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Bayesian distributed lag non-linear models

Abstract

A recent COVID-19 pandemic has been a deleterious phenomenon that
plagued a large part of the world. A substantial amount of research was devoted
to understand the determinants of COVID-19 dynamics, and air pollution
was suggested to be one of them. The connection between air pollution and
COVID-19 was established for several countries across the world, but only a
few such analyses were done for Belgium.

Here we investigated the effect of the main air pollutants on COVID-19
incidence in Belgium. We applied an advanced statistical approach designed
to study non-linear health responses to a predictor across a range of time
lags, such as weeks. In addition, our models incorporated spatial and temporal
correlations to account for confounding variability in the data. The study
revealed a remarkable similarity in COVID-19 incidence between the adjacent
municipalities in Belgium, with a larger incidence in the South-East part of
the country than in the North-West. The results of the study showed that the
maximal levels of black carbon and ozone increase the relative risk of COVID-19
by about 3-4 times, while median concentrations were associated with about
2 times increase of the risk. We have also observed that there was no or a
very short lag between exposure to air pollution and health response, and the
strongest effect of air pollution on COVID-19 occurred within the first 2 weeks
after exposure. Given our findings, we advise policymakers to pay a careful
attention to highly air polluted areas while preparing for future pandemics of
respiratory diseases.
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Bayesian distributed lag non-linear models

1 Introduction

Infectious diseases are a recurring problem in a human population (Dobson
and Carper, 1996). An extent of the adverse health effects, economic and societal
outcomes due to a single plague can be very consequential, as was exemplified
by a recent pandemic of the severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2, or COVID-19 disease). Therefore, in the wake of the COVID-19,
there is a mounting concern for preventing and alleviating major repercussions
related to COVID-19 and similar infectious diseases.

Echoing this concern, researchers worldwide have explored the factors associated
with the higher risk of COVID-19 disease (Rashedi et al., 2020; Rod et al.,
2020; Zheng et al., 2020). The primary determinant accounting for higher case
numbers and mortalities of COVID-19 are host-related risk factors, that is,
subject’s age (Romero Starke et al., 2020), gender (Mukherjee and Pahan, 2021)
and accompanying diseases such as diabetes (Abdi et al., 2020), hypertension
(Peng et al., 2021), or cancer (Saini et al., 2020). Besides, there are also
environmental and occupational risk factors that pertain to the intensity of
social interactions or the conditions that stimulate virus spread, for instance, the
lack of personal protective items (masks and gloves) and insufficient ventilation,
especially in the enclosed spaces (nursery homes, dormitories, prisons) (Rashedi
et al., 2020; Abdelzaher et al., 2020). Change in COVID-19 transmission and
therefore, risk, was also found to be affected by climate: regions with steady
warm and wet conditions were less strongly affected by COVID-19 (Mecenas
et al., 2020; Liu et al., 2021) and accordingly, warm seasons of a year in
temperate climates were less favorable for the virus spread (Sajadi et al., 2020).

Although the common risks of COVID-19 are relatively well explored, it
is still uncertain why some of the counties and regions had higher incidences
and moralities related to COVID-19 that others. Research studies suggested
that the discrepancies in the observed COVID-19 cases can be attributed to
the additional factors affecting risks and fatalities of respiratory diseases such
as COVID-19, proposing air pollution as the plausible candidate (Pansini and
Fornacca, 2020; Comunian et al., 2020).

To reflect the importance of air pollution in epidemiological research, we will
introduce the common air pollutants, their origin, limit concentrations, and
their known effects on human health. Air pollution studies usually consider the
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following polluting substances, most abundant and often related to negative
health outcomes: black carbon (BC), nitrogen dioxide (NO2), ozone (O3),
and particulate matter smaller than 10 µm (PM10) and smaller than 2.5 µm
(PM2.5). Due to potentially harmful effects of exposure to these pollutants
(Lelieveld et al., 2015; Bhalla et al., 2014; Anenberg et al., 2012), EU Directive
2008/50/EC has established limit concentrations for some of the substances.
For example, annual mean value of the NO2 in Europe is set to be 40 µg/m3,
while annual means of particulate matter PM10 and PM2.5 should not exceed
50 and 25 µg/m3, respectively. No annual limit value is yet established for O3,
but a proposed target value is calculated to be at most 120 µg/m3 over the
consecutive 8 hours (Fierens et al., 2015). No limit values are yet suggested for
BC pollution.

Regarding the origin of considered air pollutants, particulate organic matter
(PM10, PM2.5) pollution emerges from a range of human activities, such as
transport, various industries, agriculture, and heating of buildings (Fierens
et al., 2015). BC is also a particulate matter, but it originates from combustion
processes, and enter the atmosphere as, for instance, diesel soot. NO2 is
originated primarily from the road transport, and to a lesser extent, from
energy production, industry and building heating. O3 on the other hand, is
not produced by any human-related activities, but is a sub-product of Volatile
Organic Compounds (VOCs) or nitrogen oxides NOx (Zhang et al., 2019). For
example, during hot summer days, NO2 may break down into NO and a free
radical of oxygen (O−), which will further react with oxygen and form O3.

There is compelling evidence of the detrimental health effects of NO2, O3,
and particulate matter-related pollution. Prolonged exposure to particulate
matter pollution induces inflammation processes in the lungs, asthma, and other
chronic pulmonary diseases (Bai et al., 2007; Becker and Soukup, 1999; Kim
et al., 2018), with O3 pollution causing similar respiratory dysfunctions (Zhang
et al., 2019). Exposure to NO2 may also induce asthma but in addition, can
increase the risk of cardiovascular diseases (Sunyer et al., 2002; Barnett et al.,
2006).

Due to a direct effect on lung functions and thus, on the susceptibility of lungs
to viral attacks, air pollutants play an important role for the risk of respiratory
infections (Comunian et al., 2020). For instance, it was shown that PM10 is
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an important determinant of influenza prevalence (Morales et al., 2017). The
risk of another respiratory disease, SARS, was nearly two times larger in the
highly polluted areas of China (high Air Pollution Index), compared to less
polluted regions (Cui et al., 2003). Moreover, in addition to increasing humans’
frailty to respiratory viruses, air pollution particles may serve as a carrier for
viruses, augmenting their viability and transportability in the air (Setti et al.;
Comunian et al., 2020). Hence, a higher risk of respiratory infections can be
observed in the regions with heavy pollution.

To test the hypothesis that there is a connection between air pollution and
higher risks and fatalities of COVID-19, multiple research studies have analyzed
pollution levels and concurrent COVID-19 statistics. For example, a study by
Zhang et al.(2020) showed that an increase in air pollution by particulate
matter and NO2 (by 10 units of Air Quality index) in China corresponded to
5-7% increase in confirmed COVID-19 cases per day. Another study compared
pollution levels byNO2 and PM2.5 with mortality rates from COVID-19 in eight
countries. In most of the cases (USA, Italy, Iran, France, UK), the authors
found a positive correlation between air pollution and COVID-19 mortality
(Pansini and Fornacca, 2020). These findings agreed with other similar studies
that tested for air pollution effect on COVID-19 fatalities: in UK (Travaglio
et al., 2021), Italy (Ogen, 2020; Coker et al., 2020), and USA (Bashir et al.,
2020). In addition to the mentioned examples, there are many more studies
from USA, European countries, and China, that corroborated a contribution
of air pollution to a larger number of infections and fatalities from COVID-19
(Ali and Islam, 2020; Marquès and Domingo, 2022).

Despite a large number of studies connecting air pollution and COVID-19,
only a minor part of published literature featured a similar analysis for Belgium,
to the best of our knowledge. Belgium is a country with generally low levels
of atmospheric pollution, but limit annual mean concentrations of the common
pollutants were sometimes surpassed, particularly, in the urban areas (Fierens
et al., 2015). In this context, a possible role of air pollution in the spread of
COVID-19 in Belgium should also be evaluated for explaining the observed
number of cases and fatalities during the pandemic. Therefore, in this study
we aim to examine the potential association between air pollution in the 581
Belgian municipalities and corresponding cases of COVID-19 in year 2021.
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In contrast to the previously mentioned studies, many of which used correlation
analyses or regression models to relate COVID-19 cases to air pollution (Pansini
and Fornacca, 2020; Wu et al., 2020; Bashir et al., 2020; Hendryx and Luo,
2020), we employ an alternative statistical approach to answer the same
question. Because earlier research demonstrated that health outcomes (e.g.,
infection) may be delayed by weeks or months (Copat et al., 2020; Lowe
et al., 2021) in response to environmental antecedents such as air pollution or
temperature, we assumed that COVID-19 risks may as well be delayed after
an exposure to air pollution. Then, to fully account for delayed responses, we
utilize a statistical tool specifically designed for such lagged relationships–the
Distributed lag non-linear models (DLNM) (Gasparrini et al., 2010), which
allow to describe the non-linear responses to exposure and the lagged effects of
exposure over a range of selected lags.

By applying this statistical method for COVID-19 cases and air pollution
data in Belgium, we intend to answer two specific questions: 1) is air pollution
associated with the increased risk of COVID-19 in Belgium and 2) how is the
relative risk of COVID-19 affected by air pollution over a range of time lags
since exposure?

We expect that our study will shed new light on the involvement of air
pollution in the COVID-19 consequences in Belgium and will provide the
knowledge base for identifying areas most at risk of COVID-19 or of similar
infectious diseases. Thus, the study results may also facilitate a better preparedness
for the outbreaks of respiratory infectious diseases in the future.

2 Methods

2.1 Data structure and preparation

Data on COVID-19 cases in Belgium was retrieved from the Infectious
Diseases Data Exploration and Visualizations (EPISTAT) repository. The data
set on COVID-19 contained information on the total daily cases of COVID-19
in each municipality in Belgium, during 2020 through the first months of
2023. The data set provided no information on the age or any other specific
characteristics about people who contracted COVID-19. For the purposes of
the present project, we filtered out COVID-19 cases recorded in year 2021. To
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aggregate COVID-19 cases per week, we have calculated the sum of COVID-19
cases over the consecutive 7 days for each municipality.

During the preparation of COVID-19 cases data set, we have observed that
about 55% of observations were recorded as ”< 5” . To be able to include these
data in the analyses, we have replaced them with a random draw from the
uniform distribution with limits 1 and 4. Being aware that this approach my
influence the results of our analyses, we have verified that summary statistics of
COVID-19 in Belgium do not change considerably with repeated replacement
of ”< 5” records. Indeed, the 5 replicates of COVID-19 data sets with replaced
”< 5” records differed only in decimal values of their COVID-19 summary
statistics. In addition, we also presumed that low values of COVID-19 cases (in
the range of 1 to 4 cases) are unlikely to be associated with pollution levels,
hence, may not strongly affect the results. Therefore, we did not consider other
approaches to replace ”< 5” records.

The air pollution data was accessed from the Belgian Interregional Environment
Agency data repository (IRCEL-CELINE). The data contained population
weighted daily mean concentrations (in µg/m3) of the following five pollutants
: black carbon (BC), Nitrogen Dioxide (NO2), ozone (O3), particulate matter
(PM10 and PM2.5). The estimation of all pollutants’ concentrations was done
by the IRCEL-CELINE Agency using RIO 4x4 km2 interpolation technique
(Janssen et al., 2008). The verified air pollution data was available up to year
2021 only. The air pollution values were also aggregated per week by calculating
the average air pollution over the consecutive 7 days for each municipality.

Although, our primary interest was on the effects of pollution of COVID-19,
we have also included the vaccination rate data in our analyses, because the
vaccination against COVID-19 could be a confounding factor affecting the
number of COVID-19 cases. The vaccination data for year 2021 was accessed
from the same source as the COVID-19 data set, and contained cumulative
number of people per age group and municipality, who received a COVID-19
vaccine of type A (first dose), B(second dose), C(vaccine requiring only 1 dose),
E (booster dose), E2 (second booster dose), or E3 (third booster dose). For
the current analysis, we did not differentiate between the age groups or vaccine
types, instead, we summed the total number of people vaccinated per week and
municipality, regardless of age and vaccine type. However, 15% of vaccination
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counts were recorded as ”< 10”, and to make such observations quantitative,
we have replaced them with a random draw from a uniform distribution with
limits 1 and 9.

Data on the population of each municipality was downloaded from the
STATBEL website, and was used for the calculation of the incidence of
COVID-19 per 1000 population.

2.2 Distributed lag non-linear models (DLNM)

The epidemiological research that focuses on the health-related reactions
to environmental agents, like anomalous temperatures or pollution, is often
confronted with a delay in the responses that is hard to estimate by standard
statistical methods. However, a relatively unconventional approach, distributed
lag models (DLM), allows to address this methodological difficulty.

DLM were originally developed in the field of econometrics to predict
industrial capital expenditures from present and past appropriations (Almon,
1965). However, it was later shown that a similar approach can be successfully
adopted for epidemiological research, for example, to measure delayed mortality
cases due to air pollution (Schwartz, 2000). Subsequent research also demonstrated
the usefulness of distributed lag models for relating mortality to temperature
fluctuations or humidity (Braga et al., 2001; Armstrong, 2006; Zanobetti et al.,
2000), while later studies extended the application of distributed lag models
to non-mortality outcomes such as dengue risk (Lowe et al., 2018, 2021) and
malaria (Laguna et al., 2017).

Here we will take a look at the methodology of the distributed lag models,
and their extension to non-linear distributed lag models (DLNM) (Gasparrini
et al., 2010). As a first step, we can recall the formulation of a general time-series
model yet ignoring the presence of delayed responses:

g(µt) = α +
J∑

j=1

sj(xtj;βj) +
K∑
k=1

γkutk (1)

where g is a monotonic link function with a corresponding parameter vector
βj, t is an indicator of the number of time points, sj is a smooth function of
the variable xj, and uk and γk are other linear predictors and their coefficients,
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respectively.
In a distributed lag model, sj is defined by the use of basis functions, which

allow to describe a high degree of complexity of the relationship between the
stressor (such as heat) and outcome (mortality). The basis functions are a set of
transformations of the original variable x, such as polynomial functions, splines
or other transformations producing smoothed curves.

In a general form, the smooth function can be written as follows

s(xt;β) = zT
t β (2)

where zt forms the tth row of the basis matrix Z with dimensions n × vx ,
which was obtained by applying basis functions to a vector of exposures x. In
the parametric definition of the basis matrix, usually used for distributed lag
models, the dimension vx is equal to the degrees of freedom, or the degree of
flexibility of the function which defines the relationship between exposure and
response (Gasparrini, 2011).

In a next step, to account for a delayed effect (outcome in terms of past
exposures), we derive L lags of the ordered exposure, that yields a matrix Q

with dimensions n × (L + 1), where n is the number of observations and qt =
[xt, ..., xt−ℓ..., xt−L]]

T is a vector of lagged exposures at time t, corresponding to
the columns of the matrix Q. In addition, to avoid collinearity in the model due
to positive correlations between the consecutive exposures, a model allows to
constrain distributed lagged functions to have similar effect within lag intervals
or to have a continuous polynomial or a spline form (Zanobetti et al., 2000).

Next, basis functions can be applied to the previously defined lags to yield
matrix C with dimensions (L+1)× vℓ . For example, if 10 lags were estimated
for a vector of exposures x and then a 3-degree polynomial basis functions
were applied to each lag, the resultant matrix C will have 11 rows and 3
columns, corresponding to the number of lags and the number of basis function
transformations, respectively. In other cases, basis matrix C can be a vector of
ones, for a moving average model, or an identity matrix, for an unconstrained
distributed lag model (Gasparrini et al., 2010).

The general form of a smooth function (Equation 2) can now be rewritten as
a general definition of the distributed lag models

7
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s(xt;η) = qT
t Cη (3)

where the rows of the basis matrix are replaced by the rows qt of the lags
matrix, and the parameter vector is represented by the matrix C and a vector
of unknown parameters η.

Then the matrix W = QC of transformed variables vℓ is included in the
design matrix of the model for the estimation of parameters η. The estimated
parameters η̂ are subsequently used for the interpretation of the linear effects
β at each lag:

β̂ = Cη̂ (4)

And the variance of β̂ is estimated as:

V (β̂) = CV (η̂)CT (5)

The illustrations above are relevant for delayed responses that can be
described by relatively simple linear relationships with exposure, but a further
extension that relaxes the assumption of linearity can be made through distributed
lag non-linear models (DLNM). The concept of DLNM is based on the cross-basis
functions, which are also basis functions as exemplified earlier but they are
bi-dimensional, capturing the function of exposure-response relationship across
the covariate x (e.g., temperature) and its lagged effects.

The initial steps in the estimating cross-basis function are similar to the steps
of the linear distributed lag model. First, we apply basis function transformation
to x (strata, natural cubic splines, linear threshold or polynomial) and create
a matrix of transformed covariates Z. Next, we define lags of the previously
derived basis functions in the matrix Z, to yield an array R of dimension
n × vx × (L + 1), where n is the number of observations, vx is the number of
the basis function transformations, and L is the maximal lag applied. Then, we
also obtain a matrix C of basis function transformations of the lag vector ℓ,
and finally define a DLNM as follows:

s(xt;η) =

vx∑
j=1

vℓ∑
k=1

rT
tj.c.kηjk = wT

t.η (6)
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which represents the cross-basis function of the DLNM (Gasparrini et al.,
2010). The selection of the basis function transformation for exposure-response
and lagged response depends on the analysis objectives, but simpler and more
interpretable models are produced by lag-stratified basis function transformations
than by natural cubic splines transformations (Armstrong, 2006).

The estimation of effects from DLNM requires a technically heavy description,
but the main attributes are that the effects of exposure at each lag can be
estimated, as well as the effect of a single level of exposure across all lags. In
other words, we can estimate the mortality by temperature at lag 1, 5, or 10
days, and similarly, we can estimate the mortality by lag, when temperature
was 10, 15 or 25°C (Armstrong, 2006).

Since DLNM allows flexibility in choosing basis function transformation
and associated parameters (e.g., the number of knots for natural cubic spline
transformation), the justification of selected parameters is warranted. Gasparini
et al (2010) propose the use of a modified AIC and BIC, tailored for quasi-likelihood
models, when overdispersed observations are assumed. In other cases, standard
AIC can be used (Armstrong, 2006) or a DIC when Bayesian techniques are
applied for parameter estimations (Lowe et al., 2021).

In this study, we apply DLNM to describe the delayed health responses
(COVID-19 infection) to air pollution. The exact model formulation, the choice
of basis functions and model comparison criteria will be described in detail in
the Section 2.4.

2.3 Integrated Nested Laplace Approximation

Bayesian methods have received a great popularity in statistical research,
covering the fields of ecology, environment, and medical sciences (Congdon,
2019; Kéry and Royle, 2020; Qian et al., 2022). Formerly, Bayesian approaches
were implemented only using Markov-Chain Monte Carlo (MCMC) techniques
involving one or another type of sampling from the posterior (e.g., Gibbs
sampling, random walk Metropolis-Hastings). Although MCMC-based methods
are flexible and functional, they are not without complications. First, significant
computing power is required for most of the MCMC procedures, which makes
them relatively slow, especially for multi-parameter hierarchical models. Secondly,
convergence to a true posterior can be difficult to achieve and evaluate objectively
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(Lesaffre and Lawson, 2012).
An alternative approach for Bayesian estimation was proposed by Rue et al.

(2009; 2017). This alternative method featured the use of Integrated Nested
Laplace Approximation (INLA) to marginal posterior distributions. The INLA
procedure was designed to be used for a large class of latent Gaussian models
(LGM) and was shown to provide more accurate posterior estimations for these
models than MCMC methods. LGM type of models comprises a range of widely
applicable models such as linear and generalized linear modes, spatial and
spatial-temporal models, models for disease mapping and many more (Wang
et al., 2018), allowing the use of INLA for various statistical problems.

INLA makes several important assumptions about the model parameters.
First, observations y are assumed to be conditionally independent given the
latent field η (vector of model covariates together with random effects if present)
and its vector of hyperparameters θ1 (Equation 7). Second, the latent field η

of the model must be a latent Gaussian random field (GRMF, Rue and Held
(2005)), which follows a Normal distribution with a sparse precision matrix
Q−1 (Rue et al., 2009) (Equation 8). Finally, the vector of observations’
hyperparameters θ1 and the vector of the latent field’s hyperparameters θ2

follow a joint prior distribution π(θ) (Equation 9), where θ = (θ1,θ2).

L(η,θ1|y) = π(y|η,θ1) =
∏
i∈I

π(yi|ηi,θ1) (7)

η|θ2 ∼ N (0,Q−1(θ2)) (8)

θ ∼ π(θ) (9)

Next, the joint posterior distribution of the latent field and associated
hyperparameters of the model is formulated as follows:

p(η,θ|y) ∝ π(θ)π(η|θ)p(y|η, θ) (10)

The interest lies in estimating posterior marginal distributions of individual
latent effects p(ηi|y), i = 1....n and marginal distributions of hyperparameters
p(θj|y), j = 1, 2. To obtain these marginals, INLA uses a series of approximations
that will be described below.
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As a first step, INLA proposes an approximation p̃(θ|y) to p(θ|y) as:

p̃(θ|y) ∝ p(η, θ, y)

p̃(η|θ, y))

∣∣∣
η=η∗(θ)

(11)

This is a Laplace approximation of a joint posterior of hyperparameters. Here,
p̃(η|θ, y) is a Gaussian approximation to the full conditional of η, and η∗ is the
mode of this full conditional given the vector θ. Taylor series expansion is used
for this approximation, and usually, a log transformation of the hyperparameters
θ is applied to facilitate approximation.

In a second step, INLA approximates marginal distributions of latent effects
p(ηi|θ,y). Rue et al. (2009) describes three approaches to approximate p(ηi|θ,y).
The first one relies on GMRF property of the latent filed and uses Gaussian
approximation to estimate marginal mean and variance. Although Gaussian
approximation is the fastest, it is often inaccurate (Rue and Martino, 2007).
Therefore, the second approach corrects for inaccuracy of the Gaussian approximation
by again using Laplace approximation, as a result providing accurate and
exact estimations. On the other hand, the second method is computationally
extensive, while a third method–simplified Laplace approximation–benefits
from accuracy of the Laplace approximation but requires less computation
time. Hence, simplified Laplace approximation is a default option in INLA, and
in most cases it yields sufficiently accurate results.

In a third step, INLA’s algorithm explores the p̃(θ|y) to use it in the
numerical integration of p(ηi|y). This step requires reparametrization of θ-space,
which involves the computation of the negative Hessian matrix H−1 at the
mode of θ and eigenvalue decomposition ofH−1 asH−1 = V ΛV ′. Decomposition
H−1 allows to obtain a new variable z = (V Λ1/2)−1(θ−θ∗). This z-parameterization
is used to explore the space of θ either using a regular grid centered at the
mode (z = 0) or using a set of strategically placed points (a central composite
design method, or CCD). The CCD is more efficient than the regular grid
approach when the number of hyperparameters is larger than 2. But both
methods can be computationally intensive, therefore, there is an alternative
exploration method—empirical Bayes, where modal configuration is used for
the integration over p(θ|y). The empirical Bayes approach to explore p̃(θ|y)
performs well when variability of the hyperparameters is not too large.

Finally, as a result of exploration of p̃(θ|y) the selected set of integration
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points θ(k) and their respective weights ∆θ(k) are used for integrating the
hyperparameters and marginalizing over the latent effects (Equation 12).

π(ηi|y) ≃
K∑
k=1

π̃(ηi|θ(k),y)π̃(θ(k)|y)∆θ(k) (12)

The marginals of hyperparameters are obtained by numerical integration of
p̃(θ|y), where θ−j is the vector of θ excluding the jth element (Equation 13).
Alternatively, Laplace approximation is applied to estimate the same marginal
densities.

p̃(θj|y) =
∫

p̃(θ|y)dθ−j (13)

The details on the Bayesian model parameterization in INLA and the choice
of prior and likelihood are described in detail in the Section 2.4.

2.4 The formulation of Bayesian DLNM with INLA

Hierarchical structure of the models

We began model formulation by choosing the fundamental structure and the
appropriate likelihood for the model. As the data likelihood we used Negative
Binomial distribution, to account for a likely overdispersion of COVID-19 cases
in our data. We have also tested the Poisson likelihood but ruled it out early
in the model selection process.

Designing a hierarchical structure for our models, we decided to include
both spatial and temporal random effects. The temporal random effect was
considered for a base model because we have data spanning from the beginning
to the end of the year 2021. Hence, we expected a temporal dependency
in the COVID-19 cases from one month to another and from one week to
the next within a month. The temporal random effect was specified as the
random walk model of order 2 (RW2), which is a common choice for the
analysis of spatial-temporal epidemiology data (Blangiardo et al., 2013; Moraga,
2019). RW2 model represents a nonparametric temporal model that assumes
independence of the second-order increments.

12
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γt|γt−1, γt−2 ∼ N (2γt− 1 + γt−2, σ
2) (14)

Next, as the COVID-19 data was provided per municipality, we presumed
that ignoring a possible similarity in COVID-19 incidences between the neighboring
municipalities would be incorrect. This is a common concern in the spatial
health data, such as ours, and the conventional approach to accommodate
spatial dependency is to use Conditional Autoregressive type of random-effects
models, also called Besag models (Besag et al., 1991).

The standard Besag model is based on the correlated spatial random effect
ui, which has a conditional normal distribution:

bi|bi, τb ∼ N (
1

nδi

∑
j∈δi

bj,
1

nδiτb
) (15)

where bi is a single spatial unit (e.g., a municipality), n is the number of
neighbors surrounding spatial unit bi, τb is the total spatial variance among
all the spatial units, and δi is a set of neighbors of a spatial unit bi.

The advantage of this model is that interpretation of the spatial random effect
is intuitive: the mean of the conditional distribution for a spatial unit bi is equal
to the average spatial component value over its neighbors, while the variance is
proportional to the total variance divided by the number of neighbors. In the
other words, the larger the number of neighbors, the lower will be the variance
(and higher the precision) of a spatial unit bi and the more information can
be obtained about it. The number of neighbors for each spatial unit is usually
defined using a common boundary point approach (Qeen’s case), where the two
municipalities that share one or several points of their borders, are considered
as neighbors.

Although the Besag model is convenient and relatively easy to apply, it
is limited to spatially correlated random effects. Often, however, spatial data
features also an uncorrelated, a stochastic spatial variation, which cannot be
described by ui (Riebler et al., 2016). To avoid underestimation of the spatial
random effects, the Besag York and Mollie (BYM) model was proposed (Besag
et al., 1991). In this model, spatial effect b is decomposed into the sum of the
two components: a spatially structured u with a CAR prior distribution as in
the Besag model, and an unstructured, iid, component v.
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b ∼ N (0, τ−1
u Q−) (16)

v ∼ N (0, τ−1
v I) (17)

where Q is the precision matrix of u .
BYM model though also has a small flaw–the lack of scaling of a precision

prior, due to which application of the same prior to different spatial structures
results in different marginal variances (Riebler et al., 2016). This shortcoming
was corrected in a BYM2 model proposed by Simpson (2017). Unlike the BYM
original model, BYM2 model contains a scaled spatial component u∗ :

b =
1

√
τb
(
√
1− ϕv +

√
ϕu∗) (18)

where τb is a common variance for both spatial components and ϕ is a mixing
parameter.

While in the BYM model u and v are difficult to interpret separately, in the
BYM2 model the mixing parameter ϕ simplifies this interpretation. The value
of ϕ corresponds to the proportion of a total spatial variance explained by the
u and v. For example, when ϕ is close to 1, most of the spatial variation in
the data is explained by the scaled structured component u∗, while very small
values of ϕ indicate that spatial variation is mainly a stochastic spatial noise. In
addition, BYM2 model facilitates the use of penalized complexity (PC) priors
for the precision of random effects. PC priors are preferable for hierarchical
Bayesian models, because they are robust, stable under reparameterizations,
and favor more parsimonious models (Simpson et al., 2017). Therefore, for our
analysis, we preferred BYM2 spatial model for the spatial random component.

We used PC priors both for the hyperparameters of the spatial random effect
(ϕ and precision τb), and also for the precision of the RW2 temporal model. The
PC prior for τb was defined conventionally, as p( 1√

τb
) > 0.5 = 0.01 (Moraga,

2019; Simpson et al., 2017). And the same prior was used for the precision of
the RW2 random effect. A default PC prior was used for the mixing parameters
ϕ, defined as P (ϕ < 0.5) = 0.5.

Finally, the adjacency structure for our BYM2 model was defined using
poly2nb function in R. The resultant spatial structure is shown in the Supplementary
Figure 6.
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Cross-basis function definition

For the main effects (5 pollutants and a vaccination rate) we calculated lagged
effects, up to 6 weeks lags for pollution and up to 2 weeks lag for vaccination.
Based on these lagged variables we defined a cross-basis function for each
covariate using function crossbasis in the dlnm package in R. Cross-basis
function applies a desired smooth function on the main effect of a covariate
and on the lagged vectors, then combining both effects in a design matrix wT

t.

mentioned in the Equation 6.
For our data, we chose natural spline smooth function for both exposure-response

(no lag) effect and for lag-response effect. We set 2 equally spaced knots for the
smooth function of exposure-response, resulting in 3 basis functions (2 knots +
1), and 1 knot was specified for lag-response, also resulting in 3 basis functions
(1 knots + 1 + intercept) (Gasparrini, 2011). The final cross-basis functions
for each covariate had 3 ∗ 3 = 9 basis functions.

For the main effects of pollution and vaccination we did not manipulate the
priors, using default INLA priors (Normally distributed priors with zero mean
and large variance).

DLNM general formula

The base DLNM was formulated in INLA as follows:

yij|µij, κ ∼ NegBin(µij, κ) (19)

log(µij) = log(pij) + log(popij) (20)

log(pij) = ui + vi + αj + f.w(x, l) (21)

here, µij is the Negative Binomial distribution mean; κ is the overdispersion
parameter of the Negative Binomial distribution; log(pij) is the COVID-19
incidence in a municipality i and year j; log(popij) is the population of a
municipality divided by 1000 (an offset); ui is the spatially structured random
effect and vi is a stochastic spatial random effect; αj is the RW2 random
effect of year; f.w(x, l) is the exposure-lag-response (cross-basis) function, or
a combination between f(x), the function describing non-linear response to
a predictor (e.g., pollutant) and w(l), the lag-response function of delayed
responses to a predictor over the maximal number of lags l.
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Model selection process

In a step 1 of a model selection process, we constructed the base model that
included only the spatial and temporal random effects and then added one
covariate to this model. We then compared the relative contribution of each
covariate to the model fit. In the second step, we added a second covariate to
the model selected in the first step and again compared the goodness of fit of
the candidate models.

For comparing model fit we used Deviance Information Criterion (Spiegelhalter
et al., 2002), where smaller value indicates a better fit. In addition, we calculated
the Conditional Predictive Ordinate (Congdon, 2019). CPO values indicate a
conditional probability of a single value yi predicted by the model that was fit
without value yi. CPO is large for yi values well predicted by the model, but for
the ease of model comparisons, we calculated the log score, which is the minus
mean of the log of CPO values, and the lower log score complies with a better
model fit.

All analyses were performed in the R software version 4.2.2 using packages
r-inla (version 23.01.12) and dlnm (version 2.4.7).

3 Results

3.1 Exploratory analysis

As a part of the exploratory analysis, we estimated monthly incidence (per
1000 citizens) of COVID19 in Belgian municipalities in 2021 (Figure 1). A
cursory look at the Figure 1 reveals that during 2021 there was a considerable
temporal variation of COVID-19 incidence: most of the country’s municipalities
had highest incidence in November and December, while June and July had
overall lowest incidences. This observation suggested a strong seasonality of
COVID-19, also indicating that a temporal component of COVID-19 cases must
be accounted for in the statistical models. On the other hand, within a single
month, we could observe large differences in COVID-19 incidence among the
municipalities. For example in September 2021, higher incidences were observed
in the eastern municipalities (Liege province, Weismes, Plombières, Trois-Ponts
) and in the South (Luxembourg province, Rouvroy and Meix-devant-Vitron).
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On the contrary, northern and westerns part of the country (West Flanders, East
Flanders and Antwerpen provinces) had generally lower COVID-19 incidences
in September, with no cases recorded in municipalities Vleteren, Horbeke, and
Maarkedal. Spatial dissimilarity of COVID-19 incidence could also be noticed
in June through July, while less remarkable spatial differences were observed
in winter. The presence of a spatial heterogeneity of COVID-19 cases across
Belgium in 2021 could not be ignored in the statistical analyses, therefore it was
further translated into a random spatial component of the statistical models,
as described in the Methods section 2.4.

Pollution levels also varied spatially across the country. The extreme records
of BC pollution in 2021 (above 1.9 µg/m3) were observed in municipalities
Gent, Bredene, Antwerpen, and Sint-Gillis in the western and northern parts of
the country (West Flanders and Antwerpen provinces). Most NO2 polluted (40
µg/m3 or above) municipalities in 2021 were Sint-Gillis and Sint-Jans-Molenbeek
in the Brussels province. PM10 pollution was most severe (above 45 µg/m3)
in Oudsbergen and Houthalen-Helchteren in the North-East of the country
(Limburg province), while PM2.5 was highest (above 28 µg/m3) in Kortrijk and
Deerlijk (West Flanders province) . Among the municipalities with the highest
O3 pollution (above 82 µg/m3) in 2021 were Habay, Meix-devant-Virton, Attert,
and Musson, all located in the Luxembourg province in the South-East.

During exploratory data analysis, we have checked for collinearity between
pollutants, as their concentrations may be mutually dependent (Fierens et al.,
2015). A strong positive correlation of 0.7-0.9 was detected between PM2.5 and
PM10 pollutants, and between NO2 and BC pollutants (Supplementary Figure
5). Therefore during the model selection process we kept in mind that these
pairs of pollutants could not be included in the same model.

3.2 Model selection

The results of the first step of a model selection process are shown in the
Table 1. We compared the set of models including only 1 covariate (e.g., only
BC or only O3). Among these models, a model with BC was the best (Table
1). Therefore in the next step, we added another covariate to the model already
containing BC. We observed that adding O3 to this model improved the fit
(had lower DIC and log score), while adding vaccination rate did not change
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Figure 1: Incidence rate of COVID-19 infection per 1000 population, in Belgium in 2021

the model fit (Table 2). We have considered also the models with NO2 and
PM10 or PM2.5 as a second covariate in addition to BC, but because all three
pollutants were strongly positively correlated with BC, we did not include them
in the final model to avoid multicollinearity. Thus, we have selected a model
with BC and O3 as the final.

3.3 Selected DLNM results

Our selected DLNM contained two types of random effects: a spatial random
effect BYM2 and a temporal trend RW2. For the spatial random effect, the
mixing parameter ϕ was equal to 0.88, indicating that a large part of the spatial
variation was attributed to a structured, spatially correlated random effect. In
other words, it means that spatial similarity between the adjacent municipalities
was relatively large in our COVID-19 data. This result is also reflected by the
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Table 1: The results of the first step of the model selection process: the base model compared with the models
including one additional covariate. DIC stands for Deviance Information Criterion; log score is the minus mean
of the log Conditional Predictive Ordinate. The mathematical formulation of the models is the same as shown
in Equation 21.

Model components DIC Log score
Base 229739 3.8033

Base + O3 229371 3.7972
Base + BC 228729 3.7868
Base + NO2 229214 3.7946
Base + PM10 229402 3.7977
Base + PM2.5 226531 3.7998

Base + Vaccination 229734 3.8032

Table 2: The results of the second step of the model selection process: the model model including BC is compared
with the models additionally including O3 and vaccination. DIC stands for Deviance Information Criterion; log
score is the minus mean of the log Conditional Predictive Ordinate. The mathematical formulation of the models
is the same as shown in Equation 21.

Model components DIC Log score
Base + BC 228729 3.7868

Base + BC + O3 228016 3.7750
Base + BC + Vaccination 228721 3.7866

map of spatial random effects, where neighboring municipalities tend to have
similar values of the random effect (Figure 2A).

A prominent separation can be observed between the municipalities with a
positive spatial component, that is, on average, larger COVID-19 cases, and a
negative spatial random effect. Therefore, nearly all the municipalities located
in the North and North-East of the country (the Flanders Region), had lower
cases of COVID-19 than on average in the country. On the contrary, most
of the municipalities in the South-West (the Walloon Region) had on average
more cases of COVID-19. But the amplitude of differences in COVID-19 counts
implied by spatial random effects was not large: from at about 3 times lower to 3
times larger number of COVID-19 cases, while for the majority of municipalities
the difference in the number of cases was within 50%.

The temporal random effect RW2 demonstrated well the seasonality of
COVID-19 (Figure 2B). The two extreme deviations from the average COVID-19
incidence were observed in week 25 (June 21, 2021) and in week 51 (November
25, 2021). The summer drop in COVID-19 lasted for about 2 weeks after which
it stabilized around the average in August-October until an abrupt increase in
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Figure 2: (A) spatial random effects of the selected Bayesian DLNM. This spatial effect denotes
municipality-specific deviations from the average COVID-19 incidence; (B) temporal random effect type RW2.
The temporal effect denotes week-specific deviations from the average COVID-19 incidence.

November, a month with the largest COVID-19 incidence in Belgium in 2021
(Figure 1) . We noticed also that a temporal random effect was not very smooth
across the study timeline. This characteristic of the temporal trend can be due
to inherent variability of our data and to our choice of default priors, which
allowed a relatively large marginal variance of the temporal component.

Both temporal and spatial random effects, therefore, demonstrated that there
was a strong temporal and spatial dependency in the COVID-19 data, as we
correctly presumed during the analysis design.

The plots of the association between the risk of COVID-19 andBC concentrations
across the lag of 6 weeks, are shown on the Figure 3. The strongest effect of
BC (more than 4 times increase in the relative risk) was observed for the
highest concentrations, above 2 µg/m3. The BC concentrations between 0.5
to 1.5 µg/m3 were also associated with a large increase in the relative risk:
from about 30% to 2.5 times increase during the first 2 weeks after exposure
(Figure 3A). Median concentrations of BC were associated with less than 2
times increase in the relative risk of COVID-19 (Figure 3B), and the relative
risk decreased to 1 at the lag of 5 weeks. BC concentrations below 0.5 µg/m3

were not predicted to have a measurable increase in the RR.
Both plots indicated that the effect of BC on the relative risk of COVID-19

can be expected during the first few weeks of exposure, so there was no delay
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or only a short delay in the health response to this pollutant, but the effect
remained for 5 weeks after exposure.

Figure 3: Lag-response of COVID-19 to Black Carbon (BC) pollution. (A) contour plot of the association
between the relative risk of COVID-19 (RR) and the level of BC pollution, relative to the minimum observed
pollution. (B) lag-response association between the risk of COVID-19 and two levels of BC pollution: the median
level of pollution (light purple) and the highest level of pollution (dark purple).

The contour and lag-response plots for O3 (Figure 4) showed generally similar
effects on COVID-19 as BC. The largest concentrations of O3 were associated
with 3.6 times increase in the relative risk of COVID-19 during the first 2 weeks,
but more realistic, median concentrations of O3 increased the risk by at most
2 times during the first 2 weeks after exposure (Figure 4B). For O3, there were
also no delay in the response, but the effect diminished at about week 5, like
the effect of BC (Figure 4A).

In sum, evaluating DLNM results for both pollutants, we may underline that
COVID-19 risk induced by air pollution was increased without a long delay,
and the strongest effect was predicted for the first 2 weeks after exposure with
virtually no effect at a lag of 6 weeks .

The cumulative effect of both air pollutants is shown in the Supplementary
Figure 7. At most 16 times increase in the risk of COVID-19 was predicted given
cumulative exposure to O3 . However, for BC, only small cumulative effects are
shown for low concentrations of the pollutant, but an abrupt increase in the
cumulative relative risk is predicted at the concentrations above 1.7 µg/m3.
This abrupt change maybe due to instability of the prediction, as the BC
concentrations larger than 2 µg/m3 were observed only a few times in the data
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set used for the analysis.

Figure 4: Lag-response of COVID-19 to ozone (O3) pollution. (A) contour plot of the association between the
relative risk of COVID-19 (RR) and the level of O3 pollution, relative to the minimum observed pollution.
(B) lag-response association between the risk of COVID-19 and two levels of O3 pollution: the median level of
pollution (light red) and the highest level of pollution (dark red).

4 Discussion

Our study attempted to test the association between air pollution and
COVID-19 incidence in Belgium and to identify how such associations change
across time lags. Although we did not answer these questions for each of
the air pollutants prevailing in the country, we discovered a strong effect of
BC and O3 on COVID-19 risk during 1-2 weeks after exposure, while only
a modest effect was found at 3-5 weeks lag after exposure. In addition, our
study revealed a strong spatial correlation between the adjacent municipalities
in terms of COVID-19 incidence, which can be attributed to air pollution as
well as additional factors not measured in this study.

4.1 The spatial structure of COVID-19 cases in Belgium

Our spatial random effect demonstrated a clear spatial correlation between
the COVID-19 incidence per municipality (Figure 2). Similarities were observed
within the clusters of municipalities on a small scale, but also within the two
Belgian regions–the Flanders and the Walloon (Wallonia) (Supplementary

22



Bayesian distributed lag non-linear models

Figure 8). The generally smaller spatial random effect for municipalities in
Flanders indicated on average lower count of cases in this region in 2021
compared to the Walloon.

There can be multiple reasons why COVID-19 affected Belgian municipalities
differently. Among the likely factors proposed by the preceding research are
differences in socio-economic and demographic factors (Verwimp et al., 2020;
Gadeyne et al., 2021; Natalia et al., 2022). For example, studies by Meurisse
et al. (2022) and Verwimp (2020) connected higher COVID-19 incidence to
municipalities with a lower socio-economic status. One of the socio-economic
factors is income, and in relation to COVID-19, lower income households may
have less health literacy or can be exposed to higher COVID-19 risk at work
because their, usually low-skilled, jobs do not permit distance working. Hence,
because the municipalities of Walloon have comparatively lower income than
the municipalities of Flanders (STATBEL), the Walloon region might have
been more vulnerable to COVID-19. Moreover, on top of the socio-economic
determinants, we believe that limited connectivity between the two regions
related to work, study or leisure travels, have added to the large differences in
the observed COVID-19 counts.

Another factor potentially responsible for strong spatial separation is population
density, where, contrary to common sense, less densely populated areas had
higher incidence of COVID-19. This discrepancy was due to inhabitants of
such municipalities taking fewer precautions under a false impression that
COVID-19 transmission is less likely outside cities (Meurisse et al., 2022).
Indeed, population density is slightly lower in Walloon (STATBEL), which
may have contributed to a larger incidence of COVID-19 in this region in 2021.

Last, a geographical aspect may have also been instrumental in increasing
COVID-19 incidence in Walloon. The Wallon region share borders with both
Germany and France, the two countries that were often high on COVID-19
charts in 2021 (Our World in Data). Because national borders of the European
Union countries are open for the Union citizens, cross-border mobility, in our
case between Belgium and Germany or Belgium and France, could have been
an auxiliary transmission vector of COVID-19 (Wilder-Smith, 2021).

In the context of our analysis, we have also considered pollution as a
potential factor driving COVID-19 variability across Belgium. Interestingly, the
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IRCEL-CELINE air pollution report (Fierens et al., 2015) indicates generally
higher 8-hour levels of O3 pollution in the North-Eastern area of Flanders and in
the nearly whole area of Walloon. Similarly, the highest average weekly O3 levels
(above 80 µg/m3) were observed mainly in the Walloon region based on 2021
data. The BC pollution, however, was not strikingly different between the two
regions (Fierens et al., 2015), and was the largest in some of the municipalities
in Flanders. Thus, we think that the O3 pollution was not the sole driver of
COVID-19 spatial variability, but to some extent, it was associated with higher
COVID-19 incidence in the South-East of Belgium.

4.2 The effects of air pollution on COVID-19 in Belgium

Our study put forward BC pollution in Belgium as one of the co-factors
of COVID-19 incidence. Connecting our findings to the available literature,
we discovered that there are only a small number of studies that explicitly
analyzed BC contribution to COVID-19 incidence or fatalities. For example, a
study by Rathod et al. (2021) based in India, analyzed the BC pollution data
and COVID-19 dynamics in 2020. They revealed that a season of intensive
BC production in Delhi area, due to residual crop combustion, has played a
significant role in the surge of COVID-19 cases in October-November 2020.
Moreover, they also indicated that the increased BC pollution have boosted
COVID-19 mortality rates with a lag of 10 days, implying that the strongest
effect of BC occurred within the 2 weeks after exposure, as our study also
demonstrated. Another research, presented at the International Society for
Environmental Epidemiology (ISEE) in September 2022, showed that long-term
exposure to BC in Denmark was associated with about 10% increase in the
hazard of COVID-19-related death, and a 10% increase in the hazard of
hospitalization (Zhang et al., 2022). In addition, we have identified a research
work from Belgium leaded by Vos et al. (2022), also presented at the ISEE.
The Belgian researchers postulated that an increase in average exposure to
BC prolongs hospital stay of COVID-19 patients by almost 3 days and that it
also increases the odds of admission to ICU by 20%. Although all these studies
did not use the same methodology as we did in the present analysis, our work
reiterated their qualitative conclusions regarding BC effects on COVID-19.

Our study has also revealed a strong effect of O3 pollution on the relative risk
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of COVID-19 in Belgium. This finding concurred with the conclusions of earlier
research that air pollution by O3 is an important co-factor driving COVID-19
incidence (Lim et al., 2021; Gujral and Sinha, 2021; Stufano et al., 2021; Zoran
et al., 2020). Our study also agreed with the finding that the strongest effect of
O3 is likely to occur during the first weeks of exposure (Zhu et al., 2020).
Therefore, results of the present analysis have validated and expanded the
earlier evidence of positive association between O3 pollution and COVID-19,
showing that also in Belgium this association was important.

Regarding the lagged effects of air pollution, we found that there was no
or very small delay in responses to O3 and BC, and the strongest effects were
concentrated within 1-2 weeks following exposure (Figures 3 and 4). To elucidate
why the delay in pronounced effects was very short or absent, we refer to the
mechanisms of air pollution effects on the respiratory organs of humans.

When humans are exposed to high concentrations of air pollutants, such
as particulate matter or O3, they become predisposed to respiratory tract
infections. In detail, air pollution causes inflammatory processes in human
lungs and oxidative stress (excess of free radicals in the body) (Lai et al.,
2021). In addition, exposure to air pollution alters body’s natural virus-fighting
mechanisms: it decreases self-clearing processes in lungs (mucociliary clearance),
decreases virus uptake by macrophages (white blood cells that destroy harmful
microorganisms), and increases permeability of lungs‘ epithelial tissue, favoring
viral spread (Wang et al., 2020; Woodby et al., 2021).

We do not have exact estimation how soon inflammatory and related
processes make the person susceptible to respiratory viruses, but we assume
that there is a less than a week delay, which is supported by our data and earlier
research (Schwartz, 2000; Clarke et al., 1999). For the comparison, we can recall
other studies that analyzed delayed health-related responses to environmental
stressors (e.g., precipitation). For example, a study on the dengue risk in Brazil
showed that following extremely dry conditions, the risk of dengue increases
after about 3-5 months (Lowe et al., 2021). Such a long lag before the start of
a disease was explained by changes in human behavior in response to extreme
water shortages. In such circumstances, people utilize water storage outside
homes, that later serve as breeding habitats for the Aedes aegypti larvae (a
larvae of mosquito spreading dengue). The time that it takes people to realize
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the need for water reserves, and the time necessary for A. aegypti to develop to
a mosquito stage, comprises a lag of 3-5 months until an outbreak of dengue.
However, the cause-effect mechanisms between dry climate conditions and
dengue are likely very different from the association between air pollution and
respiratory infection risks, which supposedly requires only a short lag.

While a greater part of the published literature establishes a link between air
pollution and COVID-19, some studies with the divergent conclusions should
also be mentioned. An already cited work from Belgium by Vos et al. (2022) did
not find any effect of O3 on COVID-19 dynamics, although our results agreed
with respect to BC effects. Another study by Hoang et al. (2021) applied DLNM
to estimate the effect of various air pollutants on COVID-19 cases in two cities
and surrounding provinces of South Korea. Surprisingly, they reported no effect
of O3 on increasing COVID-19 cases in any of the locations.

In addition, there are studies that suggested a lower number of COVID-19
cases under a higher air pollution concentration. For instance, despite the
evidence ofNO2 detrimental effects on human health and COVID-19 susceptibility
(Pansini and Fornacca, 2020; Ogen, 2020), the research by Zoran et al. (Zoran
et al., 2020) found a negative correlation between NO2 concentration and
COVID-19 cases in Italy. This finding was likely observed due to a negative
correlation between NO2 and O3, which in turn had a negative and a positive
correlation with COVID-19, respectively. A negative correlation was also found
between SO2 air pollutant and counts of confirmed COVID-19 events in China
(Zhou et al., 2021). In the latter work, the authors commented that the
mechanisms of SO2 and COVID-19 connection are unclear and need to be
further explored.

The contradictions between the studies relating air pollution to COVID-19
may point to an important issue of pertinent data analyses. The studies
cited in this project used various approaches to define study areas and to
statistically analyze the data, which can be one of the reasons for disparate
study outcomes. For example, correlation analysis may not reveal the same
findings as regression-type models, which both can diverge from DLNM approach
used in our study. Thus, to achieve more solid and reproducible results, we
believe that similar future studies can be improved by the corrections of data
analyses. While we cannot suggest corrections for already published research,
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we would like to underline limitations of our own work and propose strategies
for rectification.

5 Limitations of the study and ideas for correction

The major limitation of this study is that we tried to include several
pollutants in the same statistical model. On the one hand, such analysis was
appealing, because it allowed to disentangle the differences in each pollutant’s
effect on COVID-19. On the other hand, it caused collinearity problem in
our analyses and in most of the previous research. An alternative approach
would be to use a single covariate serving as a proxy for average pollution
levels. For instance, an Air Quality Index (AQI), which is based on the scaled
concentrations of the main air pollution substances.

Next, as a spatial unit of our analysis we used Belgian municipality. This
approach was justified by the spatial resolution of the data (pollution and
COVID-19 were both measured on a municipality level) but was also suitable to
account for municipality-specific responses to COVID-19. However, air pollution
generated within the borders of a single municipality may redistribute across
municipalities’ borders following local air masses circulation. We assume that
a possible better approach would be to define “air pollution domains”, or areas
with distinct air masses circulation and therefore, distinct air pollution levels.
This analysis would also require data from neighbor countries, because air
pollution may span across national borders.

Here we have listed the two critical limitations of our study and corresponding
remedies for upcoming research. But we have more recommendations for
improvement, and we refer an interested reader to the Supplementary Section
8.2.

6 Ethical thinking, societal relevance and stakeholder

awareness

As our study illustrates, there was a link between air pollution and COVID-19
incidence in Belgium in 2021. Although our study was only exploratory, we
believe that the effect of air pollution on human health and on the likelihood of
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respiratory diseases, is real. Therefore, we would like to offer two recommendations
for public health authorities in Belgium.

First, we encourage to continue developing policies to combat air pollution
in the country for minimizing the risk of respiratory dysfunctions and related
fatalities. Second, we would like to point stakeholder’s attention to the most air
polluted areas of the country. In case there would be an outbreak of a similar
disease as COVID-19 in the future, the residents of these regions, particularly
the elderly, would be most at risk. Hence, in such a situation, they should be
prioritized by the pandemic preparedness campaigns.

Regarding the ethical aspect of our study, we have adhered to the ethical
principles of using public health and other national data in an academic work.
We have revealed no individual subject’s data by our analyses, and we have
carefully cited all the sources that have provided data access for us.

7 Conclusions

Concluding our study, we would like to emphasize that our results agreed
with the evidence of the detrimental effect of air pollution on human health.
Therefore, the salient message of our work is that Belgium should strive to keep
air pollution levels low.

Finally, we would like to remark on the methodological approach of our
study. DLNM proved to be appropriate for identifying air pollution effects
on COVID-19, but they have a much wider range of applications particularly
in combination with a Bayesian framework. DLNM are suitable for scientific
endeavors looking into lagged health responses to environmental or anthropogenic
factors on a large spatial and temporal scale. We thus inspire epidemiologists to
explore and apply DLNM to their research problems, for which other statistical
methods can be deficient.
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8 Appendix

8.1 Supplementary figures

Figure 5: Pearson correlations between the 4 air pollutants from the IRCEL-CELINE data: black carbon (BC),
Nitrogen Dioxide (NO2), ozone (O3), and particulate matter PM10 and PM2.5.

Figure 6: Adjacency matrix used for defining spatial structure of the Bayesian DLNM. The black dots denote
centroids of municipalities’ polygons and red lines connect the municipalities considered as neighbors.
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Figure 7: Cumulative effects of exposure to BC (A) and O3 (B) on the relative risk of COVID-19. Dotted lines
denote precentiles of pollutants concetrations: 20%, 50%, and 95%.

Figure 8: A map of the Belgian regions: Brussels (red), Flanders (blue) and Walloon (green). The municipalities
borders are shown by grey lines.
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8.2 Supplementary tables

Table 3: Additional limitations of our study with suggestions of alternative procedures by future studies.

Limitation Solutions employed in our
study

Strategies for improvement

COVID-19 cases data had about
50% of observations recorded as
“< 5” counts

“< 5” values were replaced by a
random draw from the uniform
distribution. A simple sensitivity
analysis did not show large changes
in the data, if replacements were
repeated, but study results may
have been affected

Multiple imputation techniques
might have been a better approach
for our study. More precise
estimation of pollution effects might
be obtained based on the analyses of
10 imputed data sets (Rubin, 1996).
However, this analysis is currently
difficult to combine with a Bayesian
framework

Our data had a spatial and a
temporal structure, hence
spatial-temporal interaction (e.g.,
municipality-specific temporal
trends) could have been relevant

We have included a spatial and a
temporal random effect but opted
against an interaction effect for two
reasons. Spatial-temporal
interaction in some cases results in
an overfitted model, when an
interaction effect absorbs most of
the variation in the data. This
obstacle has been reported by
similar studies (Natalia et al., 2022).
Moreover, spatial-temporal
interaction may conceal the effect of
air pollution, that also varied
spatially and temporally

Including interaction effect is more
appropriate for the studies based on
longer data than ours. For example,
a similar analysis of air pollution
effects on respiratory diseases risk,
comprising 10 years of data could
have a spatial effect of a
municipality, a temporal effect of a
week within each year, and a
spatial-temporal interaction between
a municipality and a year

A conventional choice of parameters
was made for cross-basis functions of
DLNM

We selected natural splines with 2
knots for exposure-response and 1
knot for lag-response basis functions.
Functions of more complex shapes
can also be selected but may also
lead to overspecified models

For a larger number of knots, a
penalization of smooth function may
need to be applied, but at the time
of writing (June 2023), this
approach is not yet implemented in
INLA. But future research teams
should not hesitate to contact INLA
core team (R-INLA) for advise and
instructions

8.3 R code

All the the R codes used for the analysis in this study are accessible from the
github repository via the following link: COVID-19 DLNM.
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