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HASSELT UNIVERSITY

Abstract

Master of Statistics and Data Science

Developing a tool to find the optimal neighborhood structure in a spatially discrete
spatial analysis using Covid-19 mortality data

by Maxime BUSSELEN

Introduction: In spatial epidemiology, discrete spatial models require the construction
of a neighborhood structure. These neighborhood structures have an order which repre-
sents the distance of spatial correlation. This study aims to develop a method that makes
selecting the best-fitting neighborhood structure order easier.

Methods: Using the 2020 Covid-19 mortality data of Belgium, continuous spatial mod-
els are fitted to estimate the practical correlation range of spatial correlation present in
the data. Next, using this estimation, a neighborhood structure order for discrete spatial
modelling is selected that aligns with the estimated practical correlation range from the
spatially continuous analysis. The analysis is then repeated using simulated data.

Results: The results are presented as a comparison of the estimated practical correlation
range by the continuous model and the WAIC values of the discrete spatial models with
varying neighborhood structure order. The results of the small-scale simulation study
are presented analogously.

Discussion: The method performs well in some cases; in others, the model with the sug-
gested neighborhood structure order is not the best-fitting model. The correlation range
is often overestimated by the spatially continuous analysis. This results in the selection
of a model with a high-order neighborhood structure, usually not the model with the
lowest WAIC.

Keywords: Spatial epidemiology, spatial correlation, practical correlation range, neighborhood
structure
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Chapter 1

Introduction

1.1 Background

The field of data analysis and statistics has witnessed remarkable advancements in recent
decades, leading to the development of numerous statistical models designed to handle
the presence of correlation in data. Traditional methods, such as classic linear regression,
which once dominated data analysis, often assumed independence among data points,
a premise that is often far from reality (Chan, 2004). As a response to this limitation, re-
searchers adapted and extended these models to create generalized linear models, which
introduced enhanced capabilities to explicitly address correlation structures and imple-
ment weighted least squares (Dunn, 2018). Moreover, the emergence of mixed effects
models, also known as hierarchical models, revolutionized the way dependencies within
groups were handled by simultaneously estimating fixed effects at the population level
and random effects to capture group-specific variations (Gelman, 2006). Temporal cor-
relation, a distinctive form of correlation where data points observed in close temporal
proximity tend to be more similar than those further apart, has also been a subject of
intensive investigation. In this context, specialized statistical models like Generalized Es-
timating Equations (GEE) and mixed effects models have been developed in longitudinal
data analyses to cater to the unique challenges of temporal correlation (Garcia, 2017).

Integrating geographical location and distances between data points in datasets gives
rise to a dimension of data correlation known as spatial correlation (Chou, 1995). This
form of correlation arises from spatial patterns in the data, as explained by Tobler’s first
law, emphasizing that "everything is related to everything else, but close things are more
related than distant things" (Tobler, 1970). Over the past few decades, spatial statistics
and geostatistics have developed remarkably, solidifying their status as crucial branches
of modern statistics specializing in datasets, including spatial information. Geostatistics,
in particular, focuses on unveiling average spatial trends and studying the correlations
between data points across the spatial domain (Diggle, 2019).

The significance of spatial statistics is evident across diverse scientific fields, where spa-
tial models have proven essential in unlocking new insights. In economics, spatial mod-
els have found utility in analyzing regional economic growth, using the spatial locations
of economic organizations and the interdependence they share in exchanging informa-
tion (Huggins, 2017). In agriculture and urban planning, spatial models are instrumen-
tal in monitoring and managing land use, optimizing resource allocation, and shaping
sustainable development practices (Moura, 2020). Ecology benefits greatly from spatial
statistics, as these models enable researchers to study animal movement patterns, exam-
ine the distribution of plants across vast areas, and understand ecosystem dynamics in
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response to environmental changes (Lichstein, 2002; Thorup, 2014). Environmental sci-
ence leverages spatial models to study the distribution of environmental variables, assess
spatial trends and changes, and study the impacts of human activities on the delicate bal-
ance of our ecosystems (Li, 2014).

Arguably one of the most impactful applications of spatial statistics lies in the field of
public health and epidemiology of infectious diseases (Lawson, 2018). In this domain,
spatial modelling serves as an essential tool for analyzing the spread of diseases, identi-
fying disease clusters, and studying the profound influence of environmental factors on
health outcomes. By employing spatial modelling techniques, researchers gain a com-
prehensive understanding of disease dynamics, enabling more effective public health
interventions and mitigating the risks of infectious diseases.

Modelling spatial data can be done in multiple ways, of which the most common are
point process analysis, spatially discrete models, and spatially continuous geostatistical
models. Spatial point process models are used to describe point patterns in a spatial field
(Baddeley, 2007). The modelling process involves estimating parameters that describe
the spatial intensity function and interaction effects. Some statistical functions that are
often used for point processes are the K-function, G-function, or Ripley’s K-function. In
this thesis, however, the focus lies on the other two ways of spatial modelling. The main
difference between spatially discrete and spatially continuous modelling is how they rep-
resent the spatial information of the data. In spatially continuous models, the spatial field
is seen as a continuum at which a discrete number of locations are sampled. These mod-
els measure spatial trends across a continuous spatial field and can thus capture gradual
variation between measurements. For example, one can estimate the disease prevalence
continuously over the study region by sampling at a limited number of locations. By
doing this, the prevalence of unsampled locations can be estimated thanks to the infor-
mation gathered in surrounding locations. The observations are correlated to a certain
degree, meaning closer observations are assumed to be more alike than observations fur-
ther away. For instance, an area with a high prevalence of disease cases is likely to be
surrounded by areas that have similar prevalence numbers. This correlation is included
in the modelling by a spatial process. Examples include spatial autoregressive models
and generalized geostatistical linear models, abbreviated as GLGM (Giorgi, 2018).

The other investigated type of spatial models consists of spatially discrete models. Exam-
ples include spatial lattice models and conditional autoregressive models (CAR) (Besag,
1974). These models aggregate data in spatial units, separated by pre-specified bound-
aries. These units or sub-regions can be regular over a raster with the same area size,
or irregular in shape or size. An example of irregular sub-regions is municipalities or
provinces. When modelling data discretely, the spatial relationship between the units
must be explicitly specified in a neighborhood structure. These models treat the spatial
domain as a network of interconnected units and acknowledge the presence of neighbors
in the form of adjacency or contiguity. Specifying the neighborhood structure is a critical
aspect of spatially discrete models, as it directly impacts the estimated spatial correlation.

Despite the utility of spatially discrete models, the choice of neighborhood structure is
often subjective and can significantly influence model outcomes. The selection of neigh-
bors can vary based on different criteria, resulting in distinct correlation patterns and
potentially leading to contrasting conclusions. Some methods of defining neighboring
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spatial units are the following (Moraga, 2023). Contiguity-based neighbors are spatial
units that share a common border, known as rook’s contiguity, or a common border
and/or a common vertex, known as queen’s contiguity. Distance-based neighbors are
defined based on spatial proximity and a prespecified distance threshold. Neighbors
can also be specified using weights. A spatial weights matrix commonly represents the
neighborhood structure using some or all spatial units where each entry represents the
weight or connectivity between two spatial units. In this analysis, neighbors were spec-
ified using a contiguity-based structure that allows for lags using an order parameter.
The model considers spatial relationships beyond the immediate neighboring units to
allow indirectly linked spatial units to be neighbors with a lag that aligns with the or-
der number. First-order neighbors are spatial units that are directly linked. Second-order
neighbors are indirectly connected by being separated by one spatial unit. Neighborhood
structures can be defined using any higher-order structure, making it as extensive as nec-
essary. Higher-order structure models use more information on the farther regions than
models using only information on the first or second-order neighboring spatial units. If
the correlation of the spatial phenomenon is thought to reach further than the directly
surrounding regions, higher-order neighborhood structures are more appropriate.

The neighborhood structure order can impact the validation of discrete spatial models.
Choosing an appropriate structure that aligns with empirical observations or domain
knowledge is crucial for ensuring the model accurately represents real-world phenom-
ena. A mismatch between the neighborhood structure assumed in the model and the
actual spatial relationships in the system being studied may lead to inaccurate results.
Especially in an epidemiological setting, when modelling infectious diseases, the neigh-
borhood structure should reflect the spatial correlation of the disease cases. The optimal
order depends on the spatial correlation of the data and, thus, the practical correlation
range of the disease.

The spatial dependence term in geostatistics has been extensively discussed in the lit-
erature; however, there remains a lack of clarity regarding the definition of spatial as-
sociation between data points within a neighborhood structure. This ambiguity poses a
potential challenge in spatial modelling, particularly in infectious disease modelling. The
Covid-19 pandemic has highlighted the variable nature of spatial correlation due to its
initial strong outbreaks (Franch-Pardo, 2020). In the early stages of a Covid-19 outbreak,
we often observe small clusters of infections that can be effectively captured by employ-
ing single-order neighborhood structures. However, as the infections spread geograph-
ically, higher-order neighborhood structures may become more suitable for accurately
representing the disease’s broader coverage. This is the rationale for utilizing Covid-19
mortality data to test and validate the selection of an appropriate neighborhood structure
in this analysis.

It is important to note that determining the optimal order of dependence structure in
a disease scenario where the number of infections has reached saturation is not always
straightforward. Additionally, the spatial correlation effect may be less pronounced due
to the nature of the data being focused on mortality cases rather than infections. By
acknowledging these complexities and investigating the relationship between the neigh-
borhood structure and the Covid-19 mortality data, this thesis aims to enhance our un-
derstanding of spatial dependencies and their impact on infectious disease modelling.
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Such insights can contribute to more accurate and reliable predictions, ultimately effec-
tively assisting public health efforts in combating future outbreaks.

This thesis addresses the challenge of defining the most appropriate neighborhood struc-
ture using mortality data from Flanders, Belgium. Specifically, this study focuses on the
data collected in 2020, a year significantly impacted by the Covid-19 pandemic, which
greatly influenced mortality rates. While this research utilizes Covid-19 mortality data, it
is essential to note that the primary objective is methodological rather than an epidemi-
ological assessment of Covid-19 mortality itself. The main goal is to develop a tool to ef-
fectively determine the optimal neighborhood structure. The proposed tool encompasses
a method of analyzing mortality data and its geographic information in R to identify the
most suitable order of neighborhood structure for discrete modelling. A Gaussian spatial
process with a Matérn correlation function is employed to achieve this (Guttorp, 2006).
The mortality data are fitted to a spatially continuous model, utilizing the coordinates
of the centroids of municipalities as spatial locations. A model-based estimation of the
practical correlation range of spatial correlation is obtained by utilizing the Gaussian pro-
cess. This estimation provides valuable insight into the spatial relationships present in
the mortality data. Moreover, it helps define the order k of the neighborhood matrix in
the subsequent spatially discrete analysis. The aim is to ensure that the estimated practi-
cal correlation range best aligns with the mean distance between municipalities and their
kth-order neighbors.

1.2 Objectives and research questions

The primary objective of this project is to develop an innovative method to optimize the
process of selecting a neighborhood structure. Specifically, this method uses 2020 mor-
tality data from Flanders, focusing on the region of Limburg, to enhance the accuracy
and efficiency of spatial modelling. To streamline the utilization of this approach, the R
code utilized in generating the results is shared in the appendices. If this method were
optimized in future research, it could be consolidated into a user-friendly and convenient
function within the R programming environment. By simply providing the required in-
put data and specifying relevant parameters, researchers and practitioners could use this
tool to significantly save time, effort, and computational resources when constructing
discrete spatial models that necessitate carefully constructing a neighborhood structure.

1.3 Societal relevance and stakeholder awareness

Developing a tool that efficiently selects a neighborhood structure in a matter of minutes
has significant implications for spatial epidemiology and early warning systems in infec-
tious disease surveillance. This advancement is particularly crucial during times of crisis,
such as the global pandemic exemplified by Covid-19, where the rate of disseminating
results plays a pivotal role in disease management. By speeding up the selection process,
this method offers a valuable tool to optimize the choice of a neighborhood structure a
priori. Unlike traditional approaches that involve running multiple analyses to compare
various neighborhood structures, this novel approach performs a single continuous spa-
tial analysis, significantly reducing the time required, especially when dealing with large
numbers of observed cases.
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The potential beneficiaries of this research extend to a range of stakeholders, including
governmental public health institutions, policymakers, scientists, and non-statisticians
who rely on these models for decision-making processes and require enhanced efficiency.
The implications also extend to researchers across disciplines utilizing spatial data anal-
ysis in R, as the availability of such a tool would streamline their workflow and increase
the effectiveness of their research endeavors.

In spatial epidemiology, the ability to efficiently identify the most appropriate neigh-
borhood structure contributes to the timely identification of disease hotspots, spatial
patterns, and clusters. This knowledge empowers public health institutions to make
informed decisions regarding resource allocation, targeted interventions, and the imple-
mentation of effective control measures. Moreover, policymakers can benefit from a more
efficient selection process, enabling them to respond promptly to emerging threats, allo-
cate resources effectively, and develop evidence-based policies to mitigate the impact of
infectious diseases.

Furthermore, the research community is expected to gain significant advantages from
the development of this function. Researchers can devote more time and resources to
analyzing and interpreting results by optimizing the process of selecting neighborhood
structures. This ultimately promotes a deeper understanding of the underlying spatial
dynamics of diseases, facilitates the discovery of novel insights, and encourages the de-
velopment of innovative disease prevention and control strategies.

1.4 Ethical considerations

The aggregated dataset under consideration contains geographical information on the
population and mortality numbers of the Belgian population. Even though the data is
aggregated, it is important to prioritize the privacy and confidentiality of the individuals
represented within the dataset. Ensuring privacy protection can prevent unauthorized
access or disclosure of sensitive information.

Spatially discrete models emerge as a suitable approach in situations where data is pre-
sented in a spatially aggregated manner. The use of such models allows for the explo-
ration of spatial patterns and the extraction of meaningful insights while upholding pri-
vacy standards. By conducting analyses at the aggregated level, the risk of potential
re-identification or disclosure of personal information is significantly minimized. The
use of spatial discrete models represents an ethical approach to handling sensitive data.
By ensuring the confidentiality of observed individuals, researchers and policymakers
can navigate the balance between data utility and privacy preservation. This method-
ological framework provides a robust platform for conducting the best possible analysis
in situations where privacy concerns require the use of spatially aggregated data.
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Chapter 2

Dataset

2.1 2020 mortality data

2.1.1 Data description

The dataset used for the analyses (Table 2.1) includes aggregated information on popu-
lation and mortality numbers for all provinces in Belgium. The population number for
2020 is given in the pop2020 variable, and the number of deaths is given in the dth2020
variable column. For the development of the proposed methodology, data is used that is
aggregated in regions of 4 and 16 square kilometers. The analysis is performed on both
scales to explore the differences in results, which could provide valuable insights into the
implications of data aggregation level in spatial statistics. The data includes geographical
information on the country’s borders and the boundaries for each subregion. The geom-
etry variable describes the polygon of the aggregation and its location within the spatial
field. Data analysis was first done using the 4 by 4 grid and later with the more precise 2
by 2 grid. The analyses are performed separately per province. The expected number of
observations, E2020 in the data, is calculated by indirect standardization for the age and
sex of the population. In the models, the observed number of cases is written as y and
the expected number of cases as E. In the models, the standardized mortality ratio (SMR)
of subregion i is calculated as the number of observed events divided by the number of
expected events.

SMRi =
dth2020i

E2020i

A subregion with a high SMR value (> 1) indicates that there are more cases observed in
that area than expected based on the age and sex-specific incidence proportions from the
standard population.

TABLE 2.1: Description of Variables in the data

Variable Description
province Province in which the subregion is located
geometry Simple feature geometry list column describing the polygon
X X coordinate of the subregion centroid
Y Y coordinate of the subregion centroid
pop2020 Population number in 2020
dth2020 Mortality number in 2020
E2020 Expected number of deaths
SMR2020 Standardised mortality ratio
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2.1.2 Data exploration

The aggregated data can be visualized in a number of different ways. Here, the subset
containing the information on the province of Limburg is visualized by plotting the spa-
tial distribution of deaths in 2020 in blue, and the SMR (standardized mortality ratio) per
aggregation in red. The same visualization was done on the 16km2 data and on the 4km2

data. Figures 2.1 and 2.2 show that the 4km2 data contains more variability in terms of
SMR values. This is explained by the fact that the data is aggregated on a smaller scale.
There are therefore fewer observations per subregion. The spatial units with a zero pop-
ulation, such as in national parks or military domains, were left out of the analysis. These
subregions appear as blank spaces in the figures.

FIGURE 2.1: Left: mortality number of 2020 in Limburg. Right: SMR per
aggregated subregion of Limburg. These results are shown for the 16km2

data.
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FIGURE 2.2: Left: mortality number of 2020 in Limburg. Right: SMR per
aggregated subregion of Limburg. These results are shown for the 4km2

data.





11

Chapter 3

Methodology

3.1 Workflow

FIGURE 3.1: Workflow of the neighborhood structure selection method.
The ϕ parameter refers to the scaling parameter of the Matèrn correla-
tion function, given by ρ(u; ϕ, κ) = {2κ−1Γ(κ)}−1(u/ϕ)κKκ(u/ϕ). In both
models, S represents spatial correlation and U represents non-spatial het-
erogeneity. Subscript 1 is for the continuous spatial model and 2 for the

spatially discrete model.

The method under development, illustrated in Figure 3.1, involves an innovative ap-
proach to tackling spatial data analysis by combining continuous and discrete spatial
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modelling. The key idea is to utilize continuous spatial modelling to estimate the prac-
tical correlation range of spatial correlation within the data. This estimated range is
then used to select an appropriate neighborhood structure for discrete spatial modelling.
In the evaluation phase of the research, various discrete models with different orders
of neighborhood structures are fitted, and their performance is compared using WAIC
(Watanabe-Akaike Information Criterion) values (Wanatable, 2009; Gelman, 2014).

First, a spatially continuous model is fitted to the data to estimate the practical correla-
tion range of the infectious disease of interest. The practical correlation range estimation
is based on the ϕ parameter estimate of the GLGM. Then, a spatially discrete model is
fitted with a neighborhood structure order closest to the previously estimated practical
correlation range, meaning the maximum distance between two correlated centroids that
aligns with the range parameter ϕ. It should be noted that the distances between spatial
units can be variable, either on a regular or irregular grid. The mean distance between
the centroids could be compared to the estimated practical correlation range of irregu-
larly spaced spatial units. In this analysis, regular grids of 16km2 and 4km2 are used in
which the distance between centroids are considered to be 3 and 6 km, respectively. This
is the diagonal distance between centroids. Taking these distances will ensure that the
continuous analysis selects the smallest suitable neighborhood structure order.

3.2 Spatially Continuous Model

A generalized linear geostatistical model or GLGM (Giorgi, 2018) was fitted to the data,
which is a generalized linear model that incorporates the spatial dependence between
data points. The GLGM consists of three components. The first component is the fixed
component; however, in this case, no covariates were included in the model besides the
X and Y coordinates of the data points, such that the fixed component only consists of
an intercept coefficient in our scenario. The second component is the component that
accounts for the spatial process, expressed as S(xi) in the model. It captures the unex-
plained spatial variation in Yi and uses a spatial correlation function to explain how the
data points are spatially correlated. In this case, the Matérn correlation function is used
(Guttorp, 2006). The nugget effect Ui represents short-scale randomness or noise in the
regionalized variable (Morgan, 2011). It captures the variability of explanatory variables
that were not measured that are either not spatially structured or are spatially structured
at a scale smaller than the minimum distance observed. The third component is the link
function that links the linear predictor to the response variable via the log link since the
Poisson distribution is used. Model parameter estimation is done via maximum likeli-
hood estimation and MCML simulations.

Monte Carlo maximum likelihood (MCML) is a computational method to approximate
the model parameters’ maximum likelihood estimates (MLEs). Using Monte Carlo sam-
pling, a huge number of simulated data sets are produced, each of which is based on
a unique set of parameter values. The MLEs are calculated using maximum likelihood
estimation methods for each simulated data set. The MCML estimates for the model pa-
rameters are then derived using the average values of the estimated parameters across
all simulated data sets.

The initial values, including the initial nugget effect value for the maximum likelihood
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estimation of the generalized linear geostatistical model, are based on the empirical vari-
ograms constructed for each model. These variograms, which are included in Appendix
A, give a first look at the residual spatial correlation present in the data. A variogram
measures the relationship between the variance or covariance of the variable and the dis-
tance between locations. The variogram is depicted by a line graph, where the y-axis is
the estimated measure of spatial dependency and the x-axis indicates the distance. Pos-
itive spatial dependency can be observed by an increasing variogram, which suggests
that values at sites near one another tend to be similar in observed values.

The Poisson log-linear geostatistical model assumes that the counts of observed deaths
Yi at location xi are independent Poisson variables with mean λ(xi) (Diggle, 2019). Yi
are conditional on the Gaussian process S(xi) and on a set of independent zero-mean
normally distributed random variables Ui with conditional expectations λ(xi), with

Yi ∼ Poisson(λ(xi))

log(θ(xi)) = d(xi)
T β + S1(xi) + U1(xi)

In this study, the simpler version of the model becomes

log(λ(xi)) = β0 + S1(xi)

The Matérn correlation function was used for the Gaussian spatial process. It is defined
as

ρ(u; ϕ, κ) = {2κ−1Γ(κ)}−1(u/ϕ)κKκ(u/ϕ)

• ϕ is the scaling parameter

• κ is the shape parameter, set at 0.5

• Kκ is the Bessel function of the third kind of order κ

The spatially continuous model gives an estimated value for the ϕ parameter. This pa-
rameter is associated with the spatial correlation within the data and the practical corre-
lation range of the phenomenon that is studied, in this case, Covid-19 related mortality.
The practical correlation range is the distance at which ρ(u) = 0.05 and can be estimated
as 3 × ϕ (Diggle, 2019). Ideally, the estimated practical correlation range of the spatially
continuous model agrees with the spatially discrete model that fits the data the best.
The practical correlation range should somewhat agree with the distance between the
centroids of subregions defined by the selected neighborhood structure k. The discrete
models with varying neighborhood structure orders can be compared using their WAIC
values.

The WAIC, or Watanabe–Akaike information criterion, is a generalized version of the
Akaike information criterion known as AIC (Bevans, 2023). It estimates the effective
number of parameters to adjust for overfitting. Models with lower WAIC values are
preferred. By prioritizing models with lower WAIC values, researchers can have more
confidence in the selected model’s ability to generalize well to new data and make robust
predictions.
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3.2.1 Analysis procedure in R

The continuous Poisson generalized geostatistical linear models are fitted using the PrevMap
package in R (Giorgi, 2017; R Core Team (2022); RStudio Team (2020)). To initiate the
model fitting process, the spat.corr.diagnostic function is used to generate informa-
tive variogram plots. These variograms serve as valuable diagnostic tools, enabling the
estimation of initial values that are then utilized in the glgm.LA function. This func-
tion provides preliminary parameter estimates to incorporate into the poisson.log.MCML
function. This function serves as a key component in the estimation of the final model
estimates. The poisson.log.MCML function performs MCML simulations with 20000 iter-
ations, a burn-in period of 1000, and a thinning factor of 8.

3.3 Spatially Discrete Model

The Besag, York, and Mollié (BYM) model (Lawson, 2006) was fitted to the data to model
the prevalence of mortality across the spatial units over a regular grid. The structured
component captures and represents the spatial heterogeneity across the study area, pro-
viding insights into the systematic spatial patterns. On the other hand, the unstructured
component accounts for the random and unpredictable variation that remains unex-
plained after incorporating the structured component. This separation allows for a com-
prehensive analysis encompassing the known spatial patterns and the inherent random-
ness in the data. The BYM model relies on the specification of a neighborhood structure,
which defines the spatial relationships between units and can be adjusted to different or-
ders or levels of proximity, allowing a flexible and customizable modelling approach.

The BYM model is defined as
Yi ∼ Poisson(λ(xi))

log(θ(xi)) = d(xi)
T β + S2(xi) + U2(xi)

• θ(xi) is the relative risk of spatial unit i

• U2(xi) is the uncorrelated heterogeneity U(xi) ∼ N(0, σ2
U)

• S2(xi) represents the correlated heterogeneity [S(xi)|S(xj), i ̸= j, τ2
S ] ∼ N( ¯S(xi), σ2

i )

Hyperpriors are the prior distributions given to a model’s parameters in the context of
Bayesian modelling. In the BYM model, hyperpriors are used to provide the prior distri-
butions for the parameters that regulate the spatial structure and the unstructured vari-
ation. These precision parameters regulate the strength or smoothness of the spatial de-
pendence, influencing the degree to which neighboring areas are expected to be similar.
In this analysis, Gamma uninformative hyperpriors were chosen to allow the data to
drive the inference as much as possible. The hyperpriors for α, σ2

S and σ2
U were assigned

as follows:

• τS ∼ Gamma(0.001, 0.001)

• τU ∼ Gamma(0.001, 0.001)

• τα ∼ Gamma(0.001, 0.001)
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3.3.1 Analysis procedure in R

The BYM models are fitted using the NIMBLE package in R (NIMBLE Development Team,
2023). NIMBLE (Numerical Inference for Statistical Models with Bayesian and Likelihood
Evaluation) is a package for conducting Bayesian analysis, and it provides functions to
fit complex spatial models. First, the model structure, including the response variable,
coordinates, and neighborhood structure is defined. The priors and hyperpriors are also
specified beforehand in the syntax. The model is then compiled and maximum likelihood
estimation as well as Markov chain Monte Carlo (MCMC) sampling is used to estimate
the model parameters. The number of iterations is set at 10000 and the burn-in period to
5000. Two chains are run using a thinning factor of 10. From the produced posterior sam-
ples, estimates for the parameters are obtained. The model produces relative risk values
for each spatial unit, estimates for the unstructured and structured variance components,
and a WAIC value for the model.

3.4 Comparing neighborhood structures

This research study utilizes the 2020 COVID-19 mortality dataset to develop a robust and
efficient tool to optimize the selection of the most appropriate kth-order neighborhood
structure when fitting a spatially discrete geostatistical model. By developing this tool,
researchers and practitioners can make more informed decisions regarding the choice of
neighborhood structure, leading to improved modelling outcomes and enhanced under-
standing of the spatial patterns of Covid-19 mortality.

A comparative analysis of the models using different neighborhood structures was con-
ducted to determine the best-fitting order of the neighborhood structure. This analysis
evaluated each model’s estimated Watanabe-Akaike Information Criterion (WAIC) val-
ues. The WAIC serves as an essential criterion for model selection, as it balances the
model’s goodness of fit with its complexity, effectively addressing the issue of overfit-
ting. It is computed from the log point-wise predictive density. Lower WAIC values
indicate better model performance, suggesting a better agreement between the model
and the data.

The WAIC value of a model is defined as follows (Gelman, 2014):

WAIC = lppd − pWAIC.

The lppd (log point-wise predictive density) is defined as

lppd =
G

∑
i=N

log(
G

∑
g=1

p(yi|θg)),

where N is the number of areas and G is the sample size of area I and θ are the model
parameters to be estimated.

The penalty term pWAIC is defined as the variance of the lppd

pWAIC =
N

∑
i=1

Var(log(p(yi|θg))).
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There is not one correct way to evaluate the "significance" of the difference in WAIC val-
ues of two models. In general, it is not possible to provide a principled threshold of
difference that makes one model “significantly” better than another (McElreath, 2016).
However, in this analysis, a difference in WAIC values of three or more was seen as evi-
dence in favor of the model with the lower WAIC (Tillman, 2017). Models with a WAIC
difference of three or less to the model with the lowest WAIC, are considered to have a
similar fit.

The ultimate objective is to identify the model with the lowest WAIC value, indicating
the best fit to the data. It is hypothesized that this optimal model, in theory, should align
closely with the neighborhood structure that agrees the most with the practical correla-
tion range of spatial correlation observed in the mortality cases. To explore a comprehen-
sive range of possibilities, neighborhood structures up to order 5 are considered in the
analysis, enabling a broad examination of the spatial relationships. Next to the order, it
is also required to specify the scope of the neighborhood. In this analysis, the "queen"
matrix, neighboring spatial units are those having at least one vertex or border in contact
with the reference element (Moura, 2020). This is a generally accepted way of defining
neighbors as it is the broadest scope of directly linking spatial units.

To ensure the accuracy and reliability of the modelling process, regions with zero popula-
tion were excluded from the data. This exclusion was implemented to mitigate potential
computational challenges that could arise when modelling in areas with no population,
thus ensuring a more focused and meaningful analysis specifically related to the areas
with relevant data.

The analysis was done twice, once using the 4 km2 grid and once using the larger 16
km2 grid. The results are then compared to see at what level they are agreeable. Finer
grids contain fewer observations per spatial unit. Smaller spatial units encompassed by
the finer grid cover a smaller geographic area, leading to a sparser distribution of ob-
servations within each unit. However, they provide better spatial resolution between
observations by giving a more detailed perspective. On the other hand, the larger grid,
encompassing fewer spatial units, may yield a higher number of observations per unit
due to the more considerable geographic coverage of each unit.
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FIGURE 3.2: Comparison of 1st order neighborhood structures of Limburg
using the 16 km2 data on the left and the 4 km2 on the right.

3.5 Simulated data

The analysis procedure described above was repeated on simulated data. By using arti-
ficial spatial data, it becomes possible to gain more control over the spatially structured
heterogeneity, thereby enhancing the understanding of the underlying processes. In par-
ticular, the simulation of spatial correlation and practical correlation range throughout
the entire spatial field would provide a valuable opportunity to examine the consistency
and efficacy of the newly developed method.

Although this approach may lack realism in terms of replicating actual scenarios, it repre-
sents an ideal testing ground for the new method. By imposing a pre-specified practical
correlation range for the disease, the simulated data would enable a more comprehensive
evaluation of the method’s performance. Consequently, the results obtained from such an
experiment would likely offer a clearer understanding of the functionality and accuracy
of the method, specifically in terms of suggesting the correct neighborhood structure or-
der based on the predetermined practical correlation range by keeping the random noise
within the data to a minimum.

Using simulations provides advantages when drawing conclusions regarding the ade-
quacy of the tool. With the absence of confounding factors present in real-world data,
it becomes easier to isolate the specific effects of the method itself. This controlled envi-
ronment enables researchers to examine the tool’s capabilities more effectively, providing
valuable insights into its strengths and limitations.

A total of 20 datasets were generated with a neighborhood structure order of 3. The
intercept α was set to 0.15 and the spatial random effect variance σ2

S to 0.5. These pa-
rameter values were obtained from the analyses of the case study data. These are shown
in the Results section. The data were generated using multinomial counts to simulate
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case counts and relative risks for each spatial unit, considering the spatial correlation
corresponding with the neighborhood structure order of 3. Each of these datasets was
analyzed using a continuous GLGM to estimate a practical correlation range parameter
ϕ and then analyzed discretely with neighborhood structure k going from 1 up to 5 and
with the order suggested by the continuous model.
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Chapter 4

Results

4.1 Case study

4.1.1 Comparative results

The estimated scale parameter ϕ from the spatially continuous generalized linear geosta-
tistical model is listed in the second column in the tables below. Tables 4.1 and 4.2 present
the estimations for the data on the 4 km2 and 16 km2 scale, respectively. The centroids are
2 km spaced from each other for the 4 km2 data, and 4 km in the 16 km2 data. Diagonally,
the centroids are approximately 3 and 6 km apart, since the spatial units are squares. To
select the neighborhood order, these larges distances will be used to select the smallest
order possible from the continuous analysis results. The practical range, 3 × ϕ is then
calculated by dividing it by 3 or 6 and rounded to the next integer. This is the suggested
neighborhood structure order, shown in brackets. The other columns show the WAIC
values of the spatially discrete BYM models using neighborhood structures with the or-
der going from k=1 to k=5. The last column gives the WAIC of the model using the order
k suggested by the estimated practical correlation range. The significantly lowest WAIC
values for each province are written in bold.

Results on the 4 km2 scale

TABLE 4.1: Comparison of result per province of estimated practical corre-
lation range and WAIC value of the BYM model with k’th order neighbor-

hood structure using the 4 km2 data.

3 × ϕ (order) k=1 k=2 k=3 k=4 k=5 suggested k
Limburg 5.19 (2) 2715.88 2713.63 2713.05 2714.37 2714.46 /
Antwerpen 50.31 (17) 3409.44 3410.39 3408.86 3409.99 3410.49 3402.63
Vlaams-Brabant 34.77 (12) 3196.93 3200.51 3199.68 3200.99 3198.84 3201.20
Oost-Vlaanderen 17.61 (6) 3818.12 3817.79 3817.46 3819.17 3818.98 3816.75
West-Vlaanderen 8.07 (3) 3262.18 3261.40 3261.23 3259.92 3264.43 /
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Results on the 16 km2 scale

TABLE 4.2: Comparison of result per province of estimated practical corre-
lation range and WAIC value of the BYM model with k-th order neighbor-

hood structure using the 16 km2 data.

3 × ϕ (order) k=1 k=2 k=3 k=4 k=5 suggested k
Limburg 47.37 (8) 991.35 990.78 990.98 990.04 991.13 992.97
Antwerpen 151.2 (25) 1347.94 1344.92 1344.60 1346.19 1345.46 1342.11
Vlaams-Brabant 32.4 (6) 1104.57 1102.77 1102.96 1102.94 1103.48 1103.36
Oost-Vlaanderen 117.75 (20) 1312.57 1294.37 1295.26 1294.66 1294.91 1293.46
West-Vlaanderen 24.12 (4) 1399.95 1399.53 1400.40 1399.85 1400.67 /

4.1.2 Sensitivity Analysis

A sensitivity analysis was performed on the discrete model using different gamma hy-
perpriors to check the robustness of the results (Vranckx et. al., 2023). The models were
fitted both using Gamma(0.01, 0.01) priors and Gamma(0.001, 0.001) priors for the σS pa-
rameter. The tables below show the models’ comparison using the different priors and
on the four-by-four and two-by-two data for Limburg. The priors suggest that they in-
fluence the results to some degree. Because of this, the Gamma priors for all analyses
were changed from Gamma(0.01, 0.01) to Gamma(0.001, 0.001), since these priors are less
informative.

TABLE 4.3: 4 km2

Mean Median Std.Dev. 95%CI L 95%CI U

Gamma(0.01, 0.01)

alpha 0.1610 0.1612 0.0148 0.1319 0.1895
sigma.u 0.0068 0.0059 0.0034 0.0026 0.0158
sigma.v 0.0226 0.0224 0.0051 0.0131 0.0336

Gamma(0.001, 0.001)

alpha 0.1569 0.1568 0.0144 0.1284 0.1840
sigma.u 0.0035 0.0015 0.0042 0.0003 0.0162
sigma.v 0.0231 0.0230 0.0057 0.0122 0.0348

TABLE 4.4: 16 km2

Mean Median Std.Dev. 95% CI L 95% CI U

Gamma(0.01, 0.01)

alpha 0.1703 0.1696 0.0138 0.1446 0.1984
sigma.u 0.0105 0.0088 0.0064 0.0031 0.0261
sigma.v 0.0061 0.0057 0.0025 0.0026 0.0122

Gamma(0.001, 0.001)

alpha 0.0275 0.0270 0.0048 0.0194 0.0382
sigma.u 0.0037 0.0024 0.0037 0.0005 0.0142
sigma.v 0.0042 0.0037 0.0026 0.0008 0.0108

4.1.3 Results for Limburg

Results on the 4 km2 scale

The relative risks compare the risk of higher mortality cases than expected to the overall
risk. Values lower than 1 indicate a small relative risk, while values larger than 1 indicate
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higher relative risks. The exceedance probability is the probability of the relative risk be-
ing larger than 1. A high exceedance probability means that there is a high probability
that the relative risk of a specific spatial unit is above 1, meaning that the subregion has
a higher risk of mortality as compared to the standardization region. The relative risks
and exceedance probabilities for the Limburg data are shown in Figure 4.1.

These results show that most spatial units have relative risks of around 1 to 1.4. These
spatial units have more mortality cases than expected. A few spatial units have values
smaller than 0.9 and values over 1.5. The exceedance probabilities range from 0.6 to 1,
suggesting that some areas are more likely to have relative risks exceeding 1 than oth-
ers. The exceedance probability plot also suggests that areas with similar values often
surround high-probability areas. The province of Limburg struggled with large numbers
of Covid-19 cases in 2020, more so than some other provinces. This explains the high
relative risk values and high exceedance probabilities across Limburg, since these results
are standardized over Belgium as a whole.

FIGURE 4.1: Relative risks and exceedance probabilities of the 4 km2 spatial
units

Results on the 16 km2 scale

These results, shown in Figure 4.2, show much less heterogeneity than the results on the
smaller spatial scale. This shows that the variability between spatial units decreases when
observations are aggregated together on a larger scale. The spatial units have relative
risks ranging from 1.1 to 1.3, with a few exceptions in the west and southeast (Voeren
region). This homogeneity of results is also reflected in the exceedance probability plot.
This plot suggests that the spatial units have high exceedance probabilities.
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FIGURE 4.2: Relative risks and exceedance probabilities of the 16 km2 spa-
tial units

4.2 Simulation study

4.2.1 Exploration of simulated data

The simulations were done only on the smaller 4 km2 scale. The distribution of the mor-
tality cases and the SMR values of the spatial units show mortality case clusters that are
more clearly distinguishable than in the actual mortality data. These SMR values are
standardized over the province of Limburg, not over Belgium as is the case for the case
study data.

FIGURE 4.3: Left: mortality numbers of one of the simulated datasets.
Right: SMR of the spatial units in one of the simulated datasets.
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4.2.2 Results for the simulated datasets

Figure 4.4 shows the relative risks, standardized over the province of Limburg itsels, and
the probabilities of the relative risk exceeding 1. These plots show that there is a clear
spatial correlation present in the data as suggested by the clustering of the cases.

FIGURE 4.4: Relative risks and exceedance probabilities for one of the sim-
ulated datasets.

Table 4.5 gives an overview of the results of the analysis on the 20 simulated datasets.
They were first analyzed continuously with a geostatistical poisson model. MCML es-
timation was used for the 3 × ϕ parameter estimation which is the practical correla-
tion range parameter. In brackets, the neighborhood structure order is given which ap-
proaches this practical correlation range. Then, discrete spatial modelling was done on
all 20 simulated datasets using order 1 up to 5 and the order which was suggested in the
second column. The WAIC values are listed in the table. The significantly lowest WAIC
values are written in bold, those being the lowest WAIC’s per row with a difference of at
least 3.
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TABLE 4.5: Comparison of result per simulated dataset of estimated prac-
tical correlation range and WAIC value of the BYM model with k’th order

neighborhood structure on the 4 km2 scale

Dataset 3 × ϕ (order) k=1 k=2 k=3 k=4 k=5 suggested k
1 20.7 (7) 3603.94 3610.60 3612.59 3607.24 3610.24 3609.75
2 30.51 (11) 3510.78 3540.76 3537.70 3539.80 3538.68 3539.71
3 19.26 (7) 3629.19 3605.07 3602.71 3604.04 3600.88 3601.89
4 20.88 (7) 3682.09 3653.54 3652.90 3653.59 3654.24 3652.04
5 13.92 (5) 3555.07 3574.62 3575.14 3573.96 3577.71 /
6 12.93 (5) 3538.73 3606.08 3606.14 3610.19 3607.50 /
7 25.74 (9) 3557.66 3608.73 3610.04 3605.57 3604.46 3608.75
8 27.63 (10) 3495.30 3522.12 3524.46 3519.24 3521.94 3521.26
9 26.28 (9) 3665.28 3637.84 3635.35 3633.17 3633.35 3634.25
10 19.08 (7) 3542.87 3612.72 3610.56 3610.94 3608.20 3612.39
11 24.24 (9) 3817.17 3761.77 3763.95 3762.71 3761.59 3764.41
12 24.93 (9) 3703.19 3651.57 3651.20 3650.06 3648.60 3650.26
13 36.51 (13) 3702.47 3632.25 3628.94 3631.80 3634.46 3630.70
14 27.90 (10) 3717.46 3671.71 3675.49 3674.54 3675.97 3673.09
15 26.28 (9) 3706.44 3658.06 3660.76 3657.86 3658.78 3659.15
16 18.30 (7) 3595.83 3628.12 3627.19 3628.74 3626.33 3630.11
17 22.53 (8) 3558.40 3573.58 3574.41 3575.26 3577.41 3573.97
18 20.01 (7) 3535.64 3596.522 3600.35 3599.17 3599.10 3600.31
19 21.09 (8) 3742.12 3673.66 3675.33 3675.82 3677.07 3675.86
20 28.47 (10) 3651.42 3680.49 3684.18 3682.64 3677.25 3682.89
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Chapter 5

Discussion and conclusions

5.1 Spatially continuous vs. spatially discrete model

The method under development centers on harnessing continuous spatial modelling to
gauge the practical correlation range of spatial correlation inherent in spatial data. Lever-
aging this estimation, the method determines an appropriate neighborhood structure for
discrete spatial modelling. This technique’s efficacy is assessed by fitting discrete models
with varying orders of neighborhood structures and subsequently measuring their per-
formance using the WAIC criterion.

Despite its conceptual promise, the method has encountered substantial challenges in
achieving satisfactory outcomes. Notably, the neighborhood structure order inferred
from the practical correlation range estimate often does not align with the optimal model
choice, as indicated by comparing WAIC values. This discrepancy is often caused by a
tendency for the method to frequently overestimate the spatial correlation range, even
when tested on simulated data. Given these limitations, it is evident that further exten-
sive research is imperative to fine-tune and optimize the method. Ultimately, the over-
arching goal of this approach is to streamline the process of selecting an appropriate
neighborhood structure order by relying on a solitary continuous model. Based on the
outcomes of this investigation, it is apparent that the method, in its current state, is not
yet suitable for practical use in selecting neighborhood structures, as it tends to overes-
timate spatial correlation and consequently recommends higher-than-optimal neighbor-
hood structure orders.

Although it is not yet clear at this point what causes this discrepancy in the results, it
could be that the spatially discrete and spatially continuous models are parameterized in
a way that makes them too different regarding how they model the data. Although the
sensitivity analysis section only covers part of the total dataset, it suggests that the spa-
tially discrete BYM model is somewhat sensitive to changes set to the hyperparameter
Gamma priors. The generalized linear geostatistical model is also known to be sensitive
to their initial values for ϕ and the variance of the nugget effect, as the results of the
MCML estimation for the geostatistical Poisson model can vary when these initial values
are changed.

The discrete spatial models fitted onto the 2020 mortality data also show little difference
in WAIC values, especially on the 16 km2 scale. In most cases, the model with the neigh-
borhood structure order suggested by the estimated practical correlation range parameter
has a good fit according to the WAIC values. In the larger 16 km2 scale data, there is lit-
tle to no significant differences between the WAIC’s of the discrete spatial models with
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different orders. This could partly be explained by the more homogeneous nature of the
case distribution across larger spatial units compared to the smaller scale data. These
results suggest that there is not much to gain from optimizing the neighborhood struc-
ture selection, as there is often not one preferable model. More research into the model
selection method is needed.

The inconsistent results could also be partly a result of the second-order stationarity as-
sumption (Fouedjio, 2017). This is the assumption that regardless of the two points you
select, the covariance is the same between any two that are spaced in the same way and
in the same direction. The distance between any two values determines the covariance,
not where the values are. This assumption might not be accurate because of regional
impacts.

5.2 Conclusion

These results have shown that developing a new method for selecting the neighborhood
structure order can be challenging when using real as well as simulated data. The prac-
tical correlation range of the cases is inconsistent across regions and between simulated
data sets according to the spatially continuous model. This leads to issues when relying
on this practical correlation range to pick the order of neighborhood structure for spa-
tially discrete modelling, since the selection of the discrete spatial model is dependent
on the estimation of the range of spatial correlation by the spatially continuous model.
There are also optimization steps to be taken at the evaluation step.

5.3 Limitations

The development of the neighborhood structure optimization tool is met with some lim-
itations. The data is aggregated into two-by-two or four-by-four kilometers subregions.
These aggregated cases can still be used for continuous modelling, but any granularity
within these subregions is lost. Furthermore, modelling the data using a wider grid of
four by four kilometers, give different results regarding the suggested order of neighbor-
hood structure and best-fitting models.

Another limitation is that a choice has to be made as how to the measure practical cor-
relation range in the spatial continuous analysis. In this thesis, the mean was used, but
one could argue that confidence intervals are more informative and thus better to base
the practical range correlation on. However, confidence intervals would lead to multiple
possible neighborhood structure orders. This would then complexify the analysis. Also,
the problem arises that the practical range from the spatial continuous analysis actually
assumes a circular "correlation zone," while the queen neighborhood is a square.

After analyzing the Covid-19 mortality dataset, it is clear that working on a different scale
can suggest other preferred models. This is because of the practical correlation range that
has a different estimate in the continuous model and varying WAIC values of the dis-
crete models. Thus, it is important to remember that this method can not always pick the
definitive best-fitting model because of these limiting factors. One should always keep in
mind the context of the research question and the plausibility of the estimated practical
correlation range in the field. A sensitivity analysis is a helpful extra step to ensure the
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chosen model is sufficiently robust.

The dataset covers the mortality and population numbers in 2020. Whilst this is useful
information when modelling the Covid-19 cases in Belgium, the mortality cases include
all mortality in this year, and not only deaths following a Covid-19 infection. This means
that the data is not very specific for modelling Covid-19.

Another limitation is the computational limits of the system that was used to run these
models. The aggregated data was split into subsets per province of Flanders to make
the running smoother. This does mean that neighboring regions that lie in different
provinces were now not in the same subset, resulting in a loss of information. There
are also no overall results available for the entire dataset covering the whole spatial field
of Flanders.

5.4 Further Research

In future research, several steps could be explored to optimize the method and address
its current limitations. To refine the practical correlation range estimation, alternative es-
timation techniques could be applied to potentially estimate the range of spatial correla-
tion more accurately. This could involve exploring different spatial models or incorporat-
ing additional covariates to enhance the estimation process. The model selection criteria
could also be further investigated. In this thesis, only the WAIC values were compared to
select the best-fitting model. Instead of relying solely on WAIC values, one could consider
incorporating other Bayesian model selection criteria such as DIC (Deviance Information
Criterion), BIC (Bayesian Information Criterion), and MSPE (Mean Squared Prediction
Error), which might provide different insights into model performance. Expanding the
research by applying more extensive simulations would facilitate a more thorough explo-
ration of various scenarios. In this analysis, only 20 datasets were generated, all with the
same initial values and neighborhood structure order of 3. In future research, it would be
a helpful step toward optimizing the method to simulate data with multiple spatial cor-
relation ranges by varying the order of neighborhood structure. Researchers can assess
the method’s robustness and adaptability across various circumstances by systematically
varying these parameters, such as the practical correlation range or values for the inter-
cept and variance for the spatial effect. This can help identify scenarios where the method
struggles and provide insights into potential improvements or adjustments needed to
make the method more robust and reliable. This evaluation would enhance confidence
in the tool’s performance and its potential applicability in real-world situations. Future
researchers could also opt for a hybrid approach that combines the continuous and dis-
crete modelling techniques in more intricate ways, for example, a tool that adjusts the
estimated practical correlation range based on the performance of discrete models, creat-
ing a feedback loop that iteratively adjusts the neighborhood structure selection.
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Appendix A

Variograms

A.1 Data on 16 km2 scale

(A) Limburg (B) Antwerp

FIGURE A.1: Variograms for provinces Limburg and Antwerp

(A) Vlaams-Brabant (B) Oost-Vlaanderen

FIGURE A.2: Variograms for provinces Vlaams-Brabant and Oost-
Vlaanderen
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(A) West-Vlaanderen (B) Waals-Brabant

FIGURE A.3: Variograms for provinces West-Vlaanderen and Waals-
Brabant

(A) Luik (B) Henegouwen

FIGURE A.4: Variograms for provinces Luik and Henegouwen

(A) Luxemburg (B) Namen

FIGURE A.5: Variograms for provinces Luxemburg and Namen
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A.2 Data on 4 km2 scale

(A) Limburg (B) Antwerp

FIGURE A.6: Variograms for provinces Limburg and Antwerp

(A) Vlaams-Brabant (B) Oost-Vlaanderen

FIGURE A.7: Variograms for provinces Vlaams-Brabant and Oost-
Vlaanderen

(A) West-Vlaanderen (B) Waals-Brabant

FIGURE A.8: Variograms for provinces West-Vlaanderen and Waals-
Brabant
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(A) Luik (B) Henegouwen

FIGURE A.9: Variograms for provinces Luik and Henegouwen

(A) Luxemburg (B) Namen

FIGURE A.10: Variograms for provinces Luxemburg and Namen
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BYM model results

B.1 Order k = 1

B.1.1 Data on 4 km2 scale

Limburg

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1572 0.1569 0.01487 0.1282 0.1855
ratio 0.1267 0.09623 0.09766 0.02401 0.3658
sigma.u 0.002694 0.002212 0.001735 0.0006064 0.007333
sigma.v 0.02305 0.02289 0.005669 0.01280 0.03482

Antwerp

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1197 0.1196 0.01192 0.09632 0.1431
ratio 0.1119 0.08905 0.08779 0.02084 0.3541
sigma.u 0.002539 0.002167 0.001762 0.0005053 0.006775
sigma.v 0.02390 0.02368 0.004258 0.01605 0.03303

Vlaams-Brabant

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.09768 0.09758 0.01093 0.07712 0.1193
ratio 1.4343 0.9695 1.6303 0.2384 5.5459
sigma.u 0.01101 0.008873 0.007546 0.002726 0.03327
sigma.v 0.009947 0.009139 0.002767 0.004805 0.01556

Oost-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1058 0.1056 0.01219 0.08300 0.1293
ratio 0.1906 0.1472 0.1550 0.02035 0.5922
sigma.u 0.004511 0.003508 0.003503 0.0004978 0.01346
sigma.v 0.0247 0.02454 0.004233 0.01709 0.03369
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West-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1055 0.1055 0.01175 0.08285 0.1284
ratio 20.4312 2.4599 54.9936 0.1685 226.3986
sigma.u 0.2713 0.06477 0.5117 0.004304 2.0706
sigma.v 0.02391 0.02430 0.005801 0.009415 0.03410
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B.1.2 Data on 16 km2 scale

Limburg

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1697 0.1698 0.01385 0.1423 0.1968
ratio 3.2128 1.0913 9.2314 0.09464 15.8378
sigma.u 0.006169 0.004125 0.006632 0.0005898 0.02579
sigma.v 0.004214 0.003802 0.002536 0.0006427 0.01009

Antwerpen

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1316 0.1317 0.01251 0.1058 0.1551
ratio 1.2461 0.6028 2.1469 0.07052 6.2824
sigma.u 0.006335 0.004742 0.005294 0.0006517 0.02093
sigma.v 0.007779 0.007632 0.002897 0.002451 0.01395

Vlaams-Brabant

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1024 0.1027 0.01189 0.0787 0.1250
ratio 1.7813 0.8459 3.01278 0.1299 10.2950
sigma.u 0.007049 0.004877 0.006503 0.0009218 0.02477
sigma.v 0.006050 0.005801 0.002532 0.001700 0.01179

Oost-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1158 0.1160 0.01231 0.09215 0.1399
ratio 0.5365 0.3105 0.7479 0.04443 2.4821
sigma.u 0.004726 0.003039 0.005277 0.0004886 0.01874
sigma.v 0.01013 0.009853 0.002703 0.005663 0.01609

West-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U
alpha 0.1436 0.1434 0.01370 0.1165 0.1705
ratio 0.6042 0.3471 0.8169 0.03295 2.7771
sigma.u 0.005376 0.003817 0.005216 0.0003992 0.01985
sigma.v 0.01098 0.01071 0.003478 0.004864 0.01867
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B.2 Order k = 2, 3, 4, 5

B.2.1 Data on 4 km2 scale

Limburg

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1594 0.1591 0.01428 0.1301 0.1870
ratio 0.3721 0.2434 0.3873 0.02737 1.5064
sigma.u 0.007901 0.005543 0.007790 0.0006907 0.03160
sigma.v 0.02263 0.02238 0.005401 0.01306 0.03414

k = 3

alpha 0.1593 0.1592 0.01445 0.1303 0.1878
ratio 1.6826 0.8361 2.2245 0.03681 7.9006
sigma.u 0.03210 0.01852 0.03481 0.0008412 0.1296
sigma.v 0.02233 0.02188 0.005548 0.01246 0.03389

k = 4

alpha 0.1583 0.1585 0.01435 0.1298 0.1863
ratio 1.1559 0.4281 1.4902 0.01544 5.1798
sigma.u 0.02361 0.008836 0.02866 0.0004001 0.09606
sigma.v 0.02247 0.02198 0.005785 0.01261 0.03519

k = 5

alpha 0.1586 0.1588 0.01502 0.1282 0.1878
ratio 3.2727 0.6481 10.2781 0.03925 32.6574
sigma.u 0.05043 0.01457 0.1148 0.0007435 0.4815
sigma.v 0.02215 0.02193 0.005614 0.01150 0.03416

Antwerpen

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1215 0.1216 0.01233 0.09648 0.1449
ratio 1.9992 1.4709 1.8928 0.2063 7.3522
sigma.u 0.03943 0.03242 0.03003 0.005181 0.1248
sigma.v 0.02213 0.02184 0.004536 0.01302 0.03156

k = 3

alpha 0.1186 0.1187 0.01172 0.09523 0.1409
ratio 3.3136 0.9330 6.8945 0.06259 24.5147
sigma.u 0.05398 0.02287 0.07577 0.001454 0.2975
sigma.v 0.02303 0.02320 0.004960 0.01172 0.03220

k = 4

alpha 0.1201 0.1200 0.01167 0.09776 0.1431
ratio 24.9233 12.6309 44.9867 1.1683 135.0562
sigma.u 0.2950 0.2451 0.2410 0.03123 0.9236
sigma.v 0.01903 0.01924 0.006085 0.005822 0.03045

k = 5

alpha 0.1198 0.1202 0.001104 0.09753 0.1409
ratio 255.2283 29.5023 635.7182 4.9738 2376.154
sigma.u 0.7083 0.5029 0.5317 0.1217 1.9509
sigma.v 0.01520 0.01670 0.0007809 0.0006971 0.02838
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Vlaams-Brabant

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.09602 0.09603 0.01057 0.07538 0.1166
ratio 5.4530 2.5193 7.7633 0.3586 25.8727
sigma.u 0.03761 0.02282 0.03649 0.004131 0.1321
sigma.v 0.009201 0.008980 0.002847 0.004213 0.01552

k = 3

alpha 0.09665 0.09698 0.01027 0.07593 0.1170
ratio 7.1115 1.9458 12.1335 0.1137 45.9269
sigma.u 0.05141 0.02014 0.06852 0.001379 0.2423
sigma.v 0.009967 0.009765 0.003034 0.004713 0.01679

k = 4

alpha 0.09669 0.09653 0.01013 0.07646 0.1162
ratio 48.3725 11.8445 109.2030 0.5191 328.4168
sigma.u 0.1795 0.1071 0.1868 0.006243 0.6712
sigma.v 0.009394 0.008472 0.003518 0.001731 0.01505

k = 5

alpha 0.09649 0.09658 0.01025 0.07643 0.1164
ratio 153.1125 45.3672 243.2441 3.5838 863.6119
sigma.u 0.4286 0.3282 0.3073 0.03780 1.1450
sigma.v 0.006997 0.007043 0.003928 0.001066 0.01485

Oost-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1048 0.1045 0.01143 0.08267 0.1277
ratio 0.6957 0.2895 0.9082 0.04748 3.7431
sigma.u 0.01611 0.007036 0.01971 0.001229 0.08091
sigma.v 0.02468 0.02442 0.004183 0.01712 0.03371

k = 3

alpha 0.1053 0.1054 0.01154 0.08262 0.1283
ratio 2.7575 0.4488 5.3327 0.05026 19.1110
sigma.u 0.05400 0.01115 0.08887 0.01126 0.3193
sigma.v 0.02463 0.02451 0.004911 0.01511 0.03465

k = 4

alpha 0.1049 0.1048 0.01146 0.08301 0.1282
ratio 35.6770 15.1297 65.8215 0.7917 273.7241
sigma.u 0.3823 0.2974 0.3288 0.02165 1.2475
sigma.v 0.01936 0.01967 0.006771 0.004478 0.03123

k = 5

alpha 0.1059 0.1056 0.01153 0.08341 0.1287
ratio 150.2129 6.6703 372.3302 0.2207 1294.474
sigma.u 0.6085 0.1622 0.7547 0.006244 2.3115
sigma.v 0.01887 0.02130 0.009024 0.001495 0.03266



44 Appendix B. BYM model results

West-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1424 0.1426 0.01217 0.1177 0.1656
ratio 3.3432 2.1085 3.3958 0.5011 12.3533
sigma.u 0.04880 0.03502 0.03963 0.01021 0.1472
sigma.v 0.01707 0.01673 0.004422 0.009479 0.02684

k = 3

alpha 0.1408 0.1409 0.01227 0.1164 0.1640
ratio 37.3722 8.3787 85.5043 0.7517 242.5648
sigma.u 0.1879 0.1223 0.1691 0.01538 0.5791
sigma.v 0.01401 0.01447 0.006944 0.001911 0.02719

k = 4

alpha 0.1412 0.1414 0.01914 0.1173 0.1637
ratio 60.1374 20.7528 148.7379 0.8561 343.7418
sigma.u 0.3451 0.2817 0.2611 0.01773 0.9667
sigma.v 0.01354 0.01344 0.006152 0.002311 0.02607

k = 5

alpha 0.1414 0.1415 0.01188 0.1176 0.1641
ratio 179.1779 21.7679 349.3416 0.7021 1260.631
sigma.u 0.4692 0.2971 0.4250 0.01412 1.4361
sigma.v 0.01315 0.01392 0.008026 0.0009242 0.02787
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B.2.2 Data on 16 km2 scale

Limburg

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1693 0.1694 0.01366 0.1415 0.1963
ratio 12.8281 3.9367 32.1796 0.2709 80.3891
sigma.u 0.02197 0.01510 0.02067 0.001497 0.08135
sigma.v 0.004098 0.003605 0.002510 0.0005422 0.01009

k = 3

alpha 0.1686 0.1682 0.01322 0.1429 0.1046
ratio 16.7240 5.8591 33.0877 0.4134 104.5138
sigma.u 0.02706 0.01854 0.02630 0.001755 0.09914
sigma.v 0.003751 0.003189 0.002601 0.0004515 0.009812

k = 4

alpha 0.1691 0.1692 0.01354 0.1413 0.1957
ratio 23.3265 9.6149 36.6832 0.2867 128.1999
sigma.u 0.03779 0.03113 0.02997 0.001978 0.1134
sigma.v 0.003696 0.003115 0.002553 0.0004726 0.009913

k = 5

alpha 0.1688 0.1694 0.01378 0.1411 0.1954
ratio 14.1081 2.1253 41.1302 0.1476 120.5943
sigma.u 0.01948 0.008301 0.02722 0.0007756 0.09197
sigma.v 0.004183 0.003685 0.002675 0.0005091 0.01053

Antwerpen

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1304 0.1307 0.01183 0.1067 0.1540
ratio 10.9513 3.1400 33.5099 0.1796 71.1992
sigma.u 0.03390 0.02363 0.03179 0.001934 0.1154
sigma.v 0.007323 0.007266 0.003003 0.001400 0.01350

k = 3

alpha 0.1290 0.1291 0.01158 0.1062 0.1514
ratio 6.1186 1.7782 18.2582 0.05985 41.7410
sigma.u 0.02339 0.01457 0.02724 0.0004992 0.1023
sigma.v 0.007960 0.007857 0.002963 0.001907 0.01394

k = 4

alpha 0.1313 0.1314 0.01137 0.1093 0.1533
ratio 23.8027 9.1658 41.0019 0.4081 146.8673
sigma.u 0.05873 0.04985 0.04529 0.003743 0.1659
sigma.v 0.005788 0.005526 0.003232 0.0008086 0.01273

k = 5

alpha 0.1313 0.1314 0.01993 0.1077 0.1546
ratio 10.2381 4.3548 16.2564 0.3732 58.9341
sigma.u 0.04078 0.03165 0.03442 0.003512 0.1256
sigma.v 0.006957 0.006834 0.003028 0.001656 0.01349
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Vlaams-Brabant

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1025 0.1027 0.01089 0.08041 0.1228
ratio 22.4353 10.0829 33.5021 0.9758 105.8101
sigma.u 0.05297 0.04449 0.03660 0.007702 0.1409
sigma.v 0.004588 0.004146 0.002642 0.0009168 0.01106

k = 3

alpha 0.1027 0.1027 0.01055 0.08150 0.1237
ratio 33.8948 16.4016 50.9297 0.7497 176.2250
sigma.u 0.06096 0.05635 0.03943 0.005340 0.1477
sigma.v 0.003979 0.003522 0.002520 0.0005661 0.01004

k = 4

alpha 0.1019 0.01018 0.01105 0.08003 0.1236
ratio 20.4884 9.0563 33.0357 0.1466 118.0613
sigma.u 0.04615 0.04188 0.03628 0.001082 0.1289
sigma.v 0.004935 0.004625 0.002781 0.0007652 0.01107

k = 5

alpha 0.1018 0.1022 0.01107 0.07919 0.1227
ratio 19.1028 6.7180 30.3781 0.3192 109.1905
sigma.u 0.04436 0.03365 0.03837 0.002392 0.1341
sigma.v 0.004989 0.004676 0.002710 0.0008633 0.01100

Oost-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1168 0.1168 0.01251 0.09296 0.1416
ratio 3.0102 1.4506 5.5917 0.1417 16.9487
sigma.u 0.02250 0.01435 0.02433 0.001592 0.09624
sigma.v 0.009929 0.009743 0.002917 0.004723 0.01632

k = 3

alpha 0.1175 0.1174 0.01210 0.09436 0.1409
ratio 1.4631 0.8721 1.7888 0.1496 6.2545
sigma.u 0.01310 0.008515 0.01335 0.001661 0.05043
sigma.v 0.01014 0.009891 0.002695 0.005495 0.01604

k = 4

alpha 0.1173 0.1172 0.01221 0.09304 0.1403
ratio 3.7896 1.2807 8.5602 0.07631 27.3985
sigma.u 0.02365 0.01254 0.03031 0.0009039 0.1158
sigma.v 0.009819 0.009709 0.003131 0.003684 0.01617

k = 5

alpha 0.1167 0.1165 0.01253 0.09242 0.1410
ratio 2.2158 0.8287 6.8189 0.1106 11.9155
sigma.u 0.01534 0.008405 0.02151 0.001339 0.07709
sigma.v 0.01016 0.009972 0.002892 0.004880 0.01633
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West-Vlaanderen

Mean Median Std.Dev. 95% CI L 95% CI U

k = 2

alpha 0.1432 0.1434 0.01316 0.1158 0.1677
ratio 10.2162 3.2949 18.9943 0.1812 62.6662
sigma.u 0.04706 0.03347 0.04910 0.04910 0.1680
sigma.v 0.009152 0.009090 0.003997 0.003997 0.01735

k = 3

alpha 0.1439 0.1438 0.01303 0.1182 0.1685
ratio 8.8221 2.7801 19.5270 0.2345 65.3709
sigma.u 0.04088 0.02744 0.04161 0.002897 0.1594
sigma.v 0.009410 0.009228 0.004011 0.002072 0.01786

k = 4

alpha 0.1443 0.1448 0.01290 0.1176 0.1693
ratio 25.3886 8.5963 43.1791 0.6420 147.9284
sigma.u 0.08001 0.06196 0.06028 0.007492 0.2191
sigma.v 0.007489 0.007218 0.004206 0.001175 0.01653

k = 5

alpha 0.1435 0.1434 0.01322 0.1175 0.1706
ratio 21.2589 1.4842 63.1187 0.03552 203.0983
sigma.u 0.04538 0.01537 0.05912 0.0003811 0.2088
sigma.v 0.009272 0.009403 0.004523 0.0007921 0.01802
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R Code

# Thesis
library("sp")
library("tmap")
library("sf")
library("readxl")
library("tidyverse")
library("dplyr")
library("raster")
library("rgdal")
library("rgeos")
library("spdep")
library("coda")
library("nimble")
library("ggmcmc")
library("INLA")
library("writexl")
library("knitr")
library("argosfilter")
library("magrittr")
library("ggplot2")
library("maptools")
library("PrevMap")
library("spData")
library("surveillance")
library("corpcor")
library("MASS")
setwd("")

data<-readRDS("data_combined_x4.rds")
province<-readRDS(’shape_province_label.rds’)
province <- st_zm(province)
data$geometry <- st_transform(data$geometry, crs = 3857)
province$geometry <- st_transform(province$geometry, crs = 3857)
total <- st_join(data, province, join = st_nearest_feature, left = T)
Total <- st_sf(total)
tm_shape(TotalLB) + tm_polygons("dth2020", palette = "Blues",
breaks=c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)) + tm_layout(legend.title.size = 1)
tm_shape(TotalLB) + tm_polygons("SMR2020", palette = "Reds",
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breaks=c(0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3))
+ tm_layout(legend.title.size = 1)

# Centroids of approximately 2000 subregions
coords <- as.data.frame(st_coordinates(st_centroid(st_geometry(Total))))
#Merge dataset with centroid coordinates
Total <- bind_cols(Total, coords)
Total$logE <-log(Total$E2020)
Total <- Total[Total$logE >= 0, ]
Total$geometry <- st_transform(Total$geometry, crs = 3857)
Total$X <- Total$X / 1000
Total$Y <- Total$Y / 1000
TotalLB <- Total[Total$province=="Provincie Limburg",]
TotalA <- Total[Total$province=="Provincie Antwerpen",]
TotalVB <- Total[Total$province=="Provincie Vlaams-Brabant",]
TotalOV <- Total[Total$province=="Provincie Oost-Vlaanderen",]
TotalWV <- Total[Total$province=="Provincie West-Vlaanderen",]

### Spatial autocorrelation
## Define neighborhood
nb <- poly2nb(TotalLB, queen=TRUE)
add_nb <- function(x){

queen_nb <- poly2nb(x, queen = TRUE)
count = card(queen_nb)
if(!any(count==0)){

return(queen_nb)
}
## get nearest neighbour index, use centroids:
nnbs = knearneigh(st_coordinates(st_centroid(x)))$nn
no_edges_from = which(count==0)
for(i in no_edges_from){

queen_nb[[i]] = nnbs[i]
queen_nb[[nnbs[i]]] = c(queen_nb[[nnbs[i]]],i)

}
return(queen_nb)

}
nb.new <- add_nb(TotalLB)
plot(st_geometry(TotalLB))
plot(nb.new,st_coordinates(st_centroid(st_geometry(TotalLB))),add=TRUE, col="red")
plot(nb,st_coordinates(st_centroid(st_geometry(TotalLB))),add=TRUE)
col.W <- nb2listw(nb, style="W", zero.policy = TRUE)

### BYM model
CONVmodel <- nimbleCode({

for (i in 1 :N) {
O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i]
RR[i] <- exp(alpha + u[i] + v[i])
v[i] ~ dnorm(0,tau.v)
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}
# CAR prior distribution for random effects:
u[1:N] ~ car.normal(adj[1:L], weights[1:L], num[1:N], tau.u, zero_mean=1)
for(k in 1:L) {

weights[k] <- 1
}
# Other priors:
alpha ~ dnorm(0,tau.alpha)
mean <- exp(alpha)
tau.u ~ dgamma(0.001, 0.001)
tau.v ~ dgamma(0.001, 0.001)
tau.alpha ~ dgamma(0.001, 0.001)
sigma.u<-1/tau.u
sigma.v<-1/tau.v
ratio<-sigma.u/sigma.v
for (i in 1:N){

## Goodness of fit
Opred[i] ~ dpois(mu[i])
pres[i] <- O[i] - Opred[i]
SPE[i] <- pow(pres[i],2)
APE[i] <- abs(pres[i])
## Residuals
res[i] <- (O[i] - mu[i])/sqrt(mu[i])
prexR1[i] <- step(res[i]-1)
prexR2[i] <- step(res[i]-2)

}
## Overall MSPE and MAPE
MSPE <- mean(SPE[1:N])
MAPE <- mean(APE[1:N])

})
#### Prepare data:
N<-dim(TotalLB)[1]
my.data <- list(O=TotalLB$dth2020, E= TotalLB$E2020)
my.constants <- list(N=N,adj=unlist(nb.new), L=sum(card(nb.new)),
num=card(nb.new))
#### Initial parameters
my.inits <- list(

list(u = rep(0,N),v = rep(0,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1),
list(u = rep(-0.5,N),v = rep(0.5,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1)

)
#### Specify parameters to monitor
parameters <- c("RR","alpha","sigma.u","sigma.v","u","v","ratio","MSPE","MAPE")
#### Running NIMBLE:
model.sim <- nimbleMCMC(code = CONVmodel,

data = my.data,
constants = my.constants,
inits = my.inits,
monitors = parameters,
niter = 10000,



52 Appendix C. R Code

nburnin = 5000,
nchains = 2,
thin = 10,
summary = TRUE,
samplesAsCodaMCMC = TRUE,
WAIC = TRUE)

#### Convert into mcmc.list
model.mcmc <- as.mcmc.list(model.sim$samples)
#### Produce general summary of obtained MCMC sampling
model.sim$summary$all.chains
summary(model.sim)
# WAIC
model.sim$WAIC

TotalLB$theta<-model.sim$summary$all.chains[startsWith(rownames
(model.sim$summary$all.chains),"RR"),"Mean"]
TotalLB$u<-model.sim$summary$all.chains[startsWith(rownames
(model.sim$summary$all.chains),"u"),"Mean"]
TotalLB$v<-model.sim$summary$all.chains[startsWith(rownames
(model.sim$summary$all.chains),"v"),"Mean"]
dev.off()
tm_shape(TotalLB) +

tm_polygons(c("SMR"), palette = "-RdYlGn",
breaks=c(0,0.5,0.6,0.8,1.2,1.5,2,2.5, 3, 3.5),
contrast=c(0,1)) +

tm_layout(legend.title.size = 1)
tm_shape(TotalLB) +

tm_polygons(c("theta"), palette = "-RdYlGn",
breaks=c(0, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2),
contrast=c(0,1)) +

tm_layout(legend.title.size = 1)
tm_shape(TotalLB) +

tm_polygons(c("u"), palette = "Reds") +
tm_layout(legend.title.size = 1)

tm_shape(TotalLB) +
tm_polygons(c("v"), palette = "Reds") +
tm_layout(legend.title.size = 1)

RR.CONV<-TotalLB$theta
# Exceedance probability
TotalLB$ExProb <- sapply(paste0("RR[", 1:N, "]"),

function(X)
mean(c(model.sim$samples$chain1
[,X],model.sim$samples$chain2[,X])>1))

tm_shape(TotalLB) +
tm_polygons(c("ExProb"), palette = "Blues",
breaks=c(0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 1)) +
tm_layout(legend.title.size = 1)
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### Continuous modelling spatial process with Matern correlation function ###
# Limburg
TotalLB <- as.data.frame(TotalLB)
check.spat <- spat.corr.diagnostic(dth2020~1,

coords = ~I(X)+I(Y),
data=TotalA,likelihood = "Poisson",
units.m=~logE,
uvec=NULL,n.sim=1000)

#geostatistical model
fit.LA <- glgm.LA(dth2020~1,

coords=~I(X)+I(Y),kappa=0.5,
start.cov.pars = c(10, 5), units.m=~logE,
fixed.rel.nugget = NULL,
data=TotalA,family="Poisson")

summary(fit.LA)
par0 <- coef(fit.LA)
c.mcmc <- control.mcmc.MCML(n.sim=20000,burnin=1000,thin=8)
fit.MCML <- poisson.log.MCML(dth2020~1,control.mcmc = c.mcmc,

par0=par0, units.m=~logE,
coords=~I(X)+I(Y), kappa=0.5,
start.cov.pars = c(8.45, 5) ,fixed.rel.nugget = NULL,
data=TotalLB, method="nlminb")

summary(fit.MCML)
variog.diag.MC.cov <- variog.diagnostic.glgm(fit.MCML,n.sim=1000)

## order k = 2
###### kth order distance based neighbourhood structure ######
TotalLB <-st_as_sf(TotalLB)
coords <- as.data.frame(st_coordinates(st_centroid(st_geometry(TotalLB))))
adj<-poly2nb(TotalLB,queen = T)
nbmat <- nblag(adj, maxlag = 2)
nbmat_cumul<-nblag_cumul( nbmat )
plot(st_geometry(TotalLB))
plot(nbmat_cumul, coords=coords, add=TRUE, col="red")
summary(nbmat_cumul, coords)
col.lags <- nblag(nbmat_cumul, 2)
print(col.lags)
summary(col.lags[[2]], coords)
plot(st_geometry(TotalLB3$geometry), border="grey")
plot(nbmat_cumul, coords, add=TRUE)
title(main="k =2")
plot(col.lags[[2]], coords, add=TRUE, col="red", lty=2)
# BYM model using new neighbourhood structure
CONVmodel <- nimbleCode({

for (i in 1 :N) {
O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i]



54 Appendix C. R Code

RR[i] <- exp(alpha + u[i] + v[i])
v[i] ~ dnorm(0,tau.v)

}
# CAR prior distribution for random effects:
u[1:N] ~ car.normal(adj[1:L], weights[1:L], num[1:N], tau.u, zero_mean=1)
for(k in 1:L) {

weights[k] <- 1
}
# Other priors:
alpha ~ dnorm(0,tau.alpha)
mean <- exp(alpha)
tau.u ~ dgamma(0.001, 0.001)
tau.v ~ dgamma(0.001, 0.001)
tau.alpha ~ dgamma(0.001, 0.001)
sigma.u<-1/tau.u
sigma.v<-1/tau.v
ratio<-sigma.u/sigma.v
for (i in 1:N){

## Goodness of fit
Opred[i] ~ dpois(mu[i])
pres[i] <- O[i] - Opred[i]
SPE[i] <- pow(pres[i],2)
APE[i] <- abs(pres[i])
## Residuals
res[i] <- (O[i] - mu[i])/sqrt(mu[i])
prexR1[i] <- step(res[i]-1)
prexR2[i] <- step(res[i]-2)

}
## Overall MSPE and MAPE
MSPE <- mean(SPE[1:N])
MAPE <- mean(APE[1:N])

})
#### Prepare data:
N<-dim(TotalLB)[1]
my.data <- list(O=TotalLB$dth2020, E= TotalLB$E2020)
my.constants <- list(N=N,adj=unlist(nbmat_cumul),
L=sum(card(nbmat_cumul)), num=card(nbmat_cumul))
#### Initial parameters
my.inits <- list(

list(u = rep(0,N),v = rep(0,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1),
list(u = rep(-0.5,N),v = rep(0.5,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1)

)
#### Specify parameters to monitor
parameters <- c("RR","alpha","sigma.u","sigma.v","u","v","ratio","MSPE","MAPE")
#### Running NIMBLE:
model.sim <- nimbleMCMC(code = CONVmodel,

data = my.data,
constants = my.constants,
inits = my.inits,
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monitors = parameters,
niter = 10000,
nburnin = 5000,
nchains = 2,
thin = 10,
summary = TRUE,
samplesAsCodaMCMC = TRUE,
WAIC = TRUE)

#### Convert into mcmc.list
model.mcmc <- as.mcmc.list(model.sim$samples)
#### Produce general summary of obtained MCMC sampling
plot(model.mcmc)
model.sim$summary$all.chains[c(152:155,1:2),]
summary(model.sim)
# WAIC
model.sim$WAIC

### Simulations ###
##read in data
data<-readRDS("data_combined_x4.rds")
#create neighbourhood graph
start <- Sys.time()
newWmat0 <- nbOrder(poly2adjmat(data,queen=T), maxlag = 3)
end <- Sys.time()
#correlation matrix
newWmat<-1/sqrt(1+newWmat0)
#re-define correlation matrix
newWmat[newWmat==1]<-0 #truncate correlation to 0 for neighbors >9th order
newWmat[row(newWmat)==col(newWmat)]<-1 #set diagonal elements
alpha<-0.15 #intercept
#simulate spatial random effects (u)
sigma.u2<-0.5 #original
p.dist<-newWmat #correlation matrix
cov.dist<-sigma.u2*p.dist #covariance matrix
cov.dist <- make.positive.definite(cov.dist, tol=1e-6)
#Multinomial count
n<-20
for (i in 1:n){

set.seed(123+i)
u<-rep(NA,nrow(data))
v<-rep(NA,nrow(data))
u<-mvrnorm(1,rep(0, nrow(data)),cov.dist) #spatial random effects
v<-rnorm(nrow(data), mean=0, sd=0.55)#simulate unstructured random effects (v)
####simulate counts
sim <- list(coords=data$geometry, units.m = data$E2020)
r0<-exp(alpha+u+v) #true RR#unstructured random effects
simdf <- rmultinom(1,sum(data$dth2020), prob = data$E2020*exp(alpha+u+v)) #Multinomial
simLB<-data #get simulated sf object
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simLB$dthsim<-simdf # add simulated case counts
simLB$RR0<-r0 #add true RRs
saveRDS(simLB,paste0("data_mult_bym_", i, ’.rds’))

}

# analysis of simulated dataset
data<-readRDS("data_mult_bym_2.rds")
province<-readRDS(’shape_province_label.rds’)
province <- st_zm(province)
data$geometry <- st_transform(data$geometry, crs = 3857)
province$geometry <- st_transform(province$geometry, crs = 3857)
total <- st_join(data, province, join = st_nearest_feature, left = T)
Total <- st_sf(total)
Total$dthsim <- as.numeric(Total$dthsim)
rate <- Total %>%

summarize(Y = sum(dthsim),N = sum(pop2020)) %>%
mutate(rate=Y/N)

Total <- Total %>%
mutate(Ei=rate$rate*pop2020)

Total <- Total %>%
mutate(SMR=dthsim/Ei)

# Centroids of approximately 2000 subregions
coords <- as.data.frame(st_coordinates(st_centroid(st_geometry(Total))))
#Merge dataset with centroid coordinates
Total <- bind_cols(Total, coords)
Total$logE <-log(Total$Ei)
Total <- Total[Total$logE >= 0, ]
Total$X <- Total$X / 1000
Total$Y <- Total$Y / 1000
TotalLB <- Total[Total$province=="Provincie Limburg",]
TotalOV <- Total[Total$province=="Provincie Oost-Vlaanderen",]

tm_shape(TotalLB) + tm_polygons("dthsim", palette = "Blues",
breaks=c(0, 20, 40, 60, 80, 100)) +
tm_layout(legend.title.size = 0.9, legend.text.size = 0.65)
tm_shape(TotalLB) + tm_polygons("SMR", palette = "Reds",
breaks=c(0, 0.5, 1, 1.5, 2, 2.5, 3))
+ tm_layout(legend.title.size = 0.9, legend.text.size = 0.60,)

TotalOV <- as.data.frame(TotalOV)
check.spat <- spat.corr.diagnostic(dthsim~1,

coords = ~I(X)+I(Y),
data=TotalOV,likelihood = "Poisson",
units.m=~logE,
uvec=NULL,n.sim=1000)

#geostatistical model
fit.LA <- glgm.LA(dthsim~1,

coords=~I(X)+I(Y),kappa=0.5,
start.cov.pars = c(3, 3), units.m=~logE, fixed.rel.nugget = NULL,
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data=TotalOV,family="Poisson")
summary(fit.LA)
par0 <- coef(fit.LA)
c.mcmc <- control.mcmc.MCML(n.sim=20000,burnin=1000,thin=8)
fit.MCML <- poisson.log.MCML(dthsim~1,control.mcmc = c.mcmc,

par0=par0, units.m=~logE,
coords=~I(X)+I(Y), kappa=0.5,
start.cov.pars = c(3, 1.94) ,fixed.rel.nugget = NULL,
data=TotalOV, method="nlminb")

summary(fit.MCML)

### Spatial autocorrelation
## Define neighborhood
nb <- poly2nb(TotalOV, queen=TRUE)
add_nb <- function(x){

queen_nb <- poly2nb(x, queen = TRUE)
count = card(queen_nb)
if(!any(count==0)){

return(queen_nb)
}
## get nearest neighbour index, use centroids:
nnbs = knearneigh(st_coordinates(st_centroid(x)))$nn
no_edges_from = which(count==0)
for(i in no_edges_from){

queen_nb[[i]] = nnbs[i]
queen_nb[[nnbs[i]]] = c(queen_nb[[nnbs[i]]],i)

}
return(queen_nb)

}
nb.new <- add_nb(TotalOV)
plot(st_geometry(TotalOV))
plot(nb.new,st_coordinates(st_centroid(st_geometry(TotalOV))),add=TRUE, col="red")
plot(nb,st_coordinates(st_centroid(st_geometry(TotalOV))),add=TRUE)

### BYM model
CONVmodel <- nimbleCode({

for (i in 1 :N) {
O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i]
RR[i] <- exp(alpha + u[i] + v[i])
v[i] ~ dnorm(0,tau.v)

}
# CAR prior distribution for random effects:
u[1:N] ~ car.normal(adj[1:L], weights[1:L], num[1:N], tau.u, zero_mean=1)
for(k in 1:L) {

weights[k] <- 1
}
# Other priors:
alpha ~ dnorm(0,tau.alpha)
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mean <- exp(alpha)
tau.u ~ dgamma(0.001, 0.001)
tau.v ~ dgamma(0.001, 0.001)
tau.alpha ~ dgamma(0.001, 0.001)
sigma.u<-1/tau.u
sigma.v<-1/tau.v
ratio<-sigma.u/sigma.v
for (i in 1:N){

## Goodness of fit
Opred[i] ~ dpois(mu[i])
pres[i] <- O[i] - Opred[i]
SPE[i] <- pow(pres[i],2)
APE[i] <- abs(pres[i])
## Residuals
res[i] <- (O[i] - mu[i])/sqrt(mu[i])
prexR1[i] <- step(res[i]-1)
prexR2[i] <- step(res[i]-2)

}
## Overall MSPE and MAPE
MSPE <- mean(SPE[1:N])
MAPE <- mean(APE[1:N])

})
#### Prepare data:
N<-dim(TotalOV)[1]
my.data <- list(O=TotalOV$dthsim, E= TotalOV$Ei)
my.constants <- list(N=N,adj=unlist(nb.new), L=sum(card(nb.new)), num=card(nb.new))
#### Initial parameters
my.inits <- list(

list(u = rep(0,N),v = rep(0,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1),
list(u = rep(-0.5,N),v = rep(0.5,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1)

)
#### Specify parameters to monitor
parameters <- c("RR","alpha","sigma.u","sigma.v","u","v","ratio","MSPE","MAPE")
#### Running NIMBLE:
model.sim <- nimbleMCMC(code = CONVmodel,

data = my.data,
constants = my.constants,
inits = my.inits,
monitors = parameters,
niter = 10000,
nburnin = 5000,
nchains = 2,
thin = 10,
summary = TRUE,
samplesAsCodaMCMC = TRUE,
WAIC = TRUE)

#### Convert into mcmc.list
model.mcmc <- as.mcmc.list(model.sim$samples)
#### Produce general summary of obtained MCMC sampling
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model.sim$summary$all.chains[c(646:670),]
summary(model.sim)
# WAIC
model.sim$WAIC

###### kth order distance based neighbourhood structure ######
TotalOV <-st_as_sf(TotalOV)
coords <- as.data.frame(st_coordinates(st_centroid(st_geometry(TotalOV))))
adj<-poly2nb(TotalOV,queen = T)
nbmat <- nblag(adj, maxlag = 10)
nbmat_cumul<-nblag_cumul( nbmat )
summary(nbmat_cumul, coords)

# BYM model using new neighbourhood structure
CONVmodel <- nimbleCode({

for (i in 1 :N) {
O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i]
RR[i] <- exp(alpha + u[i] + v[i])
v[i] ~ dnorm(0,tau.v)

}
# CAR prior distribution for random effects:
u[1:N] ~ car.normal(adj[1:L], weights[1:L], num[1:N], tau.u, zero_mean=1)
for(k in 1:L) {

weights[k] <- 1
}
# Other priors:
alpha ~ dnorm(0,tau.alpha)
mean <- exp(alpha)
tau.u ~ dgamma(0.001, 0.001)
tau.v ~ dgamma(0.001, 0.001)
tau.alpha ~ dgamma(0.001, 0.001)
sigma.u<-1/tau.u
sigma.v<-1/tau.v
ratio<-sigma.u/sigma.v
for (i in 1:N){

## Goodness of fit
Opred[i] ~ dpois(mu[i])
pres[i] <- O[i] - Opred[i]
SPE[i] <- pow(pres[i],2)
APE[i] <- abs(pres[i])
## Residuals
res[i] <- (O[i] - mu[i])/sqrt(mu[i])
prexR1[i] <- step(res[i]-1)
prexR2[i] <- step(res[i]-2)

}
## Overall MSPE and MAPE
MSPE <- mean(SPE[1:N])
MAPE <- mean(APE[1:N])
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})
#### Prepare data:
N<-dim(TotalOV)[1]
my.data <- list(O=TotalOV$dth2020, E= TotalOV$E2020)
my.constants <- list(N=N,adj=unlist(nbmat_cumul),
L=sum(card(nbmat_cumul)), num=card(nbmat_cumul))
#### Initial parameters
my.inits <- list(

list(u = rep(0,N),v = rep(0,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1),
list(u = rep(-0.5,N),v = rep(0.5,N),alpha=0, tau.u=1, tau.v=1, tau.alpha=1)

)
#### Specify parameters to monitor
parameters <- c("RR","alpha","sigma.u","sigma.v","u","v","ratio","MSPE","MAPE")
#### Running NIMBLE:
model.sim <- nimbleMCMC(code = CONVmodel,

data = my.data,
constants = my.constants,
inits = my.inits,
monitors = parameters,
niter = 10000,
nburnin = 5000,
nchains = 2,
thin = 10,
summary = TRUE,
samplesAsCodaMCMC = TRUE,
WAIC = TRUE)

#### Convert into mcmc.list
model.mcmc <- as.mcmc.list(model.sim$samples)
#### Produce general summary of obtained MCMC sampling
model.sim$summary$all.chains[c(661:671),]
# WAIC
model.sim$WAIC
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