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Abstract

Process validation consists of the collection and evaluation of data, from the
process design stage through commercial production, which establishes scientific
evidence that a process is capable of consistently delivering quality product. Once
the sources of variability are sufficiently identified and controlled during the design
phase, a Process Performance Qualification (PPQ) needs to be performed where the
production of the product in a validated state is proven on a commercial scale. The
sampling plan is of great importance as it defines the intra-batch sample size to be
taken during the PPQ to ensure that the chosen process capability metric meets the
process specifications with sufficient certainty. In this master dissertation the intra-
batch sample size is calculated based on a tolerance interval around the process
mean of the potency for two Active Pharmaceutical Ingredients (API), such that
it will contain 99% of future sample potencies with a confidence of 95%. Bayesian
linear mixed models (BLMM) are applied to account for the uncertainty in the
calculation of the tolerance interval and the sample size should be large enough
to reach a probability of 95% that the tolerance interval will lie within the 95%-
105% reference range. Both early and late design stage data are considered and
the power prior, the commensurate prior and a mixture prior are applied to the
univariate API data to allow partial borrowing on the residual variance based on the
similarity between these data sets. When assigning weakly informative hyperpriors,
these methods are shown to lead to the same intra-batch sample sizes. However,
when changing the hyperpriors, the sample size based on the commensurate prior
seems to better reflect the similarity of early and late design stage residual variance
estimates. The power prior and commensurate prior were applied on bivariate API
data as well and revealed that only a small increase in sample size is needed to
ensure that the tolerance intervals of both outcomes simultaneously lie within the
reference range.
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1 Introduction

1.1 Process validation

Within a company that produces drug products of human or animal origin, process
validation is mandatory (and legally enforceable) to ensure the products are produced
with a high degree of assurance of meeting all the attributes they are intended to possess
[1]. Process validation is described by the Food and Drug Administration (FDA) as
the collection and evaluation of data, from the process design stage through commercial
production, which establishes scientific evidence that a process is capable of consistently
delivering quality product [1].

Process validation consists of three phases that help to ensure drug quality: process
design, process qualification and continued process verification. Through these phases, a
high degree of assurance has to be obtained that the process will consistently produce a
drug product which meets those attributes relating to identity, strength, quality, purity
and potency. In addition, they are meant to understand the sources of variation and the
impact they have on the process and the product attributes.

During the process design, the commercial manufacturing process is defined based on
knowledge gained through development and scale-up activities. At the laboratory scale,
Design of Experiment studies can reveal relationships between process parameters or
component characteristics (related to the raw material) and in-process material, inter-
mediates or the final product. This in turn can help to establish ranges for component
quality, equipment parameters and material quality attributes. Furthermore, the func-
tionality and limitations of the manufacturing equipment is evaluated during this stage,
as well as the variability introduced by different component lots, production operators,
environmental conditions, and measurement systems in the production setting.

The process knowledge gained during the process design is used to establish a strategy
for process control. Process control tries to maintain the quality of the product by
monitoring the process and addressing the observed variability. FDA expects controls to
include both examination of material quality and equipment monitoring.

The process qualification stage starts with the design of the facility (if applicable) and the
qualification of utilities and equipment. After, the PPQ is performed during which the
trained personnel uses the qualified equipment to complete the manufacturing process
according to the appropriate control procedures. The PPQ is an important milestone in
the product life-cycle and successful completion is necessary to commence commercial
production. Data is gathered from the PPQ batches to demonstrate the process is per-
forming as intended on a commercial scale. This master dissertation aims at providing
insight into Bayesian methodology that can help to successfully complete the PPQ stage.

It is advised by the FDA that data from all relevant studies (i.e. designed experiments,
laboratory, pilot and commercial batches) should be used to establish the manufacturing
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conditions of the PPQ [1]. Wherever possible, objective measures (e.g., statistical met-
rics) should be used to achieve adequate assurance regarding product quality attributes.
Within the PPQ protocol the manufacturing conditions, controls, testing and expected
outcomes need to be described before starting the execution of the PPQ runs. The sam-
pling plan is herein important to define the number of samples to be taken to provide
sufficient statistical confidence of quality both within and between batches. The number
of samples to take however impacts the amount of raw material to start with, the number
of operators to work on the PPQ and ultimately the length of the study. It is therefore
important to statistically motivate a sample size to regulatory authorities that assures
uniform product quality throughout the process, yet doesn’t cause unnecessary expenses.
The Bayesian methodology presented here should assist in determining a sample size that
considers both aspects based on both early and late design stage data.

Continued process verification is the final stage of process validation and ensures that the
process remains in a continued state of control (the validated state) during commercial
manufacture. To accomplish this, product and process data are continuously gathered,
statistically trended and reviewed. This allows to detect significant sources of variabil-
ity and establish appropriate detection, control and/or mitigation strategies. It might
provide ways to improve the process through the change of operating conditions, process
controls or in-process material characteristics.

1.2 Process capability analysis

Process capability analysis plays a central role in the Bayesian statistics inspired sam-
ple size calculation that is performed in this master dissertation. It refers to methods
designed to estimate the capability of a manufacturing process to meet a set of require-
ments or specification limits [2]. In the simplest case, samples are taken and classified as
conforming or nonconforming based on whether or not they meet the specifications for
the item. The proportion of nonconforming items can easily be calculated and used as a
process capability metric.

Sample sizes required to obtain a precise estimate of the proportion of nonconforming
items are usually quite high as information is lost on how close or far samples are from the
specification limits. If the specifications for a product are based on a continuous variable
X, precise estimates may be obtained from much smaller sample sizes by first modelling
the probability distribution of X and then using the mean µ and standard deviation σ to
determine the capability index. One such measure is the Z index, defined as:

Zlower =
µ− LSL

σ
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for the lower specification limit (LSL) and:

Zupper =
USL− µ

σ

for the upper specification limit (USL). The distance to the nearer specification limit is
the smaller of the two one-sided Z indices, after which the probability of being beyond the
specification limits can be calculated using the standard normal distribution. Another
index commonly used is the Cp index:

Cp =
USL− LSL

6 ∗ σ

This measure calculates how much wider the "design tolerance" is relative to the "natural
tolerance". Statistical tolerance limits on the other hand make a statement about a given
proportion of the population at a specified level of confidence and is the method of choice
used here. Such an interval can be calculated to define the range within which 99% of
future samples would lie with 95% confidence. If this interval lies entirely within the
specification limits, it can then be stated with 95% confidence that 99% of the future
samples taken will satisfy the specifications. As mentioned earlier, to obtain a precise
estimate of process capability, a sufficiently large, representative sample will have to be
drawn. How large will depend on the capability index and whether one-sided or two-sided
specification limits are used. Here, the sample size is calculated to obtain a 99% coverage
95% confidence (99%/95%) tolerance interval that lies within the specification limit with
a probability of at least 95%.

The calculation of the capability index can depend on both information obtained from
the samples as well as prior information on the parameters used in the calculation. This
is encouraged by the FDA, who state that laboratory or pilot-scale models designed to be
representative of the commercial process can be used to estimate the variability. Several
informative priors are used here to draw posterior inference on the within batch residual
variance using early process design stage data, followed by a risk based calculation of a
sample size which is appropriate for PPQ and is based on the use of tolerance intervals.

1.3 Using informative priors for a PPQ sampling plan

Central to Bayesian statistics is the ability to allow inference of model parameters to be
influenced by both the data likelihood and prior information:

p(θ | D) =
L(θ | D)π(θ)∫
L(θ | D)π(θ)dθ

∝ L(θ | D)π(θ)

where π(θ) represents the prior on θ and L(θ | D) is the likelihood depending on the data
D. The prior can be vague when it is locally uniform on the interval where the likelihood
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is not (close to) zero [3]. When such a prior is used, usually posterior summary measures
are obtained that are close to those obtained under the frequentist approach. Priors which
contain information on the model parameters, as is the case here, are called informative
priors. They express skepticism or optimism and can be based on historical data or
represent expert opinions. In the next sections the informative priors used in this master
dissertation are briefly discussed, together with some of the practical applications they
have been used for. Several priors need to be evaluated to demonstrate that the sample
size is robust to the prior assumptions.

1.3.1 The power prior

The power prior is one of the most well known informative priors used in Bayesian
statistics. It allows discounting of the prior information through the use of the discounting
parameter a0 [4]. The power prior with fixed discounting parameter is defined as:

π (θ | D0, a0) ≡
L (θ | D0)

a0 π(θ)∫
Θ
L (θ | D0)

a0 π(θ)dθ

When this fixed discounting parameter is given the value 0, the historical data is ignored,
while it is given the same weight as the current data when it has the value of one. In
the latter case, this also implies that both the historical and current data were generated
under identical conditions. As a0 approaches zero, the tails of the prior become heavier
and more uncertainty is introduced in the prior. A hyperprior can be put on the dis-
counting parameter to allow the data to determine the amount of borrowing that should
be done. This is then called the joint power prior or unnormalised power prior. Another
variation of the power prior where a0 is random, is the normalised power prior, which
first specifies a conditional prior for θ given a0 and then defines a marginal distribution
for a0. Applications of the power prior are widespread. They have been used in human
genetics research to study heritability estimates using twin data [5]. Another example
is in the evaluation of the water quality where historical data are used to overcome the
inadequate sample size to obtain precise parameter estimates [6].

1.3.2 The commensurate power prior

Combining the normalized conditional power with a prior distribution on the discounting
parameter leads to the modified power prior (MPP). While this MPP allows the data to
determine the value of a0, the full conditional posterior for a0 is free of the current data
and as such is not based on a direct comparison between current and historical data.
The commensurate power prior does allow this and is different from the MPP in that
different parameters are allowed for the historical and current data [7]:
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π (θ, θ0, a0, τ | D0) ∝
L (θ0 | D0)

a0∫
L (θ0 | D0)

a0 dθ0
π (θ | θ0, τ) π (a0 | τ) π0(τ)

Here θ and θ0 represent one-dimensional parameters based on the current and historical
data, respectively. The prior on θ depends on θ0 and has precision τ , where τ parameter-
izes the commensurability or agreement between θ and θ0. In addition the information
on τ is used to guide the prior on a0. The latter is usually a beta prior where a0 depends
on a function which increases with τ . Therefore, as τ approaches 0, the conditional prior
variance of θ increases and the borrowing power will decrease through the prior on a0.
For Gaussian data, both power and commensurability parameters inflate the conditional
prior variance of θ given weak evidence for commensurability. When only a single histor-
ical study is used, a commensurate prior is instead recommended to weight the influence
of prior information:

π (θ | D0, θ0, τ) ∝ L (θ0 | D0) π (θ | θ0, τ) π0(θ)

The historical data will be ignored when τ approaches zero as this will lead π (θ | D0, θ0, τ)
to approach π0(θ).

1.3.3 The robust mixture prior

Special attention is given in this master dissertation to the use of priors that allow
dynamic borrowing based on the similarity of the residual variance distribution of the
current and historical data. This approach should allow to justify to legal authorities the
within batch sample size that is taken during the PPQ while including early design stage
data. Another approach that allows dynamic borrowing is the robust mixture prior.

The robust mixture prior is defined by considering an informative prior, based on the
historical data (Minf ), and a vague prior (Mvag) together with prior weights that express
the prior belief that the historical and current data are similar [8]:

π(θ) = p(Minf )π (θ | Minf ) + p(Mvag)π (θ | Mvag)

After considering the current data, the conditional posteriors under each model are up-
dated separately and the prior model probabilities are updated to obtain the posterior
model probabilities. The posterior distribution is then a weighted average of the posterior
distributions under each model, weighted by their respective posterior model probabili-
ties. This approach was performed to show efficacy of mepolizumab in adolescent patients
with severe asthma, using the results in adults to construct a mixture prior [8]. Mixtures
of prior distributions have also been used to perform predictive Bayesian sample size
calculations in clinical trials [9].
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1.4 Bayesian sample size calculation using historical data

Estimating the sample size is important for any experimental design to gain sufficient
power to find a significant effect size. In clinical trials, it is mandatory for both budgetary
and ethical reasons to avoid exposing too many patients to the experimental treatment
arm. Next to the classical frequentist approach, there exist hybrid classical and Bayesian
as well as fully Bayesian methods to estimate the required sample size [10].

A disadvantage of the classical approach is that usually an initial guess needs to be
provided for a parameter that controls the sampling distribution of the statistic needed
for inference. Bayesian methods don’t suffer from this local optimality problem as they
allow to model the uncertainty through prior distributions [11]. The sample size can be
determined using the Bayesian conditional or unconditional power function or can be
based on other posterior measures. A hybrid classical and Bayesian method is usually
preferred over a fully Bayesian approach in a clinical setting. Here, a distinction is often
made between a design prior used to determine the prior predictive distribution and an
analysis prior incorporated to perform posterior inference [12]. The design prior can be
informative while the analysis prior is usually kept vague. The power prior as well as a
mixture of informative priors have been used for sample size calculations [11] [9].

In this master dissertation, simulated early and late design stage data are considered
from a process for which the intra-batch sample size has to be determined to successfully
complete the PPQ. This is necessary to show the process is able to consistently produce
product on a commercial scale with quality attributes that lie within the reference range.

Partial borrowing is performed on the residual variance using informative priors to ensure
the sample size is large enough to achieve a probability of 95% that the 99%/95% toler-
ance interval around the late design stage process mean will lie within the reference range
of the process. Borrowing for the process mean is not appropriate as several critical pro-
cess parameters, necessary to ensure the desired product quality, are usually still prone
to change at the early stage. BLMM’s are fitted to the historical data and then used
as informative priors after being appropriately discounted using either the joint power
prior, the commensurate prior and a robust mixture prior. This is done first for both
API outcomes separately. After it is assessed whether these methods can be applied to
both potency outcomes when they are modelled jointly. Several priors are evaluated to
achieve a robust sample size that can be sufficiently motivated to legal authorities and
allows a cost efficient planning for the company.
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2 Data description

The data for this thesis project was provided by Yimer Wasihun Kifle who works as a
Senior Statistician at Janssen, Pharmaceutical companies of Johnson & Johnson. For
legal reasons, the data had to be simulated. It consists of potency measurements of
API of samples taken throughout the early and late design stage of the process. The
API potency is an example of a critical quality attribute, which needs to be controlled
throughout the process to maintain the quality of the product. It is expressed as the
percentage of the drug’s label claim and is here required to be in a 95% to 105% reference
range.

The data from the early and late design stage are referred to throughout this dissertation
as the historical and current data respectively. In addition, a potency measurement on
two API’s was generated for each sample: API1 and API2. These are two different
ingredients that are both part of the same combination drug. The current and historical
data differ primarily in the number of samples per batch, as well as the amount of batches
the samples were taken from. These differences are detailed in Table 1.

Table 1: Design stage data summary

Data set Samples per batch Batches Total API1 mean (SD) API2 mean (SD)
Historical 20 20 400 99.45 (1.49) 97.84 (1.23)
Current 5 10 50 100.42 (1.37) 97.99 (0.95)

The potency measurements that were performed on the dosage units from the historical
and current batches are represented in Figure 1. The overall process mean is higher for
API1 than API2 for both the current and historical data. The variability is noticeably
higher for the historical data than it is for the current data. For the historical batches
the process is still evaluated to determine the parameters that contribute the most to the
variability that is introduced in the process. The final reference ranges might also not
have been set yet in order to control this variability more efficiently. The correlation for
both potency outcomes is very high, with a Pearson correlation of 0.992 for the current
data and 0.985 for the historical data. While all the potency values for the current
batches are within the reference range, several historical batch units have crossed the
lower 95% potency limit. This is true for API1 (one dosage unit for batch 7) and API2
(four units for batch 4 and three for batch 7).
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Figure 1: Potency for dosage units of current (A) and historical (B) batches.
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3 Methods

In this master dissertation, the intra-batch sample size required for PPQ is determined
through a risk based analysis to allow the 99%/95% tolerance interval of the overall
process mean to lie within the API potency limits with a probability of at least 95%.
BLMM’s are used to explore the marginal posterior of the intra-batch variance which
allows to account for the variability of the residual variance estimate in the sample size
calculation. Sampling of the posterior is performed using the No-U-Turn Hamiltonian
Monte Carlo sampling (NUTS) algorithm that can be applied through the Stan software.
Assessing model convergence is done through traditional methods such as the trace plot,
as well as additional diagnostics that are retrieved when performing NUTS sampling.
The influence of the historical data on the late stage intra-batch variability is controlled
through several informative priors to determine an appropriate sample size for the PPQ
stage.

3.1 Posterior sampling using Stan

Hamiltonian Monte Carlo (HMC) is based on the introduction of an auxiliary momen-
tum variable rd for each model variable θd and approaching this augmented model as
a fictitious Hamiltonian system where θ represents a particle’s position and rd denotes
the momentum of that particle in the dth dimension [13]. The leapfrog integrator is then
used to simulate the evolution over time of the Hamiltonian dynamics of this system. For
each sample, the momentum variables are first resampled from a standard multivariate
normal distribution. After, the leapfrog updates are performed to the position variables
θ and momentum variables r to generate a proposal position-momentum pair, which is
accepted or rejected through the Metropolis algorithm.

While HMC is less sensitive to correlated parameters and is able to converge much quicker
to high-dimensional target distributions, its widespread use is prevented by the need
to provide a step size and a desired number of steps. If the step size is too large,
the simulation is inaccurate and will yield low acceptance rates. If it is too small, the
computation time will quickly increase. While a small number of steps will usually result
in slow mixing, defining too many steps can generate trajectories that loop back to retrace
previous steps. The Stan software used here relies on the NUTS algorithm which doesn’t
require these parameters to be fine-tuned yet is shown to perform at least as efficient as
HMC [13].

3.2 Convergence diagnostics

Diagnosing convergence of the posterior samples is mandatory to perform reliable infer-
ence on the posterior distribution. When performing HMC sampling, a divergence arises
when the Hamiltonian trajectory departs from the true trajectory [14]. When the diver-
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gence is too high the simulation cannot be trusted as the positions along the simulated
trajectory after the Hamiltonian divergence will never be selected as the next draw of
the algorithm. As a result, the posterior will not be thoroughly explored. The burn-in
and total amount of iterations were chosen to avoid the presence of divergent iterations.
In addition four chains were run for each model to reveal multimodality, poor adaptation
or mixing [15].

The split-R̂ and Effective Sample Size (ESS) are important to respectively determine
whether the chains mixed well and the sample size was high enough to obtain a stable
estimate of uncertainty. The traditional R̂ is calculated by comparing the variance of
all chains mixed together to the variance of the individual chains. It is also called the
potential scale reduction factor to denote the factor by which the between-chain variation
might decline under future simulations. A value close to one means there is little extra
inferential precision to be expected when running the chains longer. Here, convergence
is evaluated through the rank-normalized split-R̂ (from now one referred to as the R̂)
which was shown to more reliably assess convergence when the chains have different
scale parameters or have especially long tails [15]. Model estimates are reported here
only when this R̂ is below 1.05. Similarly calculated on the rank-normalized draws, the
bulk- and tail-effective samples sizes (bulk-ESS and tail-ESS) are retrieved as an overall
and tail-specific efficiency measure respectively. They are suggested to be at least one
hundred times the number of chains that were specified [15].

3.3 Univariate model and prior specification

The effect of the intra-batch variability on the sample size calculation is first determined
for the current and historical batches separately. After, it is evaluated how the current
residual variance and associated sample size changes when then historical data is incorpo-
rated into the prior specification. This is done through the joint power prior with random
discounting parameter, the commensurate prior and the mixture prior containing both
an informative and a vague component.

Initially, the brms package in R was used to define the BLMM’s for the current and his-
torical data. Once these models were created, the associated Stan code could be retrieved
and adapted into the different informative priors. Consequent analysis were performed
by executing the Stan code through the Rstan interface package. The evaluation of the
model diagnostics and retrieval of the relevant model parameters were all done through
functions provided by the Rstan package.
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3.3.1 The Bayesian linear mixed model

The model specification under the Bayesian framework is based on both the likelihood
and the prior. In the next sections attention is given to the formulation of both to clarify
the partial borrowing of historical data and to indicate the difference in parameteriza-
tion between the informative priors. In addition the prior for every model parameter
is specified. To determine the intra- and inter-batch variability of the API1 and API2
potency for the current and historical batches, a BLMM was fitted which has a Gaussian
distribution at each hierarchical level and makes the following distributional assumptions
[3]:

• Level 1: yij|β0, bi, σ
2 ∼ N(β0 + bi, σ

2) for j=1,...,mi; i=1,...,n

• Level 2: bi|σ2
b ∼ N(0, σ2

b ) for i=1,...,n

• Priors: σ2 ∼ π(σ2) and (β0, σ
2
b ) ∼ π(β0, σ

2
b )

where i represents the batch number and j a sample taken from batch i. The parameters
β0 and σ2

b are considered independent, such that π(β0, σ
2
b ) = π(β0)π(σ

2
b ). Here, yij is the

potency of sample j taken from batch i, bi is the random batch intercept for batch i, β0

is the process mean, σ2 is the intra-batch variance and σ2
b is the inter-batch variability.

The priors that were specified for each of the model parameters were:

• π(β0) ∼ N(Y.., 2.5)

• π(σ) ∼ t(3, 0, 2.5)

• π(σb) ∼ t(3, 0, 2.5)

For each analysis, the average potency was used as the mean of the normal prior that was
specified for β0. A standard deviation (SD) of 2.5 was chosen to keep the prior weakly
informative to avoid that unrealistically large values would be sampled that could lead to
slower convergence. A half-t distribution was assigned to both the intra- and inter-batch
SD, as it is useful when the SD has to be restricted away from very large values but also
because it has better behaviour near 0 than for example an inverse-gamma distribution
[16]. Based on the likelihood and the priors, the posterior distribution can be defined as:

p(β0, b, σ
2, σ2

b |y) =
n∏

i=1

mi∏
j=1

N(yij|β0, bi, σ
2)

n∏
i=1

N(bi|σ2
b )π(σ

2)π(β0)π(σ
2
b )
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3.3.2 The joint power prior

Partial borrowing from the historical data based on the power prior is achieved through
the shared residual variance σ2 and is driven by the similarity between the current and
historical data. The strength of the borrowing is directed through the discounting pa-
rameter a0 and the prior that is assigned to it. The discounting parameter can take
values from 0 to 1 where values closer to 0 will increase the variance of the prior based
on the historical data, thus increasing the dependence of the marginal posterior of σ2 on
the current data. To simplify the notation, parameters specific to the historical model
will be denoted as θ0, those specific to the current model as θ1, when common to both
models as θc and as θ to refer to all parameters of the current model. The historical data
is defined as D0 and the current data as D1. The power prior used here is called the joint
power prior and is in general defined as [4]:

π (θ, a0 | D0) ∝ π∗ (θ, a0 | D0) ≡ L (θ | D0)
a0 π(θ)π (a0)

Contrary to the modified power prior, the normalising constant is not calculated here.
In case of partial borrowing, the unnormalised power prior is defined as:

π (θ, a0 | D0) ∝
{∫

L (θc,θ0 | D0) dθ0

}a0

π (θc,θ0)π (θ1) π(a0)

where π(θ1) defines the priors for parameters specific for the current data and π(a0)
represents the prior on the discounting parameter, which is here a beta(alpha,beta) dis-
tribution. The priors for β0,σ and σb for the historical and current model are the same
as those defined for the BLMM in section 3.3.1. The influence of the parameterization
of the beta distribution on a0 is assessed by changing the alpha parameter from 1 to 10
while keeping beta at 1. Finally a model was evaluated where a gamma(3,2) hyperprior
was assigned to both alpha and beta.

3.3.3 The commensurate prior

As apposed to the partial borrowing joint power prior, in the commensurate prior none
of the parameters are shared between the historical and current data. Instead, borrowing
happens by assigning a prior to σ1 with mean σ0 and SD τ . This is represented in the
following notation, where θ0 and θ1 now refer to all parameters specific for each model,
except for σ0 and σ1:

π (θ, τ | D0) ∝
{∫

L (σ0,θ0 | D0) π(θ0, σ0)dθ0

}
π (θ1) π(σ1)π(τ)∫

{
∫
L (σ0,θ0 | D0) π(θ0, σ0)dθ0}dσ0

with π(σ1) ∝ N(σ0, τ). To evaluate the influence of the prior for τ on the amount
of borrowing, several distributions were considered. Both an inv-Gamma(1,1) and an
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inv-Gamma(1,0.001) were assigned to τ 2 while a t(3,0,2.5) distribution was specified for
τ .

3.3.4 The robust mixture prior

Lastly, dynamic borrowing from the historical data was allowed through a two component
mixture prior on σ1, consisting of an informative and a vague component using λ to
indicate the prior belief about the similarity between σ1 and σ0. A larger difference
in the variability of the current and historical data should be reflected by an increased
posterior probability for borrowing from the vague component. This prior is denoted as:

π (θ, λ | D0) ∝
{∫

L (σ0,θ0 | D0) π(θ0, σ0)dθ0

}
π (θ1)π(σ1)π(λ)∫

{
∫
L (σ0,θ0 | D0) π(θ0, σ0)dθ0}dσ0

π(σ1) = λN(σ0, σinf ) + (1− λ)N(0, σvag)

A value of 2.5 was taken for σvag to express the weakly informative character of this
component for values close to zero. A first analysis was performed by setting σinf at the
SD obtained for σ0 when the historical data were analysed separately. The value for λ
was hereby changed from 0.5 (allowing the data to determine the amount of borrowing)
to 0.9 (prior belief that σ1 and σ0 are similar). Secondly, λ was made random and given
a beta(alpha,beta) hyperprior, allowing to retrieve the posterior weight associated with
the informative component. Finally, λ was given a uniform prior and σinf was assigned
the inv-Gamma(1,0.001) prior.

3.3.5 Model evaluation

To evaluate the model fit and compare models that were fitted using different priors or
different prior parameters, the loo package was used to perform leave-one-out cross vali-
dation (loo). Both WAIC and loo are estimates of the expected log pointwise predictive
density (elpd) [17]:

n∑
i=1

∫
pt(ỹi)logp(ỹi|y)dỹi

While WAIC does so by calculating the predictive density for each value of the dataset,
loo evaluates the predictive density for value i based on the posterior where i was re-
moved from the dataset. The loo calculated by the package is based on Pareto-smoothed
importance sampling which was introduced to prevent the importance ratios from having
high or infinite variance.

3.3.6 Bayesian sample size calculation based on tolerance intervals

Once the model has been fitted, the data comprising the marginal posterior of σ1 can
be extracted from the Stan object and be used to account for the variability of this
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estimate in the risk based sample size calculation. It is based on tolerance intervals and
requires that a sample size is selected which ensures that this capability index lies within
the reference range with a probability of at least 95%. This probability increases as the
intra-batch sample size increases as a tolerance interval is defined as y± k ∗SD, where k
depends on the sample size, the confidence level and the desired proportion. The k-factor
was calculated using the tolerance package. The probability of the tolerance interval of
the process mean falling within the acceptance range was calculated using the following
procedure:

1. Draw a value σ1post from its posterior distribution

2. Sample nmax (the highest sample size to be tested) values from a N(0, σ1post) dis-
tribution

3. Calculate the k-factor for each sample size that needs to be evaluated

4. Define the upper and lower tolerance limit based on the mean, SD and k-factor for
each sample with size increasing up to nmax

5. Add the value for the upper and lower tolerance limit to the mean of the posterior
of β01 (the process mean for the current batches)

6. Verify whether the tolerance interval for the process mean lies within the 95%-105%
reference range

7. Repeat step 2 to 6 for every value of the posterior for σ1 and calculate the probability
to conform to the process specification

While the above method is described for a single process mean, the procedure can be
repeated for every possible value between 95 and 105. This allows to visualise how the
required sample size to reach the target changes as the process mean ends up closer to
the reference limits.
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3.4 Bivariate model and prior specification

Performing the sample size calculation based on the probability that the tolerance inter-
vals of both API1 and API2 simultaneously lie within the reference range could possibly
provide a higher degree of certainty that the PPQ phase will be successfully completed.
In addition because of the high correlation between both outcomes, possibly only a small
sample size increase is needed to achieve this. To evaluate this, a bivariate BLMM was fit-
ted to the historical and current data, allowing partial borrowing through the power prior
and the commensurate prior. Cmdstanr was used which allows to connect to cmdstan
and run the code more quickly due to a lower memory overhead.

3.4.1 The bivariate Bayesian linear mixed model

The Bayesian model was fitted to the joint potency outcomes by considering a bivariate
normal distribution at each hierarchical level:

• Level 1: yij|bi,Σ ∼ N(bi,Σ) for j=1,...,mi; i=1,...,n

• Level 2: bi|β0,Σb ∼ N(β0,Σb) for i=1,...,n

where yij represents the potency of API1 and API2 for unit j, taken from batch i. The
sample potencies are distributed normally with the random batch intercept vector for
batch i denoted as bi and covariance matrix Σ. At the second level, the batch potencies
are normally distributed with population process mean vector β0 and covariance matrix
Σb. Each of the model parameters were assigned the following priors:

• π(β01) ∼ N(Y1.., 2.5)

• π(β02) ∼ N(Y2.., 2.5)

• π(Σ) ∼ IW (4, I)

• π(Σb) ∼ IW (4, I)

Here π(β01) and π(β02) represent the priors for the population process mean for API1
and API2 respectively. Both Σ and Σb are assigned an inverse-Wishart distribution as
prior with four degrees of freedom and the identity matrix as location parameter. The
posterior associated with the above mentioned likelihood and priors is:

p(β0, b,Σ,Σb|y) =
n∏

i=1

mi∏
j=1

N(yij|bi,Σ)
n∏

i=1

N(bi|β0,Σb)π(Σ)π(β0)π(Σb)
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3.4.2 Bivariate potency based sample size calculation

Both the power prior and the commensurate prior were used to allow an appropriate
amount of borrowing from the historical data. In case of the power prior, the bivariate
model for the historical and current data shared the same residual covariance matrix Σ,
allowing all other parameters to be distinct. The approach was similar to the univariate
case, except that now the BLMM described in section 3.4.1 was used. Again, the dis-
counting parameter a0 was assigned either a beta(1,1), a beta(10,1) or a beta distribution
where alpha and beta were random and given a gamma(3,2) prior. The latter prior was
chosen to conform to the domain of these parameters and allow an appropriate prior
density at values ranging from zero to ten, while decreasing for values even higher.

Central to the commensurate prior is the definition of a commensurability parameter τ
which influences the amount of borrowing based on the agreement between the current
and historical data. A direct translation of the approach taken in the univariate model
was not feasible and didn’t lead to acceptable convergence diagnostics. Instead the
covariance matrix for the current model, Σ1, was given an inv-Wishart prior with scale
parameter Σ0 and degrees of freedom (df) tau. The inverse of tau was then given a
uniform prior and τ was assigned a lower bound of four. While a lower bound of two
led to similar model estimates, it required twice the amount of iterations leading to
worse convergence diagnostics. A possible reason for this is that an inv-Wishart with
two df is no longer a proper distribution. It was reasoned that in this parameterisation,
tau could act as a commensurability parameter where an increase would result in a
higher posterior weight associated to Σ0. After applying the informative priors to borrow
historical information, the marginal posterior values for the variance of API1, API2 as
well as the covariance could now be extracted and used to perform the tolerance interval
based sample size calculation. The sample size calculation was adapted to let it depend
on the probability that both API1 and API2 lie within the reference range:

1. Draw a value for the variance of API1 and API2 and for the covariance from the
marginal posterior Σ1post

2. Sample nmax (the highest sample size to be tested) values from a bivariate normal
with mean zero for API1 and API2 and covariance matrix Σ1post

3. Calculate the k-factor for each sample size that needs to be evaluated

4. Define the upper and lower tolerance limit based on the mean, SD and k-factor for
API1 and API2, for each sample with size increasing up to nmax

5. Add the value for the upper and lower tolerance limits to the posterior process
mean for API1 and API2 and verify whether the tolerance interval lies within the
reference range

6. Repeat step 2 to 5 for every value of the posterior for Σ1 and calculate the proba-
bility to conform to the process specification
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4 Results

4.1 Early vs. late design stage batch dependent sample size cal-
culation

To evaluate the influence of the intra-batch variability and process mean on the sample
size calculation, a BLMM was first fitted to the outcomes of the current and historical
data. The results are displayed in Table 2 and Table 3 for the potency of late and early
design stage batches respectively. Posterior sampling was performed for 10000 iterations
across four chains, discarding the first half as warm-up. No divergent iterations were
reported and based on the trace plots and convergence diagnostics good mixing and ef-
ficient sampling from the posterior was achieved. The trace plots for the variance and
covariance (in case of the bivariate BLMM) are included for most models in the Adden-
dum. It also contains the R and Stan code used to generate the results presented here.
The fit was evaluated for each model using the loo information criterion (looic) which
equals -2 times the log posterior predictive density obtained through the loo procedure.
For the current data, it was 93.9 for API1 and 20.8 for API2. For the historical data, it
was 1240.1 for API1 and 931.5 for API2.

Table 2: BLMM for current data

Mean SD R̂ bulk-ESS tail-ESS
API1
β01 100.42 0.48 1 2901 4543
σ1 0.56 0.07 1 7792 8655
σb1 1.48 0.4 1 2950 5137

API2
β01 97.99 0.35 1 3045 3924
σ1 0.27 0.03 1 7225 8692
σb1 1.1 0.3 1 2754 4458

Table 3: BLMM for historical data

Mean SD R̂ bulk-ESS tail-ESS
API1
β00 99.45 0.25 1 2007 3989
σ0 1.11 0.04 1 16515 14382
σb0 1.09 0.2 1 2761 5169

API2
β00 97.85 0.24 1 1439 2510
σ0 0.76 0.03 1 9551 12062
σb0 1.04 0.18 1 1912 4253
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Figure 2: K-diagnostic plot for API1 and API2 of the current batches (A and B), and
the historical batches (C and D).

The Pareto k estimates are displayed in Figure 2. Observations can be considered influen-
tial when the k-value is higher than 0.7, which points to a significant difference between
the posterior with and without this value. No such observations were identified here
allowing to conclude a good fit for every model. As expected, the intra-batch variability
was higher for the historical batches than for the current batches and was furthermore
higher for API1 than for API2. The potency for API1 was closer to 100% than for API2
for both datasets. The relation between the intra-batch sample size and the probability
to produce batches within the required reference range is displayed in Figure 3 and Figure
4 for the current and historical data respectively. For the current batches a minimum of
7 samples should be taken based on API1 and 5 samples based on API2. For the histor-
ical batches this was 36 and 48 for API1 and API2 respectively. While the intra-batch
variability for API2 of historical batches is lower than for API1, the required sample size
is a lot higher as the process mean lies closer to the lower acceptance limit.
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Figure 3: Intra-batch sample size determination for API1 (A) and API2 (B) of the current
batches
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4.2 Borrowing historical data using the power prior

The power prior is one of the most often used informative priors to borrow information
from historical studies. The discounting parameter a0 can be held fixed and a sensitivity
analysis can be performed to determine the appropriate amount of discounting that
should be performed. Here, a0 is given a beta(alpha,beta) prior to allow the amount of
borrowing to be determined by the similarity of the current and historical data. However,
the choice of the hyperprior and the value of the parameters still can influence the amount
of borrowing. Therefore the analysis is performed using a beta(1,1) and a beta(10,1) prior
as well as by assigning a gamma(3,2) hyperprior to the alpha and beta parameter of the
beta distribution.

The model estimates and sample size obtained by assigning different hyperpriors to the
discounting parameter are shown for API1 and API2 in Table 4. In addition, the looic is
reported. For both API1 and API2, the use of a beta(1,1) hyperprior or the assignment
of a gamma(3,2) to the parameters of the beta distribution led to no borrowing and a
σ estimate depending solely on the current data. As a result the same sample size was
obtained as for the univariate analysis without applying the power prior.

Table 4: Model estimates and sample size using the Power prior

β01 σb1 σ a0 n looic
Mean SD Mean SD Mean SD Mean SD

API1
beta(1,1) 100.42 0.48 1.49 0.42 0.57 0.07 0 0 7 94
beta(10,1) 100.42 0.48 1.46 0.4 0.69 0.09 0.008 0.003 10 97.8
t(3,0,2.5) 100.43 0.47 1.48 0.42 0.56 0.07 0 0 7 93.9
API2

beta(1,1) 97.99 0.36 1.09 0.3 0.28 0.03 0 0 5 20.9
beta(10,1) 97.99 0.35 1.1 0.32 0.37 0.05 0.0047 0.0021 8 29.8
t(3,0,2.5) 98 0.36 1.1 0.31 0.27 0.03 0 0 5 21.2

For both API outcomes, the assignment of the beta(10,1) distribution resulted in an
identical increase of the sample size from 7 to 10 for API1 and from 5 to 8 for API2.
This distribution favors higher values of a0 as it has a density peak closer to one. The
mean a0 for API1 was 0.008 and 0.0047 for API2, which seems to correctly reflect the
difference between API1 and API2 in the similarity of σ0 and σ1 (obtained when modeling
the current and historical data separately). However the mean a0 for API1 lies close to
one SD from that of API2, correctly reflecting the impact of the power prior on σ and the
associated sample size calculation. The looic for both models applying the beta(10,1)
hyperprior was slightly higher. However, it was not found to be significant based on
the pairwise comparison of the pointwise expected predictive density, provided by the
compare function of the loo package.
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4.3 Commensurability based dynamic borrowing

The parameter of commensurability was introduced here as the SD of the commensurate
prior. It is expected to increase as the difference between the current and historical data
increases. Depending on the hyperprior put on τ however, the SD can be influenced and
the amount of borrowing possibly changed. The parameter estimates of the models and
their associated sample size are shown in Table 5. The influence of the use of the vague
inv-Gamma(1,1) and t(3,0,2.5) priors on τ is almost identical to the use of the vague
hyperpriors for the discounting parameter a0. The parameter estimates are unchanged
and the reported sample size reflects no borrowing from the historical data. This is also
reflected in very similar looic values between the power and commensurate prior for these
vague hyperpriors. Different is the impact of the inv-Gamma(1,0.001) distribution which
favors SD values much closer to zero. While this results in an increase of the sample size
from 7 to 9 for API1 it leaves the outcomes for API2 unchanged. Despite encouraging
the borrowing from the historical data through this hyperprior, the distribution of σ1

and σ0 seems too different to allow borrowing. Again the looic was found to be higher for
the inv-Gamma(1,0.001) which was now found to be significant. For both comparisons
the mean pairwise difference was -1.4 with SD 0.7.

Table 5: Model estimates and sample size using the Commensurate prior

β01 σb1 σ1 τ n looic
Mean SD Mean SD Mean SD Mean SD

API1
inv-Gam(1,1) 100.43 0.48 1.48 0.48 0.56 0.07 0.95 0.49 7 93.8

inv-Gam(1,10−3) 100.41 0.47 1.46 0.4 0.62 0.11 0.3 0.18 9 96.7
t(3,0,2.5) 100.43 0.48 1.48 0.41 0.56 0.07 1.68 1.6 7 93.9
API2

inv-Gam(1,1) 97.98 0.35 1.09 0.3 0.27 0.03 0.93 0.48 5 20.8
inv-Gam(1,10−3) 97.99 0.36 1.1 0.31 0.28 0.03 0.3 0.16 5 20.9

t(3,0,2.5) 97.99 0.36 1.09 0.3 0.27 0.03 1.62 1.63 5 21

4.4 A two component mixture based sample size calculation

The robust mixture prior consists of an informative normal prior centered on the mean of
σ0 and a vague N(0,2.5) distribution. It requires that a value for the SD of the informative
prior is chosen. Here it is assigned the SD of σ0 obtained when no borrowing prior was
used. In addition it was given the value 0.3 which is the SD of the commensurate
prior when the inv-Gamma(1,0.001) was applied which encouraged borrowing. First the
mixing probability λ was kept constant and was defined as 0.5, 0.6 or 0.9 reflecting either
an identical prior association with both components or an association heavily favored
towards the informative prior. The results are shown in Table 6 for API1 and Table 7
for API2.
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Table 6: Application of the mixture prior to API1

β01 σb1 σ1 n looic
Mean SD Mean SD Mean SD

API1: SD 0.04
λ = 0.5 100.42 0.48 1.48 0.41 0.56 0.06 7 93.7
λ = 0.6 100.42 0.48 1.48 0.40 0.56 0.07 7 93.9
λ = 0.9 100.43 0.48 1.48 0.41 0.56 0.06 7 93.9

API1: SD 0.3
λ = 0.5 100.44 0.49 1.48 0.40 0.57 0.07 7 94.3
λ = 0.6 100.45 0.47 1.47 0.4 0.58 0.07 7 94.4
λ = 0.9 100.42 0.48 1.49 0.41 0.58 0.07 7 93.9

Table 7: Application of the mixture prior to API2

β01 σb1 σ1 n looic
Mean SD Mean SD Mean SD

API1: SD 0.03
λ = 0.5 97.98 0.36 1.09 0.31 0.27 0.03 5 20.7
λ = 0.6 98 0.35 1.1 0.31 0.27 0.03 5 20.9
λ = 0.9 97.98 0.36 1.1 0.31 0.27 0.03 5 20.6

API1: SD 0.3
λ = 0.5 97.99 0.36 1.09 0.31 0.27 0.03 5 20.9
λ = 0.6 97.99 0.36 1.1 0.31 0.27 0.03 5 21
λ = 0.9 97.98 0.35 1.09 0.31 0.27 0.03 5 21.1

When the SD of σ0 was assigned as the SD of the informative mixture component (0.04
for API1 and 0.03 for API2) no borrowing was achieved for either outcome and σ1 stayed
constant. In addition, the value for σ1 did not depend on an increase of λ. However
when assigning τ from the commensurate prior after applying an inv-Gamma(1,0.001)
hyperprior, a small increase was observed in σ1 for API1 when λ was increased, but
stayed constant for API2. No sample size increase was noted for either API1 or API2.
From 0.6 to 1, the prior weight assigned to the informative component is increased until
it is ultimately defined to be the only prior distribution.

Finally two additional model specifications were defined for both API1 and API2. First
the SD of the informative component was given the value of τ and λ was made ran-
dom with a uniform hyperprior. Secondly, λ was again assigned a uniform hyperprior
while the parameter τ was introduced in the informative component and given the inv-
Gamma(1,0.001) hyperprior (identical to the commensurate prior setting). The results
of these models are given in Table 8. In both cases, the sample size did not change.
The change in the values for τ and λ again demonstrates how borrowing is possibly not
appropriate for these datasets. As τ decreases, the mixing probability associated with
this distribution decreases to 0.34 while it increases to 0.54 for API1 and 0.56 for API2
for τ equal to 0.3. While the informative component is here centered at σ0, a SD of
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0.3 means that σ1 is supported with a higher density than when τ is kept random and
reported to be 0.04 for both API1 and API2, explaing the decrease of λ.

Table 8: Application of the mixture prior with random λ and τ

β01 σb1 σ1 τ λ n looic
Mean SD Mean SD Mean SD

Random τ and λ
API1 100.42 0.48 1.49 0.41 0.56 0.07 0.04 0.34 7 93.9
API2 97.99 0.36 1.1 0.31 0.27 0.03 0.04 0.34 5 20.9

τ=0.3 random λ
API1 100.43 0.48 1.48 0.41 0.57 0.07 0.3 0.54 7 94
API2 97.99 0.35 1.1 0.31 0.27 0.03 0.3 0.56 5 21.5

4.5 Historical bivariate potency based borrowing

After the application of the informative priors to allow borrowing in a univariate setting, it
was attempted to evaluate these methods when both API outcomes were jointly modelled.
The function used to calculate the sample size was adjusted to draw residuals from
a bivariate normal with mean zero and with scale the covariance matrix of the current
data. The process performance was assessed by independently calculating the probability
that both API1 and API2 would lie within the reference range, at a Bonferroni corrected
confidence level of 0.975. This approach was applied to the current and historical data
separately, as well as when allowing historical borrowing using the power prior and a
commensurate prior.

The intra-batch variability for each model is detailed in Table 9 and the inter-batch vari-
ability is shown in Table 10. The R̂ and ESS met the requirements for all models tested.
Some of the models had reports of transitions hitting the maximum treedepth. This
doesn’t point to biased model estimates but rather highlights an efficiency concern when
the algorithm reached the maximum number of simulation steps and cancelled prema-
turely to avoid excessively long execution time. The maximum treedepth can be adjusted
but it was decided not to as this would have excessively increased the computation time.

An increase in the required sample size was observed compared to the univariate setting
when the current and historical data were modelled separately. A sample size of 7 was
reported for the univariate model based on the late design stage API1 data and now
increased to 9 when considering the bivariate potency data. For the historical data, it
went from 48 for API2 to 54. When the power prior was applied using a beta(10,1)
hyperprior, again an increase was observed to an intra-batch sample size of 10, which
equalled the increase of API1 alone when assigning the same prior specification. The looic
value was significantly higher compared to using the two vague hyperpriors. When the df
of the inv-Wishart prior was defined as the commensurability parameter, no borrowing
was achieved and a sample size of 8 was obtained. The value for the df of 6.58 was
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consistent with the assignement of a higher posterior weight on the current data based
covariance matrix.

Table 9: Intra-batch variability based on bivariate modeling

σ2
API1 covAPI1−API2 σ2

API2 n looic
Mean SD Mean SD Mean SD

No borrowing
Current 0.31 0.07 0.14 0.03 0.09 0.02 9 19.7

Historical 1.23 0.09 0.83 0.06 0.57 0.04 54 -231.5
Power Prior

beta(1,1) 0.31 0.07 0.14 0.03 0.09 0.02 9 21.4
beta(10,1) 0.38 0.09 0.19 0.05 0.13 0.03 10 34.1
t(3,0,2.5) 0.31 0.07 0.14 0.03 0.09 0.02 9 20.1

Commensurate prior
τ = 6.58 (SD: 1.79) 0.29 0.07 0.15 0.03 0.07 0.02 8 -145.1

Table 10: Inter-batch variability based on bivariate modeling

σ2
b,API1 covb,API1−API2 σ2

b,API2

Mean SD Mean SD Mean SD
No borrowing

Current 1.61 0.82 1.09 0.57 0.9 0.45
Historical 1.03 0.36 0.92 0.33 0.93 0.32

Power Prior
beta(1,1) 1.62 0.83 1.1 0.58 0.9 0.45
beta(10,1) 1.6 0.81 1.08 0.56 0.89 0.44
t(3,0,2.5) 1.63 0.83 1.1 0.58 0.9 0.45

Commensurate prior
τ = 6.58 (SD: 1.79) 1.63 0.85 1.1 0.59 0.90 0.46
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5 Discussion

Process validation is essential to ensure that a quality product can consistently be de-
livered to the customer that is fit for its intended use. Regulatory authorities such as
FDA and EMA oversee through audits that the necessary precautions are in place which
allow the production of a drug product that continuous to meet those attributes relating
to identity, strength, quality, purity and potency. The successful completion of the PPQ
phase is an important milestone in a company and is mandatory to start the commercial
release of the product. Determining the amount of samples that should be taken per
batch is important to get an accurate process capability estimate and informs the com-
pany whether the variability throughout the process is sufficiently controlled to meet all
product attribute ranges.

During the design phase of process validation, a wealth of information is gathered on
product quality attributes and process parameters. The FDA encourages the use of this
information for PPQ. Considering early design stage data in the tolerance interval based
sample size calculation could furthermore result in a sample size that more adequately
can evaluate whether the range containing 99% of future samples has a 95% confidence
to lie within the reference range. Here it was evaluated which informative priors are
useful to properly borrow from historical data. When using vague hyperpriors on a0 for
the power prior and τ for the commensurate prior none of the three informative priors
seemed to encourage borrowing and the sample size remained unchanged (7 for API1 and
5 for API2). However, earlier it was noted that the power prior tends to overattenuate
the impact of the historical data, forcing the use of fairly informative hyperpriors on a0 to
allow sufficient borrowing [7]. In addition, the marginal posterior for a0 was found to be
flat for two identical datasets, regardless of the sample size when a beta(1,1) hyperprior
was used. However, here a hyperprior was assigned to both alpha and beta of the beta
distribution, leading again to no borrowing.

While the use of vague hyperpriors emphasizes similarities between all three borrowing
priors, informative hyperpriors seem to indicate an underlying difference. The difference
in variability between the current and historical data seemed greater for API2 than
for API1. While the beta(10,1) hyperprior caused borrowing for both API1 and API2,
leading to an increased variance and sample size of 10 for API1 and 8 for API2, this wasn’t
the case for the commensurate prior. The inv-Gamma(1,0.001) prior on τ increased the
prior density to values closer to zero, reducing the SD of the commensurate prior for
σ1. While this resulted in an increased intra-batch sample size of 9 for API1, σ1 as well
as the sample size remained unchanged for API2. This possibly points to borrowing
that more appropriately considers the similarity between both parameters in case of the
commensurate prior, compared to the power prior.

The robust mixture prior is useful when a reasonable estimate of the variance for the
parameter of interest is available. Here the variance of the commensurate prior (using
the informative inv-Gamma(1,0.001) hyperprior) was taken to demonstrate the depen-
dence of the borrowing on the prior model probability λ. Increasing λ increased the
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amount of borrowing from the informative prior and led to an increase of the intra-batch
variability for API1 but not API2. The sample size didn’t increase. Finally, both λ and
the informative component variance were made random thereby resembling a mixture
of a commensurate prior and a vague prior. The posterior weight associated with the
informative component decreased when its variance decreased, again emphasizing limited
data driven borrowing. If an informative hyperprior is indeed required to allow borrow-
ing, the commensurate prior (assigning an inv-Gamma(1,0.001) could be combined with
a vague prior in a two component mixture to evaluate whether the similarity between
the current and historical data is high enough to warrant borrowing. Additional analyses
are required to compare the power prior and the commensurate prior to confirm a pos-
sibly higher sensitivity of the commensurate prior to increased parameter disparity. The
commensurate power prior is not recommended when only a single historical data set is
available. Using several historical data sets, this method could be evaluated as well, in
addition to allowing a more appropriate specification (more reliable variance estimate)
of the informative distribution of the two component mixture prior.

The application of historical borrowing to the jointly modelled potency outcomes is valu-
able to further increase the probability to successfully complete the PPQ stage. Its
implementation was however challenging and required the use of the inv-Wishart prior
for every covariance matrix. The easier sampling of the posterior when using this prior
might be due to its conjugacy for a multivariate normal distribution, even though Stan
does not require this nor does it require the posterior to be proper. However this ob-
servation is in line with the ease with which sampling could be performed using the
MCMCglmm package, which depends on block Gibbs sampling in case of conjugacy.
Even though models with good convergence diagnostics could be obtained, they required
a much longer run time. Performing the sampling using an alternative sampler such as
WinBUGS or JAGS could therefore prove valuable.

When the sample size was calculated based on the covariance matrix of the current or
historical data separately, only a small increase over the largest univariate sample size
based calculation was obtained. Importantly similar conclusions could be made com-
pared to the univariate analysis when the power prior was used. There was no increase
in sample size noticeable when a vague prior on a0 was applied, increasing the variances
and covariance only when the beta(10,1) prior was assigned. Due to difficulties in con-
vergence, only a single model could be evaluated that contained the commensurate prior.
Considering the degrees of freedom of the inv-Wishart prior as the commensurability
parameter seemed intuitive. The df was 6.58, indicating a higher posterior weight put on
the current covariance matrix, relative to the historical covariance matrix that was spec-
ified as the location parameter of the inv-Wishart distribution. Further research on the
application of the commensurate prior would be useful to obtain a more efficient model
which would lead to faster convergence. However the approach used here was considered
after having already used the brms package and applying the Cholesky decomposition
to put a prior on the SD and the Lewandowski-Kurowicka-Joe prior on the correlation
matrix, which is also advised in the Stan manual.
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While only a small sample size increase was noticed in the bivariate analysis, it could
still prove to be an overestimation of the required intra-batch sample size. Both toler-
ance intervals are considered independently from each other at a Bonferroni corrected
confidence level. However the outcomes are highly correlated and a tolerance region
should be considered in the multivariate extension of the tolerance interval. This was
outside the scope of this master dissertation and requires further attention to evaluate
its importance.

6 Ethical thinking, societal relevance, and stakeholder
awareness

Quality control of drug products is essential to ensure that a safe product arrives at the
customer that is fit for it’s intended use. Continued process verification keeps the product
under strict quality control when it is commercially produced. However the successful
completion of the PPQ is first needed to allow release of the product on the market. If
the intra-batch sample size is too low there is a higher risk of not meeting the required
process specifications and endangering the commercial release of the product. If it is too
high, additional resources will need to be diverted to the PPQ. The methods presented
here allow to motivate a sample size to legal authorities that considers both early and
late design stage data, properly accounting for the variability in the calculation of the
tolerance interval and reducing the risk of choosing a sample size that is too low to stay
within the reference range. The application of the partial borrowing informative priors
to bivariate data allows a higher reassurance of a successful PPQ stage at the cost of only
a small sample size increase. Together it provides a company with the tools to make an
informed decision regarding the intra-batch sample size which meets the FDA guidelines
of considering all information gathered throughout the design stage of process validation.

7 Conclusion

The power prior and commensurate prior are shown to allow data driven partial borrowing
appropriate for the sample size calculation for PPQ in both a univariate and bivariate
setting. No sample size increase is obtained when weakly informative hyperpriors are
assigned, leading to an intra-batch sample size of 7 and 5 for API1 and API2 modelled
separately, and a sample size of 8 (when using the commensurate prior) or 9 (when
using the power prior) when the correlation between the API’s is taken into account.
Further research is required to confirm the higher sensitivity of the commensurate prior
to differences between a historical and current study. Finally, the mixture prior could be
appropriate to acknowledge the requirement of informative hyperpriors on the one end,
but still make a data dependent sample choice on the other.
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Addendum

Stan code

BLMM to analyze current and historical data separately

data {
int<lower=1> N; // t o t a l number o f ob s e rva t i on s
vec to r [N] Y; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N_1; // number o f grouping l e v e l s
int<lower=1> M_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_1 [N ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N] Z_1_1 ;

}
parameters {

r e a l I n t e r c ep t ; // temporary i n t e r c e p t f o r cente red p r e d i c t o r s
r ea l <lower=0> sigma ; // d i s p e r s i o n parameter
vector<lower=0>[M_1] sd_b ; // group−l e v e l standard dev i a t i on s
vec to r [N_1] z_1 [M_1] ; // s tandard i zed group−l e v e l e f f e c t s

}

transformed parameters {
vec to r [N_1] r_1_1 ; // ac tua l group−l e v e l e f f e c t s
r_1_1 = (sd_b [ 1 ] ∗ (z_1 [ 1 ] ) ) ;

}
model {

vec to r [N] mu = In t e r c ep t + rep_vector ( 0 . 0 , N) ;
f o r (n in 1 :N) {

// add more terms to the l i n e a r p r ed i c t o r
mu[ n ] += r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] ;

}
t a r g e t += normal_lpdf (Y | mu, sigma ) ;

t a r g e t += normal_lpdf ( I n t e r c ep t | 97 . 84 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sigma | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sd_b | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += std_normal_lpdf (z_1 [ 1 ] ) ;

}
generated quan t i t i e s {

r e a l b_Intercept = In t e r c ep t ;
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vec to r [N] l og_l ik ;
f o r (n in 1 :N) {

l og_l ik [ n ] = normal_lpdf (Y[ n ] | I n t e r c ep t+
r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] , sigma ) ;

}}

Application of the Power Prior to univariate data

data {
// H i s t o r i c a l data

int<lower=1> N0 ; // t o t a l number o f ob s e rva t i on s
vec to r [N0 ] Y0 ; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N0_1 ; // number o f grouping l e v e l s
int<lower=1> M0_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J0_1 [N0 ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N0 ] Z0_1_1 ;

// Current data
int<lower=1> N; // t o t a l number o f ob s e rva t i on s
vec to r [N] Y; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N_1; // number o f grouping l e v e l s
int<lower=1> M_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_1 [N ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N] Z_1_1 ;

}
parameters {

// H i s t o r i c a l data parameters
r ea l <lower=0> Intercept_0 ; // temporary i n t e r c e p t
vector<lower=0>[M0_1] sd_b_0 ; // group−l e v e l standard dev i a t i on s
vec to r [N0_1 ] z0_1 [M0_1 ] ; // s tandard i zed group−l e v e l e f f e c t s
r ea l <lower=0,upper=1> a0 ; // d i s count ing parameter

r ea l <lower=0> alpha ;
r ea l <lower=0> beta ;

// Current data parameters
r e a l <lower=0> In t e r c ep t ; // temporary i n t e r c e p t
r ea l <lower=0> sigma ; // d i s p e r s i o n parameter
vector<lower=0>[M_1] sd_b ; // group−l e v e l standard dev i a t i on s
vec to r [N_1] z_1 [M_1] ; // s tandard i zed group−l e v e l e f f e c t s
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}
transformed parameters {

vec to r [N_1] r_1_1 ; // ac tua l group−l e v e l e f f e c t s
r_1_1 = (sd_b [ 1 ] ∗ (z_1 [ 1 ] ) ) ;

vec to r [N0_1 ] r0_1_1 ; // ac tua l group−l e v e l e f f e c t s
r0_1_1 = (sd_b_0 [ 1 ] ∗ ( z0_1 [ 1 ] ) ) ;

}
model {

// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [N0 ] mu0 = Intercept_0 + rep_vector ( 0 . 0 , N0 ) ;
f o r ( n0 in 1 :N0) {

// add more terms to the l i n e a r p r ed i c t o r
mu0 [ n0 ] += r0_1_1 [ J0_1 [ n0 ] ] ∗ Z0_1_1 [ n0 ] ;

}
t a r g e t += a0∗normal_lpdf (Y0 | mu0 , sigma ) ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [N] mu = In t e r c ep t + rep_vector ( 0 . 0 , N) ;
f o r (n in 1 :N) {

// add more terms to the l i n e a r p r ed i c t o r
mu[ n ] += r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] ;

}
t a r g e t += normal_lpdf (Y | mu, sigma ) ;
t a r g e t += normal_lpdf ( Intercept_0 | 97 .85 , 2 . 5 ) ;
t a r g e t += normal_lpdf ( I n t e r c ep t | 97 . 99 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sigma | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf (sd_b_0 | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sd_b | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;

t a r g e t += beta_lpdf ( a0 | alpha , beta ) ;
t a r g e t += std_normal_lpdf (z_1 [ 1 ] ) ;
t a r g e t += std_normal_lpdf ( z0_1 [ 1 ] ) ;

alpha ~ gamma( 3 , 2 ) ;
beta ~ gamma( 3 , 2 ) ;

}
generated quan t i t i e s {

vec to r [N] l og_l ik ;
f o r (n in 1 :N) {

l og_l ik [ n ] = normal_lpdf (Y[ n ] | I n t e r c ep t+
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r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] , sigma ) ;
}

}

Application of the Commensurate prior to univariate data

data {
// H i s t o r i c a l data

int<lower=1> N0 ; // t o t a l number o f ob s e rva t i on s
vec to r [N0 ] Y0 ; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N0_1 ; // number o f grouping l e v e l s
int<lower=1> M0_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J0_1 [N0 ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N0 ] Z0_1_1 ;

// Current data
int<lower=1> N; // t o t a l number o f ob s e rva t i on s
vec to r [N] Y; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N_1; // number o f grouping l e v e l s
int<lower=1> M_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_1 [N ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N] Z_1_1 ;

}
parameters {

// H i s t o r i c a l data parameters
r ea l <lower=0> Intercept_0 ; // temporary i n t e r c e p t
vector<lower=0>[M0_1] sd_b_0 ; // group−l e v e l standard dev i a t i on s
vec to r [N0_1 ] z0_1 [M0_1 ] ; // s tandard i zed group−l e v e l e f f e c t s
r ea l <lower=0> tau ;// commensurabi l i ty parameter
r ea l <lower=0> sigma0 ; // d i s p e r s i o n parameter

// Current data parameters
r e a l <lower=0> In t e r c ep t ; // temporary i n t e r c e p t
r ea l <lower=0> sigma ; // d i s p e r s i o n parameter
vector<lower=0>[M_1] sd_b ; // group−l e v e l standard dev i a t i on s
vec to r [N_1] z_1 [M_1] ; // s tandard i zed group−l e v e l e f f e c t s

}

transformed parameters {
vec to r [N_1] r_1_1 ; // ac tua l group−l e v e l e f f e c t s
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r_1_1 = (sd_b [ 1 ] ∗ (z_1 [ 1 ] ) ) ;

vec to r [N0_1 ] r0_1_1 ; // ac tua l group−l e v e l e f f e c t s
r0_1_1 = (sd_b_0 [ 1 ] ∗ ( z0_1 [ 1 ] ) ) ;
// r ea l <lower=0> tau2 ;
// tau2=square ( tau ) ;

}

model {
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [N0 ] mu0 = Intercept_0 + rep_vector ( 0 . 0 , N0 ) ;
f o r ( n0 in 1 :N0) {

// add more terms to the l i n e a r p r ed i c t o r
mu0 [ n0 ] += r0_1_1 [ J0_1 [ n0 ] ] ∗ Z0_1_1 [ n0 ] ;

}
t a r g e t += normal_lpdf (Y0 | mu0 , sigma0 ) ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [N] mu = In t e r c ep t + rep_vector ( 0 . 0 , N) ;
f o r (n in 1 :N) {

// add more terms to the l i n e a r p r ed i c t o r
mu[ n ] += r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] ;

}
t a r g e t += normal_lpdf (Y | mu, sigma ) ;

t a r g e t += normal_lpdf ( Intercept_0 | 97 .85 , 2 . 5 ) ;
t a r g e t += normal_lpdf ( I n t e r c ep t | 97 . 99 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sigma0 | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf (sd_b_0 | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sd_b | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;

sigma ~ normal ( sigma0 , tau ) ;
// tau2 ~ inv_gamma ( 1 , 1 ) ;
t a r g e t += student_t_lpdf ( tau | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;

t a r g e t += std_normal_lpdf (z_1 [ 1 ] ) ;
t a r g e t += std_normal_lpdf ( z0_1 [ 1 ] ) ;

}
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generated quan t i t i e s {
vec to r [N] l og_l ik ;
f o r (n in 1 :N) {

l og_l ik [ n ] = normal_lpdf (Y[ n ] | I n t e r c ep t
+ r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] , sigma ) ;

}
}

Application of the Mixture prior to univariate data

data {
// H i s t o r i c a l data

int<lower=1> N0 ; // t o t a l number o f ob s e rva t i on s
vec to r [N0 ] Y0 ; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N0_1 ; // number o f grouping l e v e l s
int<lower=1> M0_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J0_1 [N0 ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N0 ] Z0_1_1 ;
r ea l <lower=0,upper=1> lambda ; //mixing propor t ion

// Current data
int<lower=1> N; // t o t a l number o f ob s e rva t i on s
vec to r [N] Y; // response va r i a b l e
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N_1; // number o f grouping l e v e l s
int<lower=1> M_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_1 [N ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [N] Z_1_1 ;

}
parameters {

// H i s t o r i c a l data parameters
r ea l <lower=0> Intercept_0 ; // temporary i n t e r c e p t
vector<lower=0>[M0_1] sd_b_0 ; // group−l e v e l standard dev i a t i on s
vec to r [N0_1 ] z0_1 [M0_1 ] ; // s tandard i zed group−l e v e l e f f e c t s
r ea l <lower=0> sigma0 ; // d i s p e r s i o n parameter
// Current data parameters
r e a l <lower=0> In t e r c ep t ; // temporary i n t e r c e p t
r ea l <lower=0> sigma ; // d i s p e r s i o n parameter
vector<lower=0>[M_1] sd_b ; // group−l e v e l standard dev i a t i on s
vec to r [N_1] z_1 [M_1] ; // s tandard i zed group−l e v e l e f f e c t s

}

39



transformed parameters {
vec to r [N_1] r_1_1 ; // ac tua l group−l e v e l e f f e c t s
r_1_1 = (sd_b [ 1 ] ∗ (z_1 [ 1 ] ) ) ;
vec to r [N0_1 ] r0_1_1 ; // ac tua l group−l e v e l e f f e c t s
r0_1_1 = (sd_b_0 [ 1 ] ∗ ( z0_1 [ 1 ] ) ) ;

}
model {

// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [N0 ] mu0 = Intercept_0 + rep_vector ( 0 . 0 , N0 ) ;
f o r ( n0 in 1 :N0) {
// add more terms to the l i n e a r p r ed i c t o r
mu0 [ n0 ] += r0_1_1 [ J0_1 [ n0 ] ] ∗ Z0_1_1 [ n0 ] ;
}
t a r g e t += normal_lpdf (Y0 | mu0 , sigma0 ) ;

// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [N] mu = In t e r c ep t + rep_vector ( 0 . 0 , N) ;
f o r (n in 1 :N) {
// add more terms to the l i n e a r p r ed i c t o r
mu[ n ] += r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] ;
}
t a r g e t += normal_lpdf (Y | mu, sigma ) ;

t a r g e t += normal_lpdf ( Intercept_0 | 97 .85 , 2 . 5 ) ;
t a r g e t += normal_lpdf ( I n t e r c ep t | 97 . 99 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sigma0 | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf (sd_b_0 | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sd_b | 3 , 0 , 2 . 5 )
− student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
// d e f i n t i o n o f the mixture p r i o r
t a r g e t += log_sum_exp ( log ( lambda )
+ normal_lpdf ( sigma | sigma0 , 0 . 3 ) ,
l og (1−lambda ) + normal_lpdf ( sigma | 0 , 2 . 5 ) ) ;

t a r g e t += std_normal_lpdf (z_1 [ 1 ] ) ;
t a r g e t += std_normal_lpdf ( z0_1 [ 1 ] ) ;

}
generated quan t i t i e s {

vec to r [N] l og_l ik ;
f o r (n in 1 :N) {

l og_l ik [ n ] = normal_lpdf (Y[ n ] | I n t e r c ep t
+ r_1_1 [ J_1 [ n ] ] ∗ Z_1_1 [ n ] , sigma ) ; } }
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BLMM for bivariate potency data

data{
int<lower=1> n ; //nr . o f samples
int<lower=1> i ; //nr . o f batches
int<lower=1> k ; //nr . o f a s says
int<lower=1,upper=i> j [ n ] ; // batch ID f o r each outcome
vec to r [ n ] y1 ; //outcome 1
vec to r [ n ] y2 ; //outcome 2
cov_matrix [ k ] S ; // covar i ance matrix used in inv−Wishart p r i o r
cov_matrix [ k ] R;// covar iance matrix used in inv−Wishart p r i o r

}
transformed data {

vec to r [ k ] y [ n ] ; // re sponse array
f o r ( x in 1 : n) {

y [ x ] = transpose ( [ y1 [ x ] , y2 [ x ] ] ) ;
}

}
parameters {

vec to r [ k ] a ; // populat ion proce s s means f o r API1 and API2
vec to r [ k ] b [ i ] ; / / random batch i n t e r c e p t s f o r API1 and API2

cov_matrix [ k ] Sigma ;
cov_matrix [ k ] Sigma_R ;

}
model{

// l e v e l −2 l i k e l i h o o d
b ~ multi_normal ( a , Sigma_R ) ;
vec to r [ k ] mu[ n ] ;

f o r ( x in 1 : n) {
mu[ x ] = b [ j [ x ] ] ;
}

// l e v e l −1 l i k e l i h o o d
y ~ multi_normal (mu, Sigma ) ;

// Pr i o r s
a [ 1 ] ~ normal ( 9 9 . 4 5 , 2 . 5 ) ;

a [ 2 ] ~ normal ( 9 7 . 8 5 , 2 . 5 ) ;

Sigma ~ inv_wishart (4 , S ) ;
Sigma_R ~ inv_wishart (4 ,R) ;

}

41



generated quan t i t i e s {
r e a l sigma11= Sigma [ 1 , 1 ] ;
r e a l sigma22=Sigma [ 2 , 2 ] ;
r e a l sigma12=Sigma [ 1 , 2 ] ;
vec to r [ n ] l og_l ik ;
f o r ( x in 1 : n) {

l og_l ik [ x ] = multi_normal_lpdf ( y [ x ] | b [ j [ x ] ] , Sigma ) ;
}

}

Application of the Power prior on bivariate potency data

data{
int<lower=1> n_0 ; //nr . o f samples
int<lower=1> i_0 ; //nr . o f batches
int<lower=1> k ; //nr . o f a s says
int<lower=1,upper=i_0> j_0 [ n_0 ] ; // batch ID f o r each outcome
vec to r [ n_0 ] y1_0 ; //outcome 1
vec to r [ n_0 ] y2_0 ; //outcome 2
cov_matrix [ k ] S ; // covar i ance matrix used in inv−Wishart p r i o r
cov_matrix [ k ] R_0;// covar iance matrix used in inv−Wishart p r i o r

int<lower=1> n ; //nr . o f samples
int<lower=1> i ; //nr . o f batches
int<lower=1,upper=i> j [ n ] ; // batch ID f o r each outcome
vec to r [ n ] y1 ; //outcome 1
vec to r [ n ] y2 ; //outcome 2
cov_matrix [ k ] R;// covar iance matrix used in inv−Wishart p r i o r

}
transformed data {

vec to r [ k ] y [ n ] ; // re sponse array cur rent data
f o r ( x in 1 : n) {

y [ x ] = transpose ( [ y1 [ x ] , y2 [ x ] ] ) ;
}
vec to r [ k ] y_0 [ n_0 ] ; // re sponse array h i s t o r i c a l data
f o r ( x in 1 :n_0) {

y_0 [ x ] = transpose ( [ y1_0 [ x ] , y2_0 [ x ] ] ) ;
}

}
parameters {

vec to r [ k ] a_0 ; // populat ion proce s s means f o r h i s t . data
vec to r [ k ] b_0 [ i_0 ] ; / / random batch i n t e r c e p t s f o r API1 and API2

vec to r [ k ] a ; // populat ion proce s s means f o r cur r ent data
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vec to r [ k ] b [ i ] ; / / random batch i n t e r c e p t s f o r API1 and API2

cov_matrix [ k ] Sigma ;
cov_matrix [ k ] Sigma_R_0 ;
cov_matrix [ k ] Sigma_R ;

rea l <lower=0,upper=1> a0 ; // d i s count ing parameter

r ea l <lower=0> alpha ;
r ea l <lower=0> beta ;

}
model{

// l e v e l −2 l i k e l i h o o d f o r h i s t o r i c a l data
b_0 ~ multi_normal (a_0 , Sigma_R_0 ) ;
vec to r [ k ] mu_0[ n_0 ] ;

f o r ( x in 1 :n_0) {
mu_0[ x ] = b_0 [ j_0 [ x ] ] ;

}
t a r g e t += a0∗multi_normal_lpdf (y_0 | mu_0, Sigma ) ;

// l e v e l −1 l i k e l i h o o d f o r cur rent data
b ~ multi_normal ( a , Sigma_R ) ;

vec to r [ k ] mu[ n ] ;

f o r ( x in 1 : n) {
mu[ x ] = b [ j [ x ] ] ;

}
t a r g e t += multi_normal_lpdf ( y | mu, Sigma ) ;

// Pr i o r s
a_0 [ 1 ] ~ normal ( 9 9 . 4 5 , 2 . 5 ) ;

a_0 [ 2 ] ~ normal ( 9 7 . 8 5 , 2 . 5 ) ;

a [ 1 ] ~ normal ( 1 0 0 . 4 2 , 2 . 5 ) ;
a [ 2 ] ~ normal ( 9 7 . 9 9 , 2 . 5 ) ;

Sigma ~ inv_wishart (4 , S ) ;
Sigma_R_0 ~ inv_wishart (4 ,R_0) ;
Sigma_R ~ inv_wishart (4 ,R) ;

t a r g e t += beta_lpdf ( a0 | alpha , beta ) ;
alpha ~ gamma( 3 , 2 ) ;
beta ~ gamma( 3 , 2 ) ;
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}
generated quan t i t i e s {

r e a l sigma11= Sigma [ 1 , 1 ] ;
r e a l sigma22=Sigma [ 2 , 2 ] ;
r e a l sigma12=Sigma [ 1 , 2 ] ;
vec to r [ n ] l og_l ik ;
f o r ( x in 1 : n) {

l og_l ik [ x ] = multi_normal_lpdf ( y [ x ] | b [ j [ x ] ] , Sigma ) ;
}

}

Application of the Commensurate prior to bivariate potency data

data{
int<lower=1> n_0 ; //nr . o f samples
int<lower=1> i_0 ; //nr . o f batches
int<lower=1> k ; //nr . o f a s says
int<lower=1,upper=i_0> j_0 [ n_0 ] ; // batch ID f o r each outcome
vec to r [ n_0 ] y1_0 ; //outcome 1
vec to r [ n_0 ] y2_0 ; //outcome 2
cov_matrix [ k ] S_0;// covar iance matrix used in inv−Wishart p r i o r
cov_matrix [ k ] R_0;// covar iance matrix used in inv−Wishart p r i o r

int<lower=1> n ; //nr . o f samples
int<lower=1> i ; //nr . o f batches
int<lower=1,upper=i> j [ n ] ; // batch ID f o r each outcome
vec to r [ n ] y1 ; //outcome 1
vec to r [ n ] y2 ; //outcome 2
cov_matrix [ k ] R;// covar iance matrix used in inv−Wishart p r i o r

}
transformed data {

vec to r [ k ] y [ n ] ; // re sponse array cur rent data
f o r ( x in 1 : n) {

y [ x ] = transpose ( [ y1 [ x ] , y2 [ x ] ] ) ;
}
vec to r [ k ] y_0 [ n_0 ] ; // re sponse array h i s t o r i c a l data
f o r ( x in 1 :n_0) {

y_0 [ x ] = transpose ( [ y1_0 [ x ] , y2_0 [ x ] ] ) ;
}

}
parameters {

vec to r [ k ] a_0 ; // populat ion proce s s means f o r API1 and API2
vec to r [ k ] b_0 [ i_0 ] ; / / random batch i n t e r c e p t s f o r API1 and API2
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vec to r [ k ] a ; // populat ion proce s s means f o r API1 and API2
vec to r [ k ] b [ i ] ; / / random batch i n t e r c e p t s f o r API1 and API2

cov_matrix [ k ] Sigma_0 ;
cov_matrix [ k ] Sigma_R_0 ;
cov_matrix [ k ] Sigma_R ;
cov_matrix [ k ] Sigma ;
r ea l <lower=4> tau ;

}
transformed parameters {

r e a l lambda ;
lambda=1/tau ;

}
model{

// l e v e l −2 l i k e l i h o o d f o r h i s t o r i c a l data
b_0 ~ multi_normal (a_0 , Sigma_R_0 ) ;
vec to r [ k ] mu_0[ n_0 ] ;

f o r ( x in 1 :n_0) {
mu_0[ x ] = b_0 [ j_0 [ x ] ] ;

}
t a r g e t += multi_normal_lpdf (y_0 | mu_0, Sigma_0 ) ;

// l e v e l −2 l i k e l i h o o d f o r cur rent data
b ~ multi_normal ( a , Sigma_R ) ;
vec to r [ k ] mu[ n ] ;

f o r ( x in 1 : n) {
mu[ x ] = b [ j [ x ] ] ;

}
// l e v e l −1 l i k e l i h o o d f o r cur rent data
t a r g e t += multi_normal_lpdf ( y | mu, Sigma ) ;

// Pr i o r s
a_0 [ 1 ] ~ normal ( 9 9 . 4 5 , 2 . 5 ) ;

a_0 [ 2 ] ~ normal ( 9 7 . 8 5 , 2 . 5 ) ;

a [ 1 ] ~ normal ( 1 0 0 . 4 2 , 2 . 5 ) ;
a [ 2 ] ~ normal ( 9 8 , 2 . 5 ) ;

Sigma_0 ~ inv_wishart (4 ,S_0 ) ;
Sigma_R_0 ~ inv_wishart (4 ,R_0) ;
Sigma_R ~ inv_wishart (4 ,R) ;
Sigma ~ inv_wishart ( tau , Sigma_0 ) ;
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lambda ~ beta ( 1 , 1 ) ;
}
generated quan t i t i e s {

r e a l sigma11= Sigma [ 1 , 1 ] ;
r e a l sigma22=Sigma [ 2 , 2 ] ;
r e a l sigma12=Sigma [ 1 , 2 ] ;
vec to r [ n ] l og_l ik ;
f o r ( x in 1 : n) {

l og_l ik [ x ] = multi_normal_lpdf ( y [ x ] | b [ j [ x ] ] , Sigma ) ;
}

}

R code

Univariate potency dependent sample size calculation

OCurve4Assay <− func t i on ( StanModel , ModelName , SampleSize , Specs ,
Confidence , Coverage , SeedNum){

#===>Tolerance i n t e r v a l parameters
Betat <− Coverage
Gammat <− Conf idence
#===>Sp e c i f i c a t i o n s
spec s <− Specs

Poster iorSamples <− rs tan : : e x t r a c t ( StanModel )
K <− SampleSize
Kmax <− max(K)

### po s t e r i o r d i s t r i b u t i o n o f r e s i d u a l SD
RandomError <− Poster iorSamples$s igma
X1 <− matrix (NA, nco l = Kmax, nrow = length (RandomError ) )

s e t . seed (SeedNum)
f o r ( i in 1 : l ength (RandomError ) ){

X1 [ i , ] <− rnorm (Kmax, 0 , RandomError [ i ] )
}

i f ( f i l e . e x i s t s ( paste (" Resu l t s /" ,
paste0 (ModelName , "_ETM. rds " , sep ="") , sep =""))) {
### r e c a l l the t o l e r an c e ob j e c t :
ETM <− readRDS( paste (" Resu l t s /" ,
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paste0 (ModelName , "_ETM. rds " , sep ="") , sep ="")) } e l s e {
### Res idua l Tolerance i n t e r v a l s :
s e t . seed (SeedNum)

ETM <− NULL
f o r ( j in 1 : l ength (K)){

etm <− matrix (NA, nrow= length (RandomError ) , nco l=3)
etm [ , 1 ] <− K[ j ]
kvalue <− K. f a c t o r (K[ j ] , a lpha = (1 − Gammat) ,
P = Betat , s i d e = 2 , method = "EXACT" , m = 50)
f o r ( i in 1 : l ength (RandomError ) ){

etm [ i , 2 : 3 ] <− as . matrix (mean(X1 [ i , 1 :K[ j ] ] )
+c ( −1 ,1)∗ sd (X1 [ i , 1 :K[ j ] ] ) ∗ kvalue )
i f ( i %in% seq (0 , l ength (RandomError ) , by=200)){

cat ("N =", K[ j ] , " (" , j , "/" , l ength (K) , " ) , " , " chain (" , i , "/" ,
l ength (RandomError ) , " )" , "\n")

}
}
ETM <− rbind (ETM, etm)

}
### save the t o l e r an c e ob j e c t :
saveRDS(ETM, paste (" Resu l t s /" ,
paste0 (ModelName , "_ETM. rds " , sep ="") , sep =""))

}

Betas <− seq ( from = specs [ 1 ] , to = specs [ 2 ] , by=0.1)
POS <− NULL
f o r ( beta in Betas ){

ETMData <− as . data . frame (ETM)
ETMData$mean <− beta
names (ETMData) <− c ("k" ," lower " ," upper " ,"mean")
ETMData$lower <− ETMData$lower+beta
ETMData$upper <− ETMData$upper+beta
ETMData$success <− i f e l s e ( ( ( ETMData$lower > specs [ 1 ]
)&(ETMData$upper < specs [ 2 ] ) ) , 1 , 0 )

pos <− ETMData %>%
group_by (mean , k ) %>%
dplyr : : summarize ( pos=mean( su c c e s s ) )

POS <− rbind (POS, pos )
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}

### save ob j e c t f o r su c c e s s / f a i l u r e f o r the t rue batch means
( t o l e r an c e i n t e r v a l s ) :
saveRDS(POS, paste (" Resu l t s /" ,
paste0 (ModelName , "_POS. rds " , sep ="") , sep =""))

#===> r e c a l l the t o l e r an c e ob j e c t :
ETM <− readRDS( paste (" Resu l t s /" ,
paste0 (ModelName , "_ETM. rds " , sep ="") , sep =""))

### read suc c e s s / f a i l u r e o f t rue batch means ( t o l e r an c e i n t e r v a l s ) :
POS <− readRDS( paste (" Resu l t s /" ,
paste0 (ModelName , "_POS. rds " , sep ="") , sep =""))

#===> Resu l t s graphs
#===> generate the d i s t r i b u t i o n o f a fu tu r e random batch :
Rbetas <− NULL
RanFun <− func t i on (x , y ){

rbe ta s <− rnorm (1 , mean = x , sd = y)
Rbetas <− rbind ( Rbetas , rbe ta s )
re turn ( Rbetas )

}

#===> Process mean
ProcessMean <− Pos t e r i o rSampl e s$ In t e r c ep t
Mu_ProcessMean <− mean( ProcessMean )
SigmaBatch <− Poster iorSamples$sd_b
RandomBatchMean <− mapply (RanFun , ProcessMean , SigmaBatch )
Process_Mu_CL <− quan t i l e (RandomBatchMean , c ( 0 . 0 2 5 , 0 . 9 7 5 ) )

OCurvePlot <− POS %>% mutate (n=as . f a c t o r ( k ) ) %>%
ggplot ( . , aes ( x = mean , y = pos , group = n , c o l = n))+
geom_line ( ) +
labs (x = "True batch mean" ,

y = "PoS" ,
t i t l e = ModelName) +

scale_y_continuous ( breaks = seq (0 , 1 , 0 . 0 5 ) ) +
scale_x_continuous ( breaks = seq ( spec s [ 1 ] , spec s [ 2 ] , 1 ) ) +
geom_vline ( aes ( x i n t e r c ep t = Mu_ProcessMean ) ,
l i n e t yp e = "dashed " , c o l = "blue ") +
geom_hline ( aes ( y i n t e r c ep t = 0 . 9 5 ) , c o l = " red ") +
annotate (" tex t " , x = (Mu_ProcessMean+0.2) ,
y = 0 .45 , l a b e l = " Process mean" ,
c o l o r = "blue " , ang le = 90) +
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#Shaded area
annotate (" r e c t " , ymin = −Inf , ymax = Inf , xmin = Process_Mu_CL [ 1 ] ,
xmax = Process_Mu_CL [ 2 ] , alpha = . 1 , f i l l = "brown")+
annotate (" tex t " , x = (Process_Mu_CL [1 ] −0 .2 ) ,
y = 0 .45 , l a b e l = "Lower 95% PL" ,
c o l o r = "brown" , ang le = 90) +
annotate (" tex t " , x = (Process_Mu_CL [ 2 ]+0 . 2 ) ,
y = 0 .45 , l a b e l = "Upper 95% PL" ,

c o l o r = "brown" , ang le = 90) +
theme_bw( ) +
theme ( ax i s . t i c k s = element_blank ( ) ,

# legend . p o s i t i o n = "bottom " ,
ax i s . t ex t . x = element_text ( ang le = 90 ,

h ju s t = 1 ,
v ju s t = 0 . 5 ) ,

p l o t . t i t l e = element_text ( h ju s t = 0 . 5 ) )
re turn ( OCurvePlot )

}

Bivariate potency based sample size calculation

Samples ize . mu l t i v a r i a t e <− func t i on ( StanModel ,
ModelName , SampleSize=seq ( 3 : 2 0 ) , Specs , Confidence , Coverage , SeedNum){

#===>Tolerance i n t e r v a l parameters
Betat <− Coverage
Gammat <− Conf idence
#===>Sp e c i f i c a t i o n s
spec s <− Specs

Poster iorSamples <−as_draws_df ( StanModel$draws ( ) )
K <− SampleSize
Kmax <− max(K)

### po s t e r i o r d i s t r n o f r e s i d u a l SD
RandomError1 <− un l i s t ( Poster iorSamples [ , " sigma11 " ] )
RandomError2 <− un l i s t ( Poster iorSamples [ , " sigma22 " ] )
RandomError12 <− un l i s t ( Poster iorSamples [ , " sigma12 " ] )

X1 <− matrix (NA, nco l = Kmax, nrow = length (RandomError1 ) )
X2 <− matrix (NA, nco l = Kmax, nrow = length (RandomError2 ) )
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s e t . seed (SeedNum)
f o r ( i in 1 : l ength (RandomError1 ) ){

conta ine r <− mvrnorm(n=Kmax,mu=c (0 , 0 ) ,
Sigma=matrix ( c (RandomError1 [ i ] , RandomError12 [ i ] ,
RandomError12 [ i ] , RandomError2 [ i ] ) ,
nrow = 2 , nco l = 2 , byrow = TRUE) )
X1 [ i , ] <− conta ine r [ , 1 ]
X2 [ i , ] <− conta ine r [ , 2 ]

}

ETM1 <− NULL
f o r ( j in 1 : l ength (K)){

etm1 <− matrix (NA, nrow= length (RandomError1 ) , nco l=3)
etm1 [ , 1 ] <− K[ j ]
kvalue <− K. f a c t o r (K[ j ] , a lpha = (1 − Gammat) ,
P = Betat , s i d e = 2 , method = "EXACT" , m = 50)
f o r ( i in 1 : l ength (RandomError1 ) ){

etm1 [ i , 2 : 3 ] <− as . matrix (mean(X1 [ i , 1 :K[ j ] ] ) +
c ( −1 ,1)∗ sd (X1 [ i , 1 :K[ j ] ] ) ∗ kvalue )
i f ( i %in% seq (0 , l ength (RandomError1 ) , by=200)){

cat ("N =", K[ j ] , " (" , j , "/" , l ength (K) , " ) , " ,
" chain (" , i , "/" ,

l ength (RandomError1 ) , ")" , "\n")
}

}
ETM1 <− rbind (ETM1, etm1 )

}

ETM2 <− NULL
f o r ( j in 1 : l ength (K)){

etm2 <− matrix (NA, nrow= length (RandomError2 ) , nco l=3)
etm2 [ , 1 ] <− K[ j ]
kvalue <− K. f a c t o r (K[ j ] , a lpha = (1 − Gammat) ,
P = Betat , s i d e = 2 , method = "EXACT" , m = 50)
f o r ( i in 1 : l ength (RandomError2 ) ){

etm2 [ i , 2 : 3 ] <− as . matrix (mean(X2 [ i , 1 :K[ j ] ] ) +
c ( −1 ,1)∗ sd (X2 [ i , 1 :K[ j ] ] ) ∗ kvalue )
i f ( i %in% seq (0 , l ength (RandomError2 ) , by=200)){

cat ("N =", K[ j ] , " (" , j , "/" , l ength (K) , " ) , " , " chain (" , i , "/" ,
l ength (RandomError2 ) , ")" , "\n")

}
}
ETM2 <− rbind (ETM2, etm2 )

}
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Beta1 <− seq ( from = specs [ 1 ] , to = specs [ 2 ] , by=0.1)
Beta2 <− seq ( from = specs [ 1 ] , to = specs [ 2 ] , by=0.1)

POS1 <− NULL
f o r ( i in Beta1 ){

ETMData <− as . data . frame (ETM1)
ETMData$mean1 <− i
names (ETMData) <− c ("k" ," lower1 " ," upper1 " ,"mean1")
ETMData$lower1 <− ETMData$lower1+i
ETMData$upper1 <− ETMData$upper1+i
ETMData$success <− i f e l s e ( ( ( ETMData$lower1 > specs [ 1 ]
)&(ETMData$upper1 < specs [ 2 ] ) ) , 1 , 0 )

pos1 <− ETMData %>%
group_by (mean1 , k ) %>%
dplyr : : summarize ( pos1=mean( su c c e s s ) )

POS1 <− rbind (POS1, pos1 )}

POS2 <− NULL
f o r ( i in Beta2 ){

ETMData <− as . data . frame (ETM2)
ETMData$mean2 <− i
names (ETMData) <− c ("k" ," lower2 " ," upper2 " ,"mean2")
ETMData$lower2 <− ETMData$lower2+i
ETMData$upper2 <− ETMData$upper2+i
ETMData$success <− i f e l s e ( ( ( ETMData$lower2 > specs [ 1 ]
)&(ETMData$upper2 < specs [ 2 ] ) ) , 1 , 0 )

pos2 <− ETMData %>%
group_by (mean2 , k ) %>%
dplyr : : summarize ( pos2=mean( su c c e s s ) )

POS2 <− rbind (POS2, pos2 )}

POS <− merge (POS1,POS2, by . x = "k" ,
by . y = "k" , a l l . x = TRUE, a l l . y = TRUE)

POS$pos <− POS$pos1∗POS$pos2

r e s u l t s <− POS %>% f i l t e r (mean1==100.4 ,mean2==98)

re turn ( r e s u l t s )
}

51



0.4

0.6

0.8

5000 6000 7000 8000 9000 10000

si
gm

a

chain

1

2

3

4

Current API1

0.20

0.25

0.30

0.35

0.40

5000 6000 7000 8000 9000 10000

si
gm

a

chain

1

2

3

4

Current API2

1.0

1.1

1.2

1.3

5000 6000 7000 8000 9000 10000

si
gm

a

chain

1

2

3

4

Historical API1

0.65

0.70

0.75

0.80

0.85

5000 6000 7000 8000 9000 10000

si
gm

a

chain

1

2

3

4

Historical API2

Figure 5: Traceplots for σ0 and σ1 when the univariate data are modeled separately
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Figure 6: Traceplots for σ after applying the Power prior
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Figure 7: Traceplots for σ after applying the Power prior
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Figure 8: Traceplots for σ1 after applying the Commensurate prior
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Figure 9: Traceplots for σ1 after applying the Commensurate prior
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Figure 10: Traceplots for σ1 after applying the Mixture prior with random τ and λ
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Figure 11: Traceplots for the variance and covariance after applying the Power prior
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Figure 12: Traceplots for the variance and covariance after applying the Commensurate
prior
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