass of the first 20 theoretical isotopes computed based on atomic composition in Table 2
pi = predicted isotope probabilities of the first 20 isotopes goes from p1 → p20 from the theoretical dataset
∆2...∆20= average consecutive differences between the first 20 peaks across all molecules in the theoretical
data.

In fact, the Eq 17 can be generalized to the hypothetical situation where all isotope peak are avail-
able. Then, the following elegant relationship between monoisotopic mass (Mmono) and mavg holds:

Mmono = Mavg −
∞∑
i=2

∆i(1−
i−1∑
i=1

pi) (18)

Where ∆i is the average mass difference and pi is the predicted isotope probability.
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3. Finally, the mass vector prediction of the first 20 isotopes can be generated based on the following equa-
tions:

Isotope1 = m1 (19)

Isotope2 = m1 + ∆2

Isotope3 = m1 + ∆2 +∆3

Isotope4 = m1 + ∆2 +∆3 +∆4

.

.

.

.

.
Isotope20 = m1 + ∆2 +∆3 +∆4 + ....+∆20

16
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3 Results and Discussion

3.1 Centered Log-Ratio Transformation

Each CLR transformed isotope was modeled using a univariate polynomial regression model with monoisotopic
mass as the covariate and the residuals of the ordinary least square as weights. This approach was used to
diminish the boundary effects of polynomials. In polynomial regression, the idea is to obtain low polynomial
order as possible. Figure 3 shows the differences (y-axis) of MSEs obtained on the test part of the theoretical
DNA dataset. The different colored lines are the 20 isotopic peaks. In the figure, it is noticeable that from
the order of 10, the differences in test MSE become flat for all the CLR isotope peaks. Hence, the final CLR
monoisotopic model was chosen as a polynomial of order ten and was subsequently refitted to the complete
dataset (the training and test parts combined).

Figure 4 depicts the scatter plot of the first 10 CLR peaks. Only ten isotope peaks (10 different colored
lines) were chosen to be plotted due to lacking computational resources required by such a large dataset. The
white lines are the model-predicted values of the first 10 CLR transformed isotopes. These lines are in the
middle of the data points for each isotope peak. On the other hand, the MSE between the 20 theoretical and
predicted CLR transformed isotopes shown in Figure 5a implies that the MSE is higher at lower monoisotopic
masses and lower at higher mass values. Figure 5b shows MPCSE between the theoretical isotope probabilities
and the softmax-backtransformed predicted ratios. This claim that the MSE is higher at lower monoisotopic
masses and vice versa was further supported by the residuals of the theoretical and backtransformed predicted
probabilities of the first 10 CLR isotopes in Figure 6.

Using CLR resulted in lower MSE and MPCSE than applying additive log-ratio (ALR) in relation with the
literature reports [20]. However, there is not much difference in practice as both transformations (CLR and
ALR) necessitated polynomials of order 10, failing to select more parsimonious models. Polynomial degree order
10 is still highly complex interpretation-wise.

Figure 3: Evolution of the difference of test mean squared error between consecutive polynomial orders based on monoiso-
topic mass. Each colored line represents the 20 centered log-ratios of DNA isotopes. MSE differences become flat for
most variables at polynomial degree 10; hence, the polynomial model of order ten was selected.
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Figure 4: Scatterplot of the first ten CLR transformed DNA isotopes (only the first ten due to lacking computational
resources required by such a large dataset). Each colored line represents the data cloud of ratios in CLR space, and the
white lines are the predicted ratios.

(a) MSE (b) MPCSE

Figure 5: Provides the mean squared error and modified Pearson chi-square error of the 20 DNA isotope peaks based
on CLR monoisotopic mass DNA model.

3.2 Isometric Log-Ratio Transformation

The same modeling procedures as ALR and CLR were applied in this technique. Each ILR transformed isotope
was modeled using univariate polynomial regression with ordinary least squares residuals as weights. Polynomial
order of up to 11 was considered. Figure 7 shows the evolution of test MSE differences between consecutive
polynomial orders for the model selection. Once again, most differences stabilized from degree 10. Hence, a
polynomial of order ten was selected for further computations. Figure 8 shows the data clouds of the first 10
ILR transformed isotopes depicted by different colored lines. The predicted ILR transformed ratios depicted by
white lines are in the center of data crowds.

A similar conclusion can be drawn from Figure 9 as it was the case for the corresponding CLR and ALR
(Agten et al.) The MPCSE in Figure 9b shows that the error between the predicted and theoretical proba-
bilities is lower in the lower mass range. One reason could be that the distribution is scattered in the region
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Figure 6: Overlay plot the probability residuals for the first 10 DNA isotopes in the CLR space. Only the first ten due
to lacking the computational resources required by such a large dataset.

with lower mass values. CLR transformed isotopes and ILR transformed isotopes more or less showed the same
model performance. It might be because ILR transformation can be derived from the CLR transformation.
Appendices Figure 1 shows the overlay plot of the probability residuals for the first 10 DNA isotopes in the ILR
space.

Figure 7: Evolution of the difference of test mean squared error between consecutive polynomial orders based on monoiso-
topic mass. Each colored line represents the 20 isometric log-ratios of DNA isotopes. MSE differences become flat for
most variables at polynomial degree 10; hence, the polynomial model of order ten was selected.
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Figure 8: Scatterplot of the first ten ILR transformed DNA isotopes (only the first ten due to lacking computational
resources required by such a large dataset). Each colored line represents the data cloud of ratios in ILR space, and the
white lines are the predicted ratios.

(a) MSE (b) MPCSE

Figure 9: Provides the mean squared error and modified Pearson chi-square error of the 20 DNA isotope peaks based
on ILR monoisotopic mass DNA model.

3.3 Consecutive Ratio Transformation

3.3.1 Mono-isotopic mass

This research highlights the methodology’s new compositional data transformation technique, enabling a model
with lower polynomials and more straightforward interpretability. The modeling approach was made to assess
the model’s performance using this consecutive ratio compositional data transformation method. As it is ex-
pected that these ratios will behave linearly as the function of mono mass, a lower number of polynomials was
considered (from 1 to 10). Figure 11 shows how the test MSE differences evolved between consecutive polyno-
mials orders. Looking at the y-axis, the MSE difference from polynomial order 5 became steady (see appendices
Table 1 for actual test MSEs). Figure 12 shows the scatter plot of the first 10 CR transformed isotopes. It can
be noticed that white lines are in the middle of the data points, which means that the CR model makes the
correct prediction. Looking at Figure 13a, the MSE of the first 20 CR transformed isotopes grow in the higher
mass region. This could be due to the different scaling of the different techniques. Looking at the MPCSE
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Figure 10: Scatter plot of the first ten isotopes of all possible DNA molecules within the restricted mass range between
1463.2424 and 26899.3222 Da. Each of the ten isotopes is denoted by a different color. This plot illustrates how the
probability (y-axis) for a particular aggregated isotope variant evolves in the function of monoisotopic mass (x-axis). The
white lines are the back-transformed predicted ratios from CR-transformed isotopes.

plot in Figure 13b, the predicted probabilities in the lower mass are closer to the theoretical probabilities. The
result is comparable to CLR, ILR, and ALR transformation and is the lowest among them.

Figure 11: Evolution of the difference of test mean squared error between consecutive polynomial orders based on
monoisotopic mass. Each colored line represents the 20 consecutive ratios of DNA isotopes. MSE differences become flat
for most variables at polynomial degree five; hence, the polynomial model of order five was selected.
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Figure 12: Scatterplot of the first ten CR transformed DNA isotopes (only the first ten due to lacking computational
resources required by such a large dataset) based on monoisotopic mass. Each colored line represents the data cloud of
ratios in CR space, and the white lines are the predicted ratios.

(a) MSE (b) MPCSE

Figure 13: Provides the mean squared error and modified Pearson chi-square error of the 20 DNA isotope peaks based
on CR monoisotopic mass DNA model.

3.3.2 Average mass

Monoisotopic peak is less likely to be detected for larger molecules. For this reason, a consecutive ratio model
was also proposed based on the average mass. When a monoisotopic mass is missing, one can switch from the
consecutive ratio monoisotopic mass model to the ratio average mass model. Based on Figure 15, the test MSE
difference also plateaued from order five onwards (see appendices Table 2). Figure 16 provides the data clouds
of the first 10 CR transformed isotopes with the white lines as the predicted consecutive ratios. Figure 17a
provides the MSE of the CR transformed 20 isotope peaks, and Figure 17b shows the goodness-of-fit of the
model predictions. The goodness of fit plots of the model based on a monoisotopic mass and average mass seem
to work fine. Moreover, the polynomial degree order of 5 is way easier to interpret than the polynomial degree
10.
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Figure 14: Scatter plot of the first ten isotopes of all possible DNA molecules within the restricted mass range between
1463.2424 and 26899.3222 Da. Each of the ten isotopes is denoted by a different color. This plot illustrates how the
probability (y-axis) for a particular aggregated isotope variant evolves in function of average mass (x-axis). The white
lines are the back-transformed predicted ratios from CR-transformed isotopes.

Figure 15: Evolution of the difference of test mean squared error between consecutive polynomial orders based on
average mass. Each colored line represents the 20 consecutive ratios of DNA isotopes. MSE differences become flat for
most variables at polynomial degree five; hence, the polynomial model of order five was selected.

3.3.3 Model validation: real-life data

To validate the performance of the CR models based on monoisotopic mass and average mass in real space,
the MSE in the CR transformed space for the 68 isotope distributions of the DNA compound is showcased in
Figure 18 via three boxplots. It can be observed that the difference between theoretical model MSE and the
predicted average DNA and predicted mono DNA is very small. This implies that the consecutive average and
monoisotopic mass model of the CLR transformed isotopes is correct and that the estimation is close between
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Figure 16: Scatterplot of the first ten CR transformed DNA isotopes (only the first ten due to lacking computational
resources required by such a large dataset). Each colored line represents the data cloud of ratios in CR space, and the
white lines are the predicted ratios.

(a) MSE (b) MPCSE

Figure 17: Provides the mean squared error and modified Pearson chi-square error of the 20 DNA isotope peaks based
on CR average mass DNA model.

the theoretical and observed data. Moreover the modified Pearson chi-square error per isotope pattern was
obtained and is presented in Figure 19. It can be seen that the median value of the predicted DNA based on
monoisotopic and average mass is slightly higher than the theoretical data, which is logical since predicted DNA
models contain additional error(bias) from modeling.

3.4 Mass prediction

While it is important to predict the average isotope distribution, it is also essential to predict masses correspond-
ing to probabilities. This was carried out by first obtaining the average consecutive mass differences between 20
theoretical isotopes. To solve for the value of the unknown mass, we use the equation above in the methodology
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Figure 18: Boxplot of the mean squared error between observed and predicted CR ratios computed with the theoretical
model (based on the elemental composition using the BRAIN algorithm), predicted with average theoretical DNA model
using mono mass and predicted with average theoretical DNA model using average mass.

Figure 19: Boxplot of the modified Pearson Chi-square error between observed and predicted CR ratios computed with
the theoretical model (based on the elemental composition using the BRAIN algorithm), predicted with average theoretical
DNA model using mono mass and predicted with average theoretical DNA model using average mass.

with average mass, predicted isotope probabilities, and average mass differences that are available information.
The average consecutive differences are shown in Table 5. Figure 20 reveals the mass dependency of the residuals
(the difference between theoretical and predicted monoisotopic mass) of the first theoretical isotope. Theoretical
monoisotopic mass is the mass of the first isotopic peak measured in Da. The absolute differences were found
to be small. Note that our monoisotopic mass estimation is nicely centered for small molecules but becomes
biased when moving to higher mass regions. This is because, in our estimation procedure, we only use 20 peaks
which do not sufficiently cover the isotope distribution to use in the estimation procedure accurately.

However, an estimate based on limited observed peaks is also prone to measurement error when we have
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Table 5: The average mass differences between consecutive isotope variants on the entire theoretical DNA dataset. A
mass dependency can be observed in Figure 20.

Isotope Mass Difference (Da) Isotope Mass Difference (Da)
1 0.00000 11 1.002536
2 1.002707 12 1.002525
3 1.002677 13 1.002514
4 1.002651 14 1.002505
5 1.002629 15 1.002496
6 1.002609 16 1.002487
7 1.002591 17 1.002479
8 1.002575 18 1.002472
9 1.00259 19 1.002465
10 1.002548 20 1.002458

Figure 20: Overlay plot the mass residuals for the CR Average model of the first isotope of all possible DNA molecules.
The y-axis denotes the difference between the theoretical masses and predicted monoisotopic mass.

experimental spectra. Also, the termination of the sums will contribute to this error. Nevertheless, on a posi-
tive note, the bias is limited to 1 dalton, which opens paths for improvement by developing a method similar
in spirit to MIND [26] but then for DNA.

3.5 Discussion

Agten et al. proposed a compositional model for aggregated isotope distribution for average DNA and RNA
molecules based on the monoisotopic mass using the ALR transformation. Their results showed that the
ALR polynomial model of order 10 minimizes the test MSE error using a weighted least square regression
approach, hence being chosen as the final model. The modeling approach with the said polynomial order has
been implemented in the Shiny package from the R programming language, which can be accessed online on
valkenborg-lab.shinyapps.io/pointless4dna. It was emphasized in their study the suitability of ALR transfor-
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mation to partially observed data and direct comparison to the predicted ALR transformed isotopes when the
monoisotopic variant has a quantifiable intensity in the observed spectrum. As stated in their manuscript, two
remarks require consideration [20]:

1. The monoisotopic variant falls below the detection limit, obstructing the transformation of the observed
isotope distribution in the ALR space.

2. Large monoisotopic intensity errors will propagate severely in the ALR error as this reference is used to
transform isotopes. They suggested dividing the mass range into distinct regions for which an optimal
reference is chosen.

The first transformation conducted in this study is the CLR transformation. This transformation cannot be
applied when the observed isotope distribution is incomplete, which is true in this research and most cases.
However, there is no problem with using the CLR technique in an academic setting. Based on the Results,
a polynomial model of order ten was selected using a weighted least square regression approach (the same as
the modeling approach for ALR and ILR). The model prediction on the first 20 theoretical CLR transformed
isotopes showed a closer prediction than the ALR. It can be observed that the MSE is higher in the lower mass
region and consistently drops at the higher mass bins. Its MSE is no greater than 0.15, considerably lower than
ALR. Although, this goodness-of-fit measure cannot be used to compare different transformations since it is
scale-dependent. Each method has different calibrations. Hence, we look at the second goodness-of-fit metric,
MPCSE; CLR’s Pearson Chi-square error is noticeably lower than ALR’s which implies a closer prediction made
by the model. This could be because CLR transformation does not affect the relationship between each isotope
peak. To sum this up, there are two things to consider as well when using the CLR method:

1. The denominator of the CLR cannot be determined for sparse or incomplete data. In other words, the
geometric mean in the denominator requires observing the entire isotopic cluster to make accurate model
predictions in real-life applications. The CLR model is trained on the artificial databases of all molecules
with full isotopic distribution available, so the geometric mean of the partially observed isotope distribution
or a real-life molecule will somewhat differ.

2. The CLR transformation is scale-invariant [27].

The next transformation in line is the ILR transformation. The same as ALR and CLR, this method has no
limitations when it comes to theoretical data. However, when it comes to dealing with the observed isotope
distribution, it has some constraints listed as follows:

1. ILR’s calculation is quite different from the two previously mentioned techniques. It uses an orthonormal
basis as its reference to transform the compositional data.

2. Due to its complex computational nature (rotations of the basis), the estimates of ILR are hard to interpret
[28].

The results above show that ILR performs almost parallel to the CLR. The model predictions and the actual
CLR transformed isotope probabilities only differ slightly by not greater than 0.15. The MPCSE estimates were
comparable to CLR and perceptibly lower than ALR.

The last compositional data transformation explored in this study is the CR transformation. The consecu-
tive ratios’ computation is rather simple and can be applied to either partially or completely observed isotope
distribution. There is no known limitation of this method found in this research, instead, advantages of this
method are as follows as listed in Valkenborg’s paper [19]:

1. Consecutive ratios are dimensionless , and hence comparing observed and predicted CR values does not
require additional rescaling.

2. They are insensitive to multiplicative noise.
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3. The errors produced from subsequent ratios are smaller than those obtained with common reference ratios.

Looking at the figures above and outcomes in Agten et al., the CR models produced the lowest MSE and
MPCSE among the four transformations. Hence, the CR models were chosen as the final models to be further
evaluated with real-life mass spectral data to validate their performance. The goodness-of-fit measures revealed
satisfactory results indicating that the CR models works nicely in theory and in practice.
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3.6 Possible drawbacks of the methods used

Figures 10 and 14 illustrate that the relationship between the theoretical isotope probabilities and their monoiso-
topic or average mass in compositional space is non-linear. Polynomial regression is a vigorous technique when
this kind of non-linearity exists. As seen in the figures, the white lines (predicted probabilities) modeled with
the CR transformation are middling the data clouds of the ten isotope peaks. This indicates that the model
minimizes the MSE between the input and predicted values. Smaller values of MSE entail a better regression
model. However, polynomial regression is sensitive when outlying points are present in the dataset. That is
why in this study, before data modeling, monoisotopic and average masses were standardized, as discussed in
the data section.

Compositional data often occurs in bioinformatics and chemistry, which requires transformation before data
analysis. That is because of the application of standard statistics to closed-data results in misinterpretation.
Three commonly used compositional data transformations tackled above are ALR, CLR, and ILR. These meth-
ods are theoretically attractive but might be not in practice. As emphasized in Agten et al.’s work, ALR is a
suitable compositional data transformation technique for complete and partially observed isotope distribution
that allows easy predictions, given that the reference probability is detected. CLR, on the other hand, does not
use a single feature as a reference. Instead, it uses the geometric mean of each compositional probability vector
as the reference [29]. Since this transformation is applied separately to each composition vector, the outcome
of one is independent of the other. As with ALR, CLR has cons. One of them is that the geometric mean in
the denominator requires observing the entire isotopic cluster to make accurate model predictions in real-life
applications. In this study, the models are trained on the artificial databases of all molecules with full isotopic
distribution available, so the geometric mean of the partially observed isotope distribution or a real-life molecule
will somewhat differ. In the case of ILR, it is rather a computationally complex transformation technique. It
transforms the compositional data using an orthonormal basis as the reference [30]. The interpretation of the
ILR is unclear since it is hard to interpret the changing of the basis in practice; therefore, simple log-ratios can
be used in place of ILR [28]. To avoid such complexities and difficult-to-meet assumptions, we proposed a new
compositional data transformation called CR, as presented above. Since it is only a simple consecutive ratio of
the isotope peaks, this technique can be applied to a partly observed isotopic distribution. This method showed
more straightforward calculation and accurate model prediction. However, there could be some unknown factors
(limitations) when using this new method; there is no found restriction within this research and it can be further
studied/evaluated.
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3.7 Ethical Thinking, Societal Relevance, Stakeholder Awareness

3.7.1 Ethical thinking

Three ethical standards from Kenneth Goodman’s "Toward Striking a Balance in Bioinformatics" [31] are rele-
vant in fulfilling this master thesis project: accuracy and error, appropriate use, and privacy and confidentiality.
For accuracy and error, I ensured that the data was correctly prepared for the analysis and double-checked
when necessary. As for appropriate use, I made certain that the methods for the data analysis were carried out
correctly with the help of R software. If some areas were unclear to me, I asked my supervisors questions to
understand better. Regarding privacy and confidentiality, the European Union’s general data protection regu-
lation (GDPR) was designed for the data privacy rights of the concerned individuals, in this case, the biological
sample donors. As a well-known tool, mass spectrometry is widely used to study analytes in biological samples.
In this study, it is impossible to link the analyzed samples to individual patients based on the information in
the generated mass spectra without very detailed prior knowledge. The same holds for our proposed statistical
models as they only offer effective means for mass spectra processing and do not generate prior knowledge. All
project materials used in this thesis are kept with utmost confidentiality.

3.7.2 Stakeholder awareness

This study is situated within a chemical discipline called mass spectrometry. High-resolution MS instruments
opened new dimensions in analyzing pharmaceuticals and complex metabolites of biological samples which paves
the way for more research on genetic data to develop drugs with increased efficiency [32]. The main outcome of
this research is predicting the average isotope distribution of DNA molecules with a versatile and parsimonious
compositional model. Further, this model can be applied to study RNA molecules as well. These results might
be utilized in several ways or contexts at various stages of pharmaceutical drug development. For example,
when the active components in a pharmaceutical drug termed APIs (active pharmaceutical ingredients) are
already determined in the drug manufacturing phase, the next step is to decide on the optimal drug formulation
and production processes. At this stage, an observed series of peaks are compared with the predicted isotope
distribution based on either monoisotopic or average mass of that observed pattern in a mass spectrum of an
API. This keeps only relevant isotope information and excludes noisy peaks, which can considerably improve
data quality and reduce data dimensionality for further analyses [33]. Furthermore, the predicted isotope
distribution could also be used to separate overlapping signals from two or more compounds (e.g., an API
and its impurity or degradation product(s)). This situation can often be encountered in mass spectra acquired
during different kinds of laboratory studies aiming to characterize drug products’ physiochemical properties.
These two examples illustrate the valuable contributions to the pharmaceutical sector offered by our developed
methodology.

3.7.3 Societal relevance

DNA is named the "new era" of medicine. Over the years, the amount and complexity of analytical data
generated during pharmaceutical development have massively increased. At present, in-depth interpretation
of these vast amounts of analytical mass spectra has become a significant bottleneck. As emphasized above,
our novel isotope distribution prediction technique is expected to bring value to the reliable data analysis
and quicker interpretation of spectral information generated in the manufacturing phase of drug development.
Eventually, this may contribute to making new medicines available to patients more quickly (better compliance
with requirements posed by regulatory agencies), at a good cost and quality (analysis time savings and increased
results repeatability). Finally, the presented in this thesis methodology could perhaps be transferred to other
biomolecules (for instance, peptides). Therefore it could also be applicable in other pharmaceutical applications
such as drug discovery (search for novel APIs).
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4 Conclusion

This report has emphasized the use and importance of mass spectrometry in profiling DNA or RNA oligonu-
cleotides. On top of that, this manuscript presented a methodology for analyzing mass spectral data in a more
straightforward, flexible, and less computationally involved way that is deemed useful in the pharmaceutical
industry. This study’s focal point is the proposed CR models to predict the aggregated isotope distribution
of DNA molecules based on the monoisotopic and average mass. However, other existing research also proved
to perform well with certain limitations. Hence, the models from different transformations were compared
using two goodness-of-fit statistics. Based on the Results, the CR models are top among the four transforma-
tion techniques. Their predictions were near the actual theoretical isotope peak probabilities and mass values.
Hence, the CR models were assessed using the same goodness-of-fit metrics with real-life mass spectral data.
Based on Figures 18 and 19, the predicted average and predicted monoisotopic DNA models were very close
to the theoretical model. This implies that the modeling approach based on the CR works well. In addition,
the monoisotopic mass prediction based on the CR average model showed a minimal error of less than 1 Da,
which can be ignored. Ultimately, it is safe to say that the CR approach is a consistent, simple, and effective
compositional data transformation method.
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4.1 Ideas for the future research

DNA- and RNA-based therapies are booming in the healthcare industry, as pointed out since the beginning of
this manuscript. Novel therapy comes with a good data analysis design. This thesis presents a compositional
model for predicting the average isotope distribution of DNA molecules based on the CR transformation. The
results showed that CR outperforms ALR, CLR, and ILR transformations, assessed with their goodness-of-fit
measures- MSE and MPCSE which leads to the following ideas for future research:

1. The same modeling approach will be repeated to fit the two CR models to the theoretical RNA database
based on the molecule’s monoisotopic or average mass,

2. The possibility of extending the current CR models to accommodate certain fixed modifications frequently
occurring in DNA and RNA molecules will be investigated. These modifications often include sulfur atoms,
so the idea here is to predict the isotope distribution based on the molecule’s monoisotopic or average
mass after subtracting the sulfur masses and convolute the predicted probabilities with the theoretical
isotope distribution of sulfur atoms only.

3. Implement the modeling approach into a software tool such as a Shiny app in R, which can be accessed
online.
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5 Appendices

5.1 Additional figures and tables

Table 1: Test MSE of the 20 separate model fits on the 20 CR-transformed DNA isotopic peaks with polynomial orders
1 to 10 based on the monoisotopic mass.

Table 2: Test MSE of the 20 separate model fits on the 20 CR-transformed DNA isotopic peaks with polynomial orders
1 to 10 based on the average mass.
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Figure 1: Overlay plot the probability residuals for the first 10 DNA isotopes in the ILR space. Only the first ten due
to lacking the computational resources required by such a large dataset.
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5.2 Software Code
***R codes excerpt***

\\ CLR modelling based on monoisotopic mass \\
################### Isotopic Peak 1 #####################
CLR_OM_P1 <- lm(q.peak1 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5)+I(m.peak1^6)+I(m.peak1^7)

+I(m.peak1^8)+I(m.peak1^9)+I(m.peak1^10), data = Comb_DNA_CLR_OM)
CLR_OM_P1_resid = CLR_OM_P1$residuals
CLR_OM_P1_m2 <- lm(q.peak1 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5)+I(m.peak1^6)+I(m.peak1^7)

+I(m.peak1^8)+I(m.peak1^9)+I(m.peak1^10),weights = CLR_OM_P1_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 2#######################
CLR_OM_P2 <- lm(q.peak2 ~ m.peak2 + I(m.peak2^2)+I(m.peak2^3)+I(m.peak2^4)+I(m.peak2^5)+I(m.peak2^6)+I(m.peak2^7)

+I(m.peak2^8)+I(m.peak2^9)+I(m.peak2^10), data = Comb_DNA_CLR_OM)
CLR_OM_P2_resid = CLR_OM_P2$residuals
CLR_OM_P2_m2 <- lm(q.peak2 ~ m.peak2 + I(m.peak2^2)+I(m.peak2^3)+I(m.peak2^4)+I(m.peak2^5)+I(m.peak2^6)+I(m.peak2^7)

+I(m.peak2^8)+I(m.peak2^9)+I(m.peak2^10),weights = CLR_OM_P2_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 3#######################
CLR_OM_P3 <- lm(q.peak3 ~ m.peak3 + I(m.peak3^2)+I(m.peak3^3)+I(m.peak3^4)+I(m.peak3^5)+I(m.peak3^6)+I(m.peak3^7)

+I(m.peak3^8)+I(m.peak3^9)+I(m.peak3^10), data = Comb_DNA_CLR_OM)
CLR_OM_P3_resid = CLR_OM_P3$residuals
CLR_OM_P3_m2 <- lm(q.peak3 ~ m.peak3 + I(m.peak3^2)+I(m.peak3^3)+I(m.peak3^4)+I(m.peak3^5)+I(m.peak3^6)+I(m.peak3^7)

+I(m.peak3^8)+I(m.peak3^9)+I(m.peak3^10),weights = CLR_OM_P3_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 4#######################
CLR_OM_P4 <- lm(q.peak4 ~ m.peak4 + I(m.peak4^2)+I(m.peak4^3)+I(m.peak4^4)+I(m.peak4^5)+I(m.peak4^6)+I(m.peak4^7)

+I(m.peak4^8)+I(m.peak4^9)+I(m.peak4^10), data = Comb_DNA_CLR_OM)
CLR_OM_P4_resid = CLR_OM_P4$residuals
CLR_OM_P4_m2 <- lm(q.peak4 ~ m.peak4 + I(m.peak4^2)+I(m.peak4^3)+I(m.peak4^4)+I(m.peak4^5)+I(m.peak4^6)+I(m.peak4^7)

+I(m.peak4^8)+I(m.peak4^9)+I(m.peak4^10),weights = CLR_OM_P4_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 5#######################
CLR_OM_P5 <- lm(q.peak5 ~ m.peak5 + I(m.peak5^2)+I(m.peak5^3)+I(m.peak5^4)+I(m.peak5^5)+I(m.peak5^6)+I(m.peak5^7)

+I(m.peak5^8)+I(m.peak5^9)+I(m.peak5^10), data = Comb_DNA_CLR_OM)
CLR_OM_P5_resid = CLR_OM_P5$residuals
CLR_OM_P5_m2 <- lm(q.peak5 ~ m.peak5 + I(m.peak5^2)+I(m.peak5^3)+I(m.peak5^4)+I(m.peak5^5)+I(m.peak5^6)+I(m.peak5^7)

+I(m.peak5^8)+I(m.peak5^9)+I(m.peak5^10),weights = CLR_OM_P5_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 6#######################
CLR_OM_P6 <- lm(q.peak6 ~ m.peak6 + I(m.peak6^2)+I(m.peak6^3)+I(m.peak6^4)+I(m.peak6^5)+I(m.peak6^6)+I(m.peak6^7)

+I(m.peak6^8)+I(m.peak6^9)+I(m.peak6^10), data = Comb_DNA_CLR_OM)
CLR_OM_P6_resid = CLR_OM_P6$residuals
CLR_OM_P6_m2 <- lm(q.peak6 ~ m.peak6 + I(m.peak6^2)+I(m.peak6^3)+I(m.peak6^4)+I(m.peak6^5)+I(m.peak6^6)+I(m.peak6^7)

+I(m.peak6^8)+I(m.peak6^9)+I(m.peak6^10),weights = CLR_OM_P6_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 7#######################
CLR_OM_P7 <- lm(q.peak7 ~ m.peak7 + I(m.peak7^2)+I(m.peak7^3)+I(m.peak7^4)+I(m.peak7^5)+I(m.peak7^6)+I(m.peak7^7)

+I(m.peak7^8)+I(m.peak7^9)+I(m.peak7^10), data = Comb_DNA_CLR_OM)
CLR_OM_P7_resid = CLR_OM_P7$residuals
CLR_OM_P7_m2 <- lm(q.peak7 ~ m.peak7 + I(m.peak7^2)+I(m.peak7^3)+I(m.peak7^4)+I(m.peak7^5)+I(m.peak7^6)+I(m.peak7^7)

+I(m.peak7^8)+I(m.peak7^9)+I(m.peak7^10),weights = CLR_OM_P7_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 8#######################
CLR_OM_P8 <- lm(q.peak8 ~ m.peak8 + I(m.peak8^2)+I(m.peak8^3)+I(m.peak8^4)+I(m.peak8^5)+I(m.peak8^6)+I(m.peak8^7)

+I(m.peak8^8)+I(m.peak8^9)+I(m.peak8^10), data = Comb_DNA_CLR_OM)
CLR_OM_P8_resid = CLR_OM_P8$residuals
CLR_OM_P8_m2 <- lm(q.peak8 ~ m.peak8 + I(m.peak8^2)+I(m.peak8^3)+I(m.peak8^4)+I(m.peak8^5)+I(m.peak8^6)+I(m.peak8^7)

+I(m.peak1^8)+I(m.peak8^9)+I(m.peak8^10),weights = CLR_OM_P8_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 9#######################
CLR_OM_P9 <- lm(q.peak9 ~ m.peak9 + I(m.peak9^2)+I(m.peak9^3)+I(m.peak9^4)+I(m.peak9^5)+I(m.peak9^6)+I(m.peak9^7)

+I(m.peak9^8)+I(m.peak9^9)+I(m.peak9^10), data = Comb_DNA_CLR_OM)
CLR_OM_P9_resid = CLR_OM_P9$residuals
CLR_OM_P9_m2 <- lm(q.peak9 ~ m.peak9 + I(m.peak9^2)+I(m.peak9^3)+I(m.peak9^4)+I(m.peak9^5)+I(m.peak9^6)+I(m.peak9^7)

+I(m.peak9^8)+I(m.peak9^9)+I(m.peak9^10),weights = CLR_OM_P9_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 10#######################
CLR_OM_P10 <- lm(q.peak10 ~ m.peak10 + I(m.peak10^2)+I(m.peak10^3)+I(m.peak10^4)+I(m.peak10^5)+I(m.peak10^6)+I(m.peak10^7)

+I(m.peak10^8)+I(m.peak10^9)+I(m.peak10^10), data = Comb_DNA_CLR_OM)
CLR_OM_P10_resid = CLR_OM_P10$residuals
CLR_OM_P10_m2 <- lm(q.peak10 ~ m.peak10 + I(m.peak10^2)+I(m.peak10^3)+I(m.peak10^4)+I(m.peak10^5)+I(m.peak10^6)+I(m.peak10^7)

+I(m.peak10^8)+I(m.peak10^9)+I(m.peak10^10),weights = CLR_OM_P10_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 11#######################
CLR_OM_P11 <- lm(q.peak11 ~ m.peak11 + I(m.peak11^2)+I(m.peak11^3)+I(m.peak11^4)+I(m.peak11^5)+I(m.peak11^6)+I(m.peak11^7)

+I(m.peak11^8)+I(m.peak11^9)+I(m.peak11^10), data = Comb_DNA_CLR_OM)
CLR_OM_P11_resid = CLR_OM_P11$residuals
CLR_OM_P11_m2 <- lm(q.peak11 ~ m.peak11 + I(m.peak11^2)+I(m.peak11^3)+I(m.peak11^4)+I(m.peak11^5)+I(m.peak11^6)+I(m.peak11^7)

+I(m.peak11^8)+I(m.peak11^9)+I(m.peak11^10),weights = CLR_OM_P11_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 12#######################
CLR_OM_P12 <- lm(q.peak12 ~ m.peak12 + I(m.peak12^2)+I(m.peak12^3)+I(m.peak12^4)+I(m.peak12^5)+I(m.peak12^6)+I(m.peak12^7)

+I(m.peak12^8)+I(m.peak12^9)+I(m.peak12^10), data = Comb_DNA_CLR_OM)
CLR_OM_P12_resid = CLR_OM_P12$residuals
CLR_OM_P12_m2 <- lm(q.peak12 ~ m.peak12 + I(m.peak12^2)+I(m.peak12^3)+I(m.peak12^4)+I(m.peak12^5)+I(m.peak12^6)+I(m.peak12^7)

+I(m.peak12^8)+I(m.peak12^9)+I(m.peak12^10),weights = CLR_OM_P12_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 13#######################
CLR_OM_P13 <- lm(q.peak13 ~ m.peak13 + I(m.peak13^2)+I(m.peak13^3)+I(m.peak13^4)+I(m.peak13^5)+I(m.peak13^6)+I(m.peak13^7)

+I(m.peak13^8)+I(m.peak13^9)+I(m.peak13^10), data = Comb_DNA_CLR_OM)
CLR_OM_P13_resid = CLR_OM_P1$residuals
CLR_OM_P13_m2 <- lm(q.peak13 ~ m.peak13 + I(m.peak13^2)+I(m.peak13^3)+I(m.peak13^4)+I(m.peak13^5)+I(m.peak13^6)+I(m.peak13^7)

+I(m.peak13^8)+I(m.peak13^9)+I(m.peak13^10),weights = CLR_OM_P13_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 14#######################
CLR_OM_P14 <- lm(q.peak14 ~ m.peak14 + I(m.peak14^2)+I(m.peak14^3)+I(m.peak14^4)+I(m.peak14^5)+I(m.peak14^6)+I(m.peak14^7)

+I(m.peak14^8)+I(m.peak14^9)+I(m.peak14^10), data = Comb_DNA_CLR_OM)
CLR_OM_P14_resid = CLR_OM_P14$residuals
CLR_OM_P14_m2 <- lm(q.peak14 ~ m.peak1 + I(m.peak14^2)+I(m.peak14^3)+I(m.peak14^4)+I(m.peak14^5)+I(m.peak14^6)+I(m.peak14^7)

+I(m.peak14^8)+I(m.peak14^9)+I(m.peak14^10),weights = CLR_OM_P14_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 15#######################
CLR_OM_P15 <- lm(q.peak15 ~ m.peak15 + I(m.peak15^2)+I(m.peak15^3)+I(m.peak15^4)+I(m.peak15^5)+I(m.peak15^6)+I(m.peak15^7)

+I(m.peak15^8)+I(m.peak15^9)+I(m.peak15^10), data = Comb_DNA_CLR_OM)
CLR_OM_P15_resid = CLR_OM_P15$residuals
CLR_OM_P15_m2 <- lm(q.peak15 ~ m.peak15 + I(m.peak15^2)+I(m.peak15^3)+I(m.peak15^4)+I(m.peak15^5)+I(m.peak15^6)+I(m.peak15^7)

+I(m.peak15^8)+I(m.peak15^9)+I(m.peak15^10),weights = CLR_OM_P15_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 16#######################
CLR_OM_P16 <- lm(q.peak1 ~ m.peak16 + I(m.peak16^2)+I(m.peak16^3)+I(m.peak16^4)+I(m.peak16^5)+I(m.peak16^6)+I(m.peak16^7)
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+I(m.peak16^8)+I(m.peak16^9)+I(m.peak16^10), data = Comb_DNA_CLR_OM)
CLR_OM_P16_resid = CLR_OM_P16$residuals
CLR_OM_P16_m2 <- lm(q.peak16 ~ m.peak16 + I(m.peak16^2)+I(m.peak16^3)+I(m.peak16^4)+I(m.peak16^5)+I(m.peak16^6)+I(m.peak16^7)

+I(m.peak16^8)+I(m.peak16^9)+I(m.peak16^10),weights = CLR_OM_P16_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 17##########################
CLR_OM_P17 <- lm(q.peak17 ~ m.peak17 + I(m.peak17^2)+I(m.peak17^3)+I(m.peak17^4)+I(m.peak17^5)+I(m.peak17^6)+I(m.peak17^7)

+I(m.peak17^8)+I(m.peak17^9)+I(m.peak17^10), data = Comb_DNA_CLR_OM)
CLR_OM_P17_resid = CLR_OM_P17$residuals
CLR_OM_P17_m2 <- lm(q.peak17 ~ m.peak17 + I(m.peak17^2)+I(m.peak17^3)+I(m.peak17^4)+I(m.peak17^5)+I(m.peak17^6)+I(m.peak17^7)

+I(m.peak17^8)+I(m.peak17^9)+I(m.peak17^10),weights = CLR_OM_P17_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 18#######################
CLR_OM_P18 <- lm(q.peak18~ m.peak18 + I(m.peak18^2)+I(m.peak18^3)+I(m.peak18^4)+I(m.peak18^5)+I(m.peak18^6)+I(m.peak18^7)

+I(m.peak18^8)+I(m.peak18^9)+I(m.peak18^10), data = Comb_DNA_CLR_OM)
CLR_OM_P18_resid = CLR_OM_P18$residuals
CLR_OM_P18_m2 <- lm(q.peak18 ~ m.peak18 + I(m.peak18^2)+I(m.peak18^3)+I(m.peak18^4)+I(m.peak18^5)+I(m.peak18^6)+I(m.peak18^7)

+I(m.peak18^8)+I(m.peak18^9)+I(m.peak18^10),weights = CLR_OM_P18_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 19#######################
CLR_OM_P19 <- lm(q.peak19 ~ m.peak19 + I(m.peak19^2)+I(m.peak19^3)+I(m.peak19^4)+I(m.peak19^5)+I(m.peak19^6)+I(m.peak19^7)

+I(m.peak19^8)+I(m.peak19^9)+I(m.peak19^10), data = Comb_DNA_CLR_OM)
CLR_OM_P19_resid = CLR_OM_P19$residuals
CLR_OM_P19_m2 <- lm(q.peak19 ~ m.peak19 + I(m.peak19^2)+I(m.peak19^3)+I(m.peak19^4)+I(m.peak19^5)+I(m.peak19^6)+I(m.peak19^7)

+I(m.peak19^8)+I(m.peak19^9)+I(m.peak19^10),weights = CLR_OM_P19_resid^2 , data = Comb_DNA_CLR_OM)
###################Isotopic Peak 20#######################
CLR_OM_P20 <- lm(q.peak20 ~ m.peak20 + I(m.peak20^2)+I(m.peak20^3)+I(m.peak20^4)+I(m.peak20^5)+I(m.peak20^6)+I(m.peak20^7)

+I(m.peak20^8)+I(m.peak20^9)+I(m.peak20^10), data = Comb_DNA_CLR_OM)
CLR_OM_P20_resid = CLR_OM_P20$residuals
CLR_OM_P20_m2 <- lm(q.peak20 ~ m.peak20 + I(m.peak20^2)+I(m.peak20^3)+I(m.peak20^4)+I(m.peak20^5)+I(m.peak20^6)+I(m.peak20^7)

+I(m.peak20^8)+I(m.peak20^9)+I(m.peak20^10),weights = CLR_OM_P1_resid^20 , data = Comb_DNA_CLR_OM)
\\ Same procedure for ILR modelling \\
\\ Softmax transformation was used to backtransform predicted ratios in CLR space, while ilrInv function was used for ILR \\
\\ CR modelling based on monoisotopic mass \\
CR_r1_po5 <- lm(r_1 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r2_po5 <- lm(r_2 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r3_po5 <- lm(r_3 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r4_po5 <- lm(r_4 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r5_po5 <- lm(r_5 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r6_po5 <- lm(r_6 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r7_po5 <- lm(r_7 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r8_po5 <- lm(r_8 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r9_po5 <- lm(r_9 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r10_po5 <- lm(r_10 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r11_po5 <- lm(r_11 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r12_po5 <- lm(r_12 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r13_po5 <- lm(r_13 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r14_po5 <- lm(r_14 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r15_po5 <- lm(r_15 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r16_po5 <- lm(r_16 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r17_po5 <- lm(r_17 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r18_po5 <- lm(r_18 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data =dna20_consr)
CR_r19_po5 <- lm(r_19 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
CR_r20_po5 <- lm(r_20 ~ m.peak1 + I(m.peak1^2)+I(m.peak1^3)+I(m.peak1^4)+I(m.peak1^5), data = dna20_consr)
\\Same procedure for CR modelling based on average mass\\
\\ Backtransformation for CR model based on monoisotopic mass \\
tr1 = cm_df$cm1
tr2 = cm_df$cm1 *cm_df$cm2
tr3 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3
tr4 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4
tr5 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5
tr6 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6
tr7 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7
tr8 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8
tr9 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9
tr10 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10
tr11 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11
tr12 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12
tr13 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13
tr14 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14
tr15 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14 *cm_df$cm15
tr16 =cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14 *cm_df$cm15 *cm_df$cm16
tr17 =cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14 *cm_df$cm15 *cm_df$cm16
*cm_df$cm17
tr18 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14 *cm_df$cm15 *cm_df$cm16
*cm_df$cm17 *cm_df$cm18
tr19 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14 *cm_df$cm15 *cm_df$cm16
*cm_df$cm17 *cm_df$cm18 *cm_df$cm19
tr20 = cm_df$cm1 *cm_df$cm2 *cm_df$cm3 *cm_df$cm4 *cm_df$cm5 *cm_df$cm6 *cm_df$cm7 *cm_df$cm8 *cm_df$cm9 *cm_df$cm10 *cm_df$cm11 *cm_df$cm12 *cm_df$cm13 *cm_df$cm14 *cm_df$cm15 *cm_df$cm16
*cm_df$cm17 *cm_df$cm18 *cm_df$cm19 *cm_df$cm20

#D constant
d = 1+tr1 + tr2 +tr3 +tr4 +tr5+tr6+tr7+tr8+tr9+tr10+tr11+tr12+tr13+tr14+tr15+tr16+tr17+tr18+tr19+tr20
#backtransformed probabilities

p1 = 1/d
p2 = tr1 /d
p3 = tr2/d
p4 = tr3/d
p5 = tr4/d
p6 = tr5/d
p7 = tr6/d
p8 = tr7/d
p9 = tr8/d
p10 = tr9/d
p11 = tr10/d
p12 = tr11/d
p13 = tr12/d
p14 = tr13/d
p15 = tr14/d
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p16 = tr15/d
p17 = tr16/d
p18 = tr17/d
p19 = tr18/d
p20 = tr19/d
p21 = tr20/d

p_bt_df_md = data.frame(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21)
\\ Same method is used for CR average model for obtaining predicted probabilities \\
\\ Model validation: CR model \\
\\ for example, 1st cluster prediction\\
####1st cluster
p0 = predict(CR_r1_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[1] ))
p1 = predict(CR_r2_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[2] ))
p2 = predict(CR_r3_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[3] ))
p3 = predict(CR_r4_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[4] ))
p4 =predict(CR_r5_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[5] ))
p5 = predict(CR_r6_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[6] ))
p6 = predict(CR_r7_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[7] ))
p7 = predict(CR_r8_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[8] ))
p8 = predict(CR_r9_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[9] ))
p9 = predict(CR_r10_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[10] ))
p10 = predict(CR_r11_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[11] ))
p11 = predict(CR_r12_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[12] ))
p12 = predict(CR_r13_po5, newdata = data.frame(m.peak1 = st_exMono$stMM[13] ))

p13 = predict(CR_r14_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))
p14 = predict(CR_r15_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))
p15 = predict(CR_r16_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))
p16 = predict(CR_r17_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))
p17 = predict(CR_r18_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))
p18 = predict(CR_r19_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))
p19 = predict(CR_r20_po5, newdata = data.frame(m.peak1 = st_pclust$pclust[1] ))

f1_cl = data.frame(p0, p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19)
\\ Same steps for CR model based on average mass \\
\\Backtransformation is the same as above\\
\\Mass prediction \\
m_temp2 = dna_og_cl$m.peak2 - dna_og_cl$m.peak1
m_temp3 = dna_og_cl$m.peak3 - dna_og_cl$m.peak2
m_temp4 = dna_og_cl$m.peak4 - dna_og_cl$m.peak3
m_temp5 = dna_og_cl$m.peak5 - dna_og_cl$m.peak4
m_temp6 = dna_og_cl$m.peak6 - dna_og_cl$m.peak5
m_temp7 = dna_og_cl$m.peak7 - dna_og_cl$m.peak6
m_temp8 = dna_og_cl$m.peak8 - dna_og_cl$m.peak7
m_temp9 = dna_og_cl$m.peak9 - dna_og_cl$m.peak8
m_temp10 = dna_og_cl$m.peak10 - dna_og_cl$m.peak9
m_temp11 = dna_og_cl$m.peak11 - dna_og_cl$m.peak10
m_temp12 = dna_og_cl$m.peak12 - dna_og_cl$m.peak11
m_temp13 = dna_og_cl$m.peak13 - dna_og_cl$m.peak12
m_temp14= dna_og_cl$m.peak14 - dna_og_cl$m.peak13
m_temp15 = dna_og_cl$m.peak15 - dna_og_cl$m.peak14
m_temp16 = dna_og_cl$m.peak16 - dna_og_cl$m.peak15
m_temp17 = dna_og_cl$m.peak17 - dna_og_cl$m.peak16
m_temp18 = dna_og_cl$m.peak18 - dna_og_cl$m.peak17
m_temp19 = dna_og_cl$m.peak19 - dna_og_cl$m.peak18
m_temp20 = dna_og_cl$m.peak20 - dna_og_cl$m.peak19
temp2_20_df = data.frame(m_temp2,m_temp3,m_temp4,m_temp5,m_temp6,m_temp7,m_temp8,m_temp9,m_temp10,m_temp11,m_temp12,m_temp13,m_temp14,

m_temp15,m_temp16,m_temp17,m_temp18,m_temp19,m_temp20)
delta_cols_df = colMeans(temp2_20_df)
delta_cols_df = data.frame(delta_cols_df)
delta = data.frame(1.002707,1.002677,1.002651,1.002629,1.002609,1.002591,1.002575,1.002561,1.002548,1.002536,1.002525,1.002514,1.002505,1.002496,1.002487,1.002479,

1.002472,1.002465,1.002458)
bt_probabilities = dna_og_cl[,28:47]
#unstandardized average mass
###Mass vector Calculation
prob_sum = bt_probabilities[,1]+bt_probabilities[,2]+bt_probabilities[,3]+bt_probabilities[,4]+bt_probabilities[,5]+bt_probabilities[,6]+bt_probabilities[,7]+bt_probabilities[,8]
+bt_probabilities[,9]+

bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]
+bt_probabilities[,15]+bt_probabilities[,16]+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20]

m_temp = (ave_mass*prob_sum)
#######delta * probabilities
del2 = delta[,1]*(bt_probabilities[,2]+bt_probabilities[,3]+bt_probabilities[,4]+bt_probabilities[,5]+bt_probabilities[,6]+bt_probabilities[,7]+bt_probabilities[,8]
+bt_probabilities[,9]+

bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del3 = delta[,2]*(bt_probabilities[,3]+bt_probabilities[,4]+bt_probabilities[,5]+bt_probabilities[,6]+bt_probabilities[,7]+bt_probabilities[,8]+bt_probabilities[,9]+
bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del4 = delta[,3]*(bt_probabilities[,4]+bt_probabilities[,5]+bt_probabilities[,6]+bt_probabilities[,7]+bt_probabilities[,8]+bt_probabilities[,9]+
bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del5 = delta[,4]*(bt_probabilities[,5]+bt_probabilities[,6]+bt_probabilities[,7]+bt_probabilities[,8]
+bt_probabilities[,9]+

bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del6 = delta[,5]*(bt_probabilities[,6]
+bt_probabilities[,7]+bt_probabilities[,8]+bt_probabilities[,9]+

bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del7 = delta[,6]*(bt_probabilities[,7]
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+bt_probabilities[,8]+bt_probabilities[,9]+
bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del8 = delta[,7]*(bt_probabilities[,8]+bt_probabilities[,9]+
bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del9 = delta[,8]*(bt_probabilities[,9]+
bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+
bt_probabilities[,19]+bt_probabilities[,20])

del10 = delta[,9]*(bt_probabilities[,10]+bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]
+bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del11 = delta[,10]*(bt_probabilities[,11]+bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]+
bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del12 = delta[,11]*(bt_probabilities[,12]+bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]+bt_probabilities[,17]
+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del13 = delta[,12]*(bt_probabilities[,13]+bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]+bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del14 = delta[,13]*(bt_probabilities[,14]+bt_probabilities[,15]+bt_probabilities[,16]+bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del15 = delta[,14]*(bt_probabilities[,15]+bt_probabilities[,16]+bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del16 = delta[,15]*(bt_probabilities[,16]+bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del17 = delta[,16]*(bt_probabilities[,17]+bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del18 = delta[,17]*(bt_probabilities[,18]+

bt_probabilities[,19]+bt_probabilities[,20])
del19 = delta[,18]*(bt_probabilities[,19]+bt_probabilities[,20])
del20 = delta[,19]*(bt_probabilities[,20])
delta_prob_sum = del2+del3+del4+del5+del6+del7+del8+del9+del10+del11+del12+del13+del14+del15+del16+del17+del18+del19+del20
m1 = (m_temp-delta_prob_sum)/prob_sum #predicted mass vector
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