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Abstract

Background: Many research areas and especially epidemiologists and geostatistical re-

searchers have shown increasing interest in boundary analysis known as spatial wombling.

Spatial models for areal data are used to get a smooth risk surface map by accounting for

the variability in the areas. It is also interesting to identify the differences in adjacent areas

and highlight those boundaries that have a high difference amongst neighboring areas like

the difference boundaries. Several methods have been proposed in the literature to formally

identify those boundaries.

Objectives: This study aimed to conduct a review of different wombling methods for areal

data and to use the methods to investigate difference boundaries in the COVID-19 inci-

dence at different time points in Belgium (Wave 1, Wave 2, Wave 3).

Methodology: We searched 3 English language databases (PubMed, JSTOR, and Google

Scholar) for studies published between 1951 and April 15, 2023. Eligible studies were spatial

boundary analysis for areal data with application to disease or health-related outcomes. The

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) check-

list was used to conduct the systematic review. A spatial univariate areal wombling of

COVID-19 incidence in Belgium was conducted throughout the three different waves of the

pandemic applying both algorithm-based and model-based wombling. For the model-based

wombling, we used both globally and locally smooth Conditional Autoregressive Priors

(CAR) models. A residual-based wombling was conducted as well.

Results: After screening, a total of 24 papers were included in the review. Two main

wombling techniques exist: Crisp wombling and Fuzzy wombling and they differ from each

other by the way of calculating the boundary membership value (BMV). The wombling can

be either algorithm-based or model-based using Bayesian hierarchical models.

Univariate spatial wombling of COVID-19 incidence in Belgium has identified boundaries

in the incidence map during the three different waves. Wave 2 presented a more remarkable

difference splitting the country into two regions: the North marked by a medium incidence

and the South marked by a strong incidence. Algorithm-based wombling has generally

identified more boundaries compared to model-based wombling. The residual wombling

demonstrated that the identification of the boundaries may be correlated with some spa-

tially oriented covariates.

Conclusion: Wombling of COVID-19 incidence has identified boundaries in the map

across the different waves of the pandemic. The type of wombling and the Bayesian hier-

archical model affected the number of identified boundaries.

Key Words: Wombling; Areal data; Bayesian hierarchical model; COVID-19; Belgium
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1 Introduction

Spatial data analysis of health-related outcomes has received increasing attention in the

spatial statistics literature. Indeed, as Geographical Information Systems (GIS) become

more widely available, researchers and administrators in public health are increasingly ex-

periencing areal statistics aggregated as case counts or rates across areal units or regions

(states, counties, census tracts, or ZIP codes) (Li et al., 2015).

In public health applications, spatial data analysis frequently begins with statistical models

for areal data, which include regional aggregates of health outcomes across delineated ad-

ministrative units (Gao et al., 2022). By smoothing across and borrowing information from

its geographical neighbors, statistical models for areal data can account for known sources

of variability in the data as well as sparsely sampled regions (Banerjee and Gelfand, 2006;

Li et al., 2015). Spatial models for areal data are used to get a smooth risk surface map by

accounting for the variability in the areas.

An especially pressing issue is determining statistically significant differences between sur-

rounding locations and, as a result, defining the geographical barriers or difference bound-

aries that separate them. The fundamental causes of these borders or barriers are usually

of scientific and administrative importance (Li et al., 2015). Spatial analysts, on the other

hand, have recently shown an increasing interest in finding zones or boundaries that sug-

gest significant changes in the values of spatially oriented variables (Lu and Carlin, 2005).

In other words, interest can also be in identifying the differences in adjacent areas, and

highlighting those boundaries that have a high difference amongst neighboring areas, i.e.

the difference boundaries.

The purpose of spatial boundary analysis, which is the determination of boundaries on a

map that separates areas with higher and lower values, is to uncover significant barriers

and the underlying influences responsible for these barriers (Lu and Carlin, 2005). This

boundary detection problem is sometimes referred to as wombling, after Womble’s seminal

study (Womble, 1951). Since then, wombling has gained popularity as a method for evalu-

ating geographical linkages among many other disciplines, including genetics, demography,

linguistics, ecology, and environmental science (Li et al., 2015). In disciplines like landscape

topography, systematic biology, sociology, ecology, and public health, the process we gen-

erally refer to as ”wombling” is also called barrier analysis or edge identification (Li et al.,

2015). The method has been first developed for point-referenced data and extended later

to areal data.

Boundary analysis has significantly evolved since Womble’s groundbreaking paper in 1951,

moving from straightforward algorithmic or deterministic methods to today’s highly so-
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phisticated methods using Bayesian hierarchical models. This evolution has been made

feasible by the development of increasingly complex Bayesian statistical techniques. The

inadequacies of earlier methods are considered when creating new approaches.

On December 31, 2019, the World Health Organization (WHO) regional office was noti-

fied about a cluster of pneumonia cases of unknown origin related to a market in Wuhan,

China (Zhu et al., 2020). SARS-COV-2, a new coronavirus, was identified as the cause of

the infections and has subsequently expanded globally (Zhu et al., 2020). Several method-

ologies have been explored to predict the pandemic’s outbreak, including compartmental

models and statistical models. Many epidemiological studies have been conducted to in-

vestigate the regional spread of COVID-19 (Fatima et al., 2021). Epidemiological analysis

of the outbreak has been used to estimate epidemiologically relevant parameters (Read

et al., 2021; Li et al., 2020; Yang et al., 2020; Guan et al., 2020; Backer et al., 2020),

and available mathematical models have been used to track and predict the spread of the

epidemics (Gilbert et al., 2020). COVID-19 pandemic severity has been greatly influenced

by crowding, as indicated by increased prevalence in large cities compared to smaller cities

and rural areas (Read et al., 2021). Every country has been affected differently and has

shown a distinct pattern of incidence and death as a result of a variety of underlying factors

(Fatima et al., 2021). Studying the distribution of the disease and how it spreads across

time and space is fundamental to both health geography and spatial epidemiology (Glass,

2000). Understanding the geographical distribution of infection and its relationship with

the population and environment is critical, especially in the early phases of an outbreak

(Kang et al., 2020). Because transmission rates are higher when people are close to each

other, the concept of spatial and spatial-temporal proximity is profoundly associated with

infectious disease transmission (Pfeiffer et al., 2008). Disease spatial patterns frequently

indicate linkages between disease and potential risk factors in a geographic area (Waller,

2006).

Many studies have been conducted to investigate the spatial and spatiotemporal trends

in COVID-19 incidence in various countries worldwide. By accounting for the variability

in the areas, these algorithms produce a smooth risk surface map. Yet, there may be an

interest in discovering discrepancies in adjacent areas and highlighting those boundaries

that have a substantial difference between neighboring areas (the difference boundaries).

Boundary analysis assists in identifying regional variances across shared boundaries in or-

der to find homogeneous zones or key barriers (Lu and Carlin, 2005). In the sphere of

public health, wombling is particularly effective for improving disease preventive and con-

trol decision-making by finding zones of significantly differing incidence or death (Lu et al.,

2007). This could assist decision-makers in allocating greater resources to the pandemic’s
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worst-impacted regions.

The remainder of this thesis is organized as follows. Section 2 presents a systematic review

of areal wombling methods. Section 3 conducts wombling of spatial COVID-19 incidence in

Belgium at different time points in Belgium (Wave 1, Wave 2, Wave 3). Section 4 discusses

our findings. Section 5 presents the ethical thinking, societal relevance, and stakeholder

awareness and Section 6 presents the conclusion, and limitations and suggests directions

for future research.
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2 Part I: Spatial, Spatio-temporal, and Multivariate areal

Wombling of diseases: a systematic review

2.1 Methodology

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

checklist was used to conduct the systematic review (Page et al., 2021).

2.1.1 Data sources and search strategy

To reduce the potential for bias, a comprehensive search technique involving various elec-

tronic literature databases was used. Following the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) criteria (Page et al., 2021), we searched

three English literature databases from 1951 (after the foundational work of Womble, 1951)

through 30 March 2023 (PubMed, JSTOR, and Google Scholar). These databases were cho-

sen because English-speaking researchers frequently utilize them.

The following phrases were combined with the boolean expression ’OR’ within groups or

’AND’ between groups to form the search syntax: (1) Wombling – Boundary analysis –

Detection of zone – Difference boundaries; (2) Areal data – Lattice data – Polygon data –

Aggregate data – Spatially homogenized data; and (3) Spatial – Spatiotemporal – Spatial

dynamics.

2.1.2 Eligibility criteria

The following eligibility criteria were defined: (1) English papers published from 1951 to

April 15, 2023. (2) Spatial boundary analysis or Detection of difference boundaries. (3)

Research scales at the municipality level, county level, and state level. (4) Application to

disease, public health, or health-related outcome. (5) Published in a peer-reviewed journal.

The exclusion criteria were as follows: (1) review articles; editorials or published letters (2)

books; (3) other fields of application: agriculture, ecology, population genetics, vegetation

sciences, demography, and criminology.

2.1.3 Study selection

After deduplication, the papers were screened using the title, abstracts, and keywords, as

well as the entire text of the publications when more information was required for eligibility

identification.
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2.1.4 Data collection process

We extracted information about wombling techniques as well as the Bayesian hierarchi-

cal models used as background in the case of model-based wombling. Descriptive details

obtained included: Journal – Title – Authors – Country - Year of publication – Disease

– Research scale (counties, zip codes, municipalities) – Type of wombling – Type of data

(Spatial, Spatio-temporal) – Number of outcomes (univariate, Multivariate) – Software

package if available.

2.1.5 Ethics Statement

Because this was a systematic review, no ethical approval was required.

2.2 Results

2.2.1 Search results

A preliminary systematic literature search yields 134 results. After deleting duplicates,

we kept 123 records for the title and abstract screening. Because they did not match the

review eligibility requirements, 44 records were excluded. 55 records are unrelated to disease

from the 79 potentially relevant studies reviewed in full text. Population genetics, ecology,

vegetative sciences, spatial demography, and criminology were among the application fields

we excluded from this review. Other papers used point-referenced or point-process data.

The screening method results in 24 eligible studies. The screening process is presented in

the diagram of Figure 1.

2.2.2 Characteristics of the studies included

We collected contextual elements from the papers included in the review after a short scan

of the text. 19 (79.17 %) of the 24 research focused on disease spatial wombling, 2 (8.33%)

papers on spatiotemporal wombling, and 3 (12.5%) papers on multivariate wombling. For

the model’s applicability, all of the studies employed county-level data. The literature

studied two types of wobbling: Crisp wobbling and Fuzzy wobbling. Wombling can also be

algorithmic, or model-based. Model-based wombling employs Bayesian hierarchical models

as well as non-parametric Bayesian hierarchical models with adjacency modeling.

There are three options for model-based wombling: mean-based wombling, residual-based

(random effect-based) wombling, and variance-based wombling.

16 of the 19 studies dealt with univariate wombling (one outcome) while 3 dealt with mul-

tivariate wobbling.
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Figure 1: Flow diagram of study selection

Furthermore, the diseases investigated in the papers include influenza, pneumonia, breast

cancer, colorectal cancer, pancreatic cancer, lung cancer, cervix cancer, respiratory and

circulatory disorders, and others.

2.2.3 Spatial areal Modeling with Conditional Autoregressive Priors

Areal data show spatial autocorrelation, with observations from nearby areal units likely to

have comparable values. A portion of this spatial autocorrelation may be modeled by known

covariate risk factors in a regression model, although the spatial structure is often retained

in the residuals after these covariate effects are accounted for. Unmeasured confounding,

neighborhood effects, and grouping effects can all cause residual spatial autocorrelation.

As part of a Bayesian hierarchical model, the most frequent solution for residual autocorre-

lation is to augment the linear predictor with a collection of spatially autocorrelated random

effects. These random effects are commonly represented with a conditional autoregressive

prior (Besag et al., 1991), which creates spatial autocorrelation via the areal unit adjacency
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structure. Several CAR priors have been presented in the literature, including the intrinsic

and Besag-York-Mollié (BYM) models (Besag et al., 1991), as well as the (Leroux et al.,

2000) alternative.

These CAR priors, on the other hand, cause random effects to reflect a single global level

of spatial autocorrelation ranging from independence to remarkable spatial smoothness. A

uniform degree of spatial autocorrelation for the entire region may be implausible for real-

world data, which may instead show sub-regions of spatial autocorrelation separated by

discontinuities. Several techniques, notably (Lee and Mitchell, 2012) and (Lee and Sarran,

2015) have been presented for extending the class of CAR priors to deal with localized

spatial smoothing among random effects.

In this section, we present all the details about the globally and locally spatial smoothing

CAR models.

The study region S is partitioned into K non-overlapping areal units S = S1, ..., SK , which

are linked to a corresponding set of responses Y = (Y1, ..., YK), and a vector of known

offsets O = 01, ..., 0K . The spatial variation in the response is modeled by a matrix of

covariates X = (x1, ..., xK) and a spatial structure component Ψ = (Ψ1, ...,Ψ2), the latter

of which is included to model any spatial autocorrelation that remains in the data after the

covariate effects have been accounted for (Lee, 2017). For a count outcome variable, the

spatial generalized linear mixed model is given by:

Yk ∼ Poisson(µk)

and ln(µk) = xTk β +Ok +Ψk

Globally smooth CAR models

The globally smooth model is one that employs priors that require random effects to reflect

a single global level of spatial autocorrelation, ranging from independence to strong spatial

smoothness. Independence, Intrinsic CAR model (Besag model), Besag-York-Mollié (BYM)

model, and Leroux model are the globally smooth CAR model. A model selection technique

based on DIC (Deviance Information Criterion) can be used to find the best globally smooth

model. The use of AIC and BIC does not seem sensible here as the theory that supports

them does not extend to the random effects setting.

a-Besag-York-Mollie (BYM) CAR model

The convolution or Besag-York-Mollie (BYM) CAR model outlined in (Besag et al., 1991)

contains both spatially autocorrelated and independent random effects and is given by:
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ψk = ϕk + θk

ϕk | ϕ−k,W, τ2 ∼ N

(∑K
i=1wkiϕi∑K
i=1wki

,
τ2∑K

i=1wki

)
θk ∼ N

(
0, σ2

)
τ2, σ2 ∼ Inverse-Gamma(a, b).

Here θ = (θ1, ..., θK) are independent random effects with zero mean and constant vari-

ance, while spatial autocorrelation is modeled via random effects ϕ = (ϕ1, ..., ϕK). The

conditional expectation for the latter is the average of the random effects in nearby areas,

while the conditional variance is inversely proportional to the number of neighbors. This is

appropriate because if the random effects are significantly spatially autocorrelated, then the

more neighbors a region has, the more information there is about the value of its random

effect from its neighbors, and so the uncertainty decreases.

This model contains two random effects for each data point, and as only their sum is iden-

tifiable from the data only Φk = ϕk + θk is returned to the user.

b- Leroux model

Leroux et al. (2000) developed an alternative CAR prior to modeling different levels of

spatial autocorrelation with a single set of random effects.

ψk = ϕk

ϕk | ϕ−k,W, τ2, ρ ∼ N

(
ρ
∑K

i=1wkiϕi

ρ
∑K

i=1wki + 1− ρ
,

τ2

ρ
∑K

i=1wki + 1− ρ

)
τ2 ∼ Inverse-Gamma(a, b)

ρ ∼ Uniform(0, 1)

Here ρ is a spatial dependence parameter taking values in the unit interval and can be

fixed. Specifically, ρ = 1 corresponds to the intrinsic CAR model (defined for ϕ in the

BYM model above), while ρ = 0 corresponds to independence (ϕk ∼ N(0, τ2)).

Locally smooth CAR models

The globally smooth model makes use of a uniform level of spatial autocorrelation for the

entire region, and this may be unrealistic for real data, which instead may exhibit sub-

regions of spatial autocorrelation separated by discontinuities. One of the approaches to

overcome this issue is to use a locally smooth model. We used here two CAR priors to deal

with localized spatial smoothing amongst the random effects: (Lee and Mitchell, 2012) and

(Lee and Sarran, 2015). Again, the DIC criterion can be used to select the best localized
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smooth model that fits well the data.

For the set of random effects, the CAR priors provided above impose a single global level

of spatial smoothing, which for Leroux model is controlled by ρ. This is illustrated by the

partial autocorrelation structure implied by that model, which for (ϕk, ϕj) is given by

COR (ϕk, ϕj | ϕ−kj ,W, ρ) =
ρwkj√(

ρ
∑K

i=1wki + 1− ρ
)(

ρ
∑K

i=1wji + 1− ρ
)

The idea is that for non-neighboring area units (wkj = 0) the random effects are condition-

ally independent, while for neighboring area units (wkj = 1) their partial autocorrelation

is controlled by ρ.

a-Lee and Mitchell (2012)

Lee and Mitchell (2012) proposed a method to capture localized spatial autocorrelation and

identify boundaries in the random effects. If areal neighbors are adjacent (kj = 1), (ϕk, ϕj)

are spatially autocorrelated and smoothed over in the modeling process. (ϕ is the random

effect of a given areal unit). If adjacent neighbors are not adjacent (wkj = 0), no smoothing

between (ϕk, ϕj), and they are modeled as a conditional independent.

The model makes use of the Leroux model and fixed ρ at 0.99 and this ensures that the

random effects exhibit strong spatial smoothing globally, which can be altered locally by

estimating wkj |k ∼ j.

Each adjacency matrix Wkj is modeled as a function of dissimilarity between areal units

(Sk, Sj).

The dissimilarity matrix can be estimated based on social or physical factors (e.g.: rate

of smoking, presence of river, railway line, . . . etc.). Based on the dissimilarity, two

approaches are proposed for the estimation of wkj |k ∼ j.

Binary model

wkj(α) =

1 if exp (−
∑q

i=1 zkjiαi) ≥ 0.5 and k ∼ j

0 otherwise

αi ∼ Uniform (0,Mi) for i = 1, . . . , q

Mi is the upper limits for the priors for αi and depends on the distribution of Zkj and are

chosen weakly informative.
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Non-binary model

wkj(α) = exp

(
−

q∑
i=1

zkjiαi

)
αi ∼ Uniform(0, 50) for i = 1, . . . , q.

The q regression parameters α = (α1, ..., αq) represent the effect of dissimilarity Zkj metrics

on wkj |k ∼ j.

For the binary model, if αi < −ln(0.5)/max(Zkji), then the ith dissimilarity metric has

not solely identified any boundaries because exp(-αiZkji) > 0.5 for all k ∼ j.

Finally, Wkj contains 3 values: NA (non-adjacent) ; 0 (no boundary); 1 (boundary).

b-Lee and Sarran (2015)

An option to the above is to add a piecewise constant intercept or cluster model to the set

of spatially smooth random effects, allowing for huge jumps in the mean surface between

neighboring areal units in different clusters. The idea here is that in addition to the global

random effect (ϕ) in the Leroux model, a set of spatially smooth random intercepts are

incorporated into the model. The constant random intercepts are defined for each cluster

of areas in the study areas.

Lee and Sarran (2015) proposed a model to partition the region under study into G clusters

each with its own intercept term (λ1, ..., λG).

ψk = ϕk + λZk

ϕk | ϕ−k,W, τ2 ∼ N

(∑K
i=1wkiϕi∑K
i=1wki

,
τ2∑K

i=1wki

)
τ2 ∼ Inverse-Gamma(a, b)

λi ∼ Uniform (λi−1, λi+1) for i = 1, . . . , G

f (Zk) =
exp

(
−δ (Zk −G∗)2

)
∑G

r=1 exp
(
−δ (r −G∗)2

)
δ ∼ Uniform(1,M).

A weakly informative uniform prior is specified for the penalty parameter δ ∼ Uniform(1,M)

(by default M = 10), so that the data play the dominant role in estimating its value.

An area k is assigned to one of the G intercepts by Zk ϵ 1, ..., G.Zk is penalized towards the

middle intercept value so that extreme intercept classes (1 or G) may be empty.

Note that in our analysis, we used G=3 corresponding to the 3 language communities in
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Belgium.

2.2.4 Evolution of spatial areal wombling analysis over time

Since Womble’s foundational work in 1951, boundary analysis has evolved significantly over

time, progressing from simple algorithmic methods to highly sophisticated methods used to-

day. The development of increasingly advanced Bayesian statistical techniques has enabled

this evolution. We present a brief overview of the development of wombling approaches

in areal data. There are two types of wombling techniques: Crisp wombling and Fuzzy

wombling.

a- Crisp areal wombling

The interest in areal wombling is the difference boundaries, which are those borders that

separate two adjacent counties having dramatically different observed response values.

Algorithm-based wombling

The algorithm-based wombling consists of assigning a boundary likelihood value (BLV) to

each area border based on a gradient distance metric between neighboring observations.

BLVij = ∆ij = ∥Yi − Yj∥ (1)

with ∥.∥ a distance metric

The locations with similar BLV value (lower or higher) are more likely to belong to the same

difference boundary as the outcome change rapidly here. In Crisp wombling, when the BLV

exceeds a predefined threshold (let’s say c ≥ 0), belongs to a boundary membership value

(BMV) of 1 and 0 otherwise.

The algorithm-based wombling directly uses the outcome variable (Yi) to compute the

boundary likelihood value. This approach does not take into consideration the uncertainty

in the outcome but also, difficult to access how concentrated is the distribution of the BLV.

Model-based wombling

To overcome the issue with algorithm-based Crisp wombling, Hodges et al. (2003) examined

areal data using a linear model (Gaussian). However, a linear model is not applicable for

the most prevalent type of areal data, count data. Instead of using the raw or brute value

of the outcome in the computation of BLV, Lu and Carlin (2005) proposed a hierarchical

approach to estimate the value of the outcome at each location. The idea is to first model

the outcome variable as a function of measured covariates and spatial random effects. The

posterior distribution of the BLVs is then used to calculate the BMV. The model selection

procedure is used to select the hierarchical model that fits well the data. The traditional

or algorithm-based BMV should be superior to the hierarchical model-based BMV as the
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latter will properly account for uncertainty in the estimate values throughout the process

rather than averaging this uncertainty out before the BLV is completed (Lu and Carlin,

2005). But how does the method work?

As count data is most commonly encountered in areal settings, a Poisson log-linear form is

used:

Yi ∼ Poisson(µi)

where log(µi) = log(Ei) +X ′
iβ + ϕi

This model allows a vector of region-specific covariates Xi (if available), and a random

effect vector ϕ = (ϕ1, ..., ϕN )′ that is given a conditionally autoregressive (CAR) specifi-

cation (Besag, 1974). A common form of the distribution (often called intrinsic CAR, or

IAR model) (Besag et al., 1991) has improper joint distribution, but intuitive conditional

distributions of the form:

ϕi|ϕi ̸=j ∼ N(ϕ̄i, 1/(τmi))

where N denotes the normal distribution, ϕ̄i is the average of the random effect of the

regions that are adjacent to ϕi and mi is the number of these adjacencies; this distribution

is usually abbreviated as CAR(τ) with τ a typically set and equal to some fixed value, or

assigned a distribution itself (usually a relatively vague γ distribution).

Markov chain Monte Carlo (MCMC) samples µ(g)

i , g = 1, ...., G from the marginal posterior

distribution p(µi|y) can be obtained for each i (Banerjee and Gelfand, 2006). For example,

the model-based standardized mortality rate (ηi ) is equal to:

ηi =
µi
Ei
, i = 1, ..., N (2)

The BLV for boundary (i, j) as:

∆ij = ∥ηi − ηj∥ (3)

for all i adjacent to j, Crisp or Fuzzy wombling boundaries are then based on the posterior

distribution of the BLVs. In the case of Crisp wombling, we might define ij to be part

of the boundary if and only if E(∆ij |y) > c for some constant c > 0, or if and only if

P (∆ij |y > c) > c∗ for some constant 0 < c∗ < 1.

As ∆
(g)
ij = ∥η(g)i − η

(g)
j ∥, and the boundaries are based on their empirical distribution. The

posterior means is estimated as:

Ê(∆ij|y) =
1

G
ΣG
g=1∆

(g)
ij =

1

G
ΣG
g=1∥ηi(g) − η

(g)
j ∥ (4)

12



b- Fuzzy areal wombling

Algorithm-based wombling

Crisp wombling boundaries are straightforward and easy to understand, but assessing the

certainty or magnitude of the distribution of the boundary likelihood value is complex.

Fuzzy wombling boundaries are preferable because they do not rely on binary BMV.

Instead of defining a threshold, the BMV can also be defined as follows:

BMVij =
∥Yi − Yj∥

max(∥Yi − Yj∥)
(5)

and indicate partial membership in the boundary.

The BMV in this case fluctuates between zero and one, indicating partial participation in

the border.

BMVs with Fuzzy wombling can take values between zero and one (0,1). This makes it

possible for some places to be more relevant in deciding the boundary. The typical Fuzzy

technique avoids using a 0-1 choice to include a segment in the boundary, but if BMV is

between zero and one, it may not be read as a probability of being part of a boundary

because no stochastic model is linked with it.

A hierarchical Bayesian technique provides a suitable and practical option.

Model-based wombling

A hierarchical Bayesian model considers the process’s stochasticity as well as a method to

directly analyze the uncertainty in our Fuzzy BMV (availability of posterior distribution).

To tackle the issues faced by the algorithm-based Fuzzy wombling, Lu and Carlin (2005)

introduced a hierarchical Bayesian model. Fuzzy wombling is based on the posterior dis-

tribution of the BLVs after estimating the model-based value of the outcome. The model

selection procedure is used to select the hierarchical model that fits well the data. The

hierarchical Bayesian approach offers a direct and convenient solution. Suppose we select

a cutoff c such that, were we certain a particular BLV exceeds c, we would also be certain

the corresponding segment was part of the boundary. Estimates of ∆ij are obtained using a

Markov chain Monte Carlo (MCMC) algorithm to draw G samples of the modeled response

ηgi , g = 1, ..., G from the posterior distribution p(ηi|y) (where y represents observations of

the response variable) for each areal unit i and each MCMC iteration g to obtain.

∆
(g)
ij = |η(g)i − η

(g)
j |

As we have the full distribution of every ∆ij , we can compute P (∆ij > c|y), and take this

probability as our Fuzzy BMV for the segment ij. Indeed, the availability of the posterior

distribution provides another benefit: a way to directly assess the uncertainty in our Fuzzy
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BMVs. The Monte Carlo estimate of P (∆ij > c|y) is derived as:

p̂ij = P (∆ij > c|y) =
#∆

(g)
ij > c

G
(6)

This is nothing but a binomial proportion, where its components are independent.

The Gibbs samples ∆ij are not independent in general, as they arise from a Markov chain,

but it is possible to make them approximately so simply by subsampling retaining only

every M th sample. Note that this subsampling does not remove the spatial dependence

among the ∆ij . This approach makes use of the CAR model. However, the CAR model

smooths across all geographical neighbors and can lead to over-smoothing and subsequent

underestimation of several BLV. Lu et al. (2007); Ma et al. (2010) proposed adjacency

matrix within a hierarchy. Rather than thresholding BLVs, Lu et al. (2007) assume the

given areal boundaries in the Markov random fields (MRF) are random, Bernoulli variables,

modeled using logistic regression in order to implement the wombling.

The hierarchical model-based approach addressed the estimate of the adjacency matrix in-

side a hierarchical framework utilizing priors on the edges (Lu and Carlin, 2005; Lu et al.,

2007; Ma et al., 2010). Inference from these models, on the other hand, is typically highly

sensitive to priors’ specifications on certain parameters. Li et al. (2015) proposed a class

of more flexible and robust nonparametric Bayesian hierarchical models to address this

issue. The specification of the adjacent matrix W , which governs spatial smoothing, varies

between these models. They require complex MCMC model composition that is computa-

tionally costly, particularly for big maps.

Li et al. (2015) investigated another approach: Bayesian hypothesis testing and adjusting

multiple tests using forms discovery rate (FDR). But the model is still computationally

intensive and requires benchmark.

Another approach in the hierarchical framework is the use of prior on the adjacency re-

lationship (Ma et al., 2010). The issue with this is the prior information. Continuous

priors for the ϕi do not work as they render p(ϕi = ϕj |i ∼ j) = 0. The Dirichlet pro-

cess (Ferguson, 1973) comes as a choice to model the spatial effect on discrete realization:

nonparametric Bayesian. Areal information is incorporated into the stick-breaking weights

(Areally-Referenced Stick-Breaking process (ARSB)) and a copula-type formulation in the

technique.

Model-based wombling using dissimilarity metric

The Crisp and Fuzzy wombling introduces some levels of subjectivity. In fact, by defining a

threshold in the Crisp wombling or a cutting point in the Fuzzy wombling, we are controlling

somehow the number of boundary segments to be detected. These approaches have been
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also criticized by Jacquez et al. (2000) who think that by specifying a threshold or cutting

point, the investigator is choosing the number of boundaries that are identified even though

this is unknown and the goal of the analysis. A wombling technique is incorporated in Lee

and Mitchell (2012). The approach includes a dissimilarity metric in the Leroux model.

Details about these models are presented above in the locally smooth CAR model of (Lee

and Mitchell, 2012).

Residual based-wombling

Although BLVs based on expected values ηi are one method of exploring boundary proba-

bilities, calculating BLVs using spatial random effects ϕi may be more illuminating. The ϕi

can be thought of as spatial residuals (Fitzpatrick et al., 2010). High probability residual-

based boundaries designate regions that differ in their unmodeled heterogeneity, highlight-

ing boundaries that are not explained by the covariates.

In contrast, if a map of residual-based boundaries contains few barriers, the covariates

explain (or are connected with factors that explain) the identified boundaries. Close anal-

ysis of boundary probabilities based on spatial residuals could be particularly beneficial in

ecological and epidemiological research aimed at elucidating the factors determining range

edges and how these vary across space (Fitzpatrick et al., 2010).

15



3 Part II: Wombling of Spatial COVID-19 incidence

3.1 Data description

Different datasets have been used in this project: the confirmed cases of COVID-19 by

date and municipality; Belgium population data at the municipality level in 2020; the

Shapefile of Belgium at the municipality level; and deprivation scores at the municipality

level in 2011. The confirmed case of COVID-19 data was downloaded from the Belgian

Institute for Health (Sciensano) whereas the three remaining data were downloaded from

the STATBEL website.

Table 1 provides a general description of the datasets, including the sample size, the number

and type of major variables, the existence of missing values, and the data format. Let us

emphasize that the datasets contain no missing values. However, when the confirmed

number of cases is less than 5, a limit of detection was reported. These observations were

replaced with a random value between 0 and 4. We retrieved the total number of confirmed

cases of COVID-19 in each municipality in Belgium for the different waves of the pandemic

from these datasets. The first wave extends from March 1, 2020, to June 1, 2020; the second

wave extends from September 1, 2020, to December 31, 2020; and the third wave extends

from September 1, 2021, to December 31, 2021.

To correct for the differing populations of the municipalities, we used the Incidence Rate

per Thousand (IR1000), which is calculated as IR1000 = 1000∗y
n , where y is the number of

confirmed cases in the municipality and n is the population of the municipality as a whole.

Table 1: Data description

Data Samples size Number Type of variables Missing values Format

Confirmed cases by date and
municipality

419413 7

Categorical (NIS5: Code of the municipality, TX DESCR NL: Name in
Netherlands, TX ADM DSTR DESCR NL: Arrondissement,
PROVINCE, REGION) Numeric (CASES: number of confirmed cases) ,
Date

Yes (”<5”) csv

Administered vaccines by week,
municipality, age and dose

1048575 5
Categorical (YEAR WEEK: week of the year, NIS5: Code of the
municipality, AGEGROUP: age class, DOSE: Type of vaccin)
Numeric (CUMUL: cummulative number of vaccin administrated)

Yes (”<10”) csv

Belgium’s Population data at
municipality level

581 4
Categorical (CD REFNIS: Code of the municipality, TX DESCR NL :
Name in Netherlands,7 TX PROV DESCR NL: Province) Numeric
(pop: total population per municipality)

no txt

Shapefile of Belgium at
municipality level

- - - - shp

Deprivation scores 590 7
deprivation domains: Income; Employment; Education ; Housing ;
Health ; crime and the total deprivation; overall deprivation

no csv

3.2 Methodology

3.2.1 Exploratory data analysis

To examine the relevance of spatial autocorrelation, we compute Moran’s I statistic (Moran

1950) and perform a permutation test. The permutation test, which uses the moran.mc()
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function from the spdep package (Bivand et al., 2015), has a null hypothesis of no spatial

autocorrelation and an alternative hypothesis of positive spatial autocorrelation. Moran’s

I statistic was used as an explanatory measure to test for spatial autocorrelation.

3.2.2 Traditional or algorithm-based wombling

The incidence rate per 1000 was used to define a boundary likelihood value (BLV) and the

boundary membership value (BMV) for two neighboring municipalities (i, j). For Crisp

wombling, three threshold values have been used to compute the BMV and correspond to

the 1st, 2nd, and 3rd quantiles of the raw incidence rate per thousand.

Three different cutting points (50%, 75%, and 90%) were defined based on boundary mem-

bership value to assign a segment to a boundary membership. The number of segments

and municipalities in the boundary for each wombling technique and each threshold/cutting

point is summarized in a table. We made use of maps to display the raw incidence rate

per 1000 as well as maps showing the segments and municipalities at the boundary. The

municipalities at the boundary were identified using the approach proposed by (Legewie,

2018). In fact, the boundary likelihood value or boundary value refers to a pair of adjacent

regions represented by the borderline segment between the two municipalities. This issue

was addressed by defining the boundary value for a municipality as the maximum boundary

value between the focal municipality and its neighbors.

3.2.3 Spatial areal modeling of COVID-19 incidence with conditional autore-

gressive priors

Before going to the model-based wombling, we first investigated which globally and locally

smooth models fitted well the incidence rate per 1000 for the different waves. Details

about these models are presented above. Only the Independence model, Besag-York-Mollié

(BYM) model (Besag et al., 1991), and Leroux model (Leroux et al., 2000) were considered

in the analysis regarding the globally smooth models.

All models were fitted in a Bayesian setting using Markov Chain Monte Carlo (MCMC)

simulation in the package CARBayes (Lee, 2017). A non-informative prior was used for

the random effect. These choices are designed to be vague enough to allow the data to

dominate the determination of the posterior (G(0.1, 0.1) prior for τ). Three different chains

were used to draw inferences about the parameters. For each chain, we used 300,000

iterations with the initial 100,000 iterations discarded (i.e., burn-in part). A thinning of

20 was specified. The level of thinning was applied to the MCMC samples to reduce their
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temporal autocorrelation. The inference of the model was based then on 10,000 post-burn-

in and thinned MCMC samples. To assess the convergence of our chains, we performed a

visual inspection of the trace plots and the autocorrelation plots and a statistical test such

as the Gelman-Rubin diagnostic test (Gelman et al., 2014).

The fitted values were extracted from the selected model and the model-based incidence rate

per 1000 is calculated. A model-based map was used to display the model-based IR1000.

3.2.4 Bayesian hierarchical model based wombling

The model-based wombling for each wave was based on the Bayesian real model identified in

the previous section. Details about the procedure are presented above. The same threshold

values and cutting points respectively for the Crisp and Fuzzy wombling were considered

as in the case of algorithm-based wombling.

3.2.5 Model-based wombling using dissimilarity metric

To define the dissimilarity metric, we use the average deprivation score as a covariate.

This index incorporates data from six deprivation categories, measuring several sorts of

deprivation aspects such as income, employment, education, housing, health, and crime.

These domains’ building blocks are indicators, which are either rates or proportions of

the population in a certain statistical sector experiencing some form of deprivation. For

example, the rate of drug-related crime, the standardized suicide rate, or the proportion of

working-age people who are unemployed.

The wombling using dissimilarity metric was conducted in the package CARBayes (Lee,

2017) using the function S.CARdissimilarity().

Note that, a residual wombling was also conducted by extraction from the fitted models,

the residual values, and applying a Fuzzy wombling on residual incidence rate per 1000.

3.2.6 Implementation of wombling techniques

Very few statistical packages exist for the implementation of wombling techniques. The

first software implemented was BoundarySeer which is commercial software. BoundarySeer

only implemented algorithmic wombling techniques. However, to recognize the inherent

variability and spatial association in the data, (Lu et al., 2007) was the first to compute

the boundary likelihood value (BLV) R language. They later expanded the approach to

Bayesian context specifically using Bayesian hierarchical in the estimation of the fitted

value of the outcome of interest. The Bayesian modeling process was performed in Win-

Bugs. Many authors conducted later the Bayesian models in another statistical package
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like Openbugs and more recently a package dedicated to CAR prior modeling (CARBayes).

Some authors even expand the models to the Bayesian nonparametric model. But the main

problem is that all these authors wrote their own function in R language to perform a

wombling. There is no R or other language package for wombling. Our investigation with

these authors allowed us to understand that such packages will soon be available in R.

We have used in this project the R functions that these authors have already written as

a basis for the implementation of our analysis. It is Joscha Legewie (Algorithmic areal

wombling) from Harvard University and Sudipto Banerjee (Bayesian hierarchical areal

wombling) from the University of California, Los Angeles.

Our contribution consisted first in extending the code of Lewigi which only allowed to iden-

tify of segments in boundaries to the identification of municipalities in boundaries. Second,

to replace the nonparametric hierarchical Bayesian implemented by Sudipto Banerjee in his

code, by the Bayesian hierarchical model with CAR prior in the CARBayes package (Lee,

2017).

All the analyses have been implemented in R statistical software (R Core Team, 2022).

3.3 Results

3.3.1 Exploratory data analysis

Figure 2 presents the exploration of the spatial trend in the COVID-19 incidence for the

three different waves. The histograms of the distribution of Moran’s I value under the

hypothesis of independence (Figure 2.a) show that we do have enough evidence again the

hypothesis of spatial independence. So, there seems to be a spatial correlation in the IR1000

across municipalities in Belgium and for all waves. The intensity of this spatial correlation

is stronger during waves 2 and 3 compared to wave 1 (Figure 2.b).
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Figure 2: Exploratory data analysis

3.3.2 Traditional or Algorithmic-based wombling

Table 2 presents the number and the percentage of boundaries identified in the Belgian

COVID-19 data across the three waves of the pandemic using algorithm-based wombling

techniques (Crisp and Fuzzy wombling). From this table, the number of boundaries (seg-

ments or areas) decreases with the increasing value of the threshold or the cutting point.

Considering the median value of the incidence rate per 1000 as the threshold, we identified

55 (3.38%), 12(0.74%), and 0(0%) boundaries respectively for the 1st, 2nd, and 3rd wave
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for the Crips wombling. During wave 3, the incidence rate was high everywhere, so the

difference in incidence rate between two neighboring municipalities is very small compared

to the threshold we have defined to identify boundaries. The Crisp wombling has therefore

not identified any boundaries.

Likewise, by considering a cutting point of 50% in the partial boundary membership for

the Fuzzy wombling, we identified respectively 41 (2.52%), 42 (2.77%), and 48 (2.95%) for

the 1st, 2nd, and 3rd wave.

Table 2: Algorithm-based wombling

Crisp wombling Fuzzy wombling

Threshold Lines Area Threshold Lines Area

Wave 1

6 138 (8.49%) 171 (29.43%) 50% 41 (2.52%) 56 (9.64%)
8 55 (3.38%) 72 (12.39%) 75% 6 (0.37%) 9 (1.55%)
10 31 (1.91%) 43 (7.40%) 90% 2 (0.12%) 4 (0.69%)

Wave 2

34 51 (3.14%) 63 (10.84%) 50% 45 (2.77%) 57 (9.81%)
55 12 (0.74%) 14 (2.41%) 75% 14 (0.86%) 17 (2.92%)
72 2 (0.12%) 4 (0.69%) 90% 6 (0.37%) 10 (1.72%)

Wave 3

77 0 (0%) 0 (0%) 50% 48 (2.95%) 75 (12.91%)
87 0 (0%) 0 (0%) 75% 6 (0.36%) 9 (1.55%)
97 0 (0%) 0 (0%) 90% 2 (0.12%) 4 (0.69%)

3.3.3 Spatial areal modeling with conditional autoregressive priors

Globally smooth model

Table 3 provides the global CAR model selection for the three waves. It helps to identify

which conditional autoregressive model fits the data well. From this table, it appears that

the Leroux model fits better the data for waves 1 and 3 whereas the BYM model is more

appropriate for wave 2 data.
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Table 3: Global CAR model selection

Model DIC p.d WAIC p.w LMPL loglikelihood

Wave 1

Independence 4848.714 525.836 4736.41 298.5741 -2665.78 -1898.521

Leroux 4822.331 501.7464 4721.913 291.1461 -2593.51 -1909.419

BYM 4830.063 503.8506 4732.752 294.8034 -2613.73 -1911.181

Wave 2

Independence 6275.981 725.2565 7464.45 1099.49 -8066.72 -2412.734

Leroux 5964.863 556.2432 5840.371 307.3963 -3674.03 -2426.188

BYM 5955.859 552.8552 5808.829 292.7127 -3192.99 -2425.074

Wave 3

Independence 6378.041 604.9958 6330.171 382.4983 -3906.65 -2584.025

Leroux 6281.526 544.0917 6161.516 304.5838 -3474.86 -2596.671

BYM 6281.096 546.1334 6154.821 301.8702 -3404.99 -2594.415

DIC: Deviance Information Criterion - p.d: number of effective parameters - WAIC: Watanabe-Akaike Information

Criterion - p.w: number of effective parameters - LMPL: Log Marginal Predictive Likelihood

Table 4 provides the summary of the best global CAR models for the three different waves.

The results show a significant spatial dependence (ρ) in the IR1000 for all the waves. This

can also be seen from the model-based maps (Figure 3) where there is no regular distribution

of the incidence across the country. Some municipalities are more affected by the pandemic

than others. Specifically, during the first wave of the pandemic, the Eastern part of the

country (province of Liege and Limburg) was more affected by the disease compared to

other provinces. During the second wave, the smoothed incidence rate split the country

into two clusters: The South is marked by a high incidence of the disease (shaded orange

and red) compared to the North (shaded yellow). However, during the third wave, the

disease is highly prevalent throughout almost the whole country. Only part of the western

zone of the country seems somewhat spared (province of Hainaut).
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Table 4: Summary of global CAR models

Coef Mean 2.5% CI 97.5% CI n.effective Geweke.diag

Wave 1

Intercept 0.070 0.058 0.082 9528.7 0.8
τ2 0.302 0.243 0.367 8678.4 -0.5
ρ 0.676 0.495 0.861 8418.6 -0.4

Wave 2

Intercept -0.004 -0.011 0.002 931.4 -0.6
τ2 0.168 0.149 0.189 9555 0.4
ρ 0.993 0.978 0.999 9476.1 -0.6

Wave 3

Intercept 0.047 0.042 0.053 1439 0.1
τ2 0.065 0.057 0.074 10000 0.3
ρ 0.926 0.827 0.990 9828.2 0.6

Figure 3: Global smooth model-based maps

Locally smooth model

Table 5 provides the locally smooth CAR model selection for the three waves. This com-

parison is made to select the best localized conditional autoregressive model that fits the

data well for the different waves. From this table, it appears that the localized smooth

CAR model of (Lee and Mitchell, 2012) fits better the data for the first wave whereas the

localized smooth CAR model of (Lee and Sarran, 2015) turns out to be the best for waves

2 and 3.
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Table 5: Locally CAR model selection

Model DIC p.d WAIC p.w LMPL loglikelihood

Wave 1

Lee and Mitchell (2012) 4632.861 386.838 4541.188 219.330 -2407.862 -1929.592

Lee and Sarran (2015) 4815.360 489.886 4746.471 302.207 -2964.221 -1917.794

Wave 2

Lee and Mitchell (2012) 5933.900 533.637 5804.262 291.294 -3208.829 -2433.313

Lee and Sarran (2015) 5565.292 154.628 5833.291 303.436 -3271.056 -2628.018

Wave 3

Lee and Mitchell (2012) 6172.192 478.889 6049.583 259.809 -3236.584 -2607.207

Lee and Sarran (2015) 5402.653 -334.710 6175.117 312.121 -3537.865 -3036.037

DIC: Deviance Information Criterion - p.d: number of effective parameters - WAIC: Watanabe-Akaike Information

Criterion - p.w: number of effective parameters - LMPL: Log Marginal Predictive Likelihood

Figure A.2.1.B (in the appendix) presents the convergence of the Markov chains for the best-

localized CAR model for each wave. The plot of the samples for the regression parameter

for each Wave is shown in Figures a, b, and c respectively, and shows good mixing between

and convergence of the chains, as they all have very similar means. Also, most of the

values of the potential scale reduction (Gelman et al., 2014), are all below 1.1 suggestive of

convergence.

Table 6 provides the summary of the best local CAR models for the different waves. The

results show a significant spatial dependence in the IR1000 for all the waves. This can also

be seen from the model-based maps (Figure 4) where there is no regular distribution of

the incidence rate across the country. Some municipalities are more affected than others.

During the first wave of the pandemic, the Eastern part of the country (province of Liege

and Limburg) was more affected compared to other provinces. During the second wave,

the smoothed incidence rate split the country into two clusters: The south is marked by

a high incidence of the disease (shaded orange and red) compared to the north (shaded

yellow). However, during the third wave, the disease is highly prevalent throughout almost

the whole country. Only part of the western zone of the country seems somewhat spared

(province of Hainaut). The smoothed incidence rate from the localized smooth CAR models

is quite similar to the one from the globally smooth CAR models even though the globally

smoothed incidence seems a little bit bigger.
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Table 6: Summary of locally smooth models

Coef Mean 2.5% CI 97.5% CI n.effective Geweke.diag alpha.min

Wave 1

Intercept 0.067 0.054 0.080 3944.1 1 -
τ2 0.057 0.049 0.067 9058.8 -1.2 -
Z.Deprivation 1.909 1.870 1.935 5205.1 1.1 0.384

Wave 2

λ1 -0.556 -0.565 -0.548 4740.000 0.4 -
λ2 0.113 0.098 0.128 55.800 1 -
λ3 0.489 0.473 0.504 61.400 1.2 -
τ2 0.148 0.130 0.169 1575.900 -0.2 -
δ 1.011 1.000 1.040 9361.900 0.3 -

Wave3

λ1 -0.169 -0.190 -0.146 107.100 1.1 -
λ2 0.045 0.035 0.055 120.800 -1.2 -
λ3 0.258 0.232 0.281 119.600 -1.1 -
τ2 0.037 0.031 0.043 212.900 -0.8 -
δ 1.602 1.284 1.895 35.200 -1.2 -

Figure 4: Locally smooth model-based maps

3.3.4 Bayesian hierarchical model based wombling

Wave 1

Table 7 presents a summary of the number of boundaries identified in the map based on

the globally and locally smooth models for wave 1. From this table, we can notice that the

number of boundaries decreases when we increase the value of the threshold for the case

of Crisp wombling and the cutting point for the case of Fuzzy wombling. For the globally

smooth model-based wombling, we identify 30 (1.85%) boundaries with the Crisp wombling

using the median value of the IR1000 as threshold whereas the locally smooth model-based
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identified 49 (3.01%). For the Fuzzy wombling and a cutting point of 50%, we identified

48 (2.95%) boundaries with the globally smooth model and 47 (2.89%) with the locally

smooth model. The Fuzzy wombling yields approximately the same number of boundaries

for both modeling approaches whereas the Crisp wombling revealed a big difference in the

number of identified boundaries for the different approaches.

Figure 5 presents the locations of these boundaries on the map. The figure also makes

a comparison of the different wombling approaches: algorithm-based, and model-based

(global and locally smooth models). The algorithm-based wombling has identified more

boundaries than the model-based wombling for the Crisp wombling. The Fuzzy wombling

presents approximately the same number of boundaries for approaches (algorithm-based

model-based wombling).

The majority of the identified boundaries visually correspond to sizeable changes in the

incidence rate, suggesting that the models have the power to distinguish between boundaries

and non-boundaries. The notable boundaries are the demarcation between the low incidence

rate (shaded yellow) municipalities in the Eastern part of Belgium (Liege and Limburg) and

their neighboring municipalities with high incidence rates on both sides (shaded orange

and red). The boundaries shown in these maps are not too close and this suggests that

the spatial pattern in incidence rate is more complex than being partitioned into groups of

non-overlapping areas of incidence rate of covid-19.

Table 7: model-based wombling wave 1

Crisp wombling Fuzzy wombling

Threshold Lines Area Cutting point Lines Area

Globally smooth

6 87 (5.35%) 112 (19.28%) 50% 48 (2.95%) 66 (11.36%)
8 30 (1.85%) 42 (7.23%) 75% 9 (0.55%) 15 (2.58%)
13 10 (0.62%) 19 (3.27%) 90% 3 (0.18%) 5 (0.86%)

Locally smooth

6 135 (8.30%) 167 (28.74%) 50% 47 (2.89%) 63 (10.84%)
8 49 (3.01%) 67 (11.53%) 75% 8 (0.49%) 13 (2.24%)
13 24 (1.47%) 33 (5.68%) 90% 3 (0.18%) 5 (0.86%)
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Figure 5: Comparison of wombling for Wave 1

Wave 2

Table 8 presents a summary of the number of boundaries identified in the map based on

the globally and locally smooth models. From this table, we can notice that the number

of boundaries decreases when we increase the value of the threshold for the case of Crisp

wombling and the cutting point for the case of Fuzzy wombling. For the globally smooth

model-based wombling, we identified 7 (0.43%) with the Crisp wombling using the median
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value of the IR1000 as threshold whereas the locally smooth model-based wombling identi-

fied 8 (0.49%). For the Fuzzy wombling and a cutting point of 50%, we identified 9 (0.55%)

boundaries with the globally smooth model and 10 (0.62%) for the locally smooth model.

Crisp and Fuzzy wombling yield approximately the same number of boundaries for both

modeling approaches (globally smooth vs locally smooth).

Figure 6 presents the locations of these boundaries on the maps. The figure also makes

a comparison of the different wombling approaches: algorithm-based, and model-based

(global and locally smooth models). The algorithm-based wombling has identified more

boundaries than the model-based wombling for both Crisp and Fuzzy wombling. The iden-

tified boundaries visually correspond to sizeable changes in the incidence rate, suggesting

that the model has the power to distinguish between boundaries and non-boundaries. The

notable boundaries are the demarcation between the low incidence rate (shaded yellow)

municipalities represented by the north part and municipalities with high incidence rates

in the south (shaded orange and red). The boundaries shown in these maps are too closed

and this suggests that the spatial pattern in incidence rate is not complex and can be par-

titioned into groups of non-overlapping areas of incidence rate.

Table 8: model-based wombling wave 2

Crisp wombling Fuzzy wombling

Threshold Lines Area Cutting point Lines Area

Globally smooth

34 41 (2.52%) 54 (3.32%) 50% 41 (2.52%) 54 (9.29%)
55 7 (0.43%) 10 (1.72%) 75% 9 (0.55%) 12 (2.07%)
72 0 (0%) 0 (0%) 90% 5 (0.86%) 8 (1.38%)

Locally smooth

34 45 (2.77%) 57 (9.81%) 50% 44 (2.71%) 56 (9.63%)
55 8 (0.49%) 11 (1.89%) 75% 10 (0.62%) 14 (2.41%)
72 0 (0 %) 0 (0 %) 90% 4 (0.25%) 6 (1.03%)
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Figure 6: Comparison of wombling for Wave 2

Wave 3

Table 9 presents a summary of the number of boundaries identified in the map based on

the globally and locally smooth models. From this table, we can notice that the number

of boundaries decreases when we increase the value of the threshold for the case of Crisp
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wombling and the cutting point for the case of Fuzzy wombling. For both globally and

locally smooth model-based wombling, we have not identified any 0(0%) with the Crisp

wombling using the median value of the IR1000 as the threshold. This is due to the BLV

values. In fact, during wave 3, the incidence rate is high everywhere, so the difference

in incidence rate between two neighboring municipalities is very small compared to the

threshold we have defined to identify boundaries. The Crisp wombling has therefore not

identified any boundaries.

For the Fuzzy wombling and a cutting point of 50%, we identified 85 (5.23%) boundaries

with the global smooth model and 101 (6.21%) with the locally smooth model. Considering

the Fuzzy wombling, the locally smooth model yields more boundaries compared to the

global smooth model. Figure 7 presents the locations of these boundaries on the map. The

figure also makes a comparison of the different wombling approaches: algorithm-based, and

model-based (globally and locally smooth models). The Algorithm-based wombling has

identified generally fewer boundaries compared to the model-based wombling for the Fuzzy

wombling.

The majority of the identified boundaries visually correspond to sizeable changes in the

incidence rate, suggesting that the model has the power to distinguish between boundaries

and non-boundaries. The notable boundaries are the demarcation between the low incidence

rate (shaded yellow) municipalities and their neighboring municipalities with high incidence

rates on both sides (shaded orange and red).

Table 9: model-based wombling wave 3

Crisp wombling Fuzzy wombling

Threshold Lines Area Threshold Lines Area

Global smooth

77 0 (0%) 0 (0%) 50% 85 (5.23%) 122 (20.99%)
87 0 (0%) 0 (0%) 75% 15 (0.92%) 24 (4.13%)
97 0 (0%) 0 (0%) 90% 4 (0.25%) 6 (1.03%)

Local smooth

77 0 (0%) 0 (0%) 50% 101 (6.21%) 137 (23.58%)
87 0 (0%) 0 (0%) 75% 17 (1.05%) 28 (4.81%)
97 0 (0%) 0 (0%) 90% 4 (0.25%) 6 (1.03%)
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Figure 7: Comparison of wombling for Wave 3

3.3.5 Residual-based wombling

The following table (Table 10) presents a comparative study of the mean-based wombling

(globally and locally smooth models) and the residual-based wombling. From the table, few

boundaries are identified from the residual-based wombling compared to the mean-based
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wombling. This applies to both globally and locally smooth models. This result suggests

that some covariates may explain or correlate to the identified boundaries. The identified

boundaries for both approaches are displayed in the maps in Figure 8. Note that only Fuzzy

wombling has been used here.

Table 10: Comparison of mean-based and residual-based wombling

Cutting point
Globally smooth Locally smooth

Mean based Residual based Mean based Residual based
Segment Area Segment Area Segment Area Segment Area

Wave1
50% 48 (2.95%) 66 (11.36%) 26 (1.60%) 32 (5.51%) 47 (2.89%) 63 (10.84%) 25 (1.54%) 31 (5.34%)
75% 9 (0.55%) 15 (2.58%) 4 (0.25%) 6 (1.03%) 8 (0.49%) 13 (2.24%) 5 (0.31%) 7 (1.20%)
90% 3 (0.18%) 5 (0.86%) 3 (0.18%) 4 (0.69%) 3 (0.18%) 5 (0.86%) 2 (0.12%) 3 (0.52%)

Wave2
50% 41 (2.52%) 54 (9.29%) 42 (2.58%) 51 (8.78%) 44 (2.71%) 56 (9.63%) 67 (4.12%) 82 (14.11%)
75% 9 (0.55%) 12 (2.07%) 8 (0.49%) 10 (1.72%) 10 (0.62%) 14 (2.41%) 7 (0.43%) 10 (1.72%)
90% 5 (0.86%) 8 (1.38%) 2 (0.12%) 3 (0.52 %) 4 (0.25%) 6 (1.03%) 2 (0.12%) 4 (0.69%)

Wave3
50% 85 (5.23%) 102 (17.56%) 43 (2.64%) 51 (8.78%) 101 (6.21%) 137 (23.58%) 14 (0.86%) 15 (2.58%)
75% 15 (0.92%) 24 (4.13%) 10 (0.62%) 12 (2.07%) 17 (1.05%) 28 (4.81%) 14 (0.86%) 15 (2.58%)
90% 4 (0.25%) 6 (1.03%) 3 (0.18%) 4 (0.69%) 4 (0.25%) 6 (1.03%) 4 (0.25%) 5 (0.86%)
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Figure 8: Mean-based vs Residual-based wombling

3.3.6 Model-based wombling using dissimilarity metric

Table 11 presents the summary of the localized spatial autocorrelation model proposed by

(Lee and Mitchell, 2012) using the average deprivation score as a covariate to define the

dissimilarity matrix. In this table, the value of alpha.min is the threshold value for the

regression parameter α, below which the dissimilarity metric has no effect in identifying

boundaries in the response (random effects) surface. For the first wave estimated alpha is

0.023, greater than the minimum alpha. So, the average deprivation score has an effect

on the identification of boundaries during the first wave of the pandemic. The model has

identified 38 (2.31%) boundaries in the map. For wave 2, the model presents a minimum
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alpha greater than the estimated mean value of alpha (0.011). Therefore, the average

deprivation score has no effect on the identification of boundaries during the second wave of

the pandemic. There are no step changes identified in the random effect surface. Moreover,

the model for wave 3 has identified step-changes identified in the random effect surface

as the minimum alpha (0.0113) is below the estimated mean alpha (0.036). The maps in

Figure 9 present the locations of these boundaries.

Table 11: Boundary detection using dissimilarity metric

Coef Mean 2.5% CI 97.5% CI n.effective Geweke.diag alpha.min

Wave 1

Intercept 0.071 0.056 0.086 6081.8 -0.7 -
τ2 0.366 0.316 0.423 5376.4 1 -
Z.Deprivation 0.023 0.002 0.032 1227.6 -0.6 0.0123
no stepchange 1605
stepchange 38

Wave 2

Intercept -0.009 -0.013 0.000 3.4 1.9 -
τ2 0.167 0.147 0.186 100 1 -
Z.Deprivation 0.011 0.000 0.022 100 -0.3 0.0133
no stepchange 1643
stepchange 0

Wave 3

Intercept 0.004 0.004 0.004 0 - -
τ2 0.064 0.055 0.073 100 0 -
Z.Deprivation 0.036 0.034 0.041 37.6 -0.3 0.0113
no stepchange 1547
stepchange 96
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Figure 9: Map displaying the estimated incidence rate and the locations of the boundaries

Table 12 presents a comparison of the number of boundaries identified for different mod-

eling approaches (mean-based, residual-based, and dissimilarity-based). It appears that

the residual-based approach provides the lowest number of boundaries followed by the

dissimilarity-based approach. The mean-based approach provides the highest number of

boundaries generally. From this finding, we can say that some covariates are correlated

to the identification of boundaries and the average deprivation score is not the perfect

covariate to explain the spatial correlation in this boundary identification.

From the wombling approach using the dissimilarity metric (covariate = average deprivation

score), the boundaries identified do not correspond exactly to the sizeable changes in the

incidence rate. So, the model or the covariate used to define the dissimilarity metric has

less power to distinguish between boundaries and non-boundaries. So, in order to test
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Table 12: Comparison of different wombling approach

Wombling approach Wave1 Wave2 Wave3

Globally CAR mean-based 48 (2.95%) 41 (2.52%) 85 (5.23%)
Globally CAR residual-based 26 (1.60%) 42 (2.58%) 43 (2.64%)
Locally CAR mean-based 47 (2.89%) 44 (2.71%) 101 (6.21%)
Locally CAR residual-based 25 (1.54%) 67 (4.12%) 14 (0.86%)
Dissimilarity-based 38 (2.34%) 0 (0 %) 96 (9.90%)

whether the covariate (average deprivation score) plays a role in the identification of the

boundaries, we performed a sensitivity analysis by introducing the average deprivation score

as a covariate in the models (globally smooth CAR models) and conducted mean-based

and residual-based Fuzzy wombling. The result is presented in the next table (Table 13).

Using deprivation score as a covariate in the model, the residual-based wombling yields

a higher number of boundaries compared to the mean-based wombling. This indicates

that boundaries designate regions that differ in their unmodeled heterogeneity, highlighting

boundaries that are not explained by the covariate. So, the deprivation score is not really

helpful in the identification of boundaries.

Table 13: Sensitivity analysis (average deprivation score in Globally smooth CAR model)

Cutting point Mean based Residual based

Wave1

50% 41 (2.52%) 226 (13.89%)
75% 6 (0.37) 97 (5.97%)
90% 2 (0.12%) 56 (3.44%)

Wave2

50% 45 (2.77%) 1021 (62.79%)
75% 14 (0.86) 804 (49.45%)
90% 6 (0.37%) 717 (44.09%)

Wave3

50% 17 (1.04%) 657 (40.41%)
75% 3 (0.18%) 376 (23.12%)
90% 2 (0.12%) 247 (15.22%)
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4 Discussion

In this study, we reviewed the Bayesian hierarchical wombling techniques for areal data

and apply some of the techniques to COVID-19 data in Belgium. We included 24 studies

in the review: 19 in spatial areal wombling, 2 studies in spatiotemporal wombling, and

studies in multivariate wombling. Mainly, 2 wombling techniques exist: Crisp wombling

and Fuzzy wombling. The difference between these two approaches lies in the way of cal-

culating the boundary membership value (BMV). The wombling can be algorithm-based

or model-based. The Algorithm-based makes use of the raw health outcome in the com-

putation of the boundary’s likelihood value (BLV) while the model-based uses a Bayesian

hierarchical model as background in the computation of the boundary’s likelihood value.

Different Bayesian hierarchical models exist to smooth the health outcome across the study

areas: globally smooth CAR models and locally smooth CAR models. The globally smooth

CAR models include independent, Besag, BYM, and Leroux models while locally smooth

include (Lee and Mitchell, 2012) and (Lee and Sarran, 2015). The model-based wombling

can use the residual (random effect) in the computation of the BLV. This approach helps to

investigate the importance of the covariates in the boundaries detection. A more objective

wombling approach is the use of dissimilarity metric to identify boundaries in a map. In

this approach, instead of using a threshold or cutting point to identify boundaries, it uses a

covariate to define a dissimilarity metric which is incorporated into the Leroux model and

this covariate helps to identify boundaries in the map. After this synthesis of the literature

relating to wombling techniques, we applied some of the techniques (spatial areal wombling)

to covid-19 data for the three different waves of the pandemic in Belgium.

The result shows that the Crisp wombling for wave3 presented any boundaries compared

to other waves. This could be due to the value of IR1000 in the municipalities during this

wave. In fact, during wave 3, the incidence rate is high everywhere, so the difference in inci-

dence rate between two neighboring municipalities is very small compared to the threshold

we have defined to identify boundaries. The Crisp wombling has therefore not identified

any boundaries. For all the waves, the Fuzzy wombling yields more consistent results as it

does not rely on 0-1 to include segments into a boundary.

The globally smooth models revealed that the Leroux model was appropriate for incidence

rate data for waves 1 and 3 while BYM is more appropriate for the incidence rate for wave

2. This result could be explained by the intensity of the spatial autocorrelation. As shown

in the exploratory data analysis, wave 2 presented a higher spatial autocorrelation across

municipalities (0.809) compared to wave 1 (0.330) and 3 (0.531). BYM model seems to be

more suitable in the presence of high spatial correlation. This result is in line with Aswi
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et al. (2020), who proved that the Leroux model performed the best in the presence of low

autocorrelation.

The localized smoothing modeling approach shows that Lee and Mitchell’s model is more

suitable for wave 1 COVID-19 data while Lee and Sarran’s model fits better wave 2 and

3 COVID-19 data. This result tells us that in the presence of weak spatial autocorrela-

tion, the model of Lee and Mitchell performs better than Lee and Sarran. The smoothed

incidence rate from the localized smooth CAR models is quite similar to the one from the

globally smoothed CAR models even though the globally smoothed incidence seems a little

bit more pronounced specifically for wave 2.

In wave 1, the locally smooth model has identified more boundaries compared to the globally

smooth model for the Crisp wombling whereas the Fuzzy wombling provides approximately

the same number of boundaries for both modeling approaches. However, the algorithm-

based wombling yields more boundaries compared to the model-based. In fact, the hi-

erarchical model corrects for uncertainty in the estimate values throughout the process

rather than averaging this uncertainty out before the BLV is completed as the case in the

algorithm-based wombling (Lu and Carlin, 2005). The difference between the globally and

locally smooth in the Crisp wombling could be explained by the presence of sub-region spa-

tial correlation. This presence of sub-region spatial correlation can also explain the spatial

pattern in incidence rate which is more complex and cannot be partitioned into groups.

In wave 2, as in the case of wave 1, the algorithm-based wombling has identified more

boundaries than the model-based wombling in wave 2. Again, this result can be explained

by the fact that the modeling process corrects the uncertainty in the raw incidence rate.

The difference in the number of boundaries between the globally and locally smooth is very

minor here. This can be explained by the clustering observed in the map. The locally

smoothing has been done mainly in two groups compared to one group for the globally

smooth model, the reason why the number of boundaries is very close.

In wave 3, the locally smooth model yields more boundaries compared to the global smooth

model. The same explanation is applied here. Unlike wave 1 and wave 2, the algorithm-

based wombling has identified fewer boundaries compared to the model-based wombling for

Fuzzy wombling. This shows that in case of a higher prevalence of the disease in the whole

map, the algorithm-based can yield a lower number of boundaries compared to model-based

wombling. This means that the smoothing process can also produce a lower incidence rate

compared to the raw incidence in some locations.

Our results also suggest that the deprivation score is not a good covariate in the identifica-

tion of boundaries in the COVID-19 incidence map.
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5 Ethical thinking, societal relevance, and stakeholder aware-

ness

The datasets involved in this project were originally obtained from the Belgian Institute

for Health (Sciensano) and the Belgian statistical office (STATBEL). Confidentiality of the

data was the main ethical standard related to this project, but as the data is an aggregate

count over municipalities, the identity of the individual is already hidden, or the back-

ground of the individuals cannot be identified. So, no formal approval letter was obtained

as confidentiality is no longer an issue.

The societal relevance of this project is to improve disease preventive and control

decision-making by finding zones of significantly differing incidence or death. The results of

this study can help all stakeholders (administrators of public health, decision-makers, and

mayors) in the control of the pandemic to better redefine their strategies in controlling the

spread of the disease and also an efficient use of material, financial and human resources.

Indeed, having knowledge of the localities under boundaries can help to know which parts of

the country need more intervention and thus define different intervention plans depending

on whether the locality is under boundary or not. This could, for example, help to avoid

the excessive use of resources in localities where the need is not so great.

The findings of this project have direct implications for many stakeholders. The most

relevant stakeholders are administrators of public health and decision-makers who are di-

rectly involved in the management of diseases or health emergencies. As this project inves-

tigated the identification of the differences in adjacent municipalities and highlight those

boundaries that have a high difference amongst neighboring municipalities, local authori-

ties at the municipality levels like the mayors can also be considered as stakeholders. This

project could assist them in the conception of new strategies to control the pandemic of

COVID-19 or new/ future pandemics or epidemics. Indeed, the identification of boundaries

can help them in designing an adequate disease management plan and also an efficient strat-

egy for the distribution of available resources. All of this is relevant not only to the case of

Belgium, but it could also be applied to other diseases other than Covid-19 or in a different

setting, nation, or continent. This would be especially appealing in resource-constrained

countries where financial resources are insufficient to cover or intervene across their en-

tire territory. Such an approach could help them identify which areas require additional

attention and thus manage health crises more effectively.
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6 Conclusion and future work

This study presented a review of wombling techniques and applied some of the techniques

to COVID-19 data in Belgium. Wombling helps to identify areas of rapid change on a map.

Two main wombling techniques exist and can be applied directly to the outcome variable of

interest (Algorithm-based wombling) or after accounting for uncertainty in the outcome via

the modeling process (model-based wombling). The Bayesian hierarchical model, as well

as the nonparametric Bayesian model, were developed in the literature to properly account

for the variability in the outcome.

The spatial wombling of COVID-19 incidence in Belgium revealed the existence of bound-

aries during the different waves of the pandemic. The difference was more remarkable during

wave 2, where the country was split into two regions: the North marked by a medium in-

cidence and the South marked by a strong incidence. Globally algorithm-based wombling

has identified more boundaries compared to model-based wombling. This can be affected

by the distribution of outcomes in the general population. A uniformly or quasi-uniform

distributed outcome in the study area can yield opposite behavior. It is the case of the wave

3 pandemic in Belgium where the model-based provided fewer boundaries compared to the

algorithm-based. The residual wombling has shown that the identification of the bound-

aries may be correlated with some spatially oriented covariates. But the average deprivation

score was not found as a useful covariate in the identification of boundaries in COVID-19

data. Indeed, the deprivation score is not a perfect risk factor for COVID-19. So, one of

the limitations of this study is related to the absence of covariates at the municipality level

in the data. It would be nice to have some potential covariates that could help to adjust

the estimated incidence rate and therefore more accurate boundaries identification.

In this study, we only applied the univariate spatial wombling techniques. But as it

has been seen during the pandemic that the introduction of vaccination had slowed down

the spread of the disease, future works may look at the multivariate Areal Wombling for

COVID-19 incidence and vaccination rate in Belgium. Also, our founding revealed that the

intensity of the spatial correlation was not the same for the different waves. It would also

be interesting for future studies to focus on the Spatiotemporal wombling of COVID-19

incidence. Future studies can also focus on how the intensity of the spatial autocorrelation

could affect the identification of boundaries in a map.
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A Appendix

A.1 R Codes

###############################################################################

# Hasse l t Un ive r s i t y − Belgium

# Master Thesis in S t a t i s t i c s and Data Science

#

# Topic : Review of Bayesian h i e r a r c h i c a l a r ea l wombling t echn iques

# with app l i c a t i on to Covid−19

#

# June , 1 , 2023

# Edmond SACLA AIDE

# edmond . sac laa ide@student . u ha s s e l t . be ; edmond . sacla95@gmail . com

###############################################################################

### load l i b r a r i e s

l ibrary ( s f )

l ibrary ( rgeos )

l ibrary (CARBayes)

l ibrary ( dplyr )

l ibrary ( p ly r )

l ibrary ( sp )

l ibrary ( spdep )

l ibrary (MASS)

l ibrary ( sp )

l ibrary ( s t a r g a z e r )

l ibrary ( s f )

l ibrary ( matr ixStats )

l ibrary ( t i dyv e r s e )

l ibrary ( s c a l e s )

l ibrary ( ggp lot2 )

l ibrary ( t i dyv e r s e )

l ibrary ( Spat i a lEp i )

l ibrary ( dplyr )

l ibrary ( sp )

l ibrary ( tmap)

l ibrary ( s f )

l ibrary ( tmap)

l ibrary ( l e a f l e t )

l ibrary ( kn i t r )

l ibrary ( coda )

l ibrary (CARBayes)

### u t i l i t y f unc t i ons

source ( f i l e .path (PATH, ”Algo Areal wombling .R” ) )

source ( f i l e .path (PATH, ”Bayesian Areal Wombling .R” ) )

source ( f i l e .path (PATH, ”00− u t i l s .R” ) )

source ( f i l e .path (PATH, ” p o s t e r i o r blv .R” ) )# to compute the po s t e r i o r b l v
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### Areal Wombling

#’

#’ \code{ area l wombling} f o r a l go r i t hmic area l wombling (Lu and Car l in 2005: 268) .

#’

#’ By de f au l t , \code{ censusr } downloads and recodes a s e l e c t e d s e t o f v a r i a b l e s .

#’ These v a r i a b l e s inc lude 100−300 commonly used measures from the

#’

#’ @param sp Object o f type \code{SpatialPolygonsDataFrame} ( s f o b j e c t s as converted )

#’ @param x Vector o f v a r i a b l e names f o r which we want to c a l c u l a t e the boundary va lue .

#’ @param th r e sho l d Threshold f o r the boundary membership va lue (BMV) . I f \code{ t h r e s ho l d } i s

#’ /code{NA} ( the d e f a u l t ) , /code{ area l wombling} uses f u z z y wombling . I f \code{ t h r e s ho l d } i s

#’ s p e c i f i e d ( any va lue between 0 and 1) , /code{ area l wombling} uses c r i s p wombling

#’ us ing \code{ t h r e s ho l d } to determine boundary membership .

#’ @param d i s t Distance func t i on . By d e f a u l t the a b s o l u t e d i f f e r e n c e in the response v a r i a b l e .

#’ @return Object o f c l a s s \code{SpatialLinesDataFrame} with Spa t i a lL ine s

#’ @export

a r e a l wombling <− function ( sp , x , th r e sho ld = NA, d i s t = function ( x ) abs ( x [ 1 ] − x [ 2 ] ) ) {
# check ‘ reshape2 : : : parse formula ‘ f o r p . whi te . cb + p . b l a c k . cb + p . h i sp . cb + p . asian . cb ˜ 1

# Coerce s imple f e a t u r e geometr ies to corresponding Spa t i a l∗ o b j e c t s

i f ( i s ( sp , ” s f ” ) ) sp <− as ( sp , ” Spa t i a l ” )

# ge t borders as l i n e segments in SpatialLinesDataFrame

s l <− border l ines ( sp )

# boundary l i k e l i h o o d va lue (BLV) and boundary membership va lue (BMV) to data . frame

dots format <− function ( s , s u f f i x )

s %>% setNames ( paste0 (x , s u f f i x ) ) %>%

as . l i s t ( ) %>% lapply (FUN = as . formula , env = environment ( ) )

dots blv <− dots format ( s p r i n t f ( ”˜ d i s t ( sp@data [ [ ’% s ’ ] ] [ c ( i , j ) ] ) [ 1 ] ” , x ) ,

s u f f i x = ” blv ” )

print ( dots blv )

dots bmv <− dots format ( s p r i n t f ( ”˜ %s blv/max(%s blv , na . rm = TRUE)” , x , x ) ,

s u f f i x = ” bmv” )

i f ( ! i s .na( th r e sho ld ) )

dots bmv <− dots format ( s p r i n t f ( ”˜ %s blv > %s” , x , th r e sho ld ) , s u f f i x = ” bmv” )

sl@data <− sl@data %>%

dplyr : : group by( i , j ) %>%

dplyr : : mutate ( . dots = dots blv ) %>%

dplyr : : ungroup ( ) %>%

dplyr : : mutate ( . dots = dots bmv) %>%

as . data . frame ( )

# return

return ( s l )

}

###’ Bayesian Areal Wombling

#’

#’ \code{ area l wombling bayes ian } f o r Bayesian area l wombling (Lu and Car l in 2005).

#’

#’ By de f au l t , \code{ censusr } downloads and recodes a s e l e c t e d s e t o f v a r i a b l e s .

#’ These v a r i a b l e s inc lude 100−300 commonly used measures from the

#’

#’ @param formula A formula f o r the covar i a t e par t o f the model , us ing the same nota t ion as f o r the \code{ lm ()} f unc t i on .
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#’ \code{y ˜ 1} e s t imate s a model wi thout co va r i a t e s .

#’ @param fami ly One o f e i t h e r ’ binomial ’ , ’ gaussian ’ or ’ poisson ’ , which r e s p e c t i v e l y s p e c i f y a binomia l l i k e l i h o o d model with a l o g i s t i c l i n k funct ion , a Gaussian l i k e l i h o o d model with an i d e n t i t y l i n k funct ion , or a Poisson l i k e l i h o o d model with a l o g l i n k func t i on .

#’ @param sp Object o f type \code{SpatialPolygonsDataFrame} ( s f o b j e c t s as converted )

#’ @param phi Condi t iona l au t o r e g r e s s i v e (CAR) pr io r f o r the random e f f e c t . Options are ’ leroux ’ f o r the CAR pr io r proposed by Leroux e t a l . (1999) ( the d e f a u l t ) , ’IAR’ fo r the i n t r i n s i c CAR, and ’BYM’ fo r the BYM CAR proposed by Besag e t a l . (1991) .

#’ @param th r e sho l d Threshold f o r the boundary membership va lue (BMV) . I f \code{ t h r e s ho l d } i s

#’ /code{NA} ( the d e f a u l t ) , /code{ area l wombling} uses f u z z y wombling . I f \code{ t h r e s ho l d } i s

#’ s p e c i f i e d ( any va lue between 0 and 1) , /code{ area l wombling} uses c r i s p wombling

#’ us ing \code{ t h r e s ho l d } to determine boundary membership .

#’ @param \ dots Arguments passed to es t imat ion command inc l ud ing \code{ burnin } , \code{n . sample } , \code{ t h in } , and parameters f o r var ious p r i o r s .

#’ @return Object o f c l a s s \code{ carbayes } from package \code{CARbayes} with two add i t i on s :

#’ Firs t , a d d i t i ona l e lement \code{ borders } o f c l a s s \code{SpatialLinesDataFrame } , which inc l ude s

#’ a l l border l i n e s and the po s t i o r median es t imate s f o r the boundary l i k e l i h o o d va lue and the boundary

#’ membership va lue ( boundary p r o b a b i l i t y i f \code{ t h r e s ho l d } i s de f ined ) . Second , \code{sampes} i n c l ude s

#’ add i t i ona l e lements f o r the McMC samples o f the boundary l i k e l i h o o d va lue and the boundary membership va lue .

#’ @export

a r e a l wombling bayes ian <− function ( formula , family , sp , phi = ”” ,

th r e sho ld = NA, E, pop , . . . ) {
i f ( ! ( phi %in% c ( ”INDEP” , ”IAR” , ” l e roux ” , ”BYM” , ”LOCA1” , ”LOCA2” ) ) )

stop ( ” I n c o r r e c t p r i o r f o r the random e f f e c t . ” )

# Coerce s imple f e a t u r e geometr ies to corresponding Spa t i a l∗ o b j e c t s

i f ( i s ( sp , ” s f ” ) ) sp <− as ( sp , ” Spa t i a l ” )

# ge t borders as l i n e segments in SpatialLinesDataFrame

s l <− border l ines ( sp )

# polygon adjacency matrix

W. nb <− spdep : : poly2nb ( sp , row .names = rownames( sp ) )

W.mat <− spdep : : nb2mat (W. nb , s t y l e = ”B” , ze ro . p o l i c y = TRUE)

# rownames (W.mat) <− NULL

# Bayesian h i e r a r c h i c a l model wi th s p a t i a l l y c o r r e l a t e d random e f f e c t s

i f ( phi == ”INDEP” ) m <− CARBayes : : S . CARleroux ( formula=formula , data=Data ,

family=”po i s son ” , W=W, rho = 0 , burnin=100000 , n . sample=300000 , th in=20)

i f ( phi == ”IAR” ) m <− CARBayes : : S . CARleroux ( formula=formula , data=Data ,

family=”po i s son ” , W=W, rho = 1 , burnin=1000 , n . sample=3000 , th in=20)

i f ( phi == ” le roux ” ) m <− CARBayes : : S . CARleroux ( formula=formula , data=Data ,

family=”po i s son ” , W=W, burnin=100000 , n . sample=300000 , th in=20)

i f ( phi == ”BYM”) m <− CARBayes : : S .CARbym( formula=formula , data=Data ,

family=”po i s son ” , W=W, burnin=1000 , n . sample=3000 , th in=20)

i f ( phi == ”LOCA1” ) m <− CARBayes : : S . CARdiss imi lar i ty ( formula=formula ,

data=Data , family=”po i s son ” , W=W, Z=l i s t (Z . ratedep=Z . ratedep ) , W. binary=TRUE,

burnin=1000 , n . sample=3000 , th in=20) # Lee and Mi t ch e l l (2012)

i f ( phi == ”LOCA2” ) m <− CARBayes : : S . CARlocal ised ( formula=formula , data=Data ,

family=”po i s son ” , G=3, W=W, burnin=100000 , n . sample=300000 , th in=20) # Lee and Sarran (2015)

# po s t e r i o r d i s t r i b u t i o n o f boundary l i k e l i h o o d va lue (BLV) and boundary membership va lue (BMV)

# f i t t e d va lue s (mu) : m$samples$ f i t t e d [ 1 , ] == m$samples$be ta [ 1 , ] + m$samples$phi [ 1 , ]

#b l v <− po s t e r i o r b l v (m$samples$ f i t t e d /Data$E, as . matrix ( s l@data [ , 1 : 2 ] ) ) # RR

blv <− po s t e r i o r blv ( (m$samples$ f i tted∗1000)/Data$pop ,

as .matrix ( s l@data [ , 1 : 2 ] ) ) # IR1000

blv<−abs ( blv )

i f ( i s .na( th r e sho ld ) ) bmv <− t (apply ( blv , 1 , function ( i t e r ) i t e r / max( i t e r ) ) )

i f ( ! i s .na( th r e sho ld ) ) bmv <− blv > th r e sho ld

# crea te MCMC ob j e c t f o r b l v and bmv

mcpar <− attr (m$samples$beta , ”mcpar” )

m$samples$blv <− coda : : mcmc( blv , start = mcpar [ 1 ] , end = mcpar [ 2 ] , th in = mcpar [ 3 ] )
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m$samples$bmv <− coda : : mcmc(bmv, start = mcpar [ 1 ] , end = mcpar [ 2 ] , th in = mcpar [ 3 ] )

# add po s t e r i o r median to SpatialLinesDataFrame

s l $blv median <− apply ( blv , 2 , median)

i f ( i s .na( th r e sho ld ) ) s l $bmv median <− apply (bmv, 2 , median) # b l v or bmv ??

i f ( ! i s .na( th r e sho ld ) ) s l $bmv mean <− colMeans (bmv)

# return model and SpatialLinesDataFrame

m$borders <− s l

return ( s l )

}

### Convert SpatialPolygonsDataFrame to SpatialLinesDataFrame with border segments

#’

#’ \code{ border l i n e s } conver t s a SpatialPolygonsDataFrame to a SpatialLinesDataFrame with one element f o r each border between neighbour ing areas .

#’

#’ @param sp Object o f type \code{SpatialPolygonsDataFrame} ( s f o b j e c t s as converted )

#’ @param l o n g l a t Use Eucl idean or Great C i r c l e d i s t ance f o r c a l c u l a t i o n o f l i n e l eng t h . I f FALSE, Eucl idean dis tance , i f TRUE Great C i r c l e d i s t ance in k i l ome t e r s .

#’ @return Object o f c l a s s \code{SpatialLinesDataFrame} with one element f o r each border between neighbour ing areas .

#’

#’ @importFrom magr i t t r ”%<>%”

#’ @importFrom magr i t t r ”%>%”

#’ @export

border l ines <− function ( sp , l o n g l a t = TRUE) {
# Coerce s imple f e a t u r e geometr ies to corresponding Spa t i a l∗ o b j e c t s

i f ( i s ( sp , ” s f ” ) ) sp <− as ( sp , ” Spa t i a l ” )

P <− sp : : polygons ( sp )

# ge t adjacency matrix A

# nb <− spdep : : poly2nb ( sp , row . names = rownames ( sp ) , queen = FALSE)

# A <− nb2mat : : nb2mat (nb , s t y l e = ”B” , zero . p o l i c y = TRUE)

nb <− spdep : : poly2nb ( sp , queen = FALSE)

# crea te data . frame with ad jacent areas

g r e a t e r than <− function ( a , b ) a [ a > b ]

data <− data . frame ( i = 1 : length (nb ) , j = NA) %>%

group by( i , j ) %>%

do(expand . grid ( i = . $ i , j = g r e a t e r than (nb [ [ . $ i ] ] , . $ i ) ) ) %>%

as . data . frame ( )

# area borders as Spa t i a lL ine s

l ines <− apply (data , 1 , function (d) {
i <− as .numeric (d [ ” i ” ] )

j <− as .numeric (d [ ” j ” ] )

# ge t l i s t o f coord ina te s f o r po lygons

c1 <− p ly r : : l l p l y ( P@polygons [ [ i ] ] @Polygons , sp : : c oo rd ina t e s )

c2 <− p ly r : : l l p l y ( P@polygons [ [ j ] ] @Polygons , sp : : c oo rd ina t e s )

# ge t borders f o r each combination o f po lygons

grid <− expand . grid ( s1 = 1 : length ( c1 ) , s2 = 1 : length ( c2 ) )

l i n e <− apply (grid , 1 , function ( obj ) {
a <− c1 [ [ obj [ ” s1 ” ] ] ]

b <− c2 [ [ obj [ ” s2 ” ] ] ]

# s e l e c t i n t e r s e c t i n g rows

s e l <− a [ , 1 ] %in% b [ , 1 ] & a [ , 2 ] %in% b [ , 2 ]

i f (sum( s e l ) == 0) return (NULL)

# crea te Line o b j e c t f o r each sequence o f matching coord ina te s
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runs <− rle ( s e l )

runs <− data . frame (

va l = runs$values ,

i = c (1 , cumsum( runs$length ) + 1)[−( length ( runs$length ) + 1 ) ] ,

l en = runs$length ) %>%

dplyr : : f i l t e r ( va l )

# coord ina te s f o r each sequence

pos <− p ly r : : a l p l y (as .matrix ( runs ) , 1 , . %>% { . [ [ ” i ” ] ] : ( . [ [ ” i ” ] ] +

. [ [ ” l en ” ] ] − 1)} )
coords <− p ly r : : l l p l y (pos , . %>% a [ . , , drop = FALSE] )

# remove dup l i c a t e l i n e e lements

l en one <− p ly r : : l ap l y (coords , nrow) == 1

i f ( ! a l l ( l en one ) & any( l en one ) ) {
B <− do . ca l l ( rbind , coords )

coords <− p ly r : : l l p l y (coords , function (A) {
i f (nrow(A) > 1) return (A)

cond <− sum(A[ , 1 ] == B[ , 1 ] & A[ , 2 ] == B[ , 2 ] ) > 1

i f ( cond ) return (NULL)

return (A)

})
coords <− coords [ ! sapply (coords , i s . null ) ]

}
# return l i s t o f Line o b j e c t s ( one element f o r each sequence o f coord ina te s )

p ly r : : l l p l y (coords , sp : : Line )

})
segments <− unlist ( l i n e [ ! sapply ( l i n e , i s . null ) ] , r e c u r s i v e=FALSE)

sp : : L ines (segments , ID = s p r i n t f ( ” i%s j%s ” , i , j ) )

})
s l <− sp : : Spa t i a lL i n e s ( l ines [ ! sapply ( l ines , i s . null ) ] ,

p r o j 4 s t r i n g = sp : : CRS( sp : : p r o j 4 s t r i n g ( sp ) ) )

# SpatialLinesDataFrame from Spa t i a lL ine s and data

s l d f <− sp : : SpatialLinesDataFrame ( s l , data , match . ID = FALSE)

# s l d f $ l e n g t h <− Spa t ia lL inesLeng ths ( s l d f , l o n g l a t = l o n g l a t )

return ( s l d f )

}

### pos t e r i o r b l v

po s t e r i o r blv <− function (mu, adj ) {
i t e r s <− nrow(mu)

n <− nrow( adj )

blv <− matrix (nrow = i t e r s , ncol = n)

for ( i in 1 : n ) {
for ( i t e r in 1 : i t e r s ) {

blv [ i t e r , i ] <− mu[ i t e r , adj [ i , 1 ] ] − mu[ i t e r , adj [ i , 2 ] ]

# b l v [ i t e r , i ] <− mu[ i t e r , adj [ i , 1 ] − 1 ] − mu[ i t e r , adj [ i , 2 ] − 1 ] ;

}
}
return ( blv ) ;

}
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### Exploratory data ana l y s i s

# Moran ’ s I : S pa t i a l Autocorre la t ion d i a gno s t i c

nb <− poly2nb (Data , queen=TRUE) ## Define neighborhood

# Create ne ighbours l i s t wi th row−s tandard i zed we igh t s

col .W<− nb2 l i s tw (nb , s t y l e=”W” )

I<−moran (x=Data$IR1000 , l i s tw=col .W, n=length (nb ) , S0=Szero ( col .W) ) [ 1 ]

moran . plot ( x=Data$IR1000 , l i s tw=col .W, n=length (nb ) , S0=Szero ( col .W) )

# Test ing based on normal approximation

moran . t e s t ( x=Data$IR1000 , l i s tw=col .W)

# Test ing based on randomization

nsim <− 999 ; set . seed (1234)

MC<−moran .mc(x=Data$IR1000 , l i s tw=col .W, nsim )

hist (MC$ res , x lab=”Monte Carlo s imu la t i on o f I ” ,main=”” ) ;

abline ( v=MC$ s t a t i s t i c , col=”red” )

### Algorithm−based wombling : Crisp wombing

Data . sp<− s t transform ( x=Data , c r s=’+pro j=l ong l a t +datum=WGS84 +no de f s ’ )

border<−border l ines (Data . sp , l o n g l a t = TRUE)

x<−”IR1000”

## Threshold1 : 1 s t Quar t i l e = 6

summary(Data . sp$IR1000 )

Algo Crisp w1<−a r e a l wombling (Data . sp , x , th r e sho ld = 6 , d i s t = function ( x )

abs ( x [ 1 ] − x [ 2 ] ) )

table ( Algo Crisp w1$IR1000 bmv)

## Plot 1 : Boundary va lue s f o r border l i n e segments

colors <− c ( ” green ” , ” red ” )

plot ( Algo Crisp w1 , col = colors [ factor ( Algo Crisp w1$IR1000 bmv, levels =

c ( ”FALSE” , ”TRUE” ) ) ] , lwd = 0 .03 , main= ”Threshold=6 ; Wave 1 (T=138)” )

# The s p a t i a l l i n e s o b j e c t does not inc lude Belgium ’ s mun i c i p a l i t i e s boundaries .

# Let ’ s add them

Crisp w1 <− s t union (Data . sp )

plot (as ( Crisp w1 , ” Spa t i a l ” ) , lwd = 0 . 5 , add = TRUE)

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , l t y = c (1 , 1 ) ,

col = c (2 , 3 ) , lwd = 1)

## Plot 2 : Boundary va lue s f o r border l i n e segments f o r a rea l un i t s

# aggrega te from l i n e segments to b l o c k group l e v e l

wave1 blv <− bind rows (

group by( Algo Crisp w1@data , i ) %>%

summarise at ( vars ( ends with ( ” blv ” ) ) , max, na .rm = TRUE) ,

group by( Algo Crisp w1@data , j ) %>%

summarise at ( vars ( ends with ( ” blv ” ) ) , max, na .rm = TRUE) %>% dplyr : : rename ( i = j )

) %>%

group by( i ) %>%

summarise at ( vars ( ends with ( ” blv ” ) ) , max, na .rm = TRUE)

b wave1 <− bind c o l s (Data . sp , s e l e c t (wave1 blv , − i ) )

b wave1=b wave1%>%mutate (BMV= case when( IR1000 blv>=6˜”TRUE” , IR1000 blv<6 ˜ ”FALSE” ) )

table (b wave1$BMV)

s e l <− i s . f i n i t e (b wave1$IR1000 blv )

plot (as (b wave1 [ s e l , ] , ” Spa t i a l ” ) , lwd = 0 . 1 , col = colors [ factor (b wave1$BMV,

levels = c ( ”FALSE” , ”TRUE” ) ) ] , main= ”Threshold=10 ; Wave1 (43 mun i c i p a l i t i e s ) ” )

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , col = c (2 , 3 ) , pch=16)
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### Algorithm−based wombling : Fuzzy wombing

Data . sp<− s t transform ( x=Data , c r s=’+pro j=l ong l a t +datum=WGS84 +no de f s ’ )

border<−border l ines (Data . sp , l o n g l a t = TRUE)

x<−”IR1000”

Algo Fuzzy w1<−a r e a l wombling (Data . sp , x , th r e sho ld = NA, d i s t = function ( x )

abs ( x [ 1 ] − x [ 2 ] ) )

table ( Algo Fuzzy w1$IR1000 bmv)

# cu t t i n g po in t 1 : 50%

cc<−Algo Fuzzy w1$IR1000 bmv

cc=as . data . frame ( cc )

ccc<− cc %>%mutate (BMV= case when( cc>=0.50˜”TRUE” , cc<0.5 ˜ ”FALSE” ) )

Algo Fuzzy w1$BMV<− ccc$BMV

table ( Algo Fuzzy w1$BMV)

## Plot 1 : Boundary va lue s f o r border l i n e segments

colors <− c ( ” green ” , ” red ” )

plot ( Algo Fuzzy w1 , col = colors [ factor ( Algo Fuzzy w1$BMV,

levels = c ( ”FALSE” , ”TRUE” ) ) ] , lwd = 0 .03 , main= ”Wave 1 (T=41)” )

# The s p a t i a l l i n e s o b j e c t does not inc lude Belgium ’ s mun i c i p a l i t i e s boundaries .

Fuzzy w1 <− s t union (Data . sp )

plot (as ( Fuzzy w1 , ” Spa t i a l ” ) , lwd = 0 . 5 , add = TRUE)

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , l t y = c (1 , 1 ) ,

col = c (2 , 3 ) , lwd = 1)

## Plot 2 : Boundary va lue s f o r border l i n e segments f o r a rea l un i t s

# aggrega te from l i n e segments to b l o c k group l e v e l

wave1 blv <− bind rows (

group by( Algo Fuzzy w1@data , i ) %>%

summarise at ( vars ( ends with ( ”bmv” ) ) , max, na .rm = TRUE) ,

group by( Algo Fuzzy w1@data , j ) %>%

summarise at ( vars ( ends with ( ”bmv” ) ) , max, na .rm = TRUE) %>% dplyr : : rename ( i = j )

) %>%

group by( i ) %>%

summarise at ( vars ( ends with ( ”bmv” ) ) , max, na .rm = TRUE)

b wave1 <− bind c o l s (Data . sp , s e l e c t (wave1 blv , − i ) )

b wave1=b wave1%>%mutate (BMV= case when( IR1000 bmv>=0.50˜”TRUE” ,

IR1000 bmv<0.50 ˜ ”FALSE” ) )

table (b wave1$BMV)

s e l <− i s . f i n i t e (b wave1$IR1000 bmv)

plot (as (b wave1 [ s e l , ] , ” Spa t i a l ” ) , lwd = 0 . 1 , col = colors [ factor (b wave1$BMV,

levels = c ( ”FALSE” , ”TRUE” ) ) ] , main= ”Wave1 (56 mun i c i p a l i t i e s ) ” )

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , col = c (2 , 3 ) , pch=16)

### Globa l CAR modeling

formula <− Data$CaseObs˜ of fset ( log (Data$E) ) # observe ˜ expec ted

## models

model1 <− S . CARleroux ( formula=formula , data=Data , family=”po i s son ” , W=W,

rho = 0 , burnin=100000 , n . sample=300000 , th in=20) # indep

model2 <− S . CARleroux ( formula=formula , data=Data , family=”po i s son ” , W=W,

burnin=100000 , n . sample=300000 , th in=20) # Leroux

model3 <− S .CARbym( formula=formula , data=Data , family=”po i s son ” , W=W,

burnin=100000 , n . sample=300000 , th in=20) # BYM
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INDEP<−print (model1$mode l f i t )

Leroux<−print (model2$mode l f i t )

Bym<−print (model3$mode l f i t )

Global smo<−rbind (INDEP, Leroux ,Bym)

Data$IR1000g<−(model2$ f i tted . va lue s∗1000)/Data$pop
Data$Residg<−model2$residuals$response # ex t r a c t r e s i d u a l s

## Inference

# model

model2 1 <− S . CARleroux ( formula=formula , data=Data , family=”po i s son ” , W=W,

burnin=100000 , n . sample=300000 , th in=20) # Leroux

# convergence d i a gno s t i c 1 : s t a t in −1.96 , 1.96 sugge s t convergence (Geweke . d iag )

print (model2 1 )

# convergence d i a gno s t i c 2 : t r a c e p l o t comparing the r e s u l t s from the mu l t i p l e

# chains in coda

model2 2 <− S . CARleroux ( formula=formula , data=Data , family=”po i s son ” , W=W,

burnin=100000 , n . sample=300000 , th in=20) # Leroux

model2 3 <− S . CARleroux ( formula=formula , data=Data , family=”po i s son ” , W=W,

burnin=100000 , n . sample=300000 , th in=20) # Leroux

beta . samples <− mcmc. l i s t (model2 1$samples$beta , model2 2$samples$beta ,

model2 3$samples$beta )

# convergence d i a gno s t i c 3 : p o t e n t i a l s c a l e reduc t ion f a c t o r (PSRF, Gelman e t a l .

# (2003) ; va lue l e s s than 1.1 i s s u g g e s t i v e o f convergence

gelman . diag (beta . samples )

beta . samples .matrix <− rbind (model2 1$samples$beta , model2 2$samples$beta ,

model2 3$samples$beta )

colnames (beta . samples .matrix ) <− colnames (model2 1$X)

round( t ( rbind (apply (beta . samples .matrix , 2 , mean) , apply (beta . samples .matrix ,

2 , quantile , c ( 0 . 025 , 0 . 9 7 5 ) ) ) ) , 5)

### Loca l l y smoothing mode l l ing

## Define d i s s im i l a r i t y metric

Depriv <− Data$Depriv

Z . Depriv <− as .matrix ( d i s t ( Depriv , diag=TRUE, upper=TRUE))

formula <− Data$CaseObs˜ of fset ( log (Data$E) ) # observe ˜ expec ted

# Lee and Mi t ch e l l (2012)

model4 <−S . CARdiss imi lar i ty ( formula=formula , data=Data , family=”po i s son ” , W=W,

Z=l i s t (Z . Depriv=Z . Depriv ) , W. binary=TRUE, burnin=10000 ,

n . sample=30000 , th in=20) #

# Lee and Sarran (2015)

model5 <− S . CARlocal ised ( formula=formula , data=Data , family=”po i s son ” , G=3, W=W,

burnin=10000 ,n . sample=30000 , th in=20)

Loca1<−print (model4$mode l f i t )

Loca2<−print (model5$mode l f i t )

Loca l l y smo<−rbind ( Loca1 , Loca2 )

Data$ IR1000l1<−(model4$ f i tted . va lue s∗1000)/Data$pop
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Data$Res id l1<−model4$residuals$response
Data$ IR1000l2<−(model5$ f i tted . va lue s∗1000)/Data$pop
Data$Res id l2<−model5$residuals$response

## Inference 1

model4 1 <− S . CARdiss imi lar i ty ( formula=formula , data=Data , family=”po i s son ” , W=W,

Z=l i s t (Z . popdep=Z . popdep ) ,W. binary=TRUE, burnin=100000 , n . sample=300000 , th in=20)

# convergence d i a gno s t i c 1 : s t a t in −1.96 , 1.96 sugge s t convergence (Geweke . d iag )

# convergence d i a gno s t i c 2 : t r a c e p l o t comparing the r e s u l t s from the mu l t i p l e

# chains in coda

model4 2 <− S . CARdiss imi lar i ty ( formula=formula , data=Data , family=”po i s son ” , W=W,

Z=l i s t (Z . popdep=Z . popdep ) ,W. binary=TRUE, burnin=100000 , n . sample=300000 , th in=20)

model4 3 <− S . CARdiss imi lar i ty ( formula=formula , data=Data , family=”po i s son ” , W=W,

Z=l i s t (Z . popdep=Z . popdep ) ,W. binary=TRUE, burnin=100000 , n . sample=300000 , th in=20)

beta . samples <− mcmc. l i s t (model4 1$samples$beta , model4 2$samples$beta ,

model4 3$samples$beta )

# convergence d i a gno s t i c 3 : p o t e n t i a l s c a l e reduc t ion f a c t o r (PSRF, Gelman e t a l .

# (2003) ; va lue l e s s than 1.1 i s s u g g e s t i v e o f convergence

gelman . diag (beta . samples )

beta . samples .matrix <− rbind (model4 1$samples$beta , model4 2$samples$beta ,

model4 3$samples$beta )

colnames (beta . samples .matrix ) <− colnames (model4 1$X)

round( t ( rbind (apply (beta . samples .matrix , 2 , mean) , apply (beta . samples .matrix ,

2 , quantile , c ( 0 . 025 , 0 . 9 7 5 ) ) ) ) , 5)

### Model−based wombling 1 : Crisp wombing

Data . sp<− s t transform ( x=Data , c r s=’+pro j=l ong l a t +datum=WGS84 +no de f s ’ )

border<−border l ines (Data . sp , l o n g l a t = FALSE)

x<−”IR1000g”

formula <− Data$CaseObs˜ of fset ( log (Data$E) ) # observe ˜ expec ted

### Threshold1 : 1 s t Quar t i l e = 6

#Bayes Crisp w1<−area l wombling (Data . sp , x , t h r e s ho l d = 6 , d i s t = func t ion ( x )

# abs ( x [ 1 ] − x [ 2 ] ) )

Bayes Crisp w1<−a r e a l wombling bayes ian ( formula , family=”po i s son ” , Data . sp ,

phi = ” l e roux ” , th r e sho ld = 6 , E, pop )

table ( Algo Crisp w1$IR1000 bmv)

## Plot 1 : Boundary va lue s f o r border l i n e segments

colors <− c ( ” green ” , ” red ” )

plot ( Algo Crisp w1 , col = colors [ factor ( Algo Crisp w1$IR1000 bmv, levels =

c ( ”FALSE” , ”TRUE” ) ) ] , lwd = 0 .03 , main= ”Threshold=6 ; Wave 1 (T=138)” )

# The s p a t i a l l i n e s o b j e c t does not inc lude Belgium ’ s mun i c i p a l i t i e s boundaries .

# Let ’ s add them

Crisp w1 <− s t union (Data . sp )

plot (as ( Crisp w1 , ” Spa t i a l ” ) , lwd = 0 . 5 , add = TRUE)

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , l t y = c (1 , 1 ) ,

col = c (2 , 3 ) , lwd = 1)

## Plot 2 : Boundary va lue s f o r border l i n e segments f o r a rea l un i t s

# aggrega te from l i n e segments to b l o c k group l e v e l

wave1 blv <− bind rows (

group by( Algo Crisp w1@data , i ) %>%
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summarise at ( vars ( ends with ( ” blv ” ) ) , max, na .rm = TRUE) ,

group by( Algo Crisp w1@data , j ) %>%

summarise at ( vars ( ends with ( ” blv ” ) ) , max, na .rm = TRUE) %>% dplyr : : rename ( i = j )

) %>%

group by( i ) %>%

summarise at ( vars ( ends with ( ” blv ” ) ) , max, na .rm = TRUE)

b wave1 <− bind c o l s (Data . sp , s e l e c t (wave1 blv , − i ) )

b wave1=b wave1%>%mutate (BMV= case when( IR1000 blv>=6˜”TRUE” ,

IR1000 blv<6 ˜ ”FALSE” ) )

table (b wave1$BMV)

s e l <− i s . f i n i t e (b wave1$IR1000 blv )

plot (as (b wave1 [ s e l , ] , ” Spa t i a l ” ) , lwd = 0 . 1 , col = colors [ factor (b wave1$BMV,

levels = c ( ”FALSE” , ”TRUE” ) ) ] , main= ”Threshold=10 ; Wave1 (43 mun i c i p a l i t i e s ) ” )

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , col = c (2 , 3 ) , pch=16)

### Algorithm−based wombling : Fuzzy wombing

Data . sp<− s t transform ( x=Data , c r s=’+pro j=l ong l a t +datum=WGS84 +no de f s ’ )

border<−border l ines (Data . sp , l o n g l a t = TRUE)

x<−”IR1000”

Algo Fuzzy w1<−a r e a l wombling (Data . sp , x , th r e sho ld = NA, d i s t = function ( x )

abs ( x [ 1 ] − x [ 2 ] ) )

table ( Algo Fuzzy w1$IR1000 bmv)

# cu t t i n g po in t 1 : 50%

cc<−Algo Fuzzy w1$IR1000 bmv

cc=as . data . frame ( cc )

ccc<− cc %>%mutate (BMV= case when( cc>=0.50˜”TRUE” , cc<0.5 ˜ ”FALSE” ) )

Algo Fuzzy w1$BMV<− ccc$BMV

table ( Algo Fuzzy w1$BMV)

## Plot 1 : Boundary va lue s f o r border l i n e segments

colors <− c ( ” green ” , ” red ” )

plot ( Algo Fuzzy w1 , col = colors [ factor ( Algo Fuzzy w1$BMV,

levels = c ( ”FALSE” , ”TRUE” ) ) ] , lwd = 0 .03 , main= ”Wave 1 (T=41)” )

# The s p a t i a l l i n e s o b j e c t does not inc lude Belgium ’ s mun i c i p a l i t i e s boundaries .

Fuzzy w1 <− s t union (Data . sp )

plot (as ( Fuzzy w1 , ” Spa t i a l ” ) , lwd = 0 . 5 , add = TRUE)

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , l t y = c (1 , 1 ) ,

col = c (2 , 3 ) , lwd = 1)

## Plot 2 : Boundary va lue s f o r border l i n e segments f o r a rea l un i t s

# aggrega te from l i n e segments to b l o c k group l e v e l

wave1 blv <− bind rows (

group by( Algo Fuzzy w1@data , i ) %>%

summarise at ( vars ( ends with ( ”bmv” ) ) , max, na .rm = TRUE) ,

group by( Algo Fuzzy w1@data , j ) %>%

summarise at ( vars ( ends with ( ”bmv” ) ) , max, na .rm = TRUE) %>% dplyr : : rename ( i = j )

) %>%

group by( i ) %>%

summarise at ( vars ( ends with ( ”bmv” ) ) , max, na .rm = TRUE)

b wave1 <− bind c o l s (Data . sp , s e l e c t (wave1 blv , − i ) )

b wave1=b wave1%>%mutate (BMV= case when( IR1000 bmv>=0.50˜”TRUE” ,

IR1000 bmv<0.50 ˜ ”FALSE” ) )

table (b wave1$BMV)
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s e l <− i s . f i n i t e (b wave1$IR1000 bmv)

plot (as (b wave1 [ s e l , ] , ” Spa t i a l ” ) , lwd = 0 . 1 , col = colors [ factor (b wave1$BMV,

levels = c ( ”FALSE” , ”TRUE” ) ) ] , main= ”Wave1 (56 mun i c i p a l i t i e s ) ” )

legend ( x = ” bot tomle f t ” , legend = c ( ”TRUE” , ”FALSE” ) , col = c (2 , 3 ) , pch=16)

### Wombling us ing d i s s im i l a r i t y metric in CARBayes

## Adjacency matrix

W. nb <− poly2nb (Data , row .names = Data$NIS5 )

W<− nb2mat (W. nb , s t y l e=”B” )

## d i s s im i l a r i t y metric

Depriv <− Data$Depriv

Z . Depriv <− as .matrix ( d i s t ( Depriv , diag=TRUE, upper=TRUE))

## S . CARdiss imi lar i ty () : CAR model + d i s s im i l a r i t y metr ics

## W. binary=TRUE makes e lements in W are ones or zeros corresponding to boundaries

formula <− Data$CaseObs˜ of fset ( log (Data$E) ) # observe ˜ expec ted

model <− S . CARdiss imi lar i ty ( formula=formula , data=Data ,

family=”po i s son ” , W=W, Z=l i s t (Z . Depriv=Z . Depriv ) ,

W. binary=TRUE, burnin=100000 , n . sample=300000 , th in=20)

## number and l o c a t i on s o f t he se boundaries

# boundaries as a Spa t i a lPo in t s

border . l o c a t i o n s <− model4$ l o c a l i s e d . structure$W. po s t e r i o r # matrix o f border l o c a t i on s

Data$IR1000p <− (model4$ f i tted . va lue s∗1000)/Data$pop # est imated IR1000

boundary . f i n a l <− h i gh l i g h t . borders ( border . l o c a t i o n s=border . l o c a t i on s ,

s f da ta=Data ) # i d e n t i f i e s the boundary po in t s us ing the CARBayes func t i on

# h i g h l i g h t . borders () and formats them to enab le p l o t t i n g

# p l o t t i n g

boundary . c oo rd ina t e s <− s t coo rd ina t e s ( boundary . f i n a l )

colours <− colorNumeric ( palette = ”YlOrRd” , domain = Data$IR1000p )

map1 <− l e a f l e t (data=Data ) %>% addTi les ( ) %>%

addPolygons ( f i l l C o l o r = ˜colours ( IR1000p ) , c o l o r=”” , weight=1, f i l l O p a c i t y = 0.7)%>%

addLegend ( pal = colours , va lue s = Data$IR1000p , opac i ty = 1 , b ins = 5 ,

t i t l e=”CAR d i s s i Womb” ) %>%

addCi r c l e s ( lng = ˜boundary . c oo rd ina t e s [ , 1 ] , l a t = ˜boundary . c oo rd ina t e s [ , 2 ] ,

weight = 1 , rad iu s = 2) %>%

addScaleBar ( p o s i t i o n=” bot tomle f t ” )

map1

################################################################################

A.2 Figures
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Figure A.2.1: Convergence of the Markov chains 1 (a: wave1; b: wave2; c: wave3)
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Figure A.2.2: Model-based wombling for wave 1 (municipalities in boundaries
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Figure A.2.3: Model-based wombling for wave 2 (municipalities in boundaries
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Figure A.2.4: Model-based wombling for wave 3 (municipalities in boundaries
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