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Abstract

Blockchain is a rapidly moving and complex field. Due to the recent buzz surrounding
blockchain systems it is difficult to find objective information. This thesis provides an
overview of three blockchain systems and the evolution of the technology behind them,
with a particular emphasis on the languages used to program on the blockchain.

The three blockchain systems presented in this thesis are Bitcoin, Ethereum, and
Cardano.

Bitcoin is the pioneer of blockchain technology and the most well known application.
Bitcoin’s programming language, Script, is intentionally limited in its capability but
was the first to show that programmable transactions are possible.

The next blockchain, Ethereum, often described as a “world computer”, is a general-
purpose blockchain. Ethereum is fully programmable and the most common program-
ming language is Solidity. In contrast to Script, Solidity is a high-level language to
program more complex smart contracts for the Ethereum blockchain. This versatility
does come with disadvantages however, being able to express complex programs also
means that security becomes an issue.

The final blockchain presented is Cardano. Cardano is a research-first blockchain
system and tries to find the middle ground between Bitcoin and Ethereum. Where
Bitcoin is very secure due its limited programmability and Ethereum provides a
sophisticated programming environment, Cardano attempts to combine the best of
both worlds. The programming languages discussed here are Plutus and Aiken. Both
of these languages are purely functional languages which makes is much easier to verify
smart contracts before deploying them, which increases security.

The evolution mirrors the general trend in software development, but in a shorter time-
frame. The struggle to balance security, ease-of-use, and expressiveness can be found
too. Bitcoin started with a simple language, akin to the early days of programming.
Then Ethereum shifted toward a more complex, but also more powerful language,
which mirrors the rise of languages like C++ and Java. Finally, Cardano seems to
embody a contemporary mindset which adopts more functional language features,
which again mirrors the rise of languages like Rust.
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Abstract (Dutch)

Blockchain is een snel evoluerend en complex studiegbied. Door de recente buzz
rondom blockchain systemen is het moeilijk om objectieve informatie te onderscheiden.
Deze thesis geeft een overzicht van drie blockchain systemen en de evolutie van de
technologie erachter, met een bijzondere nadruk op de talen die gebruikt worden om
op de blockchain te programmeren.

De drie blockchain-systemen die in deze thesis worden gepresenteerd zijn Bitcoin,
Ethereum en Cardano.

Bitcoin is de pionier van de blockchaintechnologie en de meest bekende toepassing. De
programmeertaal van Bitcoin, Script, heeft opzettelijk beperkte mogelijkheden, maar
toonde als eerste aan dat programmeerbare transacties mogelijk zijn.

De volgende blockchain, Ethereum, vaak beschreven als een “wereldcomputer”, is een
blockchain voor algemene doeleinden. Ethereum is volledig programmeerbaar en de
meest gebruikte programmeertaal is Solidity. In tegenstelling tot Script is Solidity
een high-level taal om complexere smart contracts voor de Ethereum blockchain te
programmeren. Deze veelzijdigheid heeft echter ook nadelen, het kunnen uitdrukken
van complexe programma’s betekent ook dat beveiliging een probleem is.

De laatste blockchain die wordt besproken is Cardano. Cardano is een research-first
blockchainsysteem en probeert de gulden middenweg te vinden tussen Bitcoin en
Ethereum. Waar Bitcoin erg veilig is door de beperkte programmeerbaarheid en
Ethereum een geavanceerde programmeeromgeving biedt, probeert Cardano het beste
van beide werelden te combineren. De programmeertalen die hier worden besproken
zijn Plutus en Aiken. Beide talen zijn puur functionele talen die het veel gemakkelijker
maken om smart contract te verifiëren voordat ze worden ingezet, wat de veiligheid
verhoogt.

De evolutie weerspiegelt de algemene trend in de softwareontwikkeling, maar in een
korter tijdsbestek. De strijd om een balans te vinden tussen veiligheid, gebruiksgemak
en expressiviteit is hier ook terug te vinden. Bitcoin begon met een eenvoudige taal,
verwant aan de begindagen van programmeren. Daarna verschoof Ethereum naar
een complexere, maar ook krachtigere taal, die de opkomst van talen als C++ en
Java weerspiegelt. Tot slot lijkt Cardano een eigentijdse mindset te belichamen die
meer functionele taalkenmerken gebruikt, wat weer de opkomst van talen als Rust
weerspiegelt.
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Chapter 1

Introduction

Blockchain technology has recently emerged at the forefront of a technological revolu-
tion, promising profound societal impacts far beyond its initial conception. Regardless
of whether one aligns with the wave of optimism or remains skeptical, it is becoming
increasingly challenging to dismiss the relevance of blockchain systems within the
contemporary world.

This thesis aims to provide an overview and understanding of blockchain systems,
with a particular emphasis and the languages used to program smart contracts on
the blockchain platform. An important question is whether these languages follow
conventional software development wisdom or completely differ from general-purpose
languages. Moreover, if these are different, how have these adapted to the needs of
blockchain systems? Besides the smart contract programming languages, this thesis
will also explore the evolution of different aspects of the blockchain system, such as
consensus mechanisms and transaction models.

There has been considerable hype associating blockchain with the potential to address
numerous global challenges. While the buzz surrounding blockchain technology is
immense, it is essential to tread carefully when navigating the wealth of information.
Unfortunately, this has led to many unreliable sources, biased articles, and even mis-
information. This thesis tried to weed out the hyperbole to find reliable and factual
information to examine current blockchain systems objectively.

Having a proper understanding of blockchain and its components is essential. Blockchain
systems have suffered severely from various security breaches in their short history.
How do these happen, and is there something that can be done? Or is there already
something being done? These are essential questions, and these issues could be solved
technologically.

The programming languages used to program sensitive applications on the blockchain
play an essential role in securing and protecting people from malicious actors. Un-
derstanding the mechanisms of running the program itself is also crucial to write
well-defined and safe programs. Knowing the underlying mechanisms is analogous
to writing low-level programs. Programmers must understand how their programs
will run on a particular piece of hardware; this is not any different from applications
running on the blockchain. The environment is entirely different from traditional soft-
ware development and requires different thinking. A programmer will have to keep in
mind how his program will interact with a certain type of transaction or state of the
blockchain. This thesis also attempts to provide the reader with the necessary skill
set to tackle programming on the blockchain.

The thesis is structured into four main chapters, each building upon the prior, to

1



provide a comprehensive understanding of the evolution of blockchain systems.

The first chapter, prerequisites, lays out the groundwork for blockchain technology.
This chapter is an example-driven introduction to blockchain systems using a land
registry blockchain implementation to explain the basics for readers unfamiliar with
its inner workings, creating a foundation to understand the subsequent sections.

This introduction is crucial to understand the rest of the thesis, which will go into more
complex topics, such as how the different consensus mechanisms work and transaction
models. Basic cryptography, decentralized systems, and consensus are explained in
this chapter. Here a basic blockchain implementation programmed in Rust is also pre-
sented to show an example of how someone would program a rudimentary blockchain
system.

The following chapter is dedicated to Bitcoin. Bitcoin is the pioneer of blockchain
technology and the most well-known application. This chapter will detail the address
scheme, transaction model, proof-of-work, and Script. Bitcoin’s Script language, while
non-Turing complete, was the first to demonstrate programmable transactions on a
blockchain. This chapter also contains examples of the most commonly used Script
programs.

The next chapter, Ethereum, will focus on Ethereum, a second-generation blockchain
system. Ethereum is a general-purpose blockchain system, with its claim to fame being
its programmability. Being programmable means, it has a much more sophisticated
programming language called Solidity. The evolution from basic scripting in Bitcoin to
Solidity in Ethereum will be explored in depth. The transaction model and consensus
mechanism are also essential and will get the attention they deserve.

Following Ethereum, the chapter on Cardano will dive into the third generation of
blockchain systems. Cardano differs from Bitcoin and Ethereum because it is a research-
first blockchain project. Cardano looked back at Bitcoin and Ethereum and tried to
find a middle ground. Where Bitcoin is very limited in programming capabilities,
Ethereum goes to the other extreme and provides general-purpose programming with
security implications. Cardano tries to find a balance between these two extremes.
The programming languages discussed in this chapter are Plutus and Aiken. Both are
purely functional languages which has the advantage of facilitating the verification of
smart contracts.

Plutus is a notoriously difficult programming language, which is why this thesis will
provide an alternative. Aiken is a fairly new programming language with a better
developer experience and more familiar syntax compared to Plutus. It takes inspiration
from modern programming language design like Rust and Typescript to deliver a more
satisfying smart contract environment.

The final chapter contains the conclusion of the thesis. This chapter will provide an
overview of the evolution of blockchain systems and smart contract languages. This
chapter will also reflect on the master’s thesis and what has been learned.

Throughout this thesis, the intricacies of blockchain technology and the complexi-
ties of smart contract languages are clarified, offering a systematic understanding of
their evolution, capabilities, and potential. Through the chronological study of Bit-
coin, Ethereum, and Cardano, this thesis provides a comprehensive overview of how
smart contract languages have progressed, what problems they have solved, and what
challenges remain.

Many sources have been used to research and understand different blockchain systems.
These are listed here for ease of reading and consulting.

For the prerequisite chapter the following two resources:
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• Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction [Nar+16].

• Blockchain Technology Overview [Yag+18].

The Bitcoin chapter used the following sources:

• Serious Cryptography: A Practical Introduction to Modern Encryption [Aum17].

• Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction [Nar+16].

• Mastering Bitcoin: Programming the Open Blockchain [Ant17].

• The Bitcoin Developer Guide [Dev23].

The chapter on Ethereum required the following to write:

• Mastering Ethereum: Building Smart Contracts and DApps [AW18]

• Ethereum: A secure decentralised generalised transaction ledger [Woo22].

• The Ethereum Development Documentation [Eth23].

• Ethereum Smart Contract Development in Solidity [Zhe+20].

• The Foundry Documentation [Tea23].

• Upgrading Ethereum: A technical handbook on Ethereum’s move to proof of
stake and beyond [Edg23].

• OpenZeppelin Documentation [BA23].

Finally, the Cardano chapter required the following:

• Cardano for the Masses: A financial operating system for people who don’t have
one [Gre22].

• Cardano Developer Portal [IOG23].

• Aiken: the Future of Smart Contracts [Ros23].

• An Introduction to Plutus Core [Gal21].

• Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol [Kia+17].

• Ouroboros-BFT: A Simple Byzantine Fault Tolerant Consensus Protocol [KR18].

• Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain [Dav+18].
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Chapter 2

Prerequisites

This chapter is dedicated to a thorough examination of blockchain technology and
will use land registration as example throughout this chapter. The motivation for this
focus arises from the existing issues inherent to conventional land registration systems,
which facilitates further exploration of alternative, more efficient methodologies.

Traditional land registration systems, despite their historical efficiency, are increasingly
scrutinized for their various limitations. Commonly observed problems include human
error, inaccuracies, susceptibility to manipulation and fraud, as well as prolonged and
costly transactions [Int11]. Additionally, the processes of data access and verification
present significant challenges due to outdated infrastructures and lack of centralized,
real-time data access.

These issues underscore the need for comprehensive innovation within land registration
systems. Rather than adopting a piecemeal approach to reform, this chapter suggests
a restructuring of the system, one that integrates modern technologies to holistically
address the identified challenges.

Blockchain technology is introduced as a potential answer. To ensure a comprehensive
understanding, the chapter first explores decentralized systems, cryptography, and
automated contracts as independent solutions. Each component’s individual strengths
and weaknesses are examined in order to understand their potential impact and limi-
tations.

The discussion then proceeds to blockchain technology as a unified solution that amal-
gamates the aforementioned components. The chapter delves into the core elements of
blockchain, including Distributed Ledger Technology (DLT), cryptography, consensus
mechanisms, and smart contracts. Then a section shows how they interact to form a
cohesive whole.

The subsequent section conceptualizes a land registration process underpinned by
blockchain technology, and how it could serve to mitigate the issues prevalent in
traditional systems. Each phase of the blockchain-based land registration process will
be dissected to comprehend how blockchain addresses the identified challenges.

Upon completion of this chapter, readers should gain a solid understanding of blockchain
technology.

As we move towards a more digital and interconnected world, the need for a more
robust, secure, and efficient system has become evident.
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2.1 Land Registration Challenges
Land registration systems record the ownership of land and property and are funda-
mental to societal functions, facilitating transactions and disputes resolution. However,
traditional land registration systems are fraught with a series of challenges that often
result in inefficiency, inaccuracies, and a lack of trust among stakeholders.

In traditional land registration systems, a significant amount of the process is handled
manually, which makes it highly susceptible to human error. Mistakes in data entry,
updates, and validation can lead to inaccuracies in the registry. In some cases, these
inaccuracies may cause serious disputes over land ownership that are costly and time-
consuming to resolve.

Land registration systems are frequently centralized, managed by a single entity or
authority. This centralization often leads to a lack of transparency and accountability,
providing opportunities for manipulation and fraud. False documentation and iden-
tity theft are among the types of fraudulent activities that can occur, resulting in
unauthorized transfers and registrations.

The process of land registration often involves numerous steps, each requiring a con-
siderable amount of time and resources. This includes multiple verification stages,
document handling and approvals, which often span across different departments or
authorities. Not only does this result in lengthy transaction times, but it also incurs
significant administrative costs.

Access to information in traditional land registration systems is often impeded by bu-
reaucratic red tape and outdated technologies. As a result, verifying the authenticity
and accuracy of records is often a challenging and time-consuming task. Further-
more, the lack of real-time data updates can lead to instances where multiple parties
unknowingly base decisions on outdated information, thus causing conflicts.

These challenges underscore the limitations of traditional land registration systems.
This solution ideally would address these previously mentioned issues. The subsequent
sections will explore technology-driven solutions to these issues.

2.2 Solutions
The previous section discussed issues with the current iteration of land registration
systems. This section will attempt to address these and find possible technological
solutions. These solutions include cryptography, decentralized systems, and automated
contracts.

Cryptography
Using cryptography it is possible to create a land registration system. Imagine a land
registration system with two rules.

The first rule is that a central authority, here called the “Registry”, can create and
transfer land titles whenever it wants. To create a land title, it creates a new ID and
constructs a string with this ID. It then computes the digital signature of this string
with its private key. This string together with its signature, is a land registration token.
Anyone can verify the validity of this token by checking if the signature is valid for
the string.

Here follows a short explanation of digital signatures. A digital signature is supposed
to be an analog to a handwritten signature. It thus has two properties. First, only the
owner of the signature can create the signature, but anyone who can see the signature
can verify it is valid. Secondly, the signatures has to be tied only one document as
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to not allow the signature to be used to agree to a different document which was not
signed by the signature holder at all.

The above discussion is very intuitive, below is a more concrete explanation of
what is meant by it. A digital signature scheme consists of the following three al-
gorithms:

• generate_keys(keysize) →(sk, pk): the generate_keys function takes a key
size and generates a key pair. The private key, sk, should never be given out to
any other users and remains a secret to everyone. The private key is used to
sign messages. The public key, pk is the verification key which can be shared
publicly. Anyone with access to the public key can use it to verify signatures
created with the corresponding private key. This function is randomized as to
generate different keys for different people.

• sign(sk, message) →sig: the sign function takes a message and a private key
as inputs and outputs a signature for the message using the private key.

• verify(pk, message, sig) →bool: the verify function takes a message, a signa-
ture, and a public key as input. It returns true if that signature is valid for a
message using the public key, and false otherwise. This allows anyone to check
if a message is signed by the owner of a public using a certain signature. This
function as to be deterministic.

The following two properties have to hold under a digital signature scheme:

• Any valid signature must verify using the verify function.

• Signatures must be unforgeable. Which means that if someone has access to a
public key and sees the corresponding signatures, he cannot forge the signature
for arbitrary messages.

Another convenient property is that public keys can be equated to an identity of a user.
If another user receives a message with a signatures which is verified with a public
key pk, then the receiver can think of pk stating the message. Thus, it is possible
to think a public as an actor in a system who can create messages by signing those
messages. From this point-of-view, the public key is an identity and for someone to
use this identity, he has to have access to the corresponding public key, sk.

The second rule is that whoever owns a token can transfer it to anyone else. This is
not done by simply sending the token datastructure to the recipient, but by using
cryptographic operations.

For example, the Registry wants to send a token to Alice. To do this, the Registry
creates a statement which says “Give this to Alice”, where this is a hash pointer which
references the token. Note that identities are simply pubic keys, so Alice refers to one
of her public keys in this case. Next the Registry signs the serialized representation
of the statement. Since the Registry originally owned the token, it has to sign any
statements which transfer the token. Once this statement is signed, Alice is the owner
of the token, and thus owner of the property. Alice can prove to anyone that she owns
it, because she can present the datastructure with the Registry’s signature and it
points to a valid token.

Now follows a short explanation of hash functions and hash pointers. A general hash
function is a mathematical function with the following properties:

• Its input can be of an arbitrary size.

• Its output has a fixed size.

• It is deterministic.
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• It is efficiently computable.

Cryptographic hash functions have three more properties: collision resistance, hiding,
and avalanche effect.

Collision resistance means that it is very unlikely that two different inputs produce
the same output. In practice this means that nobody can find a collision. Hashes serve
as a summary of piece of data or message. This is an efficient way to “remember” what
has already been seen. A big piece of data, multiple gigabytes, has a hash of 256 bits
for example. This greatly reduces the required storage.

The hiding property says that given an output of a hash function, H(x) = y, there is
no feasible way to determine the input, x, to produce the output. This obviously only
holds if the input space is sufficiently large. If, for example, the input space contains
only contains two elements, an attack can simply hash both elements and determine
which of the two input elements produce which hash.

The avalanche effect says that small changes on the input have a large impact on the
output of a hash function. Even a minor change in input should result in a significantly
different hash, making it difficult to infer similarities between similar inputs.

Now a crucial datastructure using hashes will be discussed, namely hash pointers.
A hash pointer is simply a pointer to data together with the cryptographic hash of
that data. The additional cryptographic hash allows users to verify that the data has
not been changed in addition to retrieving the data using the pointer. Hash pointers
can be used in many datastructures. The most basic one is simply replacing existing
pointers with hash pointers.

A linked list with its pointers replaced with hash pointers is one such example. This
datastructure is called a blockchain. In a normal linked list each block contains data
and a pointer to the previous block. In a blockchain each blocks not only contains
the location of the previous data block, but also the hash of that data. Thus it allows
users to verify that the previous block has not been changed. One application of a
blockchain is a tamper-evident log. This type of log can only be appended to, since
altering earlier changes to logs will be detected.

Now back to the land registry example. This implementation has a fundamental
security flaw. For example, Alice has transferred her token to Bob by sending a signed
transfer to Bob, but she did not tell anyone else about this transfer. Alice can then
create another signed transfer which transfers the same token to Charlie. To Charlie
this transfer seems valid, and he is now the owner of the token. Both Bob and Charlie
can lay claim to the same land title. This is called a double-spending attack, since the
same token is being used twice.

To solve this double-spending issue some changes will have to be made to the land
registration system.

The first difference is that now the central authority, the Registry, openly publishes
an append-only ledger with a history of all transfers. Transfers are datastructures
with an ID, property ID, buy and seller IDs, and the signatures of all parties. It is
also important that a transfer references the previous transfer, as to create a chain
of transfers back to the creation of the token. This creates an easy to read chain
of transfers and is also easier to validate. The append-only property ensures that
anything written to the ledger will remain there forever. This can be used to prevent
double-spending by having every transfer written in the ledger before being accepted.
This means that it is public knowledge if tokens were sent to a different owner before
being sent to an unsuspecting receiver.

The Registry can implement this functionality by using the previously mentioned
blockchain datastructure. The chain consists of a series of block with each containing
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transfers. Thus, each block will contain the transfer ID, the contents of the transfer,
and a hash pointer to the previous block. The registry signs the hash pointer of the
head of the chain and publishes its signature along with the blockchain, which finalizes
the data in the blockchain.

In this system a transfer is only valid if it is contained in the blockchain published and
signed by the Registry. Any user can verify that a transfer is endorsed by the Registry
by simply checking the signature of a blockchain containing the transfer published by
the Registry. The Registry is careful not to include transfers which double-spend a
token.

The blockchain with hash pointers is required to check two users have the history
of transactions signed by the Registry. This stems from the append-only property
of a blockchain. If some transfers were changed, removed, or added, it will affect all
the following blocks due to the hash pointers. Such a change is obvious and easy to
catch.

Creating tokens works in the same way, but transferring tokens works differently.
Multiple tokens can be exchanged in a single transfer, this requires multiple users to
sign the transfer. Thus, the rules for transferring tokens are the following:

• The transferred tokens are valid, which means that they were created in a previous
block.

• The transferred tokens are not double-spent, which means they have not already
been transferred.

• No new tokens are created, only the Registry can create new tokens.

• The transfer is signed by all the owners of the tokens being transferred.

A transfer is valid if these rules are followed, then the Registry will accept it and
add it to the blockchain. Only after the transfer is added to the blockchain and it is
published, users can be sure that a transfer has occurred.

This system still has a fundamental problem, however. The problem is the Registry
itself, this entity has too much power. It cannot create fake transfers or forge signatures,
But it can stop accepting transfers from certain users, thus denying service and making
their tokens useless. The Registry can also create an arbitrary number number of tokens
if it wants to. Or the Registry can also just give up on the system and publishing new
blockchain updates.

The conclusion is that the problem is centralization and the central question is now
how to de-Registry-ify the system? Is it possible to get a well-functioning system with
this central authority figure?

This is possible if all users can agree on a single public blockchain as the authori-
tative history of all transfers. The users have to agree on which transfers are valid,
which transfers have already occurred to prevent double-spending, and assign IDs in
a decentralized way. Creating new tokens also needs to happen in a decentralized
way.

Decentralized Systems
This section will discuss on how to move from a centralized system to a decentral-
ized system. Shifting from a centralized blockchain land registration system to a
decentralized one involves fundamental changes in how the system is governed and
operated. Instead of having a central authority managing, verifying, and recording all
transactions, these responsibilities are distributed among multiple participants in the
network.
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Looking back on the system built in the previous section, there are questions which
need to be answered.

• Who maintains and publishes the blockchain?

• Who decides which transfers are valid?

• Who creates more tokens?

Before answering these questions, it is important to discuss what kind of network
the system will use. Centralized, decentralized, and distributed networks are different
ways in which nodes are connected within a system or network. Each type of network
structure has its unique attributes. A visual representation of each structure can be
seen in figure 2.1

In a centralized network, all nodes connect to and communicate with a single cen-
tral node or server. The central node stores data and manages resources, and it is
responsible for processing requests and controlling functions within the network.

In a distributed network, all processing power, storage, and functions are spread across
all nodes in the network. Every node is equal and capable of performing the same
tasks. This is an ideal state where the system is both decentralized (no central point
of control) and distributed.

Decentralized networks eliminate the central node and instead distribute control across
multiple nodes. Each node operates independently and communicates directly with
other nodes.

Since the system requires each node to run independently, the most suitable network
structure would be a decentralized network. One such network architecture is a peer-to-
peer, p2p, network since it is close a purely decentralized network which is completely
public.

In this network every node has a copy of the blockchain, each containing a list of
blocks which in turn contain a list of transfers. When a Alice wants to transfer a token
from to Bob for example, she sends this transfer to all peer-to-peer nodes. When a
node receives this transfers, it validates it according to the rules and, if valid, adds
it to a set of candidates to add to the blockchain. When there are enough transfers
or if a certain time has passed the node attempts to add the transfers to a block and
append it to the blockchain.

The problem in this scenario is that every node has its own version of the truth.
Multiple users are broadcasting transfers over the network and nodes must agree on
the order of the transfers and which ones are already added to the blockchain, thus
which transfers are valid. The result is a global blockchain for the entire system. This
requires a consensus mechanism.

This results in a system where all nodes in the peer-to-peer network posses a ledger of
a sequence of blocks, a blockchain, with each block containing a list of transfers which
all nodes have reached consensus on. Each node also has a set of transfers which it has
received, but have not been included in the blockchain. This means that consensus
has not been reached for these transfers yet, thus this set might be different for each
node.

Since peer-to-peer networks are imperfect, nodes might join or leave at any time and
nodes might have connectivity issues, and there might be malicious actor, a consensus
mechanism in which all nodes must participate is not desirable or even possible.
Because the system is also geographically distributed, there might also be a lot of
latency which might impair such a consensus mechanism. Remember that public keys
are used to identify users and nodes. These can be changed at any time since there is
no central authority to assign identities, which makes user identities are non-persistent.
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This also makes the design for a consensus mechanism harder since a “one-vote-per-
node” is impossible to implement. Malicious actors would simply create a lot of nodes
with different identities to acquire an enormous amount of votes, this is called a Sybil
attack.

Instead the consensus mechanism that the system will use relies on randomness. In
essence, the consensus mechanism would run a “lottery” which every node can enter
by “buying” tickets. Then a single winner is picked and this winner can propose a new
block to be added to the blockchain. This prevents a Sybil attack, because no matter
how many identities an actor makes, the actor has to “buy” a ticket. Of course, nodes
do not really buy a ticket, but the random selection is approximated by selecting a
node in proportion to a scarce resource nobody can monopolize.

This lottery system can be used with different kinds of resources. Below are some of
the more popular kinds:

• Computational Power: This is the resource used in Proof of Work, PoW, con-
sensus mechanisms. Nodes must use computational power to solve complex
mathematical problems, and the first one to find a solution gets to add the next
block to the chain. This requires substantial electricity and expensive hardware,
making it a significant investment.

• Stake or financial resources: Proof of Stake (PoS) and its variations use this type
of resource. In these systems, nodes must prove ownership of a certain amount
of the network’s token. The more a node has at stake, the more likely it is to be
chosen to validate the next block.

• Time: Time-locked transactions, used in some Proof of Stake mechanisms, require
nodes to lock up their tokens for a certain period, creating an opportunity cost.

• Storage Space: In Proof of Space or Proof of Capacity consensus mechanisms
nodes allocate a certain amount of storage space to the network to participate
in the consensus process. This can be a costly resource, as it involves purchasing
and maintaining storage hardware.

• Bandwidth: Some consensus mechanisms, like Proof of Bandwidth, require nodes
to commit a certain amount of network bandwidth to participate in the consensus
process.

In the land registry system Proof of Work will be used for the sake of simplicity. The
idea behind PoW is that the random selection of a node is approximated by basing
node selection off of computing power. In essence nodes compete with eachother by
using their computing power, which results in nodes being selected in proportion to
their capacity.

The system will use hash puzzles to test each node’s computing power. When a node
wishes to propose a block, it needs to find a number such that when the number is
concatenated with the hash pointer and all transactions, then the hash of the total
has to be below a certain target. This number is small in comparison to the total
output space of the hash function. When the node does propose the block, it needs
to add the number as proof of the computation. Because of the avalanche effect,
finding this number is difficult. The only way to find the number is brute-forcing,
meaning try number one-by-one until the node gets lucky and the hash satisfies the
condition.

The difficulty is proportional to the target space size compared to the total output
space size. If the target space is 1% of the total output space, then a node has to try
100 numbers to get a number which satisfies the target.

All other nodes can verify this computation easily by simply hashing the number, hash
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pointer, and transaction and then comparing it to the proof. If they are equal, the
block is valid.

Using this method, there is no “magic” pick a random node function. Instead nodes
compete independently until they find a solution and propose a block. Thus the system
is completely decentralized.

Below is a step-by-step walk through the system and how it work:

1. Gathering Transactions: as users interact with the system, by registering new
properties or transferring ownership of existing ones, their transfers are broadcast
to all nodes in the network. Each node collects these transfers into their transfer
set, often called a mempool. From this set a candidate block of transfers is
created.

2. The Lottery: the next step is where the “lottery” comes into play. Nodes “buy”
tickets with a scarce resource: computational power. Each node uses its com-
putational power to solve a complex mathematical problem. This problem is
designed such that it cannot be solved by simply applying a formula. Instead,
the only feasible way to solve it is by making numerous guesses until a solution
is found. The node which finds a solution first is the winner of the lottery and
can add its candidate block.

3. Adding the Block to the Chain: the winning node broadcasts its block together
with the solution. The other nodes can easily verify this solution. Upon verifying
that the solution is correct, and the proposed block does not violate any of the
network’s rules, like double-spending a token, the nodes add the proposed block
to their copies of the blockchain. The winner of the lottery is often rewarded
with some form of compensation, such as cryptocurrency in a blockchain network
or, in the case of our land registry, perhaps a reduction in future transfer costs.
This serves as an incentive to take part in the consensus of the system.

4. Repeat the Process: the process then starts over, with nodes gathering new
transactions and participating in a new lottery for the chance to add the next
block to the chain. Nodes express their acceptance of the blocks by including its
hash in the next block.

When a node receives two different chains, it simply chooses the longest chain.
Two concurrent chains of the same length will eventually resolve itself since
nodes are picked randomly and one chain will win out in the end.

This random lottery consensus mechanism makes the network highly secure. As long
as no single node controls a majority of the computational power in the network, it
is practically impossible for any node or group of nodes to dictate the state of the
blockchain.

But what happens if a malicious node is picked for adding a block to the blockchain?
Other nodes will continue the chain without the malicious block present, this is an
implicit rejection. This makes consensus take longer however, since users might have
to wait several rounds before being sure his block is in the “correct” branch of the
blockchain.

Consider a denial-of-service attack. Alice decides she does not want to include any
transfers coming from Bob’s address in any block she proposes. Even though it is
a valid attack, the implications are not serious since the proposing node is picked
randomly. If Alice gets picked in a round, Bob can wait until the next round to get
his transfers into a block.
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(a) Centralized network (b) Distributed network (c) Decentralized network

Figure 2.1: Network architectures.

2.3 Implementing a Blockchain
With an understanding of the theoretical components and operation of a blockchain-
based system, the discussion now shifts to the practical aspect of its implementation.
This section focuses on the design and implementation of the system using Rust. The
choice of Rust for this project is due to its remarkable memory safety guarantees, high
performance, and rich ecosystem of libraries.

These sections explores key steps in creating this system, from the basic blockchain
data structure to the network side. The aim is to illustrate how theoretical concepts,
such as decentralized networks and consensus mechanisms, can be translated into
tangible software constructs.

It should be noted that building such a system from scratch involves deep understand-
ing of both the blockchain and Rust programming. Therefore, the following sections
will provide a high-level overview, focusing on crucial elements and logic, rather than
diving into minute coding details.

The first section examines the foundational component of any blockchain system: the
blockchain structure itself.

Basic Blockchain Structure
First fundamental datastructures have to be defined in order to construct a blockchain
system,. These datastructures are: the blocks, blockchain, and transfers, here called
transactions. In Rust, structs are used to define these data structures. Below are the
individual datastructures.

Transaction

A transaction in this context represents a change of ownership of a token representing a
land title. It includes details such as the IDs for the current and referenced transaction,
property ID, buyer ID, seller ID, and the digital signatures of all involved parties. This
can also be represented as a struct, as seen in listing 2.1.

1 pub struct Transaction {
2 transaction_id: String,
3 input_transaction_id: String,
4 property_id: String,
5 buyer_id: String,
6 seller_id: String,
7 signatures: HashMap<String, String>, // A mapping of party IDs to their digital

↪→ signatures
8 }
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Listing 2.1: The Transaction struct.

Block

Each block in the blockchain contains its ID, its own hash, a reference to the previous
block through its hash, a timestamp indicating when the block was created, a nonce
for the PoW consensus mechanism, and finally the list of transactions in the block.
Listing 2.2 show this struct in Rust.

1 pub struct Block {
2 pub hash: String,
3 pub prev_hash: String,
4 pub timestamp: i64,
5 pub nonce: u64,
6 pub transactions: Vec<Transaction>
7 }

Listing 2.2: The Block struct.

Blockchain

The blockchain itself is essentially a linked list of blocks. It contains a list of blocks,
the difficulty for the consensus mechanism, and the mempool of transactions not yet
included in a block. This can be achieved with the struct in listing 2.3:

1 pub struct Blockchain {
2 pub blocks: Vec<Block>,
3 pub difficulty: u32,
4 pub mempool: Vec<Transaction>
5 }

Listing 2.3: The Blockchain struct.

The creation of these data structures forms the foundational skeleton of the blockchain
system. As the section progresses, these structures will be fleshed out with additional
functionality and implement the core features of the system, such as the addition of
new blocks and transactions, validation of the blockchain, etc.

Blockchain Operations
With the basic data structures in place, it is possible to proceed to define the operations
which interact with the blockchain. These operations include creating new blocks and
transactions, adding them to the blockchain, and validating the blockchain.

Creating Blocks

A new block can be created by instantiating the Block struct. The nonce is set to zero,
because proof-of-work will be performed on the block later.

1 pub fn new(id: u64, prev_hash: String, transactions: Vec<Transaction>) -> Self {
2 let timestamp = Utc::now().timestamp();
3 let mut nonce = 0;
4 let mut hash = "".to_string();
5
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6 Self{id,
7 hash,
8 prev_hash,
9 timestamp,

10 nonce,
11 transactions,
12 }
13 }

Listing 2.4: Function to create a Block.

Hashing Blocks

These functions allow the system to find hashes for blocks below the target value, thus
accessing the PoW consensus mechanism The difficulty value tells the functions how
many leading zeroes the hash should have.

The leading_zeros function counts the leading zeroes of a hash.

The encode_hex function converts a vector of bytes to a hexadecimal string for usage
in the datastructures.

The mine_block function tries to find a hash for a block with a certain amount of
leading zeroes. It simply starts from a nonce with value zero and keeps adding one to
the nonce until it finds a hash which satisfies the target value.

Finally, the hash_block function hashes a block by converting the block datastructure
into a vector of bytes and then hashing the result.

1 pub fn leading_zeros(hash: Vec<u8>) -> u32 {
2 let mut zeros: u32 = 0;
3
4 for c in hash {
5 match c.leading_zeros() {
6 0 => break,
7 8 => zeros += 8,
8 z => { zeros += z;
9 break; }

10 };
11 }
12 zeros
13 }
14
15 pub fn encode_hex(bytes: Vec<u8>) -> String {
16 let mut s: String = String::with_capacity(bytes.len() * 2);
17 for b in bytes {
18 write!(&mut s, "{:02x}", b).unwrap();
19 }
20 s
21 }
22
23 pub fn mine_block(block: Block, difficulty: u32) -> Block {
24 let mut hash: String = encode_hex(block.hash_block());
25 let mut tmp_block: Block = Block {
26 hash: String::from("0"),
27 prev_hash: block.prev_hash,
28 timestamp: block.timestamp,
29 nonce: block.nonce,
30 transactions: block.transactions
31 };
32
33 while leading_zeros(hex::decode(&hash).unwrap()) < difficulty {
34 tmp_block.nonce += 1;
35 hash = encode_hex(tmp_block.hash_block());
36 }
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37 info!("Nonce: {}", tmp_block.nonce);
38 info!("{}", hash);
39 tmp_block.hash = hash;
40 tmp_block
41 }
42
43 impl Block {
44 pub fn hash_block(&self) -> Vec<u8> {
45 let mut block_bytes: Vec<u8> = vec![];
46
47 block_bytes.append(&mut bincode::serialize(&self.prev_hash).unwrap());
48 block_bytes.append(&mut bincode::serialize(&self.timestamp).unwrap());
49 block_bytes.append(&mut bincode::serialize(&self.nonce).unwrap());
50 block_bytes.append(&mut bincode::serialize(&self.transactions).unwrap());
51
52 let mut hasher = Sha256::new();
53 hasher.update(block_bytes);
54 hasher.finalize().as_slice().to_owned()
55 }
56 }

Listing 2.5: Functions to perform PoW.

Creating Transactions

A new transaction can be created by instantiating the Transaction struct. This is
relatively straightforward, but don’t forget that the signatures field should be correctly
populated with valid signatures from the parties involved.

1 pub fn new(input_transaction_id: String, property_id: String, buyer_id: String,
↪→ seller_id: String, signatures: HashMap<String, String>) -> Self {

2 let id_str = &format!("{}{}{}{}{}", input_transaction_id,
3 property_id,
4 buyer_id,
5 seller_id,
6 serde_json::to_string(&signatures).unwrap());
7 let mut hasher = Sha256::new();
8 hasher.update(id_str);
9 let transaction_id =

↪→ String::from_utf8_lossy(hasher.finalize().as_slice()).to_string();
10 Self {transaction_id,
11 input_transaction_id,
12 property_id,
13 buyer_id,
14 seller_id,
15 signatures,
16 }
17 }

Listing 2.6: Function to create a Transaction.

Adding Blocks and Transactions

Blocks can be added to the blockchain by pushing them onto the blocks vector.
Transactions that are not yet included in a block can be added to the mempool

1 impl Blockchain {
2 pub fn add_block(&mut self, block: Block) -> Result<(), BlockAddError> {
3 let previous_block: &Block = self.blocks.last().expect("There is a least one

↪→ block");
4 match self.validate_block(&block, previous_block) {
5 Result::Ok(_) =>{
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6 self.blocks.push(block);
7 Result::Ok(())
8 },
9 Result::Err(_) => {

10 error!("Couldn't validate block!");
11 Result::Err(BlockAddError)
12 }
13 }
14 }
15
16 pub fn add_transaction(&mut self, transaction: Transaction) {
17 self.mempool.push(transaction);
18 }
19 }

Listing 2.7: Function to add Blocks and Transaction to a Blockchain.

Validating the Blockchain

Validating the blockchain involves checking that each block’s hash meets the PoW
condition and that the previous hash matches the hash of the previous block. Validating
transactions has not been implemented yet.

1 impl Blockchain {
2 fn validate_block(&self, block: &Block, previous_block: &Block) -> Result<(),

↪→ BlockValidationError> {
3 if block.prev_hash != previous_block.hash {
4 warn!("block {} has wrong previous hash", block.hash);
5 return Result::Err(BlockValidationError);
6 } else if leading_zeros(hex::decode(&block.hash).expect("Can't decode hex

↪→ string!")) < self.difficulty {
7 warn!("block {} has invalid difficulty", block.hash);
8 return Result::Err(BlockValidationError);
9 } else if hex::encode(block.hash_block()) != block.hash {

10 warn!("block {} has invalid hash", block.hash);
11 println!("Got {} and expected {}", block.hash,

↪→ hex::encode(block.hash_block()));
12 return Result::Err(BlockValidationError);
13 }
14 Result::Ok(())
15 }
16
17 pub fn validate_chain(&self) -> Result<u32, ChainValidationError> {
18 for (block1, block2) in self.blocks.iter().tuple_windows() {
19 match self.validate_block(block2, block1) {
20 Result::Ok(_) => continue,
21 Result::Err(_) => {
22 error!("Couldn't validate block {}!", block2.id);
23 return Result::Err(ChainValidationError);
24 }
25 }
26 }
27 Result::Ok(u32::try_from(self.blocks.len()).expect("Can't cast usize to u32"))
28 }
29 }

Listing 2.8: Functions to validate Blocks and Blockchains.

Updating the Blockchain

This function updates a blockchain given a second blockchain. Its purpose is to choose
between two blockchains when the node receives another blockchain from the network.
It always pick the longest valid chain.
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1 impl Blockchain {
2 pub fn update_chain(self, remote: Blockchain) -> Blockchain {
3 match (self.validate_chain(), remote.validate_chain()) {
4 (Result::Ok(l1), Result::Ok(l2)) => {
5 if l1 >= l2 {
6 return Blockchain {blocks: self.blocks, difficulty: self.difficulty,

↪→ mempool: self.mempool}
7 } else {
8 return Blockchain {blocks: remote.blocks, difficulty:

↪→ remote.difficulty, mempool: remote.mempool}
9 }

10 },
11 (Result::Err(_), Result::Err(_)) => panic!("Both chains are invalid!"),
12 (Result::Err(_), _) => {
13 return Blockchain {blocks: remote.blocks, difficulty: remote.difficulty,

↪→ mempool: remote.mempool}
14 },
15 (_, Result::Err(_)) => {
16 return Blockchain {blocks: self.blocks, difficulty: self.difficulty,

↪→ mempool: self.mempool}
17 }
18 };
19 }
20 }

Listing 2.9: Function to choose between two blocks.

Network
Once the fundamentals of the blockchain structure and operations are set up, the
next step is implementing the network that will support the decentralized system.
In a blockchain-based system, the network plays a crucial role in facilitating the
decentralization and peer-to-peer interaction.

The blockchain-based land registry operates on a peer-to-peer network, which means
each node in the network acts as both a client and a server. Each node in the network
holds a copy of the entire blockchain and independently verifies the transactions.

Each node in our decentralized system represents a participant in the land registry
system. These could include property owners, brokers, or other relevant authorities. A
node should be able to:

• Store the entire blockchain.

• Broadcast valid transactions to other nodes.

• Broadcast new blocks when they are mined.

• Validate and relay transactions and blocks from other nodes.

A logical library choice for this system is libp2p. Libp2p is networking framework
that enables the development of P2P applications.

Below is the code to setup the node. It uses a command line interface for each node
to add blocks, list peers, and interact with the blockchain. As is also visible in listing
2.10, the network uses the gossip protocol instead of flooding.

The network uses three topics: one for blockchain-related message, one for block-related
messages, and one for transaction-related messages.

Three command line commands are possible:

• ls p: this command show a list of peers.
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• ls c: this command shows the entire blockchain on the node.

• create b: this command adds a block to the blockchain.

In the event loop the node reacts to command line inputs and messages from peers.
This code worked fine, but was hard to extend. It was later scrapped, but due to
time-constraints the network part of the code was not finished.

1 #[async_std::main]
2 pub async fn main() -> Result<(), Box<dyn Error>> {
3 let mut new_blockchain: Blockchain = new_blockchain();
4 // Create a random PeerId
5 let id_keys = identity::Keypair::generate_ed25519();
6 let local_peer_id = PeerId::from(id_keys.public());
7 info!("Local peer id: {local_peer_id}");
8
9 // Set up an encrypted DNS-enabled TCP Transport over the Mplex protocol.

10 let transport = tcp::async_io::Transport::new(tcp::Config::default().nodelay(true))
11 .upgrade(upgrade::Version::V1)
12 .authenticate(
13 noise::NoiseAuthenticated::xx(&id_keys).expect("signing libp2p-noise static

↪→ keypair"),
14 )
15 .multiplex(yamux::YamuxConfig::default())
16 .timeout(std::time::Duration::from_secs(20))
17 .boxed();
18
19 // To content-address message, we can take the hash of message and use it as an ID.
20 let message_id_fn = |message: &gossipsub::Message| {
21 let mut s = DefaultHasher::new();
22 message.data.hash(&mut s);
23 gossipsub::MessageId::from(s.finish().to_string())
24 };
25
26 // Set a custom gossipsub configuration
27 let gossipsub_config = gossipsub::ConfigBuilder::default()
28 .heartbeat_interval(Duration::from_secs(10)) // This is set to aid debugging by

↪→ not cluttering the log space
29 .validation_mode(gossipsub::ValidationMode::Strict) // This sets the kind of

↪→ message validation. The default is Strict (enforce message signing)
30 .message_id_fn(message_id_fn) // content-address messages. No two messages of the

↪→ same content will be propagated.
31 .build()
32 .expect("Valid config");
33
34 // build a gossipsub network behaviour
35 let mut gossipsub = gossipsub::Behaviour::new(
36 gossipsub::MessageAuthenticity::Signed(id_keys),
37 gossipsub_config,
38 )
39 .expect("Correct configuration");
40 // Create a Gossipsub topic
41 let chain_topic = gossipsub::IdentTopic::new("chain");
42 let block_topic = gossipsub::IdentTopic::new("block");
43 let transaction_topic = gossipsub::IdentTopic::new("transaction");
44 // subscribes to our topic
45 gossipsub.subscribe(&chain_topic)?;
46 gossipsub.subscribe(&block_topic)?;
47 gossipsub.subscribe(&transaction_topic)?;
48
49 // Create a Swarm to manage peers and events
50 let mut swarm = {
51 let mdns = mdns::async_io::Behaviour::new(mdns::Config::default(),

↪→ local_peer_id)?;
52 let behaviour = MyBehaviour { gossipsub, mdns };
53 SwarmBuilder::with_async_std_executor(transport, behaviour, local_peer_id).build()
54 };
55
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56 // Read full lines from stdin
57 let mut stdin = io::BufReader::new(io::stdin()).lines().fuse();
58
59 // Listen on all interfaces and whatever port the OS assigns
60 swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;
61
62 // println!("Enter messages via STDIN and they will be sent to connected peers using

↪→ Gossipsub");
63
64 // Kick it off
65 loop {
66 select! {
67 line = stdin.select_next_some() => {
68 match line.expect("stdin not to close").as_str() {
69 "ls p" => handle_print_peers(&swarm),
70 cmd if cmd.starts_with("ls c") => handle_print_chain(&new_blockchain),
71 cmd if cmd.starts_with("create b") => handle_create_block(&mut

↪→ new_blockchain),
72 _ => error!("unknown command"),
73 }
74 },
75 event = swarm.select_next_some() => match event {
76 SwarmEvent::Behaviour(MyBehaviourEvent::Mdns(
77 mdns::Event::Discovered(list))) => {
78 for (peer_id, _multiaddr) in list {
79 info!("mDNS discovered a new peer: {peer_id}");
80 swarm.behaviour_mut().gossipsub.
81 add_explicit_peer(&peer_id);
82 }
83 },
84 SwarmEvent::Behaviour(MyBehaviourEvent::Mdns(
85 mdns::Event::Expired(list))) => {
86 for (peer_id, _multiaddr) in list {
87 warn!("mDNS discover peer has expired: {peer_id}");
88 swarm.behaviour_mut().gossipsub.
89 remove_explicit_peer(&peer_id);
90 }
91 },
92 SwarmEvent::Behaviour(MyBehaviourEvent::Gossipsub(
93 gossipsub::Event::Message {
94 propagation_source: peer_id,
95 message_id: id,
96 message,
97 })) => info!(
98 "Got message: '{}' with id: {id} from peer: {peer_id}",
99 String::from_utf8_lossy(&message.data),

100 ),
101 SwarmEvent::NewListenAddr { address, .. } => {
102 info!("Local node is listening on {address}");
103 }
104 _ => {}
105 }
106 }
107 }
108 }

Listing 2.10: Code to setup the node.

Below are functions to handle specific events on the node. These react to the command
line inputs of the user.

1 pub fn get_list_peers(swarm: &Swarm<MyBehaviour>) -> Vec<String> {
2 info!("Discovered Peers:");
3 let nodes = swarm.behaviour().mdns.discovered_nodes();
4 let mut unique_peers = HashSet::new();
5 for peer in nodes {
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6 unique_peers.insert(peer);
7 }
8 unique_peers.iter().map(|p| p.to_string()).collect()
9 }

10
11 pub fn handle_print_peers(swarm: &Swarm<MyBehaviour>) {
12 let peers = get_list_peers(swarm);
13 peers.iter().for_each(|p| info!("{}", p));
14 }
15
16 pub fn handle_print_chain(chain: &Blockchain) {
17 info!("Local Blockchain:");
18 let pretty_json =
19 serde_json::to_string_pretty(&chain.blocks).expect("can jsonify blocks");
20 info!("{}", pretty_json);
21 }
22
23 pub fn handle_create_block(chain: &mut Blockchain) {
24 let new_block = Block {
25 id: u64::try_from(chain.blocks.len()).expect("usize not bigger than u64"),
26 timestamp: Utc::now().timestamp(),
27 prev_hash: chain.blocks.last().expect("at least one previous

↪→ block").hash.clone(),
28 nonce: 0,
29 hash: String::from("0"),
30 transactions: vec![]
31 };
32 let mined_block: Block = mine_block(new_block, chain.difficulty);
33 match chain.add_block(mined_block) {
34 Result::Ok(_) => info!("Successfully added block!"),
35 Result::Err(_) => panic!("Couldn't add block!")
36 };
37 }

Listing 2.11: Functions to handle events in the node.

Now that the basics of blockchain have been explained, the reader is ready to dive
more in-depth into modern blockchain technologies. The following chapters discuss
Bitcoin, Ethereum, and finally Cardano.
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Chapter 3

Bitcoin

Bitcoin is a collection of technologies similar to the prerequisites discussed in chapter
2. Instead of recording land transactions and registrations as shown in chapter 2, it
stores and transmits a different value. This value is a currency also called Bitcoin on
the Bitcoin network. The network runs primarily on the Internet but can also use
other transport networks.

Participants can use Bitcoin on the network to do almost anything that can be done
with conventional currencies. The activities include buying and selling goods, sending
money to people and organizations, and extending loans.

The difference is that, unlike conventional currencies, Bitcoin is entirely virtual. There
are no physical or digital coins. The “coins” are implied in transactions that transfer
data from address to address. One address is the sender, and the other address is the
recipient. The addresses are the keys that allow participants to prove ownership of
Bitcoin on the network. Participants use these keys to sign transactions, unlocking
the value and allowing them to spend it by transferring them to new addresses and,
thus, a new owner. Owning a valid key to sign a transaction is the only requirement
for spending Bitcoin. The participant has complete control of his Bitcoin.

Bitcoin is a distributed, peer-to-peer system. There is no central authority or point of
control, like a bank, which controls transactions or mints new currencies. New Bitcoin
is created by “mining”, which will be discussed later in this chapter. This mining
process is also its consensus algorithm. Any participant who runs a full node called a
protocol stack can mine Bitcoin. In principle, Bitcoin mining decentralizes currency
issuance, thus taking over the responsibilities of a traditional central bank.

The protocol includes algorithms that regulate the mining functions of the network.
These algorithms ensure that the time to mint new currency stays constant. It will
always take around ten minutes to mint new Bitcoins. The protocol also halves the
amount of Bitcoin mined every four years. The protocol also limits the total supply
of Bitcoin to a fixed 21 million coins. The Bitcoin in circulation follows an elliptic
curve that approaches 21 million by 2140. This issuance model means the currency
is deflationary, and it is impossible to inflate Bitcoin by printing more currency at
will.

Bitcoin is also the name of the protocol. The Bitcoin currency is merely an application
of this protocol. It represents the culmination of four key innovations. These were
already introduced in chapter 2 but will be nuanced and explained in the context of
Bitcoin in this chapter. These four innovations are:

• The Bitcoin protocol: a decentralized peer-to-peer network.
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• The blockchain: a public and decentralized ledger.

• Consensus rules: rules for independent transaction validation.

• The consensus algorithm: a mechanism for reaching globally decentralized con-
sensus.

3.1 Overview
This section gives a high-level overview of the Bitcoin blockchain before jumping
into more technical details. This section introduces the general concepts, jargon, and
purpose of Bitcoin and its mechanisms.

What purpose does Bitcoin even serve? Before Bitcoin, it was possible to relay trans-
actions using networks. The problem, however, is that malicious actors can insert con-
flicting transactions in the network. For example, the actor can create two transactions
spending the same value simultaneously. This action is called a double spend.

Nodes
The Bitcoin network consists of every person running the Bitcoin software, also known
as clients or nodes. These clients communicate with each other about the state of the
network. This communication is necessary to keep every node up-to-date.

A node has three jobs in the network: follow the protocol, share information, and keep
a copy of confirmed transactions.

Each node has been programmed to follow the rules constituting the Bitcoin protocol.
A node uses these rules to check the transactions it receives, and the node can only
relay transactions if they comply. If there are any violations, they will not be passed
on to the rest of the network. For example, one rule is that a transaction cannot
spend more in the output than the sum of the inputs. So if the node does receive a
transaction where the sum of the outputs is larger than the inputs, the node will not
pass on the transaction to other nodes and will blacklist the sender.

The most critical information a node passes on is transactions. There are two main
types of transactions in the Bitcoin protocol:

• Fresh transactions which have recently entered the network.

• Confirmed transactions have been confirmed and entered into the blockchain.
These are received in blocks rather than individually.

The difference between these two is discussed later in this section when mining and
blocks are discussed.

New transactions spread around the network until they are finalized into the blockchain.
Each node has a copy of the blockchain for reference and will share it with others if
their copies are not current. The process of adding new transactions to the blockchain
is called mining.

Each node is an autonomous entity. The network does not tell a node what to do.
The node knows what it has to do and makes decisions on its own. This information
means that the entire network is decentralized.

It is also important to note that a Bitcoin user does not have to run a node to send
or receive Bitcoin. A user only has to get a transaction into the network by sending a
message to a node.
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Mining
Mining is the process of adding transactions to the blockchain. As mentioned in the
previous section, nodes share new transactions over the network. Nodes then store
these transactions in memory; this is called the mempool. Each node can try and mine
transactions in its mempool into the blockchain. A node has to use a lot of processing
power to add transactions to the blockchain.

This processing power is forced onto the node by a challenge. A node has to hash a list
of transactions and attempt to get a hash value prefixed by several zeroes. The number
of zeroes indicates the difficulty set by the network and the number of miners in the
network. The node can hash the transaction with another number to get different
results; this number is called a nonce.

This sound easy, but computationally this is difficult and random. The only way to
get a valid result is by trial and error. This action is what mining is, a lot of hashing
and hoping to get lucky.

When a node gets lucky enough, its selected transactions get added to the blockchain,
and every other node adds the created block to its blockchain. The node also gets a
reward for its effort and any transaction fees.

One question remains: why not just add transactions to the blockchain directly?
Mining allows the network to agree on which transactions to add; this is called con-
sensus.

Take the double-spending example from the introduction. When a user creates a
Bitcoin transaction, only some nodes receive the transaction instantly. Instead, trans-
actions get gossiped around the Bitcoin network. Creating another transaction that
spends the identical Bitcoin and inserting it into the network is possible. Even though
the second transaction is created after the first transaction, the Bitcoin network would
disagree about which transaction to accept because of how transactions travel across
the network.

The network decides which transaction to pick by using mining. When a node completes
the challenge, its picked transactions get added to the blockchain. It takes ten minutes
for each new block of transactions to be added to the blockchain. This method seems
unorthodox and random to reach a consensus, but it does work.

Blockchain
Every node on the Bitcoin network shares a copy of the blockchain. The copy is
necessary because it allows nodes to have a complete list of transactions, and the
nodes can then work out how many Bitcoin are located at each address. This system
is reminiscent of a logbook or ledger.

This data structure is called a blockchain because transactions are not added indi-
vidually but grouped in blocks. Grouping transactions into blocks makes it easier to
propagate changes in the blockchain. Instead of updating the shared data structure
several times per second, the nodes group transactions into blocks and update the
data structure once every ten minutes. These blocks are linked in a chain so that any
change in lower blocks is propagated up to the top. This chain makes tampering with
blocks or transactions more difficult without other nodes noticing.

Nodes on the Bitcoin network share the blockchain. This network is a peer-to-peer
network.

A user can get a copy of the blockchain by downloading the Bitcoin client. Once
installed and executed, the client connects to the network and downloads the blockchain.
As of writing, the size of the blockchain is 486.77 GB; thus, it will take some time. The
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blockchain is this large because it contains every Bitcoin transaction since the third
of January 2009. Downloading the blockchain is a one-off occurrence. Once this is
finished, only individual blocks need to be received, which are only 1 MB in size.

An interesting question is what happens when two branches have the same length.
This phenomenon is called a chain split. The nodes will be network-partitioned until
one chain becomes dominant. Nodes will handle the equal branches on a first-come,
first-serve basis. The method means there will be a network partition where some nodes
assume chain A is the canonical chain, and others assume chain B is the canonical
chain. In such an event, miners race to produce a new block to make their canonical
chain the longest chain first and broadcast it to the network to achieve convergence.
When the contention is resolved, all nodes will switch to the new longest chain and
obsolete the old chain.

Blocks
A block is a set of transactions added to the blockchain. Blocks are created by miners,
as mentioned previously. When a user creates a Bitcoin transaction, it is not added
immediately. A new transaction is held in the mempool before being processed. Miners
gather transactions from the mempool into a candidate block and then try to add the
candidate block to the blockchain.

Each block has a block header. This block header consists of metadata about the
block:

• Version: Version of the Bitcoin protocol used by the block.

• Last block: The identification number of the previous block.

• Transaction root: The transactions are in a Merkle tree data structure. The root
points to the root of the tree.

• Time: Current time.

• Target: Value the miners work with to add blocks to the blockchain. The network
sets this value.

• Nonce: Free value that can be adjusted to hit the hash target.

Miners use the header when attempting to add the block to the blockchain.

To add a block to the blockchain, a miner hashes the block header and hopes the
resulting value is below a specific value. The target value is dictated by the difficulty,
which is set by the Bitcoin network to regulate of complex it is to add a block of
transactions to the blockchain. The difficulty is designed to regulate how quickly blocks
are solved to set the time between blocks added to the blockchain to approximately
ten minutes. The delay is essential to add blocks regularly, even as more miners join
the network. If the difficulty remains the same, the time to add blocks will reduce over
time. The difficulty adjusts every 2016 block, which is roughly two weeks. When this
interval is reached, every node divides the expected mining time for the 2016 blocks
by the actual time. If this number is more significant than one, the difficulty increases.
If it is less than one, the difficulty decreases.

The nonce is a free field that miners can use to try and get the hash value below the
target value. Said in different way, the hash value has to start with a certain number
of zeroes. Nonce means “number used only once” and can be any arbitrary number.
If the first nonce does not work, a miner keeps incrementing the nonce until a good
hash is hit.

Once a nonce is found, the miner can add the block to the blockchain and propagate the
new blockchain through the network. If the new blockchain is well formed and suffices,

24



other nodes will accept the updated blockchain as the new blockchain. All miners will
now look back at their mempool, pick new transactions to put into the candidate block
and start working on the new block. The miners will use the successfully added block
as the new block hash in the header and repeat the race.

Transactions
A transaction contains information about a value being sent to one address and an
amount spent from this address to another. A Bitcoin address keeps track of each
transaction it has received. Different from traditional account-based models, like in
banking, users can only take an approximate amount of Bitcoin to spend somewhere.
They have to spend Bitcoins in batches.

The data contained in a transaction is easily represented in a single line of data. A user
sends this data line into the Bitcoin network when he creates a transaction. Eventually,
one of the nodes in the network will mine this transaction into a block; this block will
be added to the blockchain and marked as confirmed. That is all there is to a Bitcoin
transaction: feeding a simple line of data into the Bitcoin network and waiting for it
to be mined into the blockchain.

When a user wants to send Bitcoin to someone else, he has to use the whole amount he
has received and send the Bitcoin to a new address. In essence, users receive batches,
called outputs, of Bitcoin and must spend whole outputs simultaneously. What if these
outputs add up to more than a user wants to spend? In this case, the user can add
another output to a transaction where he sends the difference to himself. The model
is called the UTXO model, which stands for “Unspent Transaction Output”.

Consider the example illustrated in figure 3.1: a user wants to buy an item costing
11.2 Bitcoin. He does not have a single output to his address which covers the cost
of 11.2 Bitcoin. Instead, he gathers a collection of outputs with a total greater than
11.2 Bitcoin, in this case, 12 Bitcoin. This collection of outputs is referred to as the
inputs of the transaction. Using the total input of 12 Bitcoin, the user creates two
new outputs: 11.2 Bitcoin to the item’s seller and less than 0.8 back to his address.
The difference between the inputs and outputs is called transaction fees. These fees
are gathered by miners when they mine a block; this creates an incentive for miners
to include the transaction in a block.

The outputs used as inputs for the transaction are considered spent and cannot be
used again. The new and unused outputs for the address are unspent and can be used
freely, so the model is called “Unspent Transaction Output”.

In summary:

• A user has a Bitcoin address. Bitcoin arrives at this address in batches, called
outputs.

• A Bitcoin transaction is the process of using these outputs as inputs of another
transaction to create new outputs which belong to other users.

• This can be represented as a single line of data when encoded.

Other users cannot spend a user’s Bitcoin because each transaction output has an
output lock. Nodes will reject the transaction if a user creates a transaction with
another user’s transaction output and cannot unlock the output. Every user with a
Bitcoin address also has a private key, sometimes called a secret key. If a user wants to
spend a transaction output, he can use this private key to unlock the output and send
it to another user. After the transaction is created and the output into the transaction
is unlocked, all nodes will accept the transaction and propagate it throughout the
Bitcoin network.
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Figure 3.1: A simple UTXO example.

Do note that the unlocking sequence described in the paragraph above is only one
way of unlocking a UTXO. Checking the identity is just one instruction in a special
purpose programming language described in section 3.4.

An output lock is a set of requirements placed on an output. To spend these outputs,
a user must satisfy these requirements. The most common type of lock locks an output
to an address and requires a specific private key to unlock it. These locks prevent
users from spending each other’s outputs. During the creation of a transaction, the
creator can put a lock on outputs. When a user wants to send Bitcoin to someone, he
can add a lock saying, “Only the owner of key X can use this output”. The output
will belong to the recipient because they are the sole owner of the private key for this
address when he uses the lock.

In essence, Bitcoin is never really sent. Instead, users construct transactions that
create outputs and send these transactions to the Bitcoin network to get mined. The
blockchain is a data structure of transactions, but in practice, one can think of it as
a storage for outputs. When a user wants to send Bitcoin to someone, he can refer
to unlockable outputs in the blockchain. When this transaction gets mined, the used
outputs become unspendable.

Output locks and unlocks are written in a programming language called Script. The
locks are discussed in depth in section 3.4.

3.2 Addresses
Ownership of Bitcoin is achieved through keys, addresses, and signatures. Users create
the keys. They can be saved in a file, database, or something else. Note that these
are entirely separate from the Bitcoin protocol. These keys enable many exciting
properties, including proof of ownership, mathematical security, and decentralized
trust.
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These aspects are essential. Signatures are required to prove that a user can spend
his Bitcoin. So only a specific user must have access to his private key as proof of
identity.

All transactions require a valid digital signature generated by a private key to be con-
sidered for inclusion on the blockchain. This property means that everyone with access
to the private key can claim ownership of the Bitcoin included in those transactions.
A common term in cryptography is witness. The term refers to the signature used to
spend funds. In a Bitcoin transaction, the witness data attest to the actual ownership
of the funds.

The keys come in pairs: a private key and a public key. One can think of the public
key as a public identity and the private key as a secret PIN or signature. The private
key provides control over the Bitcoins.

When a transaction is created, the address of the recipient is required. This address
is not simply the recipient’s public key but is generated from the public key using a
one-way function. The 160-bit hash function can be seen in figure 3.2. The public key is
analogous to the beneficiary’s name. Usually, the Bitcoin address is generated from the
public key. However, this is only sometimes the case. Sometimes the Bitcoin address
represents a different kind of beneficiary, such as scripts. A script can simply check the
ID of the beneficiary, but can also be something much more complex. These scripts
abstract the recipient of Bitcoin, making transaction output more flexible.

These addresses also include a checksum to prevent users from accidentally mistyping
the address and losing Bitcoin permanently. This checksum is derived by hashing the
address using SHA-256 twice and taking the first four bytes of the resulting hash.
This checksum is then used to check if an address is valid when a user needs to use it
somewhere.

Asymmetric Cryptography
Public key cryptography was invented in the 1970s and is still the mathematical
backbone of computer security. Since its invention, multiple suitable functions have
been discovered. These functions are practically irreversible. The public key is easy
to generate from the private key and verify. However, knowing the public key, it is
infeasible to compute the private key. This scheme allows for the creation of digital
secrets and signatures based on these properties. Both of these are unforgeable. Bitcoin
uses an elliptical curve function as its basis for cryptographic security.

Public key cryptography is used to generate a key pair. The public key is used to
receive funds, and the private key is used to sign transactions and spend funds. A
mathematical relationship between the two keys allows the private key to generate
message signatures. This signature can then be validated with the public key without
revealing the private key. If the signature is valid, one can assume the signature
originated from the owner of the private key.

When a user wants to spend Bitcoin, he presents his public key and a signature in
a transaction to spend that Bitcoin. With this information, everyone in the Bitcoin
network can verify that the transaction is validity. The validity confirms that the user
who wants to transfer the Bitcoin owns them.

The private key is a number, usually chosen at random. We can use elliptic curve
multiplication to generate a public key from this private key. The operation is a
one-way cryptographic function. To get a Bitcoin address, a user uses another one-
way cryptographic function, a hash function. This section will discuss the private key
generation, delve into elliptic curve mathematics to turn it into a public and generate
a Bitcoin address from this result. Figure 3.3 shows this relationship.
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Private keys
The private key must remain a secret at all times. If a third party gains access to
private keys, it is identical to giving them control of the Bitcoin corresponding to that
key. Protection from accidental is also necessary. Because once a private key is lost,
there is no means of recovery, and funds secured by this key are lost too.

As mentioned, private keys are generated by picking a random number. Thus, the first
step is finding a secure and reliable entropy source. The Bitcoin core implementation
used the OS’s random number generator to produce 256 bits of entropy. The random
number can be any number from 1 to n− 1, where n is a constant defined as the order
of the elliptic curve. In this case, slightly less than 2256. A 256-bit number is generated
to create this key, then check if it is less than n−1. Usually, this is achieved by feeding
random bits gathered from the previously mentioned random source into the SHA256
hash algorithm. The SHA256 algorithm always produces a 256-bit number. If the
result satisfies the condition, the private key has been generated.

Elliptic Curve Cryptography
Elliptic curve cryptography is based on the discrete logarithm problem. Bitcoin uses a
specific elliptic curve and constants defined in the secp256k1 standard. The secp256k1
curve is defined by the following function: y2 =

(
x3 + 7

)
over Fp or y2 mod p =(

x3 + 7
)
mod p. The modulo p indicates that this curve is over a finite field of prime

order p. The formula can also be written as Fp. Here is p = 2256− 232− 29− 28− 27−
26 − 24 − 1, a very large prime number. This curve can be seen in figure 3.4.

Note that this is not an actual curve but more like points scattered on a curve because
the curve is defined over a finite field. The mathematics stays the same compared to
an actual curve.

In elliptic curve mathematics, there is a concept called the point-at-infinity. The
concept acts as the identity element in addition. There is also a + operator called
addition. Its properties are the same compared to addition in real numbers. Given
two points, P1 and P2, there exists a third point, P3 = P2 + P1, which is also on the
elliptic curve.

Geometrically, this third point is calculated by drawing a line between the two other
points. This line intersects the curve at exactly one point, P ′

3 = (x, y). Then mirror
over the x-axis to get P3 = (x,−y).

Some exceptional cases require the point-at-infinity. For example, if P1 and P2 have
the same x-values, the line between them will be vertical. In this case, the point P3 is
at infinity.

Addition is associative. Now that we have an identity element and addition is defined,
we can define multiplication in the standard way. For a point P on the elliptic curve,
if k is an integer. Then k ·P = P +P + · · ·+P (k times). The integer k is sometimes
called the exponent, which might be confusing.

Public keys
To generate public keys from private keys, elliptic curve multiplication is used. The
multiplication looks like this: K = k · G, where K is the resulting public key, k
is the known private key, and G is the generator point, a constant defined by the
elliptic curve. The reverse operation finds the discrete logarithm. The operation is a
brute-force search. Figure 3.5 show how a public key is calculated.

This multiplication is also known as a trap-door function in cryptography. It is easy
to perform in one direction but impossible in reverse.
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The generator point is the same for every user. Thus, the private key multiplied by the
generator point will always have the same public key. This relationship is fixed.

Addresses
Bitcoin addresses are derived from previously generated public keys. It uses another
one-way cryptographic function called a hash function. This function produces a
fingerprint from an arbitrary-sized input. The hashing uses two algorithms: SHA256
and RIPEMD160. The SHA256 hash is computed starting from the public key K. The
computation results in a 256-bit hash, and then the RIPEMD160 hash is computed,
which in turn results in a 160-bit hash: H = RIPEMD1(SHA256(K)).

The address is not represented in its binary form. It is encoded as a Base58 number.
Base58, in essence, is Base64 without the zero, O (capital case o), l (lower case L),
I (capital case i), and “+” and “/”. The goal of Base58 is to reduce the number of
transcription errors.

3.3 Transactions
A transaction is the most essential aspect of the entire Bitcoin system. Everything re-
volves around ensuring transactions can be created, circulated, validated, and added to
the ledger securely. In essence, transactions are data structures that encode value trans-
mission between parties. Each transaction is a public record on the blockchain.

This section examines the contents of transactions, how they are created and verified,
and finally, how they become permanent entries.

Transaction Structure
Here the contents and structure of transactions are examined. The contents of a raw
transaction are shown in listing 3.1.

1 {
2 "version": 1,
3 "locktime": 0,
4 "vin": [
5 {
6 "txid":
7 "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d8
8 1de548f0a65a8a999f6f18",
9 "vout": 0,

10 "scriptSig" :
11 "3045022100884d142d86652a3f47ba4746ec
12 719bbfbd040a570b1deccbb6498c75c4ae24cb02204
13 b9f039ff08df09cbe9f6addac960298cad530a863ea
14 8f53982c09db8f6e3813[ALL]0484ecc0d46f1918b3
15 0928fa0e4ed99f16a0fb4fde0735e7ade8416ab9fe4
16 23cc5412336376789d172787ec3457eee41c04f4938
17 de5cc17b4a10fa336a8d752adf",
18 "sequence": 4294967295
19 }
20 ],
21 "vout": [
22 {
23 "value": 01500000,
24 "scriptPubKey": "OP_DUP OP_HASH160
25 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
26 OP_EQUALVERIFY OP_CHECKSIG"
27 },
28 {
29 "value": 08450000,

29



30 "scriptPubKey": "OP_DUP OP_HASH160
31 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8
32 OP_EQUALVERIFY OP_CHECKSIG",
33 }
34 ]
35 }

Listing 3.1: Example of a Bitcoin transaction

Some crucial parts need to be included. There is no explicit address field or input
value. All these concepts are constructed on a higher level.

The fundamental building blocks of transactions are transaction outputs. Transaction
outputs are chunks of Bitcoin currency, are recorded on the blockchain, and are recog-
nized as valid by the network. Bitcoin nodes track all spendable outputs. Spendable
means that an input script can unlock the output of a transaction. These outputs
are known as unspent transaction outputs, abbreviated as UTXO, and this model is
called the UTXO model. The entire collection of all UTXO is called the UTXO set;
currently, there are millions. As more UTXOs are created, the set grows and shrinks
as they are consumed. These changes can be seen as state transitions.

It might be puzzling that transactions are done in this type of model. Why can
users not simply create a transaction which says: “Send x amount from address yy to
address zz” and sign it to verify they own the account? Creating such a transaction
is undoubtedly possible, and another blockchain, Ethereum, discussed in chapter 4,
uses this model. This model is called an account-based model. Both models have
their advantages and disadvantages. Bitcoin uses the UTXO model because it is more
transparent and auditable. Tracing a value’s origin is easy by tracing the transaction
chain. It is also deterministic since each transaction has a clear input and output. The
account-based model can suffer from overdrawn accounts and chargebacks, Accounts
are also a source of global state; the account database has to be updated each time a
block is added. UTXO, on the other hand, can be seen as a directed acyclic graph in
which each node is a transaction. Another benefit is that UTXO can be processed in
parallel, while transactions between accounts must be processed sequentially.

In common parlance, users say a wallet “receives” funds. Receiving funds means the
wallet has detected a UTXO that it can spend with its keys. The implication is that a
user’s “balance” is the sum of all UTXOs that his wallet can spend. The balance can
be scattered among an arbitrary number of transactions and blocks. As written in the
previous paragraphs, the wallet application constructs the concept of a “balance” at a
higher level here. The wallet scans the blockchain and summarizes the UTXO values
it can spend.

A fraction of a Bitcoin represents the actual transaction output, a satoshi. A fraction
can be an arbitrary integer value. Regular currencies can be divided into two decimal
places, called cents, and Bitcoin can be down to eight decimals, called satoshis. Once
the output is created, it can no longer be divided. The division is an important
characteristic: outputs are discrete and indivisible values denominated by integers,
also called satoshis. Output has to be consumed in its entirety by another proceeding
transaction.

If a UTXO is larger than desired, it must still be consumed. Now the new transaction
has a surplus. For example, take a UTXO with 20 Bitcoin as an output, and a user
wants to spend one. The user has to consume the entire UTXO worth 20 Bitcoin and
generate two outputs. One pays one Bitcoin to the intended recipient, and the other
19 surpluses back to his address.

As in real life, the user must make choices to purchase. Does he look for exact change
by combining several UTXOs, consuming a larger one, and creating a surplus? All
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this complexity is handled by wallet software but is necessary when a developer want
to construct transaction programmatically from UTXO.

This model creates a chain of transactions in which each consumes previous UTXOs.
This way, Bitcoin values move from user to user in this chain. Now the question remains
of how new Bitcoin values are created. A unique transaction is called a coinbase
transaction. A coinbase transaction is the first transaction in each block. The creator
of the block can insert it here and creates a new Bitcoin payable to that creator.
The transaction does not consume any UTXO but has a unique coinbase input. The
coinbase transaction is how the new Bitcoin supply is created during mining.

A transaction output consists of two parts, which can again be seen in listing 3.1:

• An amount of Bitcoin denominated in satoshis and the “value” field.

• An output script which determines the conditions for spending the output, as
can be seen in the “scriptPubKey” field.

This condition is also called the locking script, witness script, or scriptPubKey.

The topic of unlocking and locking scripts and the scripting language is discussed later
in section 3.4. More information on the transaction structure is needed before these
topics are discussed.

Transaction inputs identify which UTXOs will be consumed by the transaction. They
also provide proof of ownership by providing an unlocking script. For each UTXO the
transaction points to, the transaction creates an input and has to unlock it with an
unlocking script.

Listing 3.2 shows only the transaction input. The field “txid” contains the transaction
hash of the referenced UTXO, and the “vout” field is the output index of the UTXO
in that transaction. Together they point to a single UTXO on the blockchain. The
second part, which continues the locking script, is called the unlocking script, here
the “scriptSig” field and simply a constant. The unlocking script has to satisfy the
spending requirement of the UTXO referenced by the input.

1 "vin": [
2 {
3 "txid":
4 "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d8
5 1de548f0a65a8a999f6f18",
6 "vout": 0,
7 "scriptSig" :
8 "3045022100884d142d86652a3f47ba4746ec
9 719bbfbd040a570b1deccbb6498c75c4ae24cb02204

10 b9f039ff08df09cbe9f6addac960298cad530a863ea
11 8f53982c09db8f6e3813[ALL]0484ecc0d46f1918b3
12 0928fa0e4ed99f16a0fb4fde0735e7ade8416ab9fe4
13 23cc5412336376789d172787ec3457eee41c04f4938
14 de5cc17b4a10fa336a8d752adf",
15 "sequence": 4294967295
16 }
17 ]

Listing 3.2: Example of a transaction input

This specific input only contains a single UTXO because it contains sufficient funds
for the payment. Thus, the input points to transaction "txid": 7957a35f . . . 6f18
and output index 0, the first UTXO created by the transaction. Moreover, it contains
an unlocking script that satisfies the UTXO “scriptPubKey”. Once this transaction
is broadcast to the network, every validating node needs to retrieve the referenced
UTXO to validate the transaction.

31



A validating node is a node that checks if every transaction, both fresh and already
confirmed in a block, it receives is valid. Valid means that they are balanced, the input
is greater or equal to the output, and everything within the block is correct. This
validation allows the network to trust blocks without trusting the miner who created
them.

The input values, the missing value, and the address create extra effort when creating
programs for handling Bitcoin transactions. For example, creating a simple program
that calculates the fees paid requires extra steps. This program calculates the difference
between input and output values. However, because of the way inputs are represented,
the program needs to fetch output values from the previous UTXO referenced in
the inputs. Some extra steps and transactions are needed because of this missing
context.

Transaction fees are a way to compensate miners for securing the network. They are
also a security measure in and of itself. It makes it infeasible for attacks to flood the
network with transactions because the cost would be too high.

A higher fee makes it more likely for a transaction to be included in the next block.
The fee is collected by the miner who created the block, which includes the transaction.
Fees are based on the transaction size, not necessarily the value within the transaction.
Miners prioritize transactions based on many criteria, but transactions with sufficient
fees are generally prioritized. Transactions with inadequate or no fees are processed
on a best-effort basis and might be delayed.

Over time the fee policy has evolved. At first, they were fixed across the network, but
gradually the policy relaxed and has been influenced by market forces, capacity, and
volume. Currently, zero and low-fee transactions will not get mined and sometimes
not even propagated. Individual nodes set these fee relay policies and can be set to
an arbitrary value.

Fees
When transactions are created, the programmer must implement dynamic fee estima-
tions. The program can use a third-party estimator service or implement an algorithm
itself. The fee is calculated based on the current network capacity and fees set by
competing transactions. The algorithm can be simple, for example, just calculating
the median fee, or more complicated by statistical analysis. The goal is to optimize
the probability of being included in a block as fast as possible with the minimum
fee.

Below is listing 3.3, an example of a third-party service can be seen. The service is a
simple API that returns a JSON object with recommended fees in three tiers. These
are expressed in satoshis per byte. With fastestFee resulting in the fastest transaction
confirmation, 0 to 1 blocks, and hourFee will confirm the transaction within the hour,
or six blocks, with a 90% probability.

1 $ curl https://Bitcoinfees.earn.com/api/v1/fees/recommended
2
3 {"fastestFee":102,"halfHourFee":102,"hourFee":88}

Listing 3.3: Example of a third-party transaction fee estimation service

As mentioned before, the fee of a transaction is calculated by taking the difference
between the sum of the transaction inputs and the sum of the transaction outputs. It is
essential to remember this to avoid accidentally including huge fees by under-spending
inputs. The creator must always account for all inputs and, if needed, create a surplus
into his address.
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3.4 Script
The script language used by Bitcoin scripts also called Script, is a Forth-like RPN
language. It is Forth-like in the sense that it is stack-based. RPN means Reverse Polish
Notation, which means operators are postfixed. The notation is the reverse of Lisp-like
languages, where the operator is prefixed. For example, 1 + 2 is written as 12+. Both
the locking and unlocking scripts of a UTXO are written in this language.

The script is a deliberately simple language and has a limited scope. Multiple attempts
have been made to make it more expressive and extend the scope, but this has always
resulted in many problems and exploits. Such extensions have also happened with
Ethereum and will be discussed more extensively in chapter 4. Its simplicity is a
security feature when used for validating programmable money.

Most transactions are “Payment to x’s Bitcoin address”. This kind of script is called
a Pay-to-Public-Key-Hash script. However, they are open to more than this scheme
and can express several more complex conditions. Before addressing more complex
scripts, the basics of Script and transaction scripts will be discussed.

While the language contains many operators, one might notice that it is limited in
one crucial way: there are no loops or complex control flow capabilities other than
conditional control flow. These limitations make the Script Turing incomplete. The
limitations put on the language ensure the scripts have predictable execution times,
which puts less of a burden on the network. A malicious actor cannot create infinite
loops or embed any logic bomb to cause a denial-of-service attack. These limitations
ensure not to turn the transaction validation mechanism into a vulnerability.

Another critical aspect of the language is being stateless. Statelessness is a result of
the UTXO model. The language only needs the locking and unlocking script of the
referenced and current transaction. No previous state is needed, and the result must not
be saved after execution. Thus, all information needed to execute a script is contained
within that script. Scripts are, therefore, also deterministic. It will consistently execute
when run with the same outputs and inputs and have the same result. The same is
true when verifying the script; if one node verifies a script, it can be sure that all other
nodes will come to the same conclusion. This predictability is an enormous benefit for
the Bitcoin network.

As previously mentioned, the validation engine needs two types of scripts: the locking
and unlocking script. The locking script places a condition on the output, and the
unlocking script solves or satisfies this condition and allows the output to be used.
Every validating node must execute both scripts together to validate the transactions.
When validating an input, the node must also fetch the UTXO the input references.
The node will copy the unlocking script, retrieve the referenced UTXO, and copy
its locking script. If this is successful, the node will run the unlocking and locking
script in sequence. The input is valid if the unlocking script satisfies the locking script
conditions. Every validating node does this for every input of every transaction.

UTXOs are recorded on the blockchain, invariable, and unaffected by invalid attempts
to spend them on a new transaction. Only valid transactions satisfying the unlocking
conditions result in the UTXO being spent. After that, the UTXO is removed from
the UTXO set.

The script is a stack-based language because it uses the stack data structure. As a
refresher: a stack is a data structure with a dynamic size. It allows two operations: push
and pop. Push adds an element to the top of the stack, and pop removes the topmost
element. Thus, operations only act on the top of the stack and are a Last-In-First-Out,
or “LIFO”, queue.

The script executes programs in a left-to-right fashion. Constants, like keys, are simply
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integers and are pushed onto the stack. Operators act on elements on the stack; they
can push or pop elements to get parameters. If an operator has a return value, they
push the result on the stack. As an example: OP_EQUAL pops and consumes the top two
elements and pushes 1 onto the stack if they are equal and 0 when they are not.

As an example of a simple script, let us consider:

7 3 OP_SUB 4 OP_EQUAL

It is helpful to use btcdeb the Bitcoin script debugger to show the steps in this script.
Run the following command: btcdeb ’[7 3 OP_SUB 4 OP_EQUAL]’ and the starting
state is the following:

script | stack
---------+--------
7 |
3 |
OP_SUB |
4 |
OP_EQUAL |

Now when the interpreter steps through the script, the following happens:

• 7 and 3 are pushed on the stack.

• The interpreter executes OP_SUB three, then seven is popped and subtracted,
after which four is pushed onto the stack.

• 4 is pushed onto the stack.

• 4 and 4 are popped and compared. The numbers are equal; thus, 1, interpreted
as OP_TRUE is pushed onto the stack, and the script is valid.

The final step of the script can be seen in figure 3.6. This simple arithmetic script
can be turned into a locking and unlocking script. For example: take this part, 3
OP_SUB 4 OP_EQUAL as the locking script. Then simply 7 as the unlocking would satisfy
the condition. Because when the validating software combines them, it results in the
previously mentioned program. The combination is insecure since anyone can spend
this UTXO if they know that 4 = 7− 3.

Originally the unlocking and locking scripts were concatenated and then executed.
The concatenation is a security vulnerability since the unlocking script can push
arbitrary data on the stack and influence the locking script [Hea13]. This result meant
that anyone could write a scriptSig that constantly evaluated to true and claim any
Bitcoin. This flaw was changed in 2010, and in the current version, the scripts are
executed in isolation, and the stacks are transferred between the two executions. It
works as follows:

• The unlocking script is executed.

• The main stack is copied if there are no errors, like dangling operators.

• The locking script executes using the unlocking stack.

• If the result is “TRUE”, the unlocking script has satisfied the conditions. If not,
the input is invalid, and the UTXO cannot be spent.

Figure 3.7 shows a more complex script. This figure shows the previously mentioned
Pay-to-Public-Key-Hash, abbreviated as P2PKH, script. The vast majority of transac-
tions produce an output locking with this script. Essentially this locking script locks
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the output to a specific Bitcoin address, a public key hash. This locked output can be
unlocked by providing a public key and a signature created by the private key.

The complete script is shown in figure 3.7. When evaluating this script, it returns TRUE
if, and only if, the unlocking script has a valid private key that matches the public
key in the locking script public key hash in the locking script.

Now that the basic concepts have been introduced, more transactions with more com-
plex conditions can be discussed. These transactions include multi-signature scripts,
Pay-to-Script-Hash, and timelocks.

Multisignature
Multisignature scripts are scripts where k public keys are set in the locking scripts,
and at least n of those need to provide a signature to unlock the UTXO. Here is k,
the total number of keys, and n, the threshold required for validation. This threshold
is also called the quorum. This scheme is sometimes called a k-of-n multi-signature
scheme. A multi-signature locking script is structured like this:

$n$ <pubKey1> <pubKey2> $\cdots$ <pubKey$k$> $k$ CHECKMULTISIG}

And the unlocking script is like this:

0 <sig1> <sig2> $\cdots$ <sig$i$> where $n\lei\lek$

When this script is executed, it will only return TRUE if, and only if, the unlocking
script has at least n signatures matching the locking script’s public keys.

The keen reader might have noticed an extra zero before the signatures in the unlocking
script. This zero is necessary because of a bug in the CHECKMULTISIG function. The
function signature says it should consume k+ n+2 values: the k possible public keys,
the n signatures necessary to reach the quorum, and finally, the two constants n and
k. However, in reality, it consumes one extra element on the stack. This value is not
used in the function, so a zero is commonly used. Its only purpose is as a workaround
for this bug.

Pay-to-Script-Hash
While multi-signature scripts are powerful, they can become very complex to write
quickly. Pay-to-Script-Hash, or P2SH, was introduced to simplify the use of complex
scripts. Consider the following example to explain the usefulness of P2SH:

A shop owner uses a multi-signature script to handle all customer payments, known
as “accounts receivable” or AR. Using the multi-signature scrips, all these funds are
locked to require at least two signatures: one from the owner, one from one of his
partners, or one from his attorney. This script offers control and protects against fraud,
theft, or loss. The resulting script looks something like this:

2 <Owner Public Key> <Partner 1 Public Key> <Partner 2 Public Key>
<Attorney Public Key> 4 CHECKMULTISIG

It is clear that this script is powerful and valuable, but simultaneously, it is cumbersome
to use. The owner must convey this script to every customer when a transaction occurs.
Each customer has to create a custom transaction and understand and know how to
create such a script. Another problem is that this script is a lot longer because it
contains four public keys, which as to be saved in every node’s RAM. As previously
discussed, the transaction fees are calculated per byte, and the customer will carry
this extra cost.
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This scenario is where P2SH is useful. Its purpose is to alleviate these difficulties and
problems. Using a P2SH payment is as easy as paying to a Bitcoin address. Instead
of using the complex locking script, it is replaced by the hash of the locking script.
When a transaction tries to spend the UTXO, it must contain the scripts matching the
hash and the unlocking script. In other words: pay to a script matching this hash; a
script will be provided later when the output is spent. The hashed script is also called
the redeem script because it is referenced when the UTXO is redeemed rather than
locking time. Listing 3.4 shows the script without P2SH, and listing 3.5 is encoded
with P2SH.

1 Locking Script 2 PubKey1 PubKey2 PubKey3 PubKey4 4 CHECKMULTISIG
2 Unlocking Script 0 Sig1 Sig2

Listing 3.4: Script without P2SH

1 Redeem Script 2 PubKey1 PubKey2 PubKey3 PubKey4 4 CHECKMULTISIG
2 Locking Script HASH160 <Redeem Script Hash> EQUAL
3 Unlocking Script 0 Sig1 Sig2 <Redeem Script>

Listing 3.5: Script with P2SH

These listings clearly show that the locking scripts do not contain the conditions for
unlocking the UTXO, only a hashed version. The unlocking script does contain the
condition. This change shifts the fees and complexity of formulating the script from
the sender to the transaction recipient.

When applied to the previously mentioned example, the long list of public keys, which
takes up 52 bytes, gets reduced to 20 bytes. First, by applying the SHA256 algorithm
followed by the RIPEMD160 algorithm. A customer can now use this much shorter
script:

HASH160 <20-byte Hash EQUAL}

Which is much more concise and easier to construct. When the owner wants to spend
the UTXO, he must produce the original script and the necessary signatures. The
script will look something like this:

0 <Sig1> <Sig2> <2 PubKey1 PubKey2 PubKey3 PubKey4 4 CHECKMULTISIG>

The validation is performed in two stages. First, the actual redeem script is checked
against its hash to make sure it is the matching script:

<2 PubKey1 PubKey2 PubKey3 PubKey4 4 CHECKMULTISIG> HASH160
<Hash> EQUAL

If this returns TRUE, the unlocking script is executed:

0 <Sig1> <Sig2> 2 PubKey1 PubKey2 PubKey3 PubKey4 4 CHECKMULTISIG

A P2SH script hash can also be encoded as a Bitcoin address. Rather than providing
the 20-byte hash, the store owner can provide an address to his customers to make
payments. These are also Base58 encode, just like regular Bitcoin addresses. With this
feature, all P2SH complexity is hidden from the person paying.

Return
Bitcoin’s ledger also has uses beyond payments. People have tried to use the scripting
language for other applications, such as contracts, certificates, and other services. Early
attempts involved using hashes of files to prove their existence on a specific date in a
transaction. This attempt was a controversial subject. Many people considered this
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an abuse of the language and system. They also argued that this caused “blockchain
bloat” and burdened nodes unnecessarily. These transactions also created unspendable
UTXO, using the destination address as a free 20-byte field. Therefore, the UTXO set
kept growing forever, and thus “bloating”. Others considered this proof of how versatile
the blockchain system is.

A compromise has been reached in the form of the RETURN operator. The compromise
allows users to add 80 bytes of non-payment data to the output. In contrast with the
previous method, the RETURN operator does provide a provably unspendable output
that does not pollute the UTXO set. A RETURN script is very simple:

RETURN <data>

In most cases, the data field is a hash of some kind. Many applications put an identi-
fication prefix before the hash to provide an easy way to identify what data is in the
data field. The previously mentioned Proof-of-Existence service has the 8-byte, ASCII
encoded prefix “DOCPROOF”.

There is no unlocking script for the “RETURN” script. Therefore, the output is usually
zero Bitcoin because it is locked forever. If, for some reason, a “RETURN” script is
referenced in a transaction input, the validation engine will permanently mark the
transaction invalid. The execution of a “RETURN” operator will cause a script to always
return FALSE. A transaction can have only one output, a “RETURN” output.

Timelocks
Timelocks are restrictions on transactions or transaction outputs, allowing them to be
spent only after a point in time. Bitcoin has several timelock implementations. Initially,
it had a transaction-level timelock implementation, but this quickly proved too coarse
and unwieldy. Thus, two more features were implemented, which offer UTXO-level
timelocks.

First, the transaction-level timelock, known as nLocktime, was implemented. In most
transactions, this is set to zero to propagate and execute the transaction immediately.
This nLocktime is non-zero and lower than 500 million; it is interpreted as block
height1. This interpretation means the transaction is invalid if included before the
specified block height. When the nLocktime value is higher than 500 million, it is
interpreted as a Unix Epoch timestamp, and the transaction is not valid before this
timestamp. A transaction with a future nLocktime must be kept in the mempool
by the originating node and only be transmitted to the network after they are valid.
When it gets transmitted before the specified time, it gets rejected by the first nodes
and is not propagated.

This transaction-level lock time does have significant limitations. While the transaction
can be spent in the future, it is not impossible until then. The formulation might be
confusing and is easier to explain with an example:

Alice signs a transaction that sends output to Bob’s address and the nLocktime to a
month in the future. She sends this transaction to Bob to hold on. The transaction
implies that Bob can only transmit the transaction once a month has passed, and
Bob may send the transaction after a month. There are several caveats. Alice can
create a new transaction referencing the same inputs without a timelock. Thus double
spending the UTXO before the months have elapsed. Bob has no guarantee that Alice
will not do this. The only guarantee using this scheme is that Bob can redeem the
transaction once the month has passed. For Bob to have a guarantee that he can
redeem his funds, there must be a restriction on the UTXO itself so that every node

1The block height is the number of blocks preceding the current block.
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can verify the timelock. The following type of timelock implements this: Check Lock
Time Verify (CLTV).

CLTV is a per-output timelock rather than a transaction-level timelock. More straight-
forward: adding the CLTV opcode to a redeem script restricts the output to be only
spendable after a specified time has elapsed. The opcode takes a single input argument,
a number in the same format as the nLocktime. The CLTV halts the verification if it
evaluates to FALSE, as the verify suffix implies.

Locking an output with CLTV is relatively simple. Insert it into the redeem script of
the output of a transaction. Take the previous example, Alice wants Bob to be able
to redeem his funds a month from now:

<now + 1 month> CHECKLOCKTIMEVERIFY DROP DUP HASH160 <PubKeyBob>
EQUALVERIFY CHECKSIG

In this script, the <now + 1 month> is either the block height, approximately the current
block height + 12960 blocks because each block takes approximately ten minutes to
create, or the time value, current Unix time + 7760000 seconds. The DROP opcode is
necessary because CLTV keeps the time parameter on the stack. For Bob to spend
the UTXO, he does the following: he creates a transaction that references the UTXO
as an input. He uses his signature and public key in the unlocking script as usual.
Finally, he sets the nLocktime of the transaction to equal or greater than the timelock
set in the CLTV by Alice. Then Bob broadcasts the transaction. If the nLocktime is
greater or equal to the CLTV parameter, the script execution continues as usual; if
not, the execution is halted, and the transaction is marked invalid.

CLTV and nLocktime are absolute timelocks; they specify an absolute point in time.
The following paragraphs discuss two relative timelocks. Which means they specify an
elapsed time concerning the confirmation of the output. Do note that the timer starts
once the transaction is confirmed. The delayed timer allows for holding certain inter-
dependent transactions off-chain until a specific time has elapsed since a transaction
has been confirmed.

Like absolute timelocks, there is a transaction-level feature and an output-level opcode.
The transaction-level timelock is implemented as a consensus rule as a transaction
field value nSequence. Originally it was intended to modify transactions while they
were in the mempool, but this was never implemented. In this use-case, a transaction
containing a nSequence field with a value lower than 232 − 1, or 0xFFFFFFFF, meant
that the transaction was not yet finalized. This transaction would then be kept in the
mempool until it was substituted by a transaction spending the same UTXO with a
lower nSequence value. Once the node receives a transaction with nSequence value
0xFFFFFFFF, the transaction is considered finalized and can be mined.

When a transaction does not use timelocks, the nSequence value is usually set to
0xFFFFFFFF. If a transaction wants to utilize the absolute timelocks, the nSequence
value is usually set to a value lower than 0xFFFFFFFF; most of the time, the value is
set to 0xFFFFFFFE.

Today, nSequence creates a consensus-enforced relative timelock. If the most significant
bit, bit 1«31, is not set, consensus rules for relative timelocks apply. If this bit is set,
the nSequence field is used for other purposes, such as nLocktime, CLTV, and further
developments.

When the most significant bit is not set, the transaction is only valid if it has aged
by the relative timelock amount. For example, if the nSequence value of a referenced
UTXO is set to 10, the transaction is only valid when ten blocks have elapsed since
the UTXO has been mined. When a transaction can reference multiple time-locked
inputs, they all must satisfy the age requirement for the transaction to be valid.
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The nSequence value is specified in blocks or seconds but differs from nLocktime. Unlike
nLocktime, it contains a type-flag at the 23rd bit to differentiate between blocks and
seconds. If the type-flag is set, the nSequence value is interpreted as a multiple of 512
seconds. If it is not set, the value is interpreted as blocks. The value is defined as bits
0 to 16. Once the disable and type-flag are evaluated, the nSequence field is masked
with a 16-bit mask. Figure 3.8 shows the nSequence bit-field.

Like absolute timelocks, there is a script opcode alternative to nSequence. The opcode
is called CHECKSEQUENCEVERIFY, abbreviated as CSV.

When a UTXO script using CSV is evaluated, it can only be spent when the nSequence
value is greater than the parameter provided to the CSV opcode. More simply, CSV
restricts spending a UTXO until a certain amount of blocks or seconds has passed
relative to when the UTXO was mined. The CSV parameter must also match the
format of the nSequence value. When the nSequence value specifies blocks, so must
the CSV value.

When relative timelocks were introduced, there was also a change in time calculation for
timelocks. Bitcoin is a decentralized network, and every node has its time perspective.
Network latency exists, which means that only some events coincide everywhere. The
network must account for this latency. Eventually, everything will be synchronized
every ten minutes when a consensus is reached, and the network will have a shared
ledger.

Different nodes have different clock accuracies. Thus, the consensus protocol needs
to give some leeway to nodes to miners. The miners need to set the timestamp in
the block headers after all. There is a catch; however, in some circumstances, it is
in a miner’s best interest to lie about a timestamp to earn extra fees by including
time-locked transactions.

A new consensus measurement has been introduced to remove this incentive: the
Time-Median-Pass. This measurement is calculated by taking the timestamps of the
past 11 blocks and calculating the median. The median time is then used as consensus
time and used for all timelock calculations. The median time of 11 blocks equates to
roughly one hour. Thus, one hour behind wall time is taken as the current time. The
median time reduces the influence of any one timestamp, and no miner can manipulate
the timestamp to extract more transaction fees from time-locked transactions. This
time is then used for nLocktime, CLTV, nSequence, and CSV calculations.

Flow control
The final topic is flow control in Script. These are familiar as most programming
languages have these constructs, but these look different in Script. At a fundamental
level, these opcodes allow a user to construct an unlocking script that can be unlocked
in several ways.

The conditional expressions can have an infinite nesting depth and, consequently,
be very complex with many execution paths. There is one limited factor. However,
consensus rules put a limit on the size of a script.

The script implements the following flow control opcodes: IF, ELSE, ENDIF, and NOTIF.
They can also include boolean operators: BOOLAND, BOOLOR, and NOT. Because Script
is a stack-based language, these look backward when used in practice. In procedural
languages, a classic if-statement looks something like this:

1 if(condition == TRUE) {
2 // Code in true path
3 } else {
4 // Code in false path
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5 }
6 // Code which always runs

Listing 3.6: Flow control in a procedural language

In Script, the condition comes before the actual if-statement:

1 condition
2 IF
3 // Code in true path
4 ELSE
5 // Code in false path
6 ENDIF
7 // Code which always runs

Listing 3.7: Flow control in Script

Another type of flow control is VERIFY opcodes. Two were discussed earlier regarding
timelocks. When these opcodes evaluate to FALSE, the execution of the script is ter-
minated, and the transaction is marked as invalid. Terminating means no alternative
paths; they act as a guard clause or exception. Another example can be found in the
Pay-to-Public-Key-Hash script:

OP\_DUP OP\_HASH160 <pubKeyHash> OP\_EQUALVERIFY <pubKey> OP\_CHECKSIG

Here the receiver needs to provide his public key and signature: <sig> <pubKey>. If the
hashed public key does not equal the expected hash, the execution will be terminated
when the OP_EQUALVERIFY is evaluated and the top two elements on the stack do not
match. The locking script can be rewritten using if-statements, while the unlocking
script stays the same. Such a locking script can be seen in listing 3.8; the VERIFY
construction is much more efficient since it requires fewer opcodes than the alternative.
If-statements are only helpful if more than one execution path is required. Always use
VERIFY opcodes when a guard clause is required.

1 OP_HASH160 <pubKeyHash> OP_EQUAL
2 IF
3 <pubKey> OP_CHECKSIG
4 ENDIF

Listing 3.8: EQUALVERIFY with if-statements

Another example is when there are two signers, and either one can redeem the UTXO.
In the previously mentioned multisig construct, this would be expressed as a 1-of-
2 multisig script. This script is rewritten using if-statements for demonstrating the
executions path in listing 3.9 There is no condition since the redeemer will decide who
redeems the UTXO. The unlocking script will look like this: <sig1> 1 for the first
execution, or <sig2> 0 for the second execution path.

1 IF
2 <pubKey1> OP_CHECKSIG
3 ELSE
4 <pubKey2> OP_CHECKSIG
5 ENDIF

Listing 3.9: Multisig with if-statements

If more than two execution paths are necessary, if-statements must be nested. The
if-statements create a maze of paths for unlocking scripts to map the desired path.
Listing 3.10 shows three paths. The unlocking script has to provide TRUE and FALSE
values in the correct order in order to arrive at the correct path. The unlocking script
needs to end in 1 0 to get to path 2. The outer if pops the zero and thus executes
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the first ELSE path. Then the inner if pops the one and executes the inner IF path,
which selects path 2. Users can create complex unlocking scripts with hundreds of
paths using these constructions.

1 IF
2 // Path 1
3 ELSE
4 IF
5 // Path 2
6 ELSE
7 // Path 3
8 ENDIF
9 ENDIF

Listing 3.10: “Maze” of execution paths

A complex script will combine the previously discussed concepts to conclude this
section. A store owner and two partners, together with their lawyer, run a company.
They use a majority rule setup. The majority rule means that two out of three can
make decisions. However, when there are problems with keys, they want the lawyer
to retrieve funds with one partner after 30 days. Also, when all three partners are
unavailable, the lawyer can retrieve funds after 90 days.

The script can be seen in listing 3.11. There are three paths:

• The first path is a simple 2-of-3 multisig construct for the three partners. The
quorum gets set on line three, and line nine executes the multisig. The path can
be reached by putting TRUE TRUE at the end of the unlocking script.

• The second path can be reached 30 days after creating the UTXO. This path
requires the lawyer’s signature and a single partner’s signature. The quorum is
set at line seven. The path can be reached by putting FALSE TRUE at the end of
the unlocking script.

• The final path can be reached after 90 days and only requires the lawyer’s
signature. The path requires a single FALSE at the end of the unlocking script.

1 IF
2 IF
3 2
4 ELSE
5 <30 days> CHECKSEQUENCEVERIFY DROP
6 <lawyerPubkey> CHECKSIGVERIFY
7 1
8 ENDIF
9 <pubKey1> <pubKey2> <pubKey> 3 CHECKMULTISIG

10 ELSE
11 <90 days> CHECKSEQUENCEVERIFY DROP
12 <lawyerPubkey> CHECKSIG
13 ENDIF

Listing 3.11: A more complex script
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Figure 3.2: Generation of a Bitcoin address from a public key.
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Figure 3.3: Relationship between private key, public key, and Bitcoin address.
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Figure 3.4: The elliptic curve used by Bitcoin.
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Figure 3.5: How public keys are calculated on an elliptic curve.
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Figure 3.6: OP_EQUAL in a Bitcoin script.

<sig> <pubKey> + OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY <pubKey> OP_CHECKSIG
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Figure 3.7: The common Pay-to-Public-Key-Hash script.
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Figure 3.8: The nSequence encoding

45



Chapter 4

Ethereum

Ethereum is often called a “world computer”, but what does this description mean?
Ethereum is an open-source, globally decentralized computing infrastructure. This
computer executes smart contracts and uses a blockchain to synchronize and store
system state changes. Its native token, called ETH, is used to measure and constrain
the costs of executing smart contracts. The smallest denomination for ETH is called a
wei and is defined as: 1 wei = 1 · 10−18ether. This combination allows users to develop
decentralized applications with high availability, auditability, and transparency. It is
important to note that almost every permissionless blockchain has a native token.
These are necessary to incentivize users to keep the system running and to pay for
using system resources.

Some people considered Bitcoin to be “blind, deaf, and dumb”. People meant that
users could not do more than push Bitcoin around. Users cannot issue their currencies
or write applications or contracts.

Ethereum does share many elements with Bitcoin. Bitcoin and Ethereum both use
a peer-to-peer network to connect nodes, a consensus algorithm to synchronize state
updates, and use cryptographic primitives.

However, the purpose of Ethereum is also very different from Bitcoin. Ethereum’s
purpose is not primarily a digital currency payment network. Its currency is necessary
for running Ethereum but is intended as a utility currency to use the Ethereum
system.

Unlike Bitcoin, which has a very primitive scripting language, Ethereum is a general-
purpose programmable blockchain. It runs a virtual machine called the Ethereum
Virtual Machine or EVM, which can run programs of arbitrary complexity. Where
Bitcoin’s programming language is intentionally limited to simply evaluating true/false
spending conditions, Ethereum’s programming language, called Solidity, is Turing
complete.

However, Turing completeness is a double-edged sword, especially in an open-access
system like Ethereum. For example, modern printers are sometimes Turing complete;
one can send files to freeze the printer. The flexibility of a Turing complete system
can bring security and resource management issues with it.

It is only possible to predict a specific program’s path by running it. In Ethereum, this
can pose a problem as nodes are required to validate every transaction, which means
running them. Moreover, given that Ethereum cannot predict whether a smart contract
will stop, the node runs the risk of running forever. Something is needed which would
constrain computing resource usage. Ethereum’s answer is a metering mechanism
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called gas. As the EVM executes a smart contract, it counts every instruction, and
each instruction has a predetermined cost in gas. A transaction has to include an
amount of gas, the upper limit of what can be consumed if it intends to run a smart
contract. The smart contract will immediately be stopped when this available limit is
exceeded.

A user can obtain gas by buying it with ether. If a user wants to run a smart contract,
he has to include ETH designated for buying gas with the transaction. The gas price
fluctuates, and its price is proportional to the traffic on the network. Any gas not
used by the contract execution is refunded to the user who sent the transaction. In
short: gas is purchased for the transaction, it is computed, and any unused gas is
refunded.

Ethereum was introduced when people recognized the utility and power of the Bitcoin
model. People were also trying to move past mere cryptocurrency applications. When
attempting to do so, developers had to decide: build on top of Bitcoin or create
something new. Building on top of Bitcoin meant inheriting its limitations, intentional
or not. These constraints in transaction types, data types, and data storage limited
the type of application which could be run on top of Bitcoin. When developers wanted
to extend Bitcoin, this meant it had to be run off-chain in a layer on top of Bitcoin.
An additional layer means sacrificing many advantages of a public blockchain. Thus,
for projects which require more versatility while staying on-chain, this means creating
a new project and a new blockchain.

Two examples of projects using a layered approach are Mastercoin and Colored Coins.
Mastercoin offers rudimentary smart contracts on Bitcoin, and Colored Coins mark
specific Bitcoin to mean ownership of a real-world asset.

The introduction of Ethereum was similar to when JavaScript was introduced to
the web. Before JavaScript, the web browser worked fine, but websites were static.
JavaScript allowed websites like YouTube and Google to offer dynamic content. The
evolution of cryptocurrencies is analogous; with Bitcoin, users can send, receive, and
display transactions. Users can use metadata in transactions to do exciting things,
but actual distributed applications or custom tokens are not feasible.

Bitcoin tracks the state of Bitcoin and its ownership of them. One can think of this
as a distributed state machine. Every transaction causes a state transition that is
constrained by consensus rules.

Ethereum is also a state machine but tracks the state of general-purpose data. Ethereum
has memory that can hold data and programs and uses the Ethereum blockchain to
track how this memory changes over time. Like a traditional computer, Ethereum can
load and execute these programs and store the resulting state changes of the programs
on its blockchain. Two differences exist between the Ethereum model and traditional
computers: the state is distributed, and consensus rules constrain the state changes.
Thus, Ethereum is a “world computer” because it is distributed globally and operates
under consensus.

4.1 Nodes
The Ethereum client is, again, like Bitcoin, just an application that implements the
Ethereum specification. The client communicates with other clients over a peer-to-peer
network. The specification ensures that different clients can work together since it
standardizes the protocol. Different implementations of an Ethereum client can be
written in different languages by different teams, but as long as they comply with the
reference specification, they will work together.
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This open specification contrasts with Bitcoin, where there is no formal specification
that teams can read and implement. In Bitcoin, there is only a reference implementa-
tion, the Bitcoin Core. Ethereum’s specification is called the Yellow Paper and can
be read here: [Woo22].

Many independent but interoperable Ethereum clients exist due to the open speci-
fication. This diversity of clients has some advantages. If one implementation has a
security vulnerability because of an exploit, its developers can scramble and patch it.
While the exploit is being fixed, other implementations of clients can keep the network
running.

The network relies on independent and dispersed nodes for its operation. Each node
helps new nodes obtain data via the peer-to-peer network and verify transactions and
contracts. As of writing, a full node downloads 1023.54 GB of data to store on a local
drive. This data increases over time as new transactions and blocks are added.

Luckily a full mainnet node is unnecessary for every application. The mainnet is the
main public network where all transactions with real ETH and value occur. Developing
applications for Ethereum does not require a full mainnet node. All a developer needs
is a testnet node or local private network. A testnet is a public blockchain network
primarily used by developers to test protocol upgrades and smart contracts before de-
ploying them to the main net. In this thesis development of Ethereum applications was
completed using a local private network with Foundry. The development of Ethereum
applications is discussed more in-depth in section 4.7.

Another option is remote clients. These do not store a copy of the blockchain locally
or even validate blocks and transactions. Remote clients can create and broadcast
transactions and connect to existing networks. Interacting with these clients is generally
easy because they provide an API.

4.2 Accounts
Where Bitcoin uses the UTXO model for handling transactions, Ethereum uses an
account model.

There are two types of accounts; externally owned accounts (EOA) and contract
accounts. Externally owned accounts are accounts that possess a private key. Owning
a private key means control over access to funds and contracts. Contract accounts have
a smart contract code, something externally owned accounts do not have. Contract
accounts also have no private key, which means a simple key does not control them,
but by the logic of its smart contract code. Contracts do have addresses, just like
EOAs. Contracts having addresses means contracts can also send and receive funds.
A key difference is that when a transaction is sent to a contract, the contract runs on
the EVM. The contract is run using the transaction’s data as input. The transaction’s
data includes which function in the contract to call and which arguments to pass to
the function.

Because a contract does not possess a private, it cannot initiate sending a transaction.
Only users, EOAs, can do this. Contracts react to transactions by calling other con-
tracts. Contracts reacting to each other can lead to complex execution paths. How to
build and program smart contracts will be discussed in section 4.7.

4.3 Keys and Addresses
This subsection will discuss the public key cryptography, PKC, used in Ethereum. Like
Bitcoin, public key encryption is used to determine ownership of funds.
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As mentioned in the previous subsection, Ethereum has two kinds of addresses: EOA
en contract accounts. Ownership of funds by EOAs is determined through private keys,
addresses, and signatures. Account addresses are derived from private keys, meaning
a private key determines an Ethereum address known as an account.

Like in Bitcoin, private keys are never used directly. They are never transmitted
or stored in Ethereum. Only account addresses and signatures are ever transmit-
ted.

Access and control of funds in an account are exerted through digital signatures. Every
transaction requires a valid signature to be included in a block. Anyone with access to
the private key of an account has control over any ETH the control possesses.

In the payment portion of a transaction, the receiver of funds is represented by an
address. This model is analogous to the beneficiary in a bank transfer. The address of
an EOA is derived from the public key, but private-public key pairs do not represent
contracts.

Ethereum, again like Bitcoin, also uses elliptic curve cryptography for key generation.
It uses a different hashing algorithm to achieve a 256-bit number, namely the Keccak-
256 hashing algorithm. Keccak-256 belongs to the SHA-3 family of hashing functions.
Keccak-256 is more robust than SHA-256, which is used in Bitcoin.

Public keys are derived the same way as Bitcoin public keys, as two points on an
elliptic curve joined together. These two numbers are produced from a one-way cal-
culation with the private key. The elliptic curve is the same one used by Bitcoin:
secp256k.

Ethereum addresses are generated in the following way:

• Start with a private key and use elliptic curve multiplication to derive a public
key.

• Use the Keccak-256 function to calculate the public key hash.

• Key the last 20 bytes of the hash; this is the Ethereum address.

Ethereum addresses lacked a checksum until 2016. Users could send funds to invalid
addresses and were essentially losing funds. EIP-55 was proposed in 2016. An EIP is an
Ethereum Improvement Proposal meant to improve and advance Ethereum continually.
EIP-55 enhances address validation to prevent transaction errors that can occur from
mistyping.

Before EIP-55, Ethereum addresses were simple hexadecimal representations, as de-
scribed above, prone to errors from typos that could lead to misdirected transactions.
To solve this, EIP-55 introduced a checksum implemented via case sensitivity. It works
as follows:

• The Ethereum address is hashed again using the Keccak-256 hash function.

• Each character in the original address is compared with the corresponding char-
acter in the hash.

• If the hash character is 0x08 or higher, the corresponding address character is
capitalized. The character remains lowercase if it is 0x07 or lower.

This approach effectively implements case sensitivity into the address, creating a
checksum. If any character is in the wrong case, the checksum fails, and the transaction
is halted. A key benefit of EIP-55 is its backward compatibility. Older addresses
can still be accepted, which can be adopted incrementally. However, EIP-55 is not
mandatory, and its implementation varies from client to client. Despite this, many

49



have adopted it due to its efficacy in catching typing errors that can lead to incorrect
transactions.

4.4 Transactions
Ethereum transactions serve as the backbone of the Ethereum network, facilitating in-
teractions between accounts. Understanding the architecture and lifecycle of Ethereum
transactions is critical to understanding how Ethereum operates as a distributed com-
puting platform. Transactions are signed messages created by EOAs, sent through
the Ethereum network, and recorded in blocks on the blockchain. Transactions also
trigger a change of state and can cause contracts to trigger.

Each transaction follows a strict structure. This structure is necessary because each
transaction is serialized before being transmitted over the Ethereum network. Since
each client has a different implementation, once a client receives a serialized transaction,
it will store the transaction in a custom data structure, thus each differently in memory.
The only standard format is the transaction format over the network.

A transaction contains the following data:

• Nonce: This is a value set by the sender, an EOA, of the transaction. It is used
to prevent double-spending and to order transactions. For every new transaction,
the nonce value increases by one.

• To: This is the recipient address of the transaction. It can be another user’s
account or a smart contract’s address.

• Value: This is the amount of ETH transferred from the sender to the recipient.

• Gas Limit: This represents the maximum amount of computational work, mea-
sured in “gas”, the sender is willing to allocate for the transaction or contract
execution.

• Gas Price: This is the price the sender is willing to pay for each gas unit. This
price is usually denominated in Gwei, where 1 Gwei is one billionth of an Ether.

• Data: This field is optional and usually carries extra data or the encoded function
call to a smart contract.

• v, r, s: These are cryptographic pieces of data that are part of the digital signature
of the transaction. They prove that the transaction was indeed created by the
owner of the sender’s address.

Note that it does not contain a “from” field. The public key can be derived from the
v, r, and s fields, and the address can be derived with the public key.

Consider the following raw transaction:
0xf86d82025f8502540be40083030d4094f0109fc8df28
3027b6285cc889f5aa624eac1f55843b9aca008018080
This string is a hexadecimal representation of a raw Ethereum transaction, encoded
using Recursive Length Prefix (RLP) encoding. RLP is a space-efficient binary seri-
alization scheme used throughout Ethereum. Each of the transaction’s fields is RLP-
encoded.

RLP encoding is a method used in Ethereum to serialize and deserialize structured
binary data. Its primary purpose is to encode nested arrays of binary data of arbitrary
length, making it integral to storing data structures efficiently.

The rules for RLP encoding are as follows:
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• For a single byte whose value is in the [0x00, 0x7f] range, that byte is its own
RLP encoding.

• For a binary string of length 0-55 bytes, the RLP encoding consists of a single
byte with value 0x80 plus the length of the string, followed by the string. The
range of the first byte is thus [0x80, 0xb7]

• For a binary string of length more than 55 bytes, the RLP encoding consists of
the string length in binary form, prefixed by a single byte with value 0xb7 plus
the length in bytes of the string length. Then follows the string.

• For a list of concatenated RLP encodings, if the total payload of all the items
forming the list is 0-55 bytes long, the RLP encoding consists of a single byte
with value 0xc0 plus the length of the concatenated encoding, followed by the
concatenated encoding.

• If the total payload of a list of concatenated RLP encodings is more than 55
bytes long, the RLP encoding consists of the total payload length in binary form,
prefixed by a single byte with value 0xf7 plus the number of bytes needed to
encode the total payload length, followed by the concatenated encoding.

Here is a breakdown of the example:

• f86d: This is the total byte length of the transaction.

• 82025f: This is the nonce. It shows that this is the 150th transaction by the
sender (025f in hexadecimal is 150 in decimal).

• 8502540be400: This is the gas price, which is 10 Gwei in this example (02540be400
in hexadecimal is 10000000000 in Wei).

• 83030d40: This is the gas limit, set at 200000 in this example (030d40 in hex-
adecimal).

• 94f0109fc8df283027b6285cc889f5aa624eac1f55: This is the recipient’s address.

• 843b9aca00: This is the value of ETH being sent (3b9aca00 in hexadecimal is 1
ETH in Wei).

• 80: This represents an empty data field.

• 80: Represents v, which is 27 in this case.

• 80: Represents r, which is empty in this case.

• 80: Represents s, which is empty in this case.

Note that the raw transaction above is not signed. When signing a transaction, the val-
ues of v, r, and s are replaced with the respective parts of the ECDSA signature.

After a transaction is signed, it can be broadcast to the Ethereum network for miners
to pick it up and include it in a block. Any changes to the transaction after it is signed
would require it to be re-signed, as the signature would no longer be valid.

The nonce is a counter that ensures each transaction is processed only once and
prevents replay attacks. It is a crucial part of the Ethereum transaction structure for
maintaining the integrity and order of transactions.

Every EOA has a nonce associated with it, set to zero at the time of account creation.
For every outgoing transaction, an account makes, its nonce increases by one.

When a transaction is issued, it includes the nonce value in its structure. Miners
and validators use this nonce to determine how transactions should be processed. For
instance, a transaction with a nonce of 1 will not be processed until the transaction
with a nonce of 0 has been processed.
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This mechanism ensures two things:

The uniqueness of transactions, since each transaction from an account must have
a unique nonce, this prevents replay attacks where a malicious actor might try to
re-broadcast a transaction to make it appear that the original sender issued the same
transaction multiple times.

Consider the following example:

Assume that Alice has an account on the Ethereum network. When she first creates
the account, the nonce for her account is set to 0.

Alice then decides to send 1 ETH to Bob. She creates a transaction, includes the nonce
of 0 in the transaction data, signs it, and broadcasts it to the network. Miners pick up
the transaction, validate it (which includes checking that the nonce is correct), and
then include it in a block. Once the transaction is included in a block and the block
is added to the blockchain, Alice’s account nonce increases to 1.

Suppose a malicious actor, Eve, tries to replay Alice’s transaction to force Alice to send
another 1 ETH to Bob. Eve rebroadcasts the same transaction that Alice broadcasted
earlier. However, since the transaction includes a nonce of 0, and Alice’s current nonce
is now 1, the Ethereum nodes reject this transaction as invalid. The transaction is
rejected because they know Alice has already completed the transaction with a nonce
of 0, and they are now expecting a transaction from Alice with a nonce of 1.

Transaction order, transactions from an account must be processed in the order de-
termined by their nonce. The order is crucial when multiple transactions from the
same account are issued rapidly or when network delays might otherwise result in
transactions being received out of order.

Transaction order is illustrated in the following example:

Suppose Alice has a current nonce of 5 for her account. She wishes to send two
transactions:

1. A transaction to send 2 ETH to Bob.

2. A transaction to send 3 ETH to Charlie.

Alice first constructs the transaction for Bob and includes the nonce value of 5. She
signs this transaction and broadcasts it to the Ethereum network. However, the transac-
tion propagates slowly to the miners due to network congestion or other issues.

Next, Alice constructs the transaction for Charlie, including the nonce value 6. She
signs this transaction and broadcasts it to the Ethereum network. This transaction
propagates quickly and reaches the miners before the transaction is intended for
Bob.

Under normal circumstances, the transaction for Charlie should be processed first
because it reached the miners earlier. However, due to Ethereum’s nonce-based order-
ing rule, the miners will only process Alice’s transaction for Charlie once they have
processed her transaction for Bob.

The miners know that they missed a transaction from Alice because they see the nonce
of 6 in Charlie’s transaction and realize they still need to process the transaction from
Alice with a nonce of 5.

While the nonce is a simple integer counter, it plays a crucial role in maintaining
the security and consistency of transactions on the Ethereum network. This counter
contrasts with Bitcoin’s UTXO model, where such a counter is optional due to the
nature of chaining transactions together.
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It is also important to note that including a nonce makes concurrency difficult in
Ethereum. Consider that there are independent applications that are generating trans-
actions from the same address. How would multiple applications coordinate generating,
signing, and broadcasting transactions? The selection of nonces would be a severe
problem. A solution would be to have one application responsible for assigning nonce
on a first-come-first-serve basis.

In the Ethereum network, computation and storage are not free. Instead, they are
metered using a unit called gas. Every operation that the Ethereum Virtual Machine
executes, including computations and memory storage, requires a certain amount of
gas.

Every transaction requires computational resources to execute, which are not infinite.
To measure and limit the computational work needed, Ethereum introduces the concept
of gas. Each operation, like addition, subtraction, or more complex data manipulation,
has a specified gas cost.

The gas limit is a value set in each transaction, representing the maximum amount
of gas a transaction can consume. The gas limit protects users from incorrect code
or errors consuming all their ETH due to infinite loops or excessive computational
operations.

While gas measures the computational work, the gas price is the amount of ETH a
sender is willing to pay each gas unit. The gas price is typically denoted in gwei, where
1 ETH equals 1,000,000,000 (one billion) gwei.

The transaction’s sender sets the gas price, incentivizing miners to prioritize their
transactions. Miners are free to choose which transactions to include in the blocks
they mine, and they are incentivized to choose transactions that offer a higher gas
price. This choice leads to a market for block space, where users can compete on gas
prices to have their transactions processed more quickly.

The total transaction fee that a sender must pay is the product of gas used and the
gas price, transaction fee = gas used · gas price. If a transaction does not use all the
gas corresponding to the gas limit, the excess is refunded to the sender. However, if
the gas used by a transaction reaches the gas limit, the transaction fails and halts
immediately, but the fee is still paid.

This design offers a balance, enabling Ethereum to run computations and store data
while at the same time incentivizing efficiency and limiting resource usage. Too high
a gas price might result in quick transaction processing but at a high cost. On the
other hand, a low gas price can result in the transaction not being processed at all if
miners favor transactions with higher gas prices.

By understanding the relationship between gas, gas limit, and gas price, Ethereum
users can optimize their transaction costs based on network demand while processing
their transactions promptly.

The value and data are the primary payloads of a transaction. A transaction with
only a value and no data is a payment, only data and no value an invocation, and
with both, it is both a payment and invocation.

Payments behave differently depending on what kind of address they are sent. For
EOAs, Ethereum will have to perform a state change. If this address is unknown
to Ethereum, it must be initialized. Its balance will be the amount of ETH in the
transaction.

When the destination is a contract, the EVM will have to execute the contract. It will
attempt to execute the function called in the data field. If the transaction has an empty
data field, the EVM will attempt to call the fallback function. If the fallback function
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is payable, the EVM calls the function. Finally, if it is not payable, the transaction
will increase the balance of the contract like an EOA.

A contract can also reject incoming payments by throwing an exception. A state
change also happens for contracts if the function called by the transactions terminates
successfully.

When a transaction does contain data, it will be interpreted as a contract invocation.
This payload is a serialized encoding of the following:

• Function selector: The first four bytes of the Keccak-256 hash of the function
prototype. The selector identifies which function the transaction wants to invoke.
The function prototype is the function name followed by the data type of each
argument. The data types are enclosed in parentheses and separated by commas.

• Function arguments: The encoded arguments for the invoked function.

Consider the following example:
withdraw(uint256) get hashed to
0x2e1a7d4d13322 . . . 0d5b69f16a49f
The first four bytes are then 0x2e1a7d4d. The bytes are the function selector, telling
the contract which function to call. Now the arguments need to be encoded. A
user wants to withdraw 10000000000000000 wei, in hex, this number gets repre-
sented as 0x2386f26fc10000. Since it is a 256-bit integer, the serialized representation
needs to be padded. Thus we arrive at the following data field for the function call
withdraw(10000000000000000):
2e1a7d4d000 . . . 0002386f26fc10000.

However, how would a user create a new contract? This problem requires a special
kind of transaction. Transactions to create a contract are sent to a unique zero address.
This address is not an EOA nor a contract address. This address can only be used as
a destination to create addresses.

A contract-creating transaction must only contain the compiled byte code in the data
field. Its only side-effect is the creation of a contract. The value field can contain ETH
to provide a starting balance for the contract if needed.

Transactions are signed by signing the Keccak-256 hash of the RLP-serialized trans-
action data. Signing happens in the following way:

• Build the Transaction: The sender creates a transaction, specifying parameters
such as the recipient’s address, the amount of ETH to be transferred, any data
to be included, the gas limit, gas price, and the nonce.

• RLP Encoding: The transaction data is then serialized using RLP encoding.

• Hashing: The serialized transaction data is then hashed using the Keccak-256
hash function, creating a 32-byte hash that uniquely represents the transaction.

• Signing: The sender then uses their private key to sign this hash. Signing is done
using the ECDSA algorithm, which outputs a signature consisting of two parts,
“r” and “s.”

• Appending: To create a valid transaction, the “v”, “r”, and “s” values are added.
The "v" value is added to aid recovery of the correct public key. This value is
calculated as: CHAIN_ID ∗ 2 + 35 or CHAIN_ID ∗ 2 + 36.

• Recovering the sender’s address: When a node receives a signed transaction, it
can perform a signature verification process. Using the same ECDSA algorithm
along with the provided signature (r and s values) and the transaction hash, the
node can recover the sender’s public key. This public key is then hashed, and
the last 20 bytes of this hash are taken, resulting in the Ethereum address of
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the sender. The signature is considered valid if this computed address matches
the sender’s address in the transaction.

• Transaction Propagation: Once the transaction is signed, it is broadcast to the
Ethereum network, where it awaits inclusion in a future block by a miner.

The extra “v” value is necessary because, given two values, “r” and “s,” nodes can
generate two possible public keys. Thus a third value is needed to get certainty.
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Figure 4.1: State changes to global state.
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Figure 4.2: Contents of the world state.

4.5 Smart Contracts
As mentioned before, contract accounts by programs that the EVM executes. These
programs are referred to as smart contracts. Where EOAs are controlled by transactions
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signed by external private keys, contract accounts do not have private keys. They
control themselves prescribed by their code. Both accounts have an address, nonce,
and balance in common, as shown in figure 4.3. In the context of Ethereum, a smart
contract is an immutable program that runs deterministically on the EVM as part of
the Ethereum protocol. The storage of a smart contract is mutable since it records
the program’s state.

A contract can still be deleted by calling a special SELFDESTRUCT opcode. This opcode
deletes the contract’s code and storage and creates an empty account. Any transaction
sent to the address does not result in any execution of any program. Calling the self-
destruct opcode results in a refund of gas, thus incentivizing the release of resources
and debloating the system. This

Smart contracts on Ethereum are typically written in a high-level called Solidity, which
will be discussed in-depth in section 4.7. Other languages are available, but Solidity is
the most common. In order to run, these programs have to be compiled to a low-level
byte code which the EVM is able to interpret. Once compiled, contracts are deployed
by sending a unique contract creation transaction to address 0x0. After creation,
each contract is identifiable by an address generated from the creation transaction,
originating account, and nonce. This contract address can then be used as the recipient
of a transaction to interact with the contract. Do note that the developer has to
program a function to call the self-destruct opcode explicitly.

It is important to note that contracts are only ever run when the transaction calls
them; contracts are thus reactive. A contract can, however, call another contract in
its code. However, ultimately, the call originated from an EOA.

In some way, transactions are also atomic. Transactions only cause changes in the
global state if they are successfully terminated. Successful termination means that a
program is executed without causing any errors and without running out of gas. If
execution fails in any way, all its effects are rolled back. The transaction never ran,
but it is still recorded on the blockchain as an unsuccessful attempt at executing it.
Ether spent on gas is also subtracted from the sender’s balance.
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Figure 4.3: The two types of accounts in Ethereum.

4.6 Consensus
Ethereum, like Bitcoin, initially adopted a proof-of-work, PoW, consensus mechanism
known as Ethash. Under PoW, network participants, also called miners, compete to
solve a cryptographic puzzle, the difficulty of which is adjusted dynamically so that a
new block is added approximately every 15 seconds. However, since the Ethereum 2.0
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upgrade in 2022, it has used a proof-of-stake, PoS consensus algorithm, which will be
discussed after the proof-of-work mechanism.

When a miner successfully solves the puzzle, they propose a new block to the network.
The block contains a series of transactions, the previous block’s hash, and the puzzle’s
solution. Other miners in the network verify the solution and, if correct, add the
block to their local copy of the blockchain. This successful miner is rewarded with
a predetermined amount of ETH (block reward) and any transaction fees from the
transactions included in the block.

While PoW has effectively secured the Ethereum network, it is notoriously energy-
intensive. PoW requires miners to perform computationally intensive tasks, most of
which go to waste as only one miner’s work is ultimately added to the blockchain.

Ethereum has been working on a significant upgrade known as Ethereum 2.0 to address
these limitations. The centerpiece of this upgrade is a transition to a PoS consensus
mechanism, dubbed “Eth2” or “Beacon Chain”.

Under PoS, the block validation process is handled by validators, who are chosen to
propose and attest to blocks based on the amount of ETH they hold and are willing
to stake as collateral. Rather than competing in terms of computational power, the
PoS model requires validators to have a financial stake in the network.

Validators are chosen pseudo-randomly to achieve the same randomness as PoW to
create blocks, and other validators vote on their proposed blocks. The weight of each
validator’s vote depends on the size of its stake. If a validator tries to compromise the
system, a portion or all of their staked ETH can be slashed, which means a portion
will be removed. Slashing provides a strong disincentive for malicious behavior.

Proof-of-Stake offers several benefits over Proof-of-Work. It drastically reduces energy
consumption as it does away with energy-intensive mining. It can offer better security
by making a 51% attack more costly, as the attacker would need to own a large
amount of ether, which would likely be rendered worthless after a successful attack.
Furthermore, PoS opens the door to more sophisticated sharding mechanisms, which
could significantly increase the network’s transaction capacity.

Sharding aims to solve a scalability issue by splitting the Ethereum network into
smaller pieces, called shards. Each shard would contain an independent state, meaning
a unique set of account balances and smart contracts. Instead of every node storing
and processing every transaction, nodes would be assigned to specific shards and would
only process transactions and smart contracts within that shard.

Proof-of-work
The PoW mechanism Ethereum employs is known as Ethash. Ethash has been de-
signed to resist the hardware optimization seen in Bitcoin’s mining algorithm, thus
maintaining a higher level of decentralization.

Proof-of-work in Ethereum, as with Bitcoin, involves miners competitively solving
a complex mathematical puzzle, using the data from the latest block as input. The
output, known as a nonce, must be less than a dynamically calculated target value to
be considered valid. The competition to find this nonce is based on random guesses,
making the likelihood of finding a valid nonce proportional to the miner’s computa-
tional power relative to the rest of the network. Note that this nonce is at the block
level and is not the same as the transaction nonce discussed previously.

Ethash is designed as a memory-hard algorithm, requiring a significant amount of
memory to run, in addition to CPU and GPU resources. This memory-hardness is an
intentional design feature to prevent the creation of Application-Specific Integrated
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Circuits, or ASICs. ASICs could make the mining process more centralized, as with
Bitcoin. Ethash achieves memory-hardness by requiring the storage and frequent access
of a large dataset known as the Directed Acyclic Graph, abbreviated as DAG, during
the mining process.

The DAG does not contain transaction data or block information. Instead, it comprises
pseudorandom data, automatically generated every 30,000 blocks for about five days.
The data in the DAG is generated from a simpler, smaller dataset called the seed.
The seed is only 16MB and changes every epoch. The seed is used to generate the
complete DAG, which was around 4 GB but started at 1 GB. The generation of the
DAG involves repeated hashing and mixing of the seed data, which results in a large,
pseudorandom data set.

In mining, a miner hashes the block’s header and a nonce to get a result. This result
is used as an index to select a DAG slice, which is hashed again. The second hash
must be under a specific difficulty value for the block’s validity.

Once a miner finds a nonce that satisfies the conditions of the mathematical puzzle,
they package it along with the transactions they want to include and the hash of the last
valid block. They then broadcast this proposed block to the Ethereum network.

Other miners in the network independently verify the validity of the proposed block,
checking that the transactions are valid and that the nonce is correct. If they agree
on the validity, they append the new block to their copy of the blockchain and begin
mining the next block using the hash of the newly accepted block. The miner who found
the valid nonce receives a block reward in ether and any transaction fees associated
with the transactions they chose to include in the block.

Ethereum’s block time, the average time it takes to mine a new block, is approximately
15 seconds, significantly faster than Bitcoin’s ten minutes. The lower block time is
achieved by adjusting the mining puzzle’s difficulty to align with the network’s total
hashing power.

Proof-of-stake
Ethereum adopted a new consensus mechanism on the 15th of September, 2022, moving
from proof-of-work to proof-of-stake. This adoption is known as the Merge. Initially,
the Beacon Chain, a blockchain running a proof-of-stake protocol, ran in parallel with
the mainnet, as seen in figure 4.4. The mainnet continued to be secured by proof-of-
work. The Merge happened when these two parallel systems merged, and proof-of-work
was permanently replaced by proof-of-stake.

Ethereum’s proof-of-stake consensus protocol bolts together two different consensus
protocols called LMD GHOST and the other Casper FFG. The combination has
become known as Gasper.

Before diving into the details of Gasper, some preliminary terminology has to be
explained.

Gasper introduces an idea called finality. Finality says that there are blocks in the
blockchain history that will never be reverted. A finalized block is a block on which
all honest nodes have agreed that will forever remain part of the history. Therefore,
all of the block’s ancestors too.

Bitcoin’s consensus protocol has yet to have a concept of finality whatsoever. There
will always be a possibility that a node will reveal a longer chain than the current one.
When a node does this, all honest nodes must reorganize their chain and revert all
processed transactions to their mempool. The amount of confirmations a block has
on the Bitcoin blockchain is only an approximation of finality, not a guarantee.
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Figure 4.4: Visualization of merging the Beacon Chain [Eth23].

In Ethereum’s consensus mechanism, finality is provided by Casper FFG. Casper FFG
works by periodically having all validators agree on checkpoint blocks past which they
will never revert. Then this block and all of its ancestors are final. It is possible to
have conflicting checkpoints, but Casper FFG makes this cost enormous.

Two essential aspects of consensus mechanisms are safety and liveness. Safety means the
system behaves like a centralized implementation that executes operations individually.
The system should always be consistent. Liveness says that something good eventually
happens. In the context of blockchain, this means that the chain can always add a
new block.

The CAP theorem says that distributed system cannot provide consistency, availability,
and partition tolerance. This theorem implies that designing a consensus mechanism
that is both live and safe in all circumstances is impossible.

Ethereum thus prioritizes liveness. When a network gets split, both partitions will
continue to produce blocks. Eventually, both partitions will finalize a different history,
and the two chains will become independent forever.

Consensus is formed by validators. Each validator has an initial stake of 32 ETH.
Validators also have a public and private key that identifies them in the protocol. Each
validator is attached to a single node, and each node can possess multiple validators.
These validators are not independent but share the same view.

A big difference from proof-of-work is that a complete list of participants in the
consensus protocol is available. Accessing the available validators allows the protocol
to achieve finality, as it is possible to know when a majority vote has been reached. A
majority is here 2

3 of the validators.

Time in the proof-of-stake consensus protocol is a significant shift from proof-of-work,
where there was only a loose attempt at making block intervals regular. Time is
divided into epochs and epochs into slots. Each slot is a 12-second window, and an
epoch comprises 32 slots, amounting to 6.4 minutes. Figure 4.6 shows the division into
timeslots and epochs.

During each slot, a random validator is picked to propose a block; this is the slot
leader. This block contains updates to the beacon block and Ethereum transactions. A
beacon block includes validator slashings, voluntary exits, and transfers, among other
operations related to the functioning and security of the network. The proposer then
shares its block with the entire network.
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Do note that a slot can be empty. The selected validator may be offline or propose an
invalid block. Ideally, this only happens sometimes, but the protocol is robust enough
when empty slots happen.

Validators get to share their view on the chain’s state every time an epoch ends.
The sharing happens through attestations, a vote for the head of the chain, and a
checkpoint. The LMD GHOST protocol uses the head of the chain and Casper FFG as
the checkpoint. The attestations are also spread around the network and, like blocks,
can be missing for the same reasons.

The attestations happen only once epoch to lighten the workload. Attesting is inform-
ing every validator of the view of every other validator. This spreading of information
is a considerable amount of traffic and computing. Spreading the attestations over 32
slots keeps the traffic low as in each slot, only 1

32 of the validators make attestations.
These are called committees.

The randomness to select slot leaders and committees is provided by the RANDAO,
a random number decentralized autonomous organization. The RANDAO works by
having each member generate a random number independently. These random numbers
are then mixed to ensure that each of these numbers have an equal influence on the
outcome.

Each validator is required to provide a RANDAO reveal when they are proposing a
block. Instead of revealing the actual number, the validators provide a hashed function.
The hashing is necessary to prevent subsequent validators from influencing the random
number created at the end.

At the end of the epoch, each validator reveals its random number. The random
numbers are XOR’d to produce the final random number. This process ensures that
validators can only predict or manipulate the final random number if they control
most of the validators in a given epoch. The resulting number is then used to select
slot leaders and committees. A visual representation of the RANDAO can be seen in
figure 4.5.

Accuracy and block productions are incentivized by using rewards and penalties for
validators.

In proof-of-work mining, a single block is costly. This scarcity incentivizes miners to
follow the protocol’s goals to ensure their block gets included.

Contrast this with proof-of-stake, where producing blocks and attestations is essentially
free. Something is needed to prevent malicious actors from disrupting the protocol.
Slashing provides a way to prevent these actions. Validators that hedge blocks or attes-
tations are in danger of being slashed. Slashing is the process of ejecting validators and
fining them by taking away a part of their stake. On the other hand, honest validators
get rewarded for honest proposals and attestations. Hedging is doing contradictory
things, like proposing two blocks or making two inconsistent attestations.

Now that all terminology is cleared up, Ethereum’s consensus mechanism can be
outlined.

Casper FFG has already been explained in the finalization section. Thus, only LMD
GHOST and Gasper remain. LMD GHOST is a fork-choice rule.

Proof-of-work protocols use the longest-chain rule. The head block in the fork repre-
sents the fork that required the most cumulative work done.

LMD GHOST measures the weight of a fork not based on the work done but considers
the latest attestations of the validators. Thus the chain with the most votes is the
heaviest and is selected as the canonical chain. LMD GHOST incentivizes validators
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Figure 4.5: At every epoch, a pseudorandom process RANDAO selects pro-
posers for each slot and shuffles validators to committees [Eth23].

to stay online and participate actively in the consensus process by focusing on the
latest messages.

Slots
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Epoch

Time
0m 0.8m 1.6m 2.4m 3.2m 4m 4.8m 5.6m 6.4m

Figure 4.6: Slots and epochs in the proof-of-stake mechanism.

A high-level walkthrough of a single epoch is presented to clarify the consensus mech-
anism.

1. Slot assignment: before an epoch starts, validators are randomly assigned to slots
in the upcoming epoch. For each slot, one validator is selected as the proposer,
responsible for creating the block for that slot. Other validators assigned to the
slot are attesters, who vote on the block’s validity.

2. Block proposal: when each slot begins, the designated proposer creates a block
containing data, such as attestations from the previous epoch and slashings. The
block is then propagated to other validators.

3. Attestations: attester validators for the slot, then check the proposed block. If
the validator concludes that the block is valid, they create an attestation for the
block. This attestation includes information about the block itself, the current
state of the chain, and the validator’s signature. Attestations are then broadcast
to the network.
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4. Aggregation of attestations: attestations from individual validators are aggre-
gated into “aggregated attestations” to improve efficiency.

5. Inclusion in Future Block: these aggregated attestations are then included in a
future block within the same epoch or subsequent few epochs, propagated, and
added to the chain.

6. Finality: blocks are then subject to a finality rule for the chain, Casper FFG.
Once a block receives two-thirds of the votes in its favor within its epoch and the
next one, it becomes finalized, meaning it can no longer be changed or reversed.

7. Rewards and Penalties: validators are rewarded for proposing blocks and for
their attestations being included in the chain. Conversely, they are penalized for
misbehavior or non-participation.

4.7 Solidity, A Contract-Oriented Language
Solidity is a statically-typed, contract-oriented programming language developed for
implementing smart contracts on various blockchain platforms, notably Ethereum. It
is statically typed and supports inheritance, libraries, and complex user-defined types,
rendering it a reliable tool for designing contracts on the blockchain.

Ethereum’s blockchain, with its support for programmable smart contracts, requires
a specialized and secure programming language. Solidity provides developers with the
necessary means to write decentralized applications in this context.

Solidity employs a contract-oriented programming paradigm, reflecting the transac-
tional nature of the problems it is designed to solve. This design principle helps develop-
ers structure their code around contract entities, which encapsulate data and functions
that manipulate this data. Each contract can be considered a self-contained code unit
with clearly defined interfaces. This paradigm closely aligns with the blockchain’s
transaction-based model of computation, making Solidity a good choice for blockchain
development.

It offers comprehensive features like type safety, control structures, function visibility
specifiers, and error-handling mechanisms. In addition, it supports features like mul-
tiple inheritance, interfaces, and abstract contracts, to facilitate the more expressive
and modular design of smart contracts.

The following sections delve deeper into the features of Solidity and dissect the syn-
tactical and semantic elements that contribute to this language’s unique and powerful
functionality in the context of smart contract development on the Ethereum plat-
form.

Solidity Programming Basics
First, the basic structure of a Solidity program will be discussed. Below is listing 4.1,
a basic program is presented. This code is a simple faucet contract that provides ETH
to any sender who requests it with a limit of 0.1 ETH per transaction. This code looks
like a C++ or Java program. The following can be found in this small program:

• Lines one and two are the licensing and a pragma keyword. The pragma keyword
is a compiler directive that specifies the compiler version to be used for this file.

• Line four is the contract name, here “Faucet”. This contract can be seen as a
class in C++.

• Line six contains a variable declaration. Here is a mapping from address to
uint256. A mapping can be interpreted as a hash map, where the first mapping
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type is the key and the second the value.

• Line eight defines a function with a parameter and return value. The public
keyword means everyone can call the function.

• Line ten contains a requirement. This function is used to verify inputs and
conditions before running the function.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.7.0 <0.9.0;
3
4 contract Faucet {
5 // Keep a list of addresses with the amount withdrawn
6 mapping(address => uint256) withdraws;
7
8 function withdraw(uint withdraw_amount) public return (true) {
9 // Limit withdrawal amount

10 require(withdraw_amount <= 100000000000000000);
11 // Add a withraw to list
12 withdraws[msg.sender] += withdraw_amount;
13 // Send the amount to the requested address
14 msg.sender.transfer(withdraw_amount);
15
16 return true;
17 }
18 // Accept any incoming amount
19 function () public payable {}
20 }

Listing 4.1: Faucet contract.

File Structure

Now that a minor contract has been examined, all possibilities of file contents will be
discussed.

First is the pragma directive. The pragma below indicates that a below version 0.7.0
should not be used to compile the source code.

pragma solidity^0.7.0

It is also possible to constrain the compiler to a range of versions, as shown in listing
4.1:

pragma solidity >=0.7.0 <0.9.0;

Developers can also import from file names. Take the following file structure:

main.sol
foo.sol

Importing foo.sol into main can be done as follows:

pragma solidity^0.7.0
import "./foo.sol"
//rest of the file

It is also possible to import specific symbols using an optional alias from a file using
the following syntax.
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pragma solidity^0.7.0
import {contract1 as alias_name, contract2}
from "./foo.sol"

// Rest of the file

Or import using a self-defined namespace.

pragma solidity^0.7.0
import * as symbol_namespace from "./foo.sol"
// Rest of the file

The comment style is the same as C/C++/Java/. . . .

// Single line comment
/*
This is a Multi-line comment
*/

Contracts are similar to classes in object-oriented languages, as mentioned above.
Contracts also have constructors, member functions, and member variables.

pragma solidity ^0.7.0;

contract example {
uint256 _var;

constructor(uint256 _initialVal) public {
_var = _initialVal;

}
function setVar(uint256 input) {
_var = input;

}
function getVar() returns(uint256) {
return obj;

}
}

Solidity also has libraries. Libraries are similar to contracts but cannot declare state
variables, have payable functions, use fallback functions, or inherit.

Payable functions let a smart contract accept ether. They help developers manage
incoming ETH and take action when ETH is received.

A contract can only have one fallback function. Fallback functions are executed on a
call to the contract if none of the other functions match the given function signature
or if no data was supplied and there is no payable function. Fallback functions can
also receive ETH if they are marked as payable.

However, a library can modify the state variable in the contracts which call it. For
example, call a library function from a contract and pass a state variable from the
contract to the library function as a parameter. The variable can be modified in the
library function, and the change will be reflected in the corresponding contract. This
process is similar to passing a pointer in C or C++.

It is also possible to attach library functions to a specific datatype as follows:

using <libraryName> for <dataType>

Below is an example of a library and passing a state variable to it.
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pragma solidity ^0.7.0;

library addLib {
function addOne(uint256 input) {
input += 1;

}
}

contract example {
using addLib for uint256;
uint256 _var;

constructor(uint256 _initialVal) public {
_var = _initialVal;

}

function addVar() {
_var.addOne();

}
}

Like other object-oriented programming languages, Solidity also has prototypes in the
form of interfaces.

pragma solidity ^0.7.0;

interface exampleInterface {
function withdraw(uint withdraw_amount)
public return (true);

}

Contract

Here the structure within a contract is briefly discussed. A contract can have the
following components:

• State variables.

• Structure definitions.

• Modifier definitions.

• Event declarations.

• Enumeration definitions.

• Function definitions, including a payable and fallback function. A constructor
can be considered a function too.

These components are shown in listing 4.2. Before diving deeper into each component,
first, a short breakdown of each component.

• State Variables: Variables that persistently store data in contract storage.

• Structure: Structure allows the creation of custom data types.

• Enumerations: Enumerations help create user-defined types with a finite value
set.

• Events: These give the EVM logging facilities an abstract interface.
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• Modifiers: Modifiers can be used to change the behavior of functions in a declar-
ative way.

• Constructor: This special function gets called once and only once when the
contract is first created.

• Functions: Functions define the executable code associated with the contract.

• Fallback function: A contract can declare exactly one fallback function using the
fallback keyword.

• Receive function: A contract can have exactly one receive function declared using
the received keyword.

1 contract ContractName {
2 // State Variables
3 uint private stateVariable;
4
5 // Struct Definition
6 struct CustomStruct {
7 uint id;
8 string name;
9 }

10
11 // Enums
12 enum CustomEnum {
13 Option1,
14 Option2
15 }
16
17 // Events
18 event LogData(uint dataToLog);
19
20 // Modifier
21 modifier onlyOwner() {
22 require(msg.sender == owner, "Not the owner");
23 _;
24 }
25
26 // Constructor
27 constructor() public {
28 // 'msg.sender' is a special keyword that refers to the address of the entity

↪→ (user or contract) interacting with the contract.
29 owner = msg.sender;
30 }
31
32 // Functions
33 function doSomething() public onlyOwner {
34 // function logic goes here
35 }
36
37 // Fallback function
38 fallback() external payable {
39 // This function gets executed if no other function matches the called function

↪→ and no receive ETH function exists.
40 // It must be external and payable.
41 }
42
43 // Receive function
44 receive() external payable {
45 // This function is executed on a call to the contract with empty call data.
46 // This is the function that is executed on plain ETH transfers.
47 }
48 }

Listing 4.2: Structure of a Solidity contract.
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These individual items are discussed in the following sections.

Variables

Just like traditional programming languages, in Solidity, there are basic data types.
These include bool, int, uint, and struct. Floating points are missing and for good
reason. In Solidity, developers deal with currencies, and due to the inherent rounding
errors of floating point numbers, it is not suitable and even dangerous to use. Thus, all
calculations use the smallest denomination of ether, wei, using 256-bit integers.

Regarding data types, Solidity differentiates between static-sized and dynamic-sized
types. Static-sized types always consume the same amount of space in the EVM, no
matter their value. Dynamic-sized types are types where the amount of space used
can vary. When one talks about static and dynamic in Solidity, they usually refer to
the size of the data types and how they are stored and handled in the EVM, not the
value of the variables.

The value of variables in Solidity can change unless they are declared as constant
or immutable. A constant variable can be set at compile time, while an immutable
variable can be set once during contract creation and then becomes read-only. Apart
from these, variable values can be changed in Solidity.

Boolean types, bool, can be true or false. Unlike C-like languages, booleans cannot
be implicitly cast to an integer. Explicit casting is allowed, however.

Integer and unsigned integer types have different sizes. They go from (u)int8 . . . (u)int256
in steps of eight bits. int and uint are aliases of int256 and uint256 respectively. The
language has built-in overflow and underflow protection since Solidity version 0.8.0.
Before this, the developer had to write his own “SafeMath” library or an existing
one.

The address type is a 20-byte long data type and is used to store Ethereum addresses.
Addresses do not allow any arithmetic operations but can be converted to uint160 or
bytes20. There is also an address payable type to send ETH.

The next static-sized type is fixed byte arrays, declared as bytesN where N is one . . . 32.
Hexadecimal or decimal literals can be used to set the byte arrays:

bytes1 x = 0x75;
bytes1 y = 10;
bytes1 z = -100;
bytes2 k = 256;

For byte types there exist bit operations: &, |, ˆ, «, and ». Comparisons and index
access can also be used.

As far as literals go, the following literals exist:

• Integer literals: simply natural numbers.

• String literals: surrounded by single or double quotes.

• Address liters: prefixed by 0x, for example 0xfa35b7d915458ef540ade6078dfe2f44e8fa733c.

• Hexadecimal literals: strings using 0x as prefix and hex before quotations. For
example, hex"0x9A5C2F". Digital item literals: these are decimal fractions, and
scientific notation can also be used. For example, 7.5 and 2e10.

Enumerations also exist. These allow developers to create a user-defined type with a
limited range of values which are also explicitly convertible to integers.

67



contract test {
enum CustomEnum {

Option1,
Option2

}
CustomEnum choice = CustomEnum.Option1;
uint choiceNum = uint(choice);

}

For more complex types, Solidity uses reference types. Reference types do not hold
the actual data stored in a variable but a reference or a pointer to the location of this
data. When a reference type is assigned to another, it does not create a new copy of
the data but simply points to the original data.

Reference types also have an additional data location annotation. This annotation
gives information about where the variable is stored. There are three possible locations:
memory, storage, and calldata.

Storage is where state variables reside. Every contract has its storage, which is per-
sistent between function calls and transactions. Variables in storage are relatively
expensive to use in terms of gas cost, given the necessity of preserving data on the
blockchain.

On the other hand, memory is a data area that is temporarily used during function
execution. It is erased between external function calls and is cheaper to use regarding
gas cost. Memory arrays in Solidity are used for temporary storage within a single
function call. Any changes made in a memory array do not persist once the function
has finished executing.

Call data is an immutable, volatile area where function arguments are stored and
behaves mostly like memory.

It is important to note that reference types behave differently in memory, temporary
space during execution, and storage, permanent space on the blockchain. In storage,
assignment between reference types creates a copy, but in memory, it only assigns a
reference. Assignments between storage and memory or from call data always create
a copy. Understanding these details is crucial for writing efficient Solidity code, as
storage operations can be significantly more expensive than memory operations in
terms of gas costs.

Arrays can have a compile-time fixed size or a dynamic size. A fixed-size array is
declared like this: A[7], and a dynamic-sized array like this: A[]; Accessing an array
past its end causes a failing assertion. The methods .push() and .push(value) can
be used to append a new element at the end of the array.

Variables of type bytes and string are special arrays; the bytes type is similar to
bytes1[], but it is packed tightly in call data and memory. Strings are similar to bytes
but do not allow length or index access.

We can use the keyword “new” to create a memory type array. The new keyword is
used to create a new memory array. The significant difference between memory and
storage arrays is that memory arrays cannot be resized, but storage array can. This
difference is visible in the following example:
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contract example {
function f() {
// Create a memory array
uint[] memory a = new uint[](7);
// We can not update the length property of
// memory array
// Error
// a.length = 100;

}
//storage Array
uint[] b;
function g(){
b = new uint[](7);
// We can adjust array length by setting
// length property
b.length = 10;
b[9] = 100;

}
}

Like in other languages, structures allow users to define their composite datatypes.

Mappings can be thought of as hash tables which are virtually initialized such that
every possible key exists and is mapped to a value whose byte representation are all
zeros.

Functions in Solidity are first-class citizens who can be assigned to variables, pass a
function as a function parameter, and return a function from a function. A complete
function definition is the following:

function <functionName>(<parameters>) <visibility>
<functionModifiers> <returns(<returnTypes>)> {
<functionBody>

}

• <functionName>: this is the name of the function.

• <parameters>: this is a comma-separated list of parameters the function accepts.
Each parameter is represented as <type> <parameterName>. For instance, uint
_value.

• <visibility>: this determines who can call the function. The options are public,
external, internal, and private. Public and external functions can be called
from outside the contract, but external functions can only be called from other
contracts, not from within the contract itself. Internal and private functions can
only be called from within the contract.

• <functionModifiers>: This is a space-separated list of function modifiers, con-
ditions checked before the function is executed. Some examples are view, pure,
payable, and constant.

• <returns(<returnTypes>)>: This is the type of data the function will return. If
a function does not return anything, this part can be omitted.

• <functionBody>: This is the actual code of the function.

Take the following functions, for example. Consider the following function type:

function (uint16, uint32) view returns (uint64)
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Variables of this type can be assigned functions:

function add(uint16 x, uint32 y) internal
pure returns (uint64) {
return uint64(x) + uint64(y);

}
function mul(uint16 x, uint32 y) internal
pure returns (uint64) {
return uint64(x) * uint64(y);

}
function runFunc(bool flag) external
pure returns (uint64) {
function (uint16, uint32) view returns (uint64) func
= flag ? add : mul;

return func(x, y);
}

Function parameters of the type can be used for passing functions to functions:

function receiveFunc(function (uint16, uint32) view
returns (uint64) func) external pure returns (bool) {
if (func == add)
return true;
else
return false;

}

Function parameters of function type can be used for returning functions from func-
tions:

function returnFunc(bool flag)
external pure returns (function (uint16, uint32)
view returns (uint64)) {
if (flag)
return add;
else
return mul;

}

Please note that Solidity uses function modifiers like view, pure, payable to denote
function behavior:

• View: this function promises not to modify the state.

• Pure: this function promises not to read from or modify the state.

• Payable: this function sends ETH to the contract.

Solidity also contains some predefined variables and functions which exist in the global
namespace. When the EVM executes a contract, it has access to a set of global objects.
These objects include the block, msg, and tx objects. Below is a list of these functions
and variables.

• msg.sender: contains the address that initiated the contract call. It can be an
EOA or contract address.

• msg.value: the value, in wei, sent with this call.

• msg.data: the data of this call.

• msg.sig: the first four bytes of the data, which is the function selector.
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• tx.gasprice: the gas price defined in the transaction.

• tx.origin: the address of the originating EOA for this transaction.

• block.coinbase: the address of the block’s validator.

• block.prevrandao: the random number provided by the Beacon Chain.

• block.gaslimit: the gas limit of this block

• block.number: the current block number, also known as the blockchain height.

• block.timestamp: the timestamp of the current block.

• gasleft(): remaining gas in the current call.

• blockhash(uint blockNumber): hash of the given block, the provided number
must be one of the 256 most recent blocks.

• addmod, mulmod: modulo addition and multiplication.

• keccak256, sha256, sha3, ripemd160: hash functions for various standards.

• selfdestruct(recipient_address): deletes the current contract and sends the
remaining ETH to the recipient address.

Statements

Solidity does not support switch and goto statements. However, Solidity does support
the other standard control flow statements. These include if-else, while, do-while, for,
break, and continue.

Modifiers

In Solidity, modifiers are code snippets that can be run before and after a function call.
They are used to modify the behavior of a function and can be used to verify certain
conditions before executing a function, leading to cleaner and safer code. Modifiers
can be used to automate checks that apply to multiple functions, reducing the amount
of duplicated code and, thereby, potential errors.

A modifier declaration looks just like a function declaration, but with the keyword
modifier instead of function, and they cannot return anything:

modifier <modifierName>(<parameters>) {
<modifierBody>

}

A modifier’s body may contain a special statement _. This underscore is where the
execution of the original function is inserted. The function call will not be executed if
_ is omitted.

Here is an example of a common modifier:

modifier onlyOwner() {
require(msg.sender == owner,
"Only the contract owner can call this function.");

_;
}

In this example, the onlyOwner modifier will only allow the function to proceed if the
contract owner calls it. If not, it reverts the transaction. A function can then use the
modifier with its name after the function signature:
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function transferOwnership(address newOwner) public
onlyOwner {
owner = newOwner;

}

In this example, the onlyOwner modifier restricts access to the transferOwnership
function. This function changes the owner state variable of the contract, which should
not be accessible by just any user.

Multiple modifiers can be used on a function, and they will be applied in the order
they are written:

function doSomething() public onlyOwner onlyWhenOpen {
// ...

}

In this example, the function doSomething will first check the onlyOwner modifier,
then the onlyWhenOpen modifier. If both pass, the function will be executed.

When multiple modifiers on a function, each modifier containing the underscore, _
symbol, is essentially wrapped around the function body. Each _ is replaced by the
next modifier or the function body itself.

Consider the following:

modifier mod1 {
...
_;
...

}

modifier mod2 {
...
_;
...

}

function foo() mod1 mod2 {
...

}

This program would execute in the following order:

• The code before _ in mod1.

• The code before _ in mod2.

• The body of foo.

• The code after _ in mod2.

• The code after _ in mod1.

Events

Events in Solidity are an essential feature that facilitates communication between
smart contracts and their external environment. They are a convenient tool that
allows for the logging and listening of state changes in a contract to the Ethereum
blockchain. When a transaction completes, it generates a transaction receipt. This
receipt contains log entries that provide information about everything that happened
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during the execution of the transaction. Events are the Solidity object to construct
these logs.

Services can watch for specific events and report them to the user or other programs to
then reflect events in an underlying contract. Event objects take serialized arguments
and are then recorded in the transaction logs.

Events are declared with the event keyword followed by the event name and the
argument types. Here is an example of an event declaration:

event ValueChanged(address indexed author, uint oldValue,
uint newValue);

In this example, ValueChanged is an event that can be emitted with an address and
two unsigned integers. The indexed keyword indicates that the author can be used as
a filter parameter in the frontend application.

Events are emitted using the emit keyword followed by the event name and the data
to log. Here is an example:

function setValue(uint newValue) public {
uint oldValue = value;
value = newValue;
emit ValueChanged(msg.sender, oldValue, value);

}

In the setValue function, whenever the value state variable is changed, the ValueChanged
event is emitted with the sender’s address and the old and new values.

Events are added to the transaction receipt log, a data structure linked to each trans-
action. They can be later consumed from an off-chain service like a client application,
which can use the data to react to the state changes. Applications can react to
blockchain transactions in real time with events.

Accessing stored data on the blockchain can be costly in terms of gas. Events provide
a way to return data from a contract function without needing to store it. This data
is logged on the blockchain and can be read for a lesser cost. Every byte in a log costs
eight gas, while each contract storage variable costs 20000 gas every 32 bytes. One
downside is that logs are not accessible from other contracts.

Error Handling

In any programming environment, handling errors and exceptions is crucial for ensuring
the reliable and secure execution of the code. In Solidity, this is especially important
because once a contract is deployed on the Ethereum network, it cannot be altered,
and errors can have a significant impact due to blockchain transactions’ immutable
and public nature.

In traditional programming, error handling often uses try-catch blocks or returns error
codes from functions. However, these approaches are only sometimes used in Solidity
due to the unique constraints of smart contracts, such as the need for atomic transac-
tions and the high cost of computation and storage on the Ethereum network.

Instead, Solidity uses state-reverting exceptions to handle errors. When such an ex-
ception is thrown, all changes to the state made by the current function and all its
sub-calls are reverted, and the remaining gas is returned to the caller. This revert
ensures the atomicity of transactions, which means they either complete successfully
or have no impact on the state.
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The revert() function can throw an exception and revert the current state changes.
It can also provide a reason string.

revert("This is the revert reason.");

The require() function is used to validate inputs and conditions. If the condition
inside require() evaluates to false, an exception is thrown, and the code execution
stops. It can also provide a reason string like revert().

require(x > 0, "x must be greater than 0");

The assert() function is used for internal errors and checks on invariants. Failing
assertions mean that there is a bug. Unlike require(), assert() does not facilitate
providing a reason string.

assert(x != 0);

Custom errors can be defined and used in place of reason strings. They are defined
using the error keyword and can have named parameters.

error InsufficientBalance(uint256 available,
uint256 required);

function withdraw(uint256 amount) public {
if (amount > balance[msg.sender])
revert InsufficientBalance(balance[msg.sender], amount);
balance[msg.sender] -= amount;

}

Inheritance

Just like other object-oriented languages, Solidity contracts support inheritance, which
includes multiple inheritance. Contracts can inherit other contracts, gaining access to
their state variables, events, modifiers, and functions, except those explicitly marked
as private.

The basic syntax for contract inheritance uses the keyword. Here is an example:

contract Base {
uint x;
constructor(uint _x) {

x = _x;
}
// Base contract code...

}

contract Derived is Base {
constructor(uint _x) Base(_x) {
// ...

}
// Derived contract code...

}

Derived contracts can override function implementations of their base contracts by
declaring a function with the same name and parameters. The keyword override must
be used in the derived contract’s function:

74



contract Base {
function foo() public virtual returns (string memory) {
return "Base";

}
}

contract Derived is Base {
function foo() public override returns (string memory) {
return "Derived";

}
}

In this example, Derived overrides the foo function from Base. To call the overrid-
den function, the super keyword can be used, which refers to the immediate parent
contract:

function foo() public override returns (string memory) {
return super.foo();

}

Solidity supports multiple inheritance. Multiple inheritance can introduce ambiguity,
called the diamond problem. The diamond problem says that if two or more base
contracts define the same function, which should be called in the child contract?
Solidity deals with this ambiguity by using reverse C3 Linearization, an algorithm
used to obtain the order in which methods should be inherited, which sets a priority
between base contracts. That way, base contracts have different priorities, so the order
of inheritance is relevant.

contract Base1 {
// Base1 contract code...

}

contract Base2 {
// Base2 contract code...

}

contract Derived is Base1, Base2 {
// Derived contract code...

}

Contracts Calling Contracts

In Solidity, contracts can interact with one another through function calls. These calls
can be within the same contract or between different contracts. This operation is
beneficial but potentially dangerous. The risks arise because the caller may not know
much about the contract being called. There is nothing to stop arbitrarily complex
and malign contracts from falling into and being called by other code.

The safest way is to create an instance of the contract. This way, the user knows which
interfaces and behavior are being used. To do this, the user can instantiate it using the
new keyword. The new keyword will create the contract on the blockchain and return
a reference to the object.

The following example creates an instance of the TargetContract contract:
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import "TargetContract.sol";

contract Caller {
TargetContract _target;

constructor() {
_target = new TargetContract();

}
}

Then functions in the target contract can be called using this instance:

uint result = _target.targetFunction(123);

Note that while Caller is the owner of the TargetContract contract, the contract
itself owns the new Caller contract, so only the TargetContract contract can destroy
it.

The second way to call another contract is by using the address of an existing instance
and casting it. In this way, the user applies a known interface to an existing interface.
This method makes it crucial for the user to know that the instance being addressed
is what he assumes it is. Take the following example:

import "TargetContract.sol";

contract Caller {
TargetContract _target;

constructor(address _t) {
_target = TargetContract(_t);
uint result = _target.targetFunction(123);

}
}

In this example, the address is provided to the constructor and cast to the TargetContract
object. This method is much riskier because the user only assumes the address is the
correct object. The user needs to determine whether the function accepts the same
arguments or executes the correct code. Thus this method is much more dangerous
than creating a contract with the caller.

The last and most dangerous method for calling other contracts are low-level functions.
These functions correspond to EVM opcodes of the same name and allow users to
construct a contract-to-contract call manually. As such, these are also the most flexible
methods. Here is an example using the call method:

contract Caller {
constructor(address _t) {
_t.call("targetFunction", 123);

}
}

This program contains a blind call into a function. It exposes the contract to several
security risks, the most important of which will be discussed in the security section of
this chapter. However, the call function will return false if there is a problem. Thus
the return value can be checked:
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contract Caller {
constructor(address _t) {
if(!_t.call("targetFunction", 123)) {
revert("Call to target failed!");

}
}

}

Another variant of call is delegatecall. A delegatecall differs from a call be-
cause the context does not change. For example, whereas a call changes the value of
msg.sender to be the calling contract, a delegatecall keeps the same msg.sender as
in the calling contract. In principle, delegatecall runs the code of another contract
inside the context of the execution of the current contract. The delegate call should
be used with great caution. It can have unexpected effects, especially if the called
contract was not designed as a library.

Interacting with other contracts can open up several security risks. The called contract
could execute malicious code, consume all the calling contract’s gas, or cause the calling
contract to revert. Therefore, it is crucial to sanitize inputs, limit gas, handle errors,
and not rely on the order of transactions.

Smart Contract Design and Development
Now that the basics of Solidity have been discussed, the design of a smart contract can
be explained. Designing a smart contract requires careful consideration of functionality,
security, and efficiency. An everyday use case in Ethereum is the creation of ERC-20
tokens, a standard interface for fungible tokens.

In Ethereum, tokens can represent almost anything. Some examples include:

• Lottery tickets.

• Financial assets.

• A currency like the Euro.

• An ounce of gold.

ERC-20 defines the standard for creating these tokens, which are interoperable with
other services.

This section will walk through designing a simple ERC-20 token contract.

The first step in designing a smart contract is to define the contract specification. For
an ERC-20 token, the specification includes:

• A name for the token.

• A symbol for the token.

• Decimals defining the smallest unit of the token.

• The total supply of tokens.

• A mapping to store each Ethereum address’s token balance.

• A mapping to allow addresses to approve others to spend tokens on their behalf.

The ERC-20 standard defines a set of functions and events which much be implemented.
If a smart contract implements this set, it can be called an ERC-20 token contract. Once
deployed, it will be responsible for keeping track of the created tokens on Ethereum.
Since this set of functions and events have to be implemented, it is possible to define
an interface for the ERC-20 standard:
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1 interface ERC20Interface {
2 // Functions
3 function name() public view returns (string)
4 function symbol() public view returns (string)
5 function decimals() public view returns (uint8)
6 function totalSupply() external view returns (uint256);
7 function balanceOf(address account) external view returns (uint256);
8 function transfer(address recipient, uint256 amount) external returns (bool);
9 function allowance(address owner, address spender) external view returns (uint256);

10 function approve(address spender, uint256 amount) external returns (bool);
11 function transferFrom(address sender, address recipient, uint256 amount) external

↪→ returns (bool);
12 // Events
13 event Transfer(address indexed from, address indexed to, uint256 value);
14 event Approval(address indexed owner, address indexed spender, uint256 value);
15 }

Listing 4.3: ERC-20 interface.

Now the contract can be implemented. First, the state variables need to be set up.
The tokens need a name, symbol, decimals, and total supply. The name, symbol, and
supply are self-explanatory. The decimals variable specifies the smallest divisible unit
of a token. Here 18 will be used, meaning each token can be divided into 1018 parts.
This decimal is necessary because Solidity only supports integer numbers because of
the previously mentioned accuracy issues. Here are the state variables defined in the
contract:

string private constant name = "TestToken";
string private constant symbol = "TTK";
uint8 private constant decimals = 18;
uint256 private totalSupply;

Now two mappings have to be created. One to record the balances of each address and
one to record how many tokens a spender can spend on behalf of the owner. These
mappings look like this:

mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256))
private _allowances;

The first function is the constructor of the contract. It initializes the total supply and
assigns all tokens to the contract deployer. Here the initial supply is multiplied by 1018

to allow the deployer to pass a human-readable argument to the constructor.

constructor(uint256 initialSupply) {
totalSupply = initialSupply * (10 ** uint256(decimals));
// Mint all tokens to the contract deployer
_balances[msg.sender] = totalSupply;

}

Next are the getters for an account’s name, symbol, decimals, and balance. These are
self-evident.
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function name() public view returns (string) {
return name;

}

function symbol() public view returns (string) {
return symbol;

}

function decimals() public view returns (uint8) {
return decimals;

}

function balanceOf(address account)
public view returns (uint256) {
return _balances[account];

}

The following functions transfer tokens from one account to another. The public
transfer function allows the sender to transfer a specific amount of tokens to a
recipient. When the transfer function is called, it, in turn, calls the _transfer function,
passing in the sender’s address in addition to the other parameters, which can be
accessed thanks to msg.sender. The internal _transfer function is used by other
functions to transfer tokens from one address to another. The require function calls
are used to ensure that neither the sender’s nor recipient’s address is the zero address,
0x0. If either address is the zero address, the transaction is reverted. An explicit
underflow or overflow check is not necessary since Solidity 0.8.0. Finally, the emit
Transfer(sender, recipient, amount) line emits a Transfer event, which is useful
for external watchers.

function transfer(address recipient, uint256 amount)
public returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;

}

function _transfer(address sender,
address recipient,
uint256 amount) internal {

require(sender != address(0),
"ERC20: transfer from the zero address");

require(recipient != address(0),
"ERC20: transfer to the zero address");

_balances[sender] -= amount;
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);

}

The following functions are all involved in the process of allowing a third-party, such
as a smart contract, to spend tokens on behalf of the owner. Here is a breakdown of
all the functions.

The allowance function is a function that returns the current allowance the owner has
given to the spender. The allowance is the number of tokens the spender is allowed to
transfer from the owner account.

The approve function is called by the owner, accessed via msg.sender of the to-
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kens, which wants to allow the spender to transfer a certain amount of tokens from
the owner’s account. When this function is called, it triggers the internal function
_approve.

The transferFrom function is used by a spender to transfer several tokens from the
sender’s account to the recipient’s account. The spender must have an allowance from
the sender greater than or equal to the amount. After the transfer, the allowance
is decreased by the amount transferred. Again, no underflow handling is necessary
because of the previously mentioned built-in checking in the integer datatypes.

The _approve function is an internal function that sets the number of tokens the
spender is allowed to transfer from the owner account. This function is called by
approve and transferFrom to set or update the allowance. The function also emits
an Approval event to log the approval on the blockchain.

function allowance(address owner, address spender)
public view returns (uint256) {
return _allowances[owner][spender];

}

function approve(address spender, uint256 amount)
public returns (bool) {
_approve(msg.sender, spender, amount);
return true;

}

function transferFrom(address sender,
address recipient,
uint256 amount)

public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender,

_allowances[sender][msg.sender] - amount);
return true;

}

function _approve(address owner,
address spender,
uint256 amount) internal {

require(owner != address(0),
"ERC20: approve from the zero address");

require(spender != address(0),
"ERC20: approve to the zero address");

_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);

}

Below, in listing 4.4, is the final contract for an ERC-20 token. Here all previously
discussed functions are present to satisfy the standard.

1 pragma solidity ^0.8.0;
2
3 import "./ERC20Interface.sol";
4
5 contract TestToken is ERC20Interface {
6 string private constant name = "TestToken";
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7 string private constant symbol = "TTK";
8 uint8 private constant decimals = 18;
9 uint256 private totalSupply;

10
11 mapping(address => uint256) private _balances;
12 mapping(address => mapping(address => uint256)) private _allowances;
13
14 constructor(uint256 initialSupply) {
15 totalSupply = initialSupply * (10 ** uint256(decimals));
16 // Mint all tokens to the contract deployer
17 _balances[msg.sender] = totalSupply;
18 }
19
20 function name() public view returns (string) {
21 return name;
22 }
23
24 function symbol() public view returns (string) {
25 return symbol;
26 }
27
28 function decimals() public view returns (uint8) {
29 return decimals;
30 }
31
32 function balanceOf(address account) public view returns (uint256) {
33 return _balances[account];
34 }
35
36 function transfer(address recipient, uint256 amount) public returns (bool) {
37 _transfer(msg.sender, recipient, amount);
38 return true;
39 }
40
41 function allowance(address owner, address spender) public view returns (uint256) {
42 return _allowances[owner][spender];
43 }
44
45 function approve(address spender, uint256 amount) public returns (bool) {
46 _approve(msg.sender, spender, amount);
47 return true;
48 }
49
50 function transferFrom(address sender, address recipient, uint256 amount) public

↪→ returns (bool) {
51 _transfer(sender, recipient, amount);
52 _approve(sender, msg.sender, _allowances[sender][msg.sender] - amount);
53 return true;
54 }
55
56 function _transfer(address sender, address recipient, uint256 amount) internal {
57 require(sender != address(0), "ERC20: transfer from the zero address");
58 require(recipient != address(0), "ERC20: transfer to the zero address");
59
60 _balances[sender] -= amount;
61 _balances[recipient] += amount;
62 emit Transfer(sender, recipient, amount);
63 }
64
65 function _approve(address owner, address spender, uint256 amount) internal {
66 require(owner != address(0), "ERC20: approve from the zero address");
67 require(spender != address(0), "ERC20: approve to the zero address");
68
69 _allowances[owner][spender] = amount;
70 emit Approval(owner, spender, amount);
71 }
72
73 event Transfer(address indexed from, address indexed to, uint256 value);
74 event Approval(address indexed owner, address indexed spender, uint256 value);
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75 }

Listing 4.4: ERC-20 token implementation [Zhe+20].

This token only has the essential functions required to satisfy the ERC-20 standard.
Extra features can be added. For example, minting and burning tokens and ensuring
only the contract owner can mint and burn tokens.

Minting is the process of creating new tokens. The rules of minting are defined in
the smart contract of the token. When the mint function is called, new tokens are
created, and their ownership is assigned to a specified address. Minting increases the
total supply of the token.

Burning is the opposite of minting. Burning destroys tokens, effectively reducing the
total number of tokens in existence. Burning is typically done by sending tokens to a
designated “burn” address from which they can’t be recovered or spent. The effect of
burning tokens is that it decreases the total supply of the token.

1 pragma solidity ^0.8.0;
2
3 import "./ERC20Interface.sol";
4
5 contract TestToken is ERC20Interface {
6 string private constant name = "TestToken";
7 string private constant symbol = "TTK";
8 uint8 private constant decimals = 18;
9 uint256 private totalSupply;

10 address private _owner;
11
12 mapping(address => uint256) private _balances;
13 mapping(address => mapping(address => uint256)) private _allowances;
14
15 constructor(uint256 initialSupply) {
16 _owner = msg.sender;
17 _mint(_owner, initialSupply * (10 ** uint256(decimals)));
18 }
19
20 modifier onlyOwner() {
21 require(msg.sender == _owner, "Caller is not the owner");
22 _;
23 }
24
25 //rest of the functions described above
26
27 function mint(address to, uint256 amount) public onlyOwner {
28 _mint(to, amount);
29 }
30
31 function burn(address from, uint256 amount) public onlyOwner {
32 _burn(from, amount);
33 }
34
35 function _mint(address account, uint256 amount) internal {
36 require(account != address(0), "ERC20: mint to the zero address");
37
38 totalSupply = totalSupply + amount;
39 _balances[account] = _balances[account] + amount;
40 emit Transfer(address(0), account, amount);
41 }
42
43 function _burn(address account, uint256 amount) internal {
44 require(account != address(0), "ERC20: burn from the zero address");
45
46 _balances[account] = _balances[account] - amount;
47 _totalSupply = _totalSupply - amount;
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48 emit Transfer(account, address(0), amount);
49 }
50 }

The contracts described in this chapter were deployed and tested using Foundry [Tea23]
within a local, private blockchain.

Private blockchains are predominantly used for development and testing. These net-
works allow developers to deploy and interact with smart contracts instantly and at
no cost.

There are also different public networks available for running and testing contracts.

The Ethereum mainnet is the primary public blockchain. The mainnet is where
genuine ETH transactions occur and legitimate smart contracts are deployed. All
actions performed on the mainnet are irreversible and permanently recorded on the
blockchain, with associated costs paid in real ether. On this network, transactions
with real ETH and value occur.

There are also Ethereum testnets. Testnets function as alternative, parallel blockchain
networks specifically crafted for testing purposes. These networks emulate the mainnet
environment but use distinct, valueless digital assets. Developers primarily use these
public blockchain networks to test protocol upgrades and smart contracts before
deploying them to the mainnet. This difference is analogous to a production versus
staging server.

There are two types of testnets: permission proof-of-authority consensus testnets. In
these testnets, a limited number of elected nodes validate transactions and create new
blocks. The other type uses proof-of-stake, like the mainnet, where everyone can run
a validation node.

At the time of writing, there are two maintained testnets:

• Sepolia: This is the testnet for application development. Sepolia uses a permis-
sioned validator system. The network is small, so it quickly synchronizes and
requires less storage. This network is helpful for users who want to start a node
and interact with the network quickly.

• Goerli and Holešky: Goerli is being deprecated in 2023 and being replaced
with Holešky. These networks are staking infrastructure and protocol developer
testnets. Which means they are helpful for testing, validating, and staking. Any
user can run a validating node to test staking. The state of the network is larger
than the Sepolia network, which means synchronizing and setting up nodes is
slower.

To get ETH on a test network, developers can use a faucet. A faucet is an application
that gives away cryptocurrencies. These can also exist on main networks, but these only
give away cryptocurrencies in exchange for completing simple tasks. In the case of test
networks, these faucets are intended to supply cryptocurrencies to test applications. As
the name faucet implies, these applications give away a few “drops” of cryptocurrencies
periodically.

Gas Optimization
Gas usage is essential to consider when programming smart contracts. Gas is used to
constrain the amount of computation a transaction can consume. If the gas limit is
overrun, the following happens:

• An out-of-gas exception is thrown.
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• The last state of the contract is restored.

• All ETH used to pay for gas is consumed and not refunded.

Gas is paid for by the user who creates the transaction and calls the function. Thus,
users are not inclined to call functions with a high gas cost. This inclination means
that the programmer has to optimize the gas usage of his contracts. This restriction
is akin to embedded programming, but other aspects of computation are constrained
instead of limited hardware resources. This section will recommend some practices
when constructing smart contracts.

A loop through a dynamically-sized array increases the risk of running out of gas.
Sometimes even before finding the desired element, thus wasting a lot of ether.

Calling other contracts, especially when the gas usage of their functions is unknown,
also introduces the risk of running out of gas. Avoid libraries and contracts that are
not well-tested and enjoy wide adoption.

Estimate the gas cost of each function being used in contracts. This estimation can
be achieved using off-chain Ethereum libraries such as web3py for Python or Geth for
Golang. Do note that it will always be an estimate because of the Turing completeness
of the EVM. Evaluating gas costs regularly during development is recommended to
avoid any surprises when deploying contracts.
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Chapter 5

Cardano

Cardano, developed by IOHK, Input Output Hong Kong, represents an attempt at im-
proving a blockchain system’s fundamental architecture and capabilities. The project
was initiated in 2015 with the intention of creating a more balanced and sustain-
able ecosystem for cryptocurrencies, built upon a scientific philosophy and rigorous
academic research. This scientific and research-oriented approach to Cardano’s devel-
opment represents a divergence from the inception of many blockchain projects, which
often lack such systematic development strategies.

Cardano was designed to rectify the blockchain ecosystem’s three key challenges:
scalability, interoperability, and sustainability. Scalability relates to the ability of a
system to handle an increasing amount of work by adding resources to the system. In
the context of Cardano, scalability pertains to network bandwidth, data storage, and
transaction processing speed.

Interoperability, the second key challenge, refers to how blockchain systems commu-
nicate and interact. Given the multitude of blockchain platforms, interoperability is
vital for information exchange and communication.

The final challenge, sustainability, pertains to how the blockchain system can be
maintained and improved over time. For Cardano, this has led to the development of
a treasury system, wherein a fraction of all transaction fees are directed towards a
treasury to ensure future development and maintenance.

Cardano’s blockchain is characterized by a dual-layered structure, which consists of the
Cardano Settlement Layer, CSL, and the Cardano Computation Layer, (CCL). The
CSL primarily deals with the operations of the ADA cryptocurrency, Cardano’s native
token, including tracking transactions. The CCL, the other hand, is responsible for
executing smart contracts and computing transactions. This segregation of functions
allows for a high degree of flexibility and adaptability.

Another noteworthy aspect of Cardano is its consensus mechanism, known as the
Ouroboros proof-of-stake. This approach distinguishes itself from the more traditional
proof-of-work system employed by Bitcoin and other early cryptocurrencies. The PoS
system provides an energy-efficient mechanism through which holders of the ADA
token can generate new blocks and validate transactions.

The Cardano project was started by Charles Hoskinson and Jeremy Wood, who were
previously involved in the Ethereum project. Their firm, IOHK, is the primary de-
veloper of Cardano. The development process of Cardano has been segmented into
five phases: Byron, Shelley, Goguen, Basho, and Voltaire, with each phase adding new
functionality and enhancements to the platform.
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The Byron phase, launched in September 2017, provided the basic foundation of the
Cardano blockchain. The Shelley phase, initiated in July 2020, marked the transforma-
tion of Cardano into a decentralized network. The Goguen phase, which is currently
ongoing, is added support for smart contracts and the ability to build decentralized ap-
plications on the network. The subsequent Basho and Voltaire phases aim to enhance
network scalability and implement a voting and treasury system.

5.1 What makes Cardano different?
In the diverse landscape of cryptocurrencies, Cardano presents several unique technical
characteristics. Each platform feature is designed to address specific problems prevalent
in the current state of blockchain technology.

Two-Layered Architecture
Cardano operates on a two-layer architecture, which separates the Cardano Settlement
Layer, the CSL, and the Cardano Computation Layer, the CCL. Bitcoin and Ethereum
use a single-layer structure for transaction validation and computational operations,
leading to potential bottlenecks and scalability issues. Cardano’s two-layer approach
serves to mitigate these problems.

The CSL handles transaction and token accounting, separating these basic blockchain
operations from the CCL. The CCL manages smart contracts and computations. This
division allows for improvements in scalability and security, as changes or upgrades
to one layer do not necessarily impact the other.

Ouroboros Consensus Protocol
Cardano utilizes the Ouroboros protocol, a unique proof-of-stake consensus mechanism.
Traditional PoW consensus protocols, like the one used by Bitcoin, consume consider-
able energy and face scalability limitations. Ouroboros is a response to these issues. It
offers a more energy-efficient alternative to PoW protocols while still ensuring a high
degree of network security. The protocol allows stakeholders with a higher proportion
of ADA, Cardano’s native cryptocurrency, to have a higher chance of being selected
to add the following block to the blockchain.

Decentralized Governance
One of the significant issues facing blockchain projects is governance. Hard forks
in response to disputes can lead to network splits, as witnessed with Bitcoin and
Ethereum. Cardano’s approach to this issue is a decentralized on-chain governance
model, incorporating a treasury system and voting mechanism. ADA holders can
vote on proposed changes, updates to the system, and a portion of transaction fees
fund the treasury, ensuring ongoing sustainable development and reducing the risk of
divisive hard forks. The voting takes place on a separate chain to reduce traffic on the
mainnet.

Interoperability
An essential characteristic of Cardano is its focus on interoperability, which seeks to
address the currently fragmented state of blockchain ecosystems. Many blockchain
platforms operate in isolation, unable to communicate or share data. This need for
interoperability presents a significant barrier to blockchain technology’s widespread
adoption and use.
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Cardano’s approach to this issue involves creating a blockchain platform that can
interact with other blockchains, fostering an interconnected ecosystem. This approach
involves the development of sidechains and cryptographic mechanisms that allow for
secure communication between the main Cardano blockchain and other Cardano-
compatible blockchains. This approach allows assets and information to be securely
moved between blockchains, enhancing the functionality and utility of the Cardano
ecosystem.

Native Tokens
Another distinguishing aspect of Cardano is its support for native tokens. While on
some platforms, such as Ethereum, creating a new token requires deploying a smart
contract, Cardano’s architecture allows tokens to be created directly on the blockchain
as native assets.

This feature has several advantages; native tokens on Cardano benefit from the same
level of security as the ADA cryptocurrency. Transactions with native tokens are
processed like ADA transactions, ensuring predictable and manageable transaction
costs. Moreover, native tokens can be created, transferred, and destroyed without
executing a smart contract, reducing the complexity and potential for errors.

Advanced Smart Contract Functionality
Cardano also improves upon smart contract functionality found in platforms like
Ethereum. While Ethereum operates on an account-based model that can limit the
parallel execution of smart contracts, Cardano employs an extended UTXO model, EU-
TXO. This model combines the security and predictability of Bitcoin’s UTXO model
with the ability to carry and process additional data. This model enables a greater
degree of parallel execution, enhancing transaction throughput and scalability.

5.2 Layered architecture
This section discusses the difference between the settlement layer and the computation
layer. The settlement layer is for accounting, and the computation layer is used for
running smart contracts. These two layers are separated because transaction data is
only sometimes necessary when running smart contracts and vice versa. These are
two different realms within Cardano, and knowing everything can be a waste when
it is unnecessary. This way of working contrasts Ethereum, where smart contracts
constantly burden transactions.

Settlement Layer
The Cardano Settlement Layer is a fundamental component of the Cardano blockchain
architecture. This layer is designed to track and manage the transfer of ADA.

The CSL is built on a modified version of the Unspent Transaction Output, which
Bitcoin uses, known as the Extended UTXO model (EUTXO). In the UTXO model,
a user does not have an account balance. Instead, their wallet software keeps track of
multiple UTXOs, each representing a certain amount of cryptocurrency sent to the
user’s address and has yet to be spent. The user’s wallet software selects one or several
UTXOs as inputs to make a payment, which is then “spent” and cannot be used in
future transactions.

The EUTXO model extends Bitcoin’s UTXO model by allowing additional data to be
carried within outputs, effectively enabling outputs to be locked by a smart contract
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and facilitating more complex transactions beyond simple transfers of value. Impor-
tantly, this EUTXO model is more amenable to the parallel execution of transactions,
which improves scalability. This design, coupled with the CSL’s specific role of handling
value transfer, isolates the settlement process from other computational functions on
the Cardano blockchain.

The CSL uses the Ouroboros consensus protocol, a PoS mechanism for validating
transactions and adding new blocks to the blockchain, which will be discussed in the
next section. This PoS protocol allows stakeholders with more ADA to have a higher
chance of being selected to add the following block to the blockchain, ensuring a more
decentralized and efficient operation than the traditional Proof-of-Work mechanisms
used in other platforms.

The CSL is also responsible for managing Cardano’s native token ADA and any custom
tokens users may create. Unlike Ethereum, where custom tokens are created through
smart contracts, in Cardano, custom tokens are native and treated like ADA regarding
functionality and security. This treatment of custom tokens eliminates the risk of
smart contract vulnerabilities.

Computation Layer
The other layer is called the Cardano Computation Layer (CCL). As the name implies,
this layer is responsible for the computational tasks of the blockchain, particularly the
execution of smart contracts.

The smart contracts within the CCL are built upon Cardano’s Extended Unspent
Transaction Output (EUTXO) model. Cardano’s smart contracts are written in a
purpose-built language called Plutus, which is a statically-typed language based on
the functional language Haskell. Plutus is designed to minimize potential security
vulnerabilities and errors while providing powerful and expressive tools for developers
to write complex smart contracts. The strong typing and functional programming
paradigm can help reduce the risk of unpredictable behavior and bugs in smart contract
code.

In the CCL, different users can operate under different rules when verifying transac-
tions. For instance, a user can choose to follow the rules of a specific decentralized
application and only recognize the valid transactions under those rules. This flexibility
is made possible due to the distinction between the CSL and CCL. It allows various
smart contract paradigms to coexist on the Cardano platform, promoting a flexible
environment for decentralized application development.

Furthermore, the CCL enables users to create custom tokens, which are treated as na-
tive to the blockchain and as first-class citizens, similar to ADA, Cardano’s native token.
This feature provides an advantage over platforms where custom tokens are handled
through smart contracts, often leading to inconsistencies and vulnerabilities.

EUTXO
The EUTXO model aims to combine Bitcoin’s UTXO model with Ethereum’s ability
to handle smart contracts. Unlike Bitcoin, with its limited programmability, Cardano
is meant to do more than only process payments. Thus, it is necessary to extend the
UTXO model to allow for more programmability and expressiveness.

Ethereum’s accounting model addresses this shortcoming. However, the programming
semantics in Ethereum grew significantly and had unintended consequences, as dis-
cussed in the previous chapter.

Apart from the programming aspect, EUTXO needs to include two extra features
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• The ability to keep the contract in its current state.

• Ensure that the same code is used throughout the transaction sequence, referred
to as continuity.

Since EUTXO is deterministic and has continuity, it can also predict the transaction
fees before processing. Determinism is a characteristic that account-based models
lack.

Why is it called “extended” UTXO? What exactly is being extended? EUTXO extends
UTXO in two ways:

• Addresses in the EUTXO model can contain arbitrary logic instead of being
restricted to only public keys and signatures. Addresses are scripts. For example,
when a node validates a transaction, the node determines whether or not the
transaction is allowed to use a specific output as an input. The transaction will
look up the script provided by the output’s address and execute the script if the
transaction can use the output as an input.

• Outputs can carry arbitrary data and an address and value. This data allows
the script to carry state information.

The EUTXO model has several advantages over the account-based model. An EU-
TXO transaction is entirely deterministic; its success or failure is only determined
by the transaction and its input and not by anything else on the blockchain. This
results in verifying a transaction before it is transmitted onto the blockchain. EUTXO
contrasts with an account-based model, in which a transaction can fail during its
execution.

Transaction verification is also made easier due to the nature of UTXO since every
UTXO may only be used once. The UTXO model also offers a degree of parallelism
due to its local nature. When transactions operate in different branches of the UTXO
graph, they do not consume the same inputs; the transactions can be processed in
parallel.

In the EUTXO model, each transaction output consists of several elements:

• Value: The value in an output of the EUTXO model represents the amount of
ADA or other native tokens within the output.

• Address: The address in the EUTXO model is a unique identifier for the loca-
tion of ADA or other tokens within the blockchain. However, unlike traditional
blockchain addresses, which are public key hashes, in the EUTXO model, the
address is a composite of two parts: a datum hash and a reference to a validator
script:

– Datum Hash: The datum hash is a cryptographic hash of additional data,
datum, attached to the output. It allows the validator script to access the
datum, providing more context for validating transactions.

– Validator Script: This refers to a piece of Plutus code. The validator script
acts like a gatekeeper, defining the rules or conditions under which the
output can be spent. This concept extends the functionality of an address
beyond just receiving funds, making it an active participant in transaction
validation.

• Datum: This is an additional piece of data associated with a UTXO, which can
be referenced by the datum hash in the address. This datum is stored separately
from the UTXO itself and is supplied by the transaction that creates the UTXO.
The datum can be any arbitrary data structure, and its interpretation is up to
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the validator script. This flexibility enables many use cases, including complex
contracts and decentralized applications.

When a transaction attempts to spend an EUTXO, it must provide the following:

• Validator Script: this script is mentioned in the UTXO’s address. It is a function
in the Plutus Core language determining whether a transaction can consume
the UTXO. The script takes two inputs: the redeemer and the context.

• Redeemer: the redeemer is an arbitrary piece of data the transaction provides
that tries to spend a UTXO. It acts as an “argument” to the validator script,
providing information or fulfilling a condition that the validator script requires
to approve the transaction. For instance, in a simple payment transaction, the
redeemer could be a digital signature which the validator script verifies.

• Context: the context provides additional data about the transaction trying to
spend the UTXO. The context includes the transaction inputs and outputs and
the validation data. The context is critical as it allows the validator script to
make decisions based on the broader circumstances of the transaction, not just
the redeemer.

• Datum Value: the transaction must also provide the datum value corresponding
to the datum hash in the UTXO’s address to spend a UTXO. This requirement
ensures the validator script can access the datum during validation, enabling
more complex validation logic.

The validator script, the redeemer, and the context are all passed into the Cardano
script interpreter and the datum. The validator script will use these pieces of informa-
tion to determine whether the UTXO can be spent.

The EUTXO model has several benefits. Including data within UTXOs allows for
creation of sophisticated smart contracts, extending the functionality of UTXOs beyond
simple value transfers. Additionally, by defining the conditions under which a UTXO
can be spent, it is possible to enforce complex rules and protocols directly at the
blockchain layer.

5.3 Consensus
Like Ethereum, Cardano also uses a proof-of-stake consensus mechanism. Naturally,
some differences will be discussed in this section.

Cardano runs a consensus mechanism called Ouroboros. Ouroboros features math-
ematically verifiable security and is provably secure. Security, decentralization, and
robustness are essential aspects of any consensus mechanism. The first difference from
Ethereum is that Ouroboros uses a variant of proof-of-stake, delegated proof-of-stake.
In Ethereum, everyone who wants to participate in consensus has to lock up their
stake and run a validator node. However, in delegated proof-of-stake, users can pool
their stakes together into a stake pool and delegate the running of a validator node
to another person.

Before explaining how Ouroboros works, an explanation of delegation will be provided.
Anyone who owns ADA can start delegating while retaining his spending power; ADA
can be spent at any time, even while staked. Stake allows stakeholders to participate
in slot leader elections in each epoch.

To start delegating, a user has to post two certificates on the blockchain: a) a staking
address registration and b) a delegation certificate. The staking address differs from
the usual UTXO address generated by the private keys. The different addresses mean
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a regular Cardano user requires a standard payment key pair and an additional staking
key pair. The staking key is then used to generate a staking reward address.

The delegation certificate includes the stake pool’s verification key to indicate to
which pool is being staked and the user’s staking address. The verification key proves
that a node can create a block. Now a transaction, the actual post, is created, which
includes the delegation certificate and has as a transaction output all of the user’s
ada, which the user wishes to stake. The transaction output can be consumed at any
time, de-delegating the ada.

With this delegation concept, any user owning ADA can allow a stake pool to gen-
erate blocks for him. The rewards paid out to stake pools and distributed over the
participants are proportional to the amount of ADA delegated to the pool. However,
the rewards per stake pool are subject to a threshold to centralize only some of the
stakes into a few stake pools. When a pool threshold is reached, the staking pool is
saturated.

To calculate how much stake is delegated to each pool, a node has to look for all
transactions, which includes a delegation certificate that includes the verification key
of that pool. Thus all delegated stake is public information.

Now the section continues with discussing Ouroboros. There exist several implemen-
tations of Ouroboros since it has continued to evolve. This section starts with the
original implementation from 2017.

Ouroboros Classic[Kia+17]
This first implementation laid the foundations for the Ouroboros protocol. Ouroboros
Classic is a proof of concept and introduces a mathematical framework to analyze
proof-of-stake.

Like Ethereum’s Gasper protocol, Ouroboros divided physical time into epochs. Each
epoch is then further divided into slots The slots in Ouroboros are one second long.
Each epoch has a different random seed to prevent pattern formation because it can
also be exploited when behavior can be predicted.

For each slot, a slot leader is elected. The slot leader has the right, but not the obligation,
to create a new block for this slot. The leader election process occurs at the beginning
of each epoch; the period consists of a pre-determined number of slots.

First, the protocol takes a snapshot of the stake distribution at the beginning of the
current epoch. This snapshot is a reference point for determining the stakeholders
eligible to become slot leaders in the next epoch. Only the active stake, the tokens
currently staked at the snapshot’s point in time, is considered.

The slot leaders are elected from the stakeholder based on their proportional stake
in the snapshot. This election uses a lottery algorithm named Following-the-Satoshi,
FtS. This algorithm takes the set of staked ADA and divides it into its smallest
denomination, a Lovelace. Then the FtS uses the epoch seed to generate a random
number within the range of total Lovelace in circulation for each slot to elect the slot
leader. For example: if the FtS outputs 500 for slot one, and Alice owns the 500th
Lovelace. Then Alice is the slot leader for slot 1.

However, how does the network get a random seed for each epoch? The backbone
of Ouroboros Classic’s randomness rests on a coin-tossing algorithm. The objective
is to ensure a fair, random process of selecting slot leaders for each epoch. The idea
is simple: every stakeholder will use a coin-tossing algorithm to generate unbiased
randomness, which can be used to generate a random string.
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Once every stakeholder has generated a random string called the secret, it has to
commit to its peers. Committing is required because it could change its secret depend-
ing on what other stakeholders have generated. The stakeholders send evidence to
their peers to commit the secret, called a commitment. In the context of Ouroboros,
this is essentially public-key encryption of the secret key. To reveal the secret later,
the stakeholders can reveal the original secret, which their peers can verify using the
commitment. One problem is that stakeholders can abort the protocol by not revealing
the commitment.

Ouroboros Classic uses Publicly Verifiable Secret Sharing, PVSS, to solve this issue.
PVSS ensures fairness in the process of seed generation. PVSS is a cryptographic
method where a secret is divided into parts, giving each participant a unique part. A
specific threshold number of parts is needed to reconstruct the original secret, allowing
for collective ownership and recovery of the secret. PVSS also allows anyone to verify
that shares have been distributed correctly without knowing the secret. It ensures that
even if some participants fail to reveal their share of the secret, the original secret can
still be recovered. Here the original secret of being recombined is the seed for the next
epoch.

During the reveal phase, stakeholders reveal their PVSS-encrypted secrets. Any ob-
server can then retrieve the secret shares, check the proofs, and aggregate the correctly
shared secrets. The aggregated shares are then used to generate the random seed for
the slot leader selection in the next epoch. This concept is where the name Ouroboros
comes from; the protocol eats its tail in the previous epoch to generate a random seed
for the next epoch.

This process of generating randomness is called a Multiparty Computation, MPC. The
formal definition is a technique that allows multiple parties, each possessing fragments
of private data, to participate in computing a specific result. Here this result is the
random seed for the following epoch.

To make the protocol clearer, consider the following example: Suppose we have a
Cardano blockchain network with ten stakeholders, labeled A through J, whom all
hold an equal amount of ada, thus 10% each.

• Epoch Division: Time is divided into epochs, each comprising a certain number
of slots. For simplicity, take ten slots per epoch.

• Commitment Phase: Each stakeholder generates a random value, the secret, and
submits a commitment to the network. The commitment is encrypted with a
publicly verifiable, secret one-time key.

• For instance, stakeholder A might generate the secret “1234”. He encrypts this
value with her one-time key and sends the commitment to the network.

• Reveal Phase: After all commitments are collected and registered on the blockchain,
stakeholders reveal their secrets by publishing them along with the one-time key
used for encryption. The network verifies each nonce using the commitment and
one-time key.

• Stakeholder A, for instance, would now publish his secret, “1234,” and his one-
time key. The network can confirm that her commitment in the previous phase
was indeed for the nonce “1234”.

• All revealed secrets are collected and combined into a new, single random value
or seed using a deterministic function. This seed is used to select slot leaders for
the upcoming epoch randomly.

• In this example, stakeholders A through J might combine the secret into the
seed “5678”.
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• Follow-the-Satoshi: FtS selects a slot leader for each slot in the upcoming epoch.
FTS starts with the seed “5678”, treats the blockchain as a list of ADA coins
owned by stakeholders, and randomly picks one coin. The owner of the selected
coin becomes the slot leader.

• If the first coin selected by FtS is owned by stakeholder A, then A is the slot
leader for the first slot in the upcoming epoch. This process is repeated for each
slot.

• Block Production: During the epoch, each slot leader validates transactions,
forms a block, and adds it to the blockchain during their slot. If a slot leader
misses their slot due to being offline, for example, no block is added for that slot.

Ouroboros Classic makes four assumptions:

• The network is synchronous in the sense that every stakeholder can communicate
with any stakeholder within a specific time.

• There is always an honest majority of stakeholders available.

• The stakeholders do not remain offline for long periods.

• The adaptivity of malicious actors is delayed.

Ouroboros BFT[KR18]
Ouroboros Byzantine Fault Tolerance, Ouroboros BFT, is an intermediary consensus
protocol introduced as a stepping stone in the transition from Ouroboros Classic
to Ouroboros Praos within the Cardano blockchain. This protocol was necessary
to enable the migration from the federated nodes originally used to manage the
Cardano blockchain to the decentralized stake pool model implemented in Ouroboros
Praos.

Key improvements introduced with Ouroboros BFT include:

• Byzantine Fault Tolerance: As the name implies, Ouroboros BFT introduces
Byzantine Fault Tolerance to the Cardano blockchain. BFT means the protocol
can function correctly even if some participating nodes fail or act maliciously,
as long as less than one-third of the nodes are malicious.

• Transition Mechanism: Ouroboros BFT was an essential mechanism to transition
from the bootstrap era, Ouroboros Classic, where a collection of trusted nodes
maintained the network, to a fully decentralized network, like in Ouroboros
Praos.

• Simplicity and Robustness: Ouroboros BFT is a more straightforward protocol
than Ouroboros Classic or Ouroboros Praos but is also less sophisticated. It does
not include the previous leaders’ election mechanism. The leaders are instead
scheduled ahead of time in a round-robin fashion. This change made it a good
fit for the transitional phase, where robustness and reliability were critical.

• Hard Fork Compatibility: One of the critical aspects of Ouroboros BFT is that
it was designed to be compatible with a hard fork. Hard forking is how the
Cardano blockchain could switch from Ouroboros Classic to Ouroboros BFT
without splitting into two blockchains.

Ouroboros Praos[Dav+18]
Ouroboros Praos follows a similar time structure as Ouroboros Classic, partitioning
time into epochs and slots. However, it introduces a semi-synchronous network setting,
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assuming an unknown upper bound on message delivery times. This assumption allows
for potential network delays while assuming eventual message delivery.

In Ouroboros Praos, slot leaders are elected by each stakeholder, running a private and
independent lottery for every slot. This lottery utilizes a Verifiable Random Function,
VRF, a cryptographic primitive. A VRF maps input values to output values in a
deterministic yet unpredictable manner. This mechanism allows each stakeholder to
independently and privately determine their likelihood of being selected as a slot
leader.

VRF takes the current epoch seed and a stakeholder’s private key as inputs, generating
two outputs: a random value and a proof.

The random value output of the VRF is used to determine whether a stakeholder
is selected as a slot leader. Each stakeholder computes this value for each slot and
compares it to a threshold proportional to the size of their stake in the cryptocurrency’s
total supply. If the generated value is less than this threshold, the stakeholder is
designated as the slot leader for that particular slot.

The proof output from the VRF proves that a stakeholder was legitimately selected
as a slot leader. When stakeholders win the leader election, they include this proof in
their generated block. Other stakeholders in the network can use this proof to verify
the legitimacy of the block producer without gaining knowledge of their private key.
The other stakeholders use the public key to verify the proof, meaning that the random
value was produced using the corresponding private key.

If a stakeholder’s VRF output indicates they are a slot leader, they broadcast this
output along with the VRF proof. Any other network participant can use the proof
and the known public key to verify the legitimacy of the slot leader’s claim without
ever revealing the stakeholder’s private key.

The main advantage of VRFs is that they provide publicly verifiable pseudo-randomness.
In other words, VRFs allow anyone to confirm that a random output, such as the win-
ner of a slot leader election, was randomly chosen and not fraudulently manipulated,
thanks to cryptographic proof. If there are multiple slot leader candidates, the lowest
VRF random value is picked as the slot leader.

Key Evolving Signatures, KES, provides an additional layer of security in Ouroboros
Praos. In a KES scheme, the private signing key evolves according to a pre-determined
schedule, and earlier keys are discarded. Evolving keys ensures that an adversary
cannot reuse an old private key even if they manage to learn it, safeguarding against
long-range attacks.

Ouroboros Praos implements a novel approach to generate the random seed for the
next epoch’s leader selection. The new seed is derived from the VRF outputs provided
by slot leaders, ensuring that it is private, unpredictable, and not biased. This approach
is critical for maintaining a fair and unbiased election process, enhancing the protocol’s
security.

Here is another illustrative example: Assume there is a Cardano blockchain network
with four stakeholders: Alice, Bob, Charlie, and Daisy. Each holds a different amount
of ada. The distribution is as follows: Alice has 40% of the total ADA, Bob has 30%,
Charlie has 20%, and Daisy holds the remaining 10%.

• Epoch Division: Time is divided into epochs, each comprising several slots. For
simplicity, take five slots per epoch.

• Seed Generation: At the beginning of the epoch, a seed is generated for the entire
epoch. This seed is computed using the previous epoch’s blocks. Let the seed
for the current epoch be “5678”.
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• Private Slot Leader Election: Every stakeholder performs a private lottery for
each slot in the epoch to determine if they are the slot leader. They input the
epoch’s seed and their private key into a Verifiable Random Function, VRF,
which gives a random value and a proof. If the random value is less than a
threshold proportional to their stake, they win the lottery and become a slot
leader.

• For instance, for the first slot, Alice, Bob, Charlie, and Daisy run the VRF with
the seed “5678” and their private keys. Assume the random values Alice, Bob,
Charlie, and Daisy get are 0.1, 0.6, 0.3, and 0.9, respectively.

• Given Alice’s stake is 40%, her threshold might be 0.4. Alice’s random value,
0.1, is less than her threshold. She is elected the slot leader for the first slot.

• Bob, Charlie, and Daisy are not slot leaders for this slot, as their random values
are more significant than their respective thresholds.

• Block Production: When Alice becomes a slot leader, she can create a block of
transactions, sign it using her key evolving signature, include her VRF proof, and
broadcast it to the network. Upon receiving the block, other stakeholders can
use the included proof and Alice’s public key to verify that she was a legitimate
slot leader.

• Continuation of Slot Leader Election: This process continues for each slot in the
epoch. The slot leader for each slot is determined privately and independently.

Through this process, Ouroboros Praos ensures that slot leader elections are random,
private, and directly proportional to the stake held.

There are some subtle differences compared to Ethereum’s proof-of-stake consensus
mechanism. Ethereum also uses the concept of epochs and slots, but it randomly
assigns a committee of validators to each slot in addition to having one leader per slot.
The leader proposes a block, and the others are responsible for attesting to it.

Cardano also uses a multiparty computation protocol to select slot leaders. Each
participant provides a seed to create the following random number. Ethereum, on the
other hand, uses the RANDAO protocol to generate randomness.

Ethereum has a notion of finality. Each block epoch is considered final once 2
3 of

validators have attested to it. The block can then never be reverted to. In Cardano’s
Ouroboros, a block is considered final once deep enough in the chain that the probability
of it being reversed is negligible. This notion of finality is the same implicit finality as
in Bitcoin.

The final difference is that Cardano uses delegated proof-of-stake in contrast to
Ethereum’s normal proof-of-stake. People can join “unofficial” stake pools in Ethereum,
but the protocol does not support them. The unofficial stake pools are programmed
on the blockchain using smart contracts.

5.4 Programming
Before discussing programming on the Cardano blockchain, it is crucial to understand
the EUTXO model. This subject is examined in section 5.2, but in this section, the
emphasis is on how to influence the programming model of Cardano.

The validation decides whether a transaction can consume an input. In the ordinary
UTXO model, this relies on digital signatures, meaning users must sign transactions
for the consumption to be valid. The goal of EUTXO is to make this validation
more general. It does not have just one condition, but it is replaced with arbitrary
logic.
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Where Bitcoin has addresses that correspond to public keys to verify a signature, there
are more general addresses in Cardano. These addresses are not based on public keys
or the hashes of public keys but instead contain arbitrary programs which decide the
spendable conditions of UTXO.

This address requires that the input prove it can consume an output, UTXO, with
a piece of data called the redeemer. The redeemer is used to provide the necessary
information to the smart contract to validate the transaction. The redeemer can
include, for example, passwords, proofs, or other forms of data required by the smart
contract’s conditions. The public key address is thus replaced by a script and the
digital signature by a redeemer.

The next question is, what is meant by arbitrary logic?

Script Context
The first option is that the only thing a script sees is the redeemer itself, so only the
logic is necessary to verify the transaction; thus, the script context consists of only
the redeemer. This type of redeemer is the way Bitcoin handles this problem. As was
discussed in chapter 3, Bitcoin does have smart contracts, but they are very limited.
There is a locking script called simply the script on the UTXO side and an unlocking
script called the redeemer on the input side. The locking script receives the unlocking
script and determines if the UTXO can be consumed.

The second option is the Ethereum approach. This option is the other extreme, where
the script context consists of everything, the entire state blockchain. As shown in
chapter 4, Ethereum scripts are very powerful. But this is a double-edged sword, and
because the scripts are so powerful, it is also difficult to predict what they do. This
results in security issues and is sometimes tricky to handle for developers.

Cardano tries to find a happy medium. The script context in Cardano can see the
entire transaction and not only the redeemer. It can see all the inputs and outputs of
the transaction and the transaction itself. A script can then decide what to do based
on this information.

The last piece of the puzzle is something called a datum. The datum is data that
can be added to a UTXO along with the UTXO value. The datum can be thought
of as the state of the script for that UTXO. This information makes it as powerful
as the Ethereum model and has some advantages. Where the developer has to guess
how much gas is expended by an Ethereum script, in Cardano, this can be accurately
calculated due to the immutability of Cardano scripts. It is also possible to check if a
Cardano transaction will validate before sending it to the chain.

The redeemer, datum, and script context are the three inputs passed to the validator
when a transaction tries to spend a UTXO locked by a script. In more detail, the
script context contains three pieces of information:

• The script context transaction information: information about the transaction
being validated. The information includes the inputs, outputs, transferred value,
and fees.

• The script context purpose: the reason why the script is being run. There are
three reasons

1. Spending: because the UTXO is being spent.

2. Minting: a new UTXO is being created,.

3. Certifying: a certificate is being validated.
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Sometimes this can go wrong, for example, when a UTXO is consumed while sending
the transaction. In this case, all fees are refunded. But if all the inputs are still present,
one can be sure the transaction will validate.

This refund is in contrast with Ethereum. A lot can happen in the Ethereum environ-
ment between constructing the transaction and being added to the blockchain. Since
Ethereum has a global state and a lot of computation happens concurrently, a lot can
happen at the same time. This computation is unpredictable and can affect Ethereum
scripts.

Cardano state is much more localized, which makes it easier to analyze and prove the
script is valid. The scope is much more limited and easier to understand.

The spending transaction generally provides the datum, redeemer, and validator. The
output at the script address only provides a hash of the script and the hash of the
datum. This data means that if a transaction wants to consume a script output, the
transaction has to provide the datum, redeemer, and script. Thus the user creating
the transaction has to know the datum since only the hash of it is public. Knowledge
is needed, but transaction output is possible by including the unhashed datum in the
script. If this were not the case, then only people with knowledge of the datum from
outside the blockchain could spend this output.

An example will be used to illustrate this model. Take an auction parameterized by the
owner of a thing being auctioned, the thing itself, the current bid, and a deadline.

Figure 5.1 shows the first state of the auction. Alice wants to auction something and
creates a UTXO at the script output. The value of the UTXO is the thing being
auctioned, and the datum is empty because there is no bid yet.

Now Bob wants to bid something on the item. Bob creates a transaction with two
inputs and one output. The first input is the script UTXO from the auction created
by Alice. The second input is a UTXO with the value of the bid Bob wants to place,
here, ten ada. The output is, again, at the output script, but with a change to the
value and datum. The datum now contains Bob’s address and bid. Moreover, the value
contains Bob’s bid of 10 ADA and the auction item.

The redeemer for the UTXO is an algebraic datatype defined by Bob called a bid.
The auction script checks if all conditions are satisfied. Here the script checks if the
bid happened before the deadline and whether the amount of ADA being bid is high
enough. The script also checks if the transaction contains the correct inputs and
outputs. The script checks whether the output contains the item and the correct
datum.

Transaction 1
Redeemer:

• Bob’s wallet address.
• Bid amount.
• Payout.

Signature
to

spend input

Alice’s script UTXO:
• Datum: empty.
• Value: the item being auc-

tioned.

Bob’s bid:
• Value: 10 ADA + fees.

Continuation of the script UTXO
with the same initial address:
• Datum: Bob’s address andBob’s

bid.
• Value: the item being auctioned

and ten ADA from the bid.

First bidInputs Outputs

Figure 5.1: First transaction of an auction script’s UTXO where a bid is
placed.

Now another user, Charlie, wants to outbid Bob. He creates another transaction, as
seen in figure 5.2. This transaction has two inputs and two outputs. The two inputs
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in the first transaction are the bid, now 20 ada, and the auction UTXO. One output
is the auction UTXO, and the second is a UTXO which returns Bob’s bid.

The bid redeemer is used again. This time the script has some more parameters. The
script checks that the deadline has been reached, the bid is higher than the previous
bid, that the auction UTXO is correctly created, and that the previously highest bidder
gets his bid back.

Transaction 2
Redeemer:

• Charlie’s wallet
address.

• Bid amount.
• Payout.

Signature
to

spend input

Continuation of the script
UTXO with the same initial

address:
• Datum: Bob’s address and

Bob’s bid.
• Value: the item being auc-

tioned and ten ADA from
the bid.

Charlie’s bid:
• Value: 20 ADA + fees.

Continuation of the
script UTXO with
the same address:

• Datum: Charlie’s address
and Charlie’s bid.

• Value: the item being auc-
tioned and 20 ADA from
the bid.

Refund of Bob’s bid:
• Value: 10 ADA returning

to Bob.

Second bidInputs Outputs

Figure 5.2: Second transaction of an auction script’s UTXO where a higher
bid is placed.

Now the deadline has been reached, and the auction can be closed. To close the auction,
someone has to create a transaction. It could be Alice to collect her bid or Charlie
who wants to collect the item. It could be anyone, but only Alice and Charlie are
incentivized to do so. Figure 5.3 shows a transaction closing the auction.

The transaction has one input, the auction UTXO. This transaction uses a different
redeemer, the close redeemer. It has two outputs, one for Charlie, who placed the
highest bid. Charlie receives the item. The second output goes to Alice, who collects
the highest bid.

When the transaction closes, the script checks that the deadline has been reached,
that the highest bidder gets the item and that the owner gets the highest bid.

There is one other case. When the auction has no bidders, the close script must return
the item to the owner.

Transaction 3
The auction can be closed

if:
• There are no more

bids.
• The deadline has

passed.
Redeemer:

• Alice’s wallet address.
• Bid amount.
• Payout.

Signature
to

spend input

Continuation of the script
UTXO with the same initial

address:
• Datum: Charlie’s address

and Charlie’s bid.
• Value: the item being auc-

tioned and 20 ADA from
the bid.

Transfer of the item being
auctioned to Charlie:

• Value: the item being auc-
tioned.

Payment to Al-
ice for the item:

• Value: 20 ADA to Alice.

ClosingInputs Outputs

Figure 5.3: Closing of the auction once the deadline is reached.
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On-Chain and Off-Chain Code
In Cardano, there is an on-chain and off-chain code.

On-chain code are the scripts that have been discussed in the previous section. These
reside at the script address and are executed when a transaction tries to consume a
script output. The transaction in question is only valid if the script succeeds.

When a Cardano node receives new transactions, the transactions must be validated
before placing them into their mempool and block later on. The node executes each
script input of the transaction, and if a script does not succeed, the transaction is
invalid.

The goal of a script is thus to give a yes-or-no answer to a transaction trying to
consume output.

The off-chain code’s purpose is to construct transaction which passes the validation
to consume UTXOs. This part of the code will not run on the blockchain but lo-
cally.

Plutus
Now that the prerequisites for programming on Cardano have been discussed, actual
programming is much easier. The first platform discussed in this section is Plutus.
Plutus is the primary platform to program applications on the Cardano blockchain.
Plutus was released in September 2021.

When people talk about Plutus, they tend to refer to one of three things:

• Plutus Core: the low-level interpreted code that is executed by the Cardano
virtual machine.

• PlutusTx: a Haskell framework that compiles to Plutus Core through the means
of a GHC plugin.

• The Plutus Platform: more broadly includes Plutus Core, PlutusTx, and most
tools developed around Plutus Core.

When talking about Plutus in this section, the implied meaning is PlutusTx.

PlutusTx is built as a GHC plugin. This architecture means that developers even use
Haskell tooling like Cabal for it. Even so, developers are not really writing Haskell. The
plugin consumes the code one writes using PlutusTx and transforms it into Untyped
Plutus Core. It takes the intermediate representation of Haskell, GHC Core, and turns
that into Untyped Plutus Core. This results in not needing to write a new parser and
type checker. This architecture has an embedded language that looks and feels like
Haskell, but the target runtime is not GHC.

PlutusTx uses advanced Haskell techniques, including Template Haskell and staged
metaprogramming. These techniques allow PlutusTx to work during compile time to
enable PlutusTx compilation.

The Haskell Plutus platform is notoriously difficult and frustrating to use. Even setting
up a working environment can prove challenging. The difficulty is a result of including
ad-hoc compiler plugins. Tools that enhance the developer experience, like language
servers, usually do not work or are inconvenient to configure. The Plutus platform is
tied to Haskell but then adds built-in libraries, ecosystems, and semantics, which differ
from standard Haskell. All these flaws result in confusing situations when programming
in PlutusTx![Ros23].

This section will nevertheless provide a brief introduction to Plutus, after which a
more convenient alternative is introduced called Aiken.
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Writing programming languages for Cardano is facilitated because nodes run a low-
level language to validate scripts. The compilation process for PlutusTx works as
follows [(]hachi1):

1. GHC: Haskell →GHC Core

2. PlutusTx compiler: GHC Core →Plutus IR

3. Plutus IR compiler: Plutus IR -> Typed Plutus Core (PLC)

4. Type eraser: Typed Plutus Core -> Untyped Plutus Core (UPLC)

Thus writing programming languages is feasible if they compile to valid UPLC. Both
PLC and UPLC are stored in a binary representation on the blockchain. In its textual
representation, they look like a LISP-like language. Consider the following elementary
UPLC program:

(Program 1.0.0
(con integer 4)

)

Running this program consistently results in the integer value four. Every UPLC
program starts with the program keyword followed by a version number. The goal
of this section is not to introduce UPLC, but it is nonetheless an exciting aspect of
Cardano.

Template Haskell

It is interesting to understand some essential Template Haskell before starting with
PlutusTx. This section will not go in-depth and assumes a basic understanding of
Haskell.

In essence, Template Haskell allows programmers to manipulate Haskell code program-
matically. These manipulations allow programs to:

• Generate new functions or datatypes procedurally.

• Inspect what will be generated for certain Haskell constructions.

• Execute code during compile-time.

Template Haskell uses quotes to signal a template. A Template Haskell quote is a
Haskell expression e inside Oxford brackets: [|| e ||]. This quote represents the
expression of the type of e, which is the syntax of the quoted expression.

It is possible to splice quotes into a Haskell program using the $$. The splice inserts
the syntax of the quoted expression in the program.

A quote allows the programming to talk about Haskell programs as values. This feature
can also be found in Lisp macros and is called homoiconicity. The quotes in Haskell
could be more ergonomic, however.

The PlutusTx compiler can then use these quotes to compile the expression. The result
of the compilation is a new quote representing the compiled Plutus Core program.
The result needs to be spliced back into the main program to be used.

The same pattern is often repeated; make a quote, compile it, and then splice in the
resulting compiled program.

Now some basic PlutusTx programs can be discussed.
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Basic PlutusTx Programs

The following basic programs all have the boilerplate code in listing 5.1 prepended to
them. This code imports the necessary libraries and enables the necessary language
extensions.

1 -- Necessary language extensions for the Plutus Tx compiler to work.
2 {-# LANGUAGE DataKinds #-}
3 {-# LANGUAGE NoImplicitPrelude #-}
4 {-# LANGUAGE ScopedTypeVariables #-}
5 {-# LANGUAGE TemplateHaskell #-}
6
7 {-# OPTIONS_GHC -fplugin-opt PlutusTx.Plugin:target-version=1.0.0 #-}
8
9 module BasicPlutusTx where

10
11 import PlutusCore.Default qualified as PLC
12 import PlutusCore.Version (plcVersion100)
13 -- Main Plutus Tx module.
14 import PlutusTx
15 -- Additional support for lifting.
16 import PlutusTx.Lift
17 -- Builtin functions.
18 import PlutusTx.Builtins
19 -- The Plutus Tx Prelude, discussed further below.
20 import PlutusTx.Prelude

Listing 5.1: PlutusTx script boilerplate.

Listing 5.2 shows a basic program. The Haskell program 4 is turned into a compiled
program at compile time. This program is then spliced into the Haskell program into
the function integerFour. When inspected at runtime, by running pretty $ getPlc
integerFour, the generated program looks like this:

(program 1.0.0
(con 4)

)

Which is the UPLC discussed previously.

1 integerFour :: CompiledCode Integer
2 integerFour = $$(compile [|| (4 :: Integer) ||])

Listing 5.2: Basic PlutusTx program which always results in the number 4 .

The identity function for integers is a slightly more complex program, as shown in
listing 5.3. The result is a Plutus script that returns the same integer for a given input
integer.

(Program 1.0.0
(lam ds (con integer) ds)

)

1 integerIdentity :: CompiledCode (Integer -> Integer)
2 integerIdentity = $$(compile [|| \(x:: Integer) -> x ||])

Listing 5.3: Basic PlutusTx integer identity.
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The function can also be used in the compiled expression. Usually, the entire PlutusTx
program is defined outside the quote and then called inside the quote. The functions
need to be marked with an inlinable pragma, however. This pragma instructs GHC
to keep the information about the function for the PlutusTx compiler.

The addInteger function is a built-in PlutusTx function that uses the integer addition
from Plutus Core.

This program again results in the following UPLC program:

(program 1.0.0
(con 4)

)

1 {-# INLINABLE plusOne #-}
2 plusOne :: Integer -> Integer
3 plusOne x = x `addInteger` 1
4
5 {-# INLINABLE myProgram #-}
6 fourFunction :: Integer
7 myProgram =
8 let
9 four = plusOne 3

10 in four
11
12 functions :: CompiledCode Integer
13 functions = $$(compile [|| myProgram ||])

Listing 5.4: A function called within the quote.

Standard Haskell datatypes and pattern matching can also be used within the quote.
These structures do not require any extra annotations.

Until now, every program has been statically defined. Sometimes programs have to be
dynamically generated. For example, when creating an auction contract. The owner,
item, deadline, and bids parameterize the auction.

The creation can be done in the same way as traditional functional programming. The
static code is written as a function, and the arguments are provided later. There is one
slight problem; the argument and function must be created at runtime. The runtime
refers to the Haskell code runtime, not the Plutus Core runtime. PlutusTx solves this
issue by using lifting. Lifting refers to the process of taking a function and making it
work with values that are within a context.

Consider the example in listing ??. Suppose a function, plusOne, operates on regular
integers. It is impossible to apply it directly because plusOne expects an integer, not
a Maybe Int, when using this function on a Maybe Int, Here is where lifting comes in.
Using fmap, it is possible to lift plusOne to make it work with Maybe Int values, and
now plusOneLifted works with Maybe Int values:

1 plusOne :: Int -> Int
2 plusOne x = x + 1
3
4 plusOneLifted :: Maybe Int -> Maybe Int
5 plusOneLifted = fmap plusOne

Listing 5.5: A simple lifting example.
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Listing 5.6 shows lifting in PlutusTx. In this case, someone wants to apply three to
the function plusOne at runtime, which results in a function returning four. Doing
this at runtime requires the programmer to lift the argument 3 from Haskell to Plutus
Core and then apply the argument. When using the lifting scheme, it is possible to
run the following: let program = getPlc $ addOneToN 4. This results in the UPLC
program below, which, when evaluated, returns four.

(Program 1.0.0
[
[
(lam
addInteger
(fun (con integer) (fun (con integer) (con integer)))
(lam ds (con integer) [ [ addInteger ds ] (con 1) ])

)
(lam

arg
(con integer)
(lam arg (con integer) [ [ (builtin addInteger) arg ] arg ])

)
]
(con 3)
]

)

1 plusOne :: CompiledCode (Integer -> Integer)
2 plusOne = $$(compile [|| \(x:: Integer) -> x `addInteger` 1 ||])
3
4 plusOneToN :: Integer -> CompiledCode Integer
5 plusOneToN n =
6 addOne
7 `unsafeApplyCode`
8 liftCode liftCodeDef n

Listing 5.6: Lifting in PlutusTx.

A Vesting Validator Script

Now that the basics of PlutusTx have been discussed, a full validator script will be
explained.

As mentioned, a validator receives information from the validating node as input
arguments. This information contains the redeemer, the datum, and the script context.
These three arguments are passed in as a generic datatype, called Data since these
could be different types of values. Most of the time, developers will want to use custom
data types. To achieve this, there are several template functions to convert to and
from the datatypes. It is optional to write these type classes. Instead, developers can
use the unsafeFromBuiltinData and fromBuiltinData. The only difference is that the
former is faster but returns an error instead of a Maybe.

Consider the vesting example in listing 5.7. This example gifts ADA to a beneficiary,
but the beneficiary can access it only after the deadline. The owner can access the
funds at any time, however.

The datum requires only two pieces of information, the beneficiary address, and the
deadline. Line 1 to 5 shows how the datum is created.
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Next is the redeemer. The redeemer does not require any extra information since the
only two pieces required to spend the UTXO are the beneficiary’s signature, the owner’s
signature, and the current time. Both of these pieces of information are embedded
in the transaction. Thus a simple () can be used for the redeemer, as shown in line
11.

The validator needs to check three conditions. Only the correct beneficiary or owner
can spend the UTXO at the address. The signature in the transaction can be checked
to validate this. The third condition is if the deadline is reached.

The public key of the beneficiary can be retrieved from the datum using beneficiary
dat, and the owner is using owner dat. The public key is then passed to the txSignedBy
function together with the transaction information. This can be seen in lines 17 to
21.

Checking the deadline is more complicated. When a validator script is run, a time
check is made. The node checks that the current time falls into the valid range of the
transaction before running the validator. Thus the current time lies within the validity
interval.

The script context contains a time range instead of an exact time. To check the
deadline, the lower bound of the interval must be later than the deadline. So, what is
being checked is that the whole validity interval is to the right of the deadline. Here
it is done using the contains function to check whether the validity interval is fully
contained within the interval that starts from the deadline and extends until the end
of time. This check is shown on lines 23 and 24.

Line 29 to 34 shows the validator being compiled using Template Haskell and then
spliced into the program. That completes the validation logic and the section on
PlutusTx.

1 data VestingDatum = VestingDatum
2 { beneficiary :: PubKeyHash
3 , owner :: PubKeyHash
4 , deadline :: POSIXTime
5 }
6
7 unstableMakeIsData ''VestingDatum
8
9 {-# INLINABLE mkVestingValidator #-}

10 mkVestingValidator :: VestingDatum -> () -> ScriptContext -> Bool
11 mkVestingValidator dat () ctx = traceIfFalse "beneficiary is not allowed to unlock"

↪→ beneficiaryLock ||
12 traceIfFalse "owner's signature is missing" signedByOwner
13 where
14 info :: TxInfo
15 info = scriptContextTxInfo ctx
16
17 signedByBeneficiary :: Bool
18 signedByBeneficiary = txSignedBy info $ beneficiary dat
19
20 signedByOwner :: Bool
21 signedByOwner = txSignedBy info $ owner dat
22
23 deadlineReached :: Bool
24 deadlineReached = contains (from $ deadline dat) $ txInfoValidRange info
25
26 beneficiaryLock :: Bool
27 beneficiaryLock = signedByBeneficiary && deadlineReached
28
29 {-# INLINABLE mkWrappedVestingValidator #-}
30 mkWrappedVestingValidator :: BuiltinData -> BuiltinData -> BuiltinData -> ()
31 mkWrappedVestingValidator = wrapValidator mkVestingValidator
32
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33 validator :: Validator
34 validator = mkValidatorScript $$(compile [|| mkWrappedVestingValidator ||])

Listing 5.7: Vesting validator in PlutusTx.

Aiken
As the previous section shows, development in Plutus is quite tricky. It requires detailed
knowledge of EUTXO and advanced Haskell features.

Aiken tries to solve these issues. Aiken is specifically created to simplify and enhance
smart contracts’ development on Cardano.

Like Plutus, Aiken is still a purely functional programming language but tailored to
offer developers a modern and efficient environment for constructing smart contracts on
the Cardano blockchain. Aiken employs a Rust-like syntax, making it more accessible
to developers familiar with Rust and similar languages than Haskell’s more esoteric
syntax. This syntax is meant to ease the transition and reduces the learning curve for
implementing smart contracts.

However, developers must still grasp the EUTXO model to use Aiken effectively. Aiken
also focuses on on-chain code but compensates by offering better compatibility with
off-chain processes.

Like Plutus, Aiken also compiles to UPLC, thus offering the same advantages as Plutus
while offering a more accessible development experience. Figure 5.4.

Figure 5.4: Aiken to UPLC pipeline [Ros23].

Aiken Programming Basics

The section will start with an overview of Aiken’s programming basics. After the
basics, some validators will be presented to show off actual programs are built.

Aiken has six basic types built into the language: booleans, integers, strings, byte
arrays, data, and void. Integers and booleans are simple types in almost any language
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and will not be discussed. Two building blocks for associating types are also present:
lists and tuples.

Aiken supports three notations for declaring byte arrays.

1. As a list of integers ranging from 0 to 255

2. As a byte string. A byte string is how strings are represented in Aiken. The
notation is simply double quotes. Text strings are only used for tracing purposes
and not for running on the blockchain. Text strings are written as text surrounded
by double quotes and prefixed by an @

3. As a hex-encoded byte string. Hexadecimal numbers are prevalent. Thus, it is
logical to provide a shorthand notation. The shorthand notation is double-quotes
prefixed by a #.

// As a list of bytes
// Integers can range from 0-255
#[1, 255]
#[12, 3, 55]

// As a byte string
"foo" == #[0x66, 0x6f, 0x6f] == #[102, 111, 111]

// As a hex-encoded byte string
#"666f6f" == #[0x66, 0x6f, 0x6f] == #[102, 111, 111] == "foo"

Tuples are used to group values together. Each element can have a different type. The
notation is the following:

("str1", 0x55, [1]) // Type is (ByteArray, Int, List<Int>)

Lists are ordered collections. All the types in the list must be the same. The notation
is the following:

[1, 2, 3, 4] // List<Int>
[1, ..[2, 3]] // Prepending an element: [1, 2, 3]

let x = [2, 3]
let y = [1, ..x] // [1, 2, 3]

Data is an opaque type representing any user-defined type. Data is useful when values
from different types must be used in a homogeneous structure. Any user-defined
type can be cast to a Data, and users can also convert from a Data type to any
custom type in a safe manner. Several builtins also only work with Data to deal with
polymorphism.

Aiken uses let-bindings for variable declarations. Values assigned to let-bindings are
immutable. However, new bindings can shadow previous bindings. The let-bindings
cannot be used at the top level. Thus, module constants are provided to create fixed
values in the project. When such a constant is referenced, the compiler inlines the
value.

let x: Int = 1
let y: Int = x
let x: Int = 2
let result: Bool = y + x == 3 // True

const const\_str: ByteArray = "Test string"
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Functions are first-class citizens so that they can be assigned to variables, used as
arguments, and anything else possible with any other datatype. Functions do not have
an explicit return keyword but return what they evaluate. Lambda functions are also
defined with similar syntax.

fn addOne(x: Int) -> Int {
x + 1

}

fn twice(f: fn(t) -> t, x: t) -> t {
f(f(x))

}

fn addTwo(x: Int) -> Int {
twice(addOne, x)

}

fn run() {
let addOne = fn(x) {x + 1}

add(1)
}

Some functions can be promoted to be a validator. These functions have to follow
certain rules:

• The functions have two or three arguments.

• The functions must be named.

• Only one or two functions may be present in the block.

Validators themselves can also take parameters. These parameters represent configu-
rations that must be provided to create the validator instance. These parameters are
then embedded into the compiled validator as part of the code. Thus, these parameters
are required before the address can be computed.

validator(utxo_ref: ByteArray) {
fn func1(redeemer: Data, script\_context: Data) {
..

}

fn func2(datum: Data, redeemer: Data, script\_context: Data) {
..

}
}

Aiken also has a pipe operator. This operator provides an ergonomic way for passing
the result of one function to the arguments of another. The pipe operator allows for
chaining together function calls without many nesting or parentheses. The following
function can be expressed with the pipe operator:
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string_builder.to_string(string_builder.reverse(string_builder.
from_string(string)))

// Turns into
string
|> string_builder.from_string
|> string_builder.reverse
|> string_builder.to_string

Each line in the chain applies the function to the result of the previous line. This
shorthand works nicely for function with a single argument. Functions that take more
arguments will have to have specific arguments substituted.

A shorthand syntax exists for creating lambda functions that take one argument and
call another function. This operation is called function capturing The underscore is
used to indicate where the argument should be passed. Function capture can be used
with the pipe operator to create a series of transformations on data. This usage is so
common that there is a shorthand syntax for this.

fn add(x, y) {
x + y

}

fn run() {
let addOne = add(1, _)

addOne(2)
}

fn run() {
// This is the same as add(add(add(1, 3), 6), 9)
1
|> add(_, 3)
|> add(_, 6)
|> add(_, 9)

}

fn run() {
// This is the same as the example above
1
|> add(3)
|> add(6)
|> add(9)

}

Functions with generic types are also possible to write. The variable type T can
represent any type in the function below.

fn listVars(v1: T) -> List<T> {
[v1, v1]

}

Aiken also has access to basic if-else control flow and pattern matching. The pattern
matching is a when expr is expression, which says “if the data has this shape, then
do that”. Below is an example of matching on an integer.
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when some_number is {
0 -> "Zero"
1 -> "One"
2 -> "Two"
n -> "Some other number" // This matches anything

}

The last interesting feature is the first-class support for tests. Tests can be written
directly in the file with the source code and then execute the tests on-the-fly.

Simply define a test like a function, but instead of the fn keyword, the test keyword
is used. The test has no arguments and returns a boolean.

Another exciting thing about tests is that they use the same virtual machine as the
blockchain. Tests are thus actual snippets of on-chain code that run in the same
context as production code.

fn addOne(inval: Int) -> Int {
inval + 1

}

test add_test_1() {
addOne(3) == 4

}

test add_test_2() {
addOne(0) == 1

}

Moreover, the following is reported back when aiken check is run.

test1
PASS [mem: 1003, CPU: 622510] add_test_1
PASS [mem: 1003, CPU: 622510] add_test_2

2 tests | 2 passed | 0 failed
Summary
0 errors, 0 warnings

Basic Validators

The first validator, shown in listing 5.8, is rudimentary. Its only parameter is a number
in the redeemer. Anyone who sends a transaction containing the number four in the
redeemer can unlock the UTXO.

1 type Datum {
2 owner: Hash<Blake2b_224, VerificationKey>,
3 }
4
5 type Redeemer {
6 checkval: Int,
7 }
8
9 validator {

10 fn simple\_validator(datum _datum: Datum,
11 redeemer: Redeemer,
12 context _context: ScriptContext,
13 ) -> Bool {
14 addOne(3) == redeemer.checkval
15 }
16 }
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Listing 5.8: Simple validator which checks for a number.

Now the validator can be built and submit a transaction with the validator to the
testnet blockchain. To achieve this, Cardano-client will be used. Cardano-cli is the
command line interface installed as part of the node and can be used to interact with
the node.

The next validator does require a datum. The validator is parameterized by a verifi-
cation key: the contract’s owner and message. The owner part of the validator works
very much like the typical non-script address; it only needs to be signed by the owner.
The second requirement is that the redeemer must contain the string “Test” for the
UTXO to unlock.

1 type Datum {
2 owner: Hash<Blake2b_224, VerificationKey>,
3 }
4
5 type Redeemer {
6 msg: ByteArray,
7 }
8
9 validator {

10 fn dat\_validator(datum: Datum,
11 redeemer: Redeemer,
12 context: ScriptContext) -> Bool {
13 let test\_str =
14 redeemer.msg == "Test"
15
16 let signed\_by =
17 list.has(context.transaction.extra_signatories, datum.owner)
18
19 test\_str && signed\_by
20 }
21 }

Listing 5.9: Simple validator with a datum and string.

Vesting Validator

The next validator is a vesting validator, just like the one described in the section on
Plutus. The first five lines describe two types of aliases. One alias is for the verification
key hash, and the other is for the POSIX time as an integer.

The deadline, beneficiary, and owner parameterize this validator. The datum for these
parameters is shown on lines 7 to 11.

This validator also checks the purpose of the script using the script context. Line 15
shows the pattern matching done to check if the script is used to spend. When its
purpose is spending, it checks if the beneficiary signed the datum and if it the time is
after the deadline. The UTXO also unlocks if the owner signs the datum whenever;
the deadline does not matter.

1 type VerificationKeyHash =
2 Hash<Blake2b_224, VerificationKey>
3
4 type posix\_time =
5 Int
6
7 type Datum {
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8 deadline: posix\_time,
9 owner: VerificationKeyHash,

10 beneficiary: VerificationKeyHash,
11 }
12
13 validator {
14 fn vesting\_validator(datum: Datum,
15 _redeemer: Void,
16 ctx: ScriptContext) {
17 when ctx.purpose is {
18 Spend(_) ->
19 or([signed_by(ctx.transaction, datum.owner),
20 and([signed_by(ctx.transaction,
21 datum.beneficiary),
22 after(ctx.transaction.validity_range,
23 datum.deadline)])])
24 _ ->
25 False
26 }
27 }
28 }
29
30 fn signed_by(transaction: Transaction, vk: VerificationKeyHash) {
31 list.has(transaction.extra_signatories, vk)
32 }
33
34 fn start_after(range: ValidityRange, lower_bound: POSIXTime) {
35 when range.lower_bound.bound_type is {
36 Finite(now) -> now >= lower_bound
37 _ -> False
38 }
39 }

Listing 5.10: A vesting validator.

As mentioned, all these validators have been tested using a locally running Cardano
node connected to the test net. Cardano-cli was then used to create the transactions
and test the validators.

Programming for the Cardano blockchain is more challenging than programming
Ethereum. The EUTXO requires a philosophical shift. Where programming Ethereum
is a lot like programming in general, the EUTXO requires a different perspective.

While programming in Plutus and Aiken takes some time to get used to, it has several
upsides. It is harder to make mistakes, and when a developer makes mistakes, they
get caught early before causing problems.

Aiken is especially useful for its testing capabilities. Developers can efficiently write
tests for functions in the source file itself. The developer experience within Aiken is
also overwhelmingly positive. The error messages are clear, and the toolchain comes
with helpful developer tools, including a code formatter, language server, and testing
framework.

Aiken, however, still needs to be stable and ready for general adoption. It is still in
its alpha phase, and some programs might break.

Nevertheless, Aiken is a step forward for development on the Cardano blockchain.
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Chapter 6

Conclusion

This thesis’ aim was to explore and analyze the different aspects of blockchain technol-
ogy and how these evolved over time, especially Bitcoin, Ethereum, and Cardano. The
evolution of programmability of blockchains have in particular marked a step forwards
in this world. Programming these decentralized systems have a allowed developers to
use them for more than simply pushing currencies around.

Bitcoin, Ethereum, and Cardano all have their own unique characteristics in their
transaction models, consensus protocols, and programmability.

6.1 A Rundown
Bitcoin, the pioneering system, introduced the unspent transaction output, UTXO,
model, and a proof-of-work consensus protocol. Bitcoin’s programmability is limited
in scope, mostly being restricted to moving currency around.

Ethereum did away with the UTXO model and introduced an account-based trans-
action model. This model introduced more state to individual transactions since
each transaction has knowledge of the entire blockchain. While this improved pro-
grammability, it did make the system less deterministic and harder to run transaction
concurrently. Furthermore, each transaction changes the state of the entire Ethereum
network, leading to potential scaling issues. Ethereum also shifted from a proof-of-
work to a proof-of-stake consensus mechanism in its lifetime making the system more
energy efficient.

Cardano saw the flaws in both system and tried to find a happy medium. Cardano
is a research-first blockchain system and started out with a proof-of-stake consensus
mechanism called Ouroboros. Ouroboros saw a lot of iterations over time to address
different issues. Cardano also “reverted” back to the UTXO transaction model, but
adding extensions to improve programmability. Cardano’s extended UTXO, EUTXO,
added the possibility to add additional information to every transaction while also
having a special kind of transaction containing a script. This extra information is
a balance between Bitcoin’s model, where every transaction only has information
about the unlocking script of the transaction, and Ethereum’s model, where every
transaction has perfect knowledge of the entire state of the blockchain. Cardano’s
model thus attempts to combine Bitcoin’s safe and deterministic UTXO model with
Ethereum’s programmability.
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6.2 Advancements in Programmability
Through an in-depth analysis of the different transaction models, consensus mecha-
nisms, and programmability of the Bitcoin, Ethereum, and Cardano, the evolution of
the smart contract languages can be traced.

Bitcoin’s programming language, called Script, offered the first bit of programmability.
Script is a non-Turing complete stack-based language. It works and feels a lot like
Forth, a low-level language sometimes used on embedded devices. Its simplicity is also
an advantage because it offers security. Its limited functionality means there are fewer
attack vectors. But the trade-off in Script is its constrained programmability.

Ethereum meant a leap forward in programmability, which is why it is often called
a “world computer”. This computer run smart contracts and uses the blockchain as a
means to store state. Its most common programming language is Solidity and feels a lot
like a general-purpose language like C++. This high-level language allows developers to
create complex smart contracts. This versatility, however, comes at a price. The Turing-
complete nature of Solidity means it enables the creation of complex smart contracts, it
also opens the system to security vulnerabilities. There several notable smart contract
breaches are testaments to this risk. These incidents lead to financial losses, but also
raised questions about the inherent security of Ethereum’s concept of being a general-
purpose blockchain. While Ethereum has made groundbreaking contributions to the
blockchain space, especially in enabling decentralized applications, it is not without its
share of challenges. These issues underline the necessity for continued advancements
and improvements.

This thesis discussed two smart contract languages for Cardano. The first language is
Plutus, a purely functional language embedded in Haskell. Haskell was a deliberate
choice designed to make formal verification and correctness easier. Being able for verify
smart contracts is an attempt to improve the security as to prevent breaches like the
ones in the Ethereum system. Plutus does have disadvantages however, Haskell and
how it is used in the Plutus platform creates a huge barrier to entry. Haskell is a
difficult language to learn and Plutus uses advanced features, like Template Haskell,
to compile the code to run on the blockchain. Besides the ergonomics of the language,
the setup is also prohibitively difficult, even for experienced Haskell developers. All
these flaws results in a barrier to widespread adoption.

This lead to the development of alternative languages for the Cardano blockchain. One
such promising project is the Aiken language. Aiken, just like Haskell, is also a purely
functional programming language which means that is has the same advantages in this
area. But in contrast to Plutus, it offers a easy to setup and more developer friendly
programming environment. Aiken also provides an alternative syntax compared to
Haskell. Where Haskell as an ML-inspired syntax, Aiken employs a more traditional
syntax similar to Rust. Besides ergonomics, Aiken also contains useful developer tools
like an easy-to-use testing framework. Aiken’s goal is to lower the barrier-to-entry
for programming on the Cardano blockchain. This does not mean that it is easier, as
developers still need a deep understanding of the EUTXO model and the properties
of Cardano.

It’s fascinating to observe the evolution of blockchain programming, mirroring broader
trends in software development, but within a compressed timeframe. The evolution tells
a story about the ongoing struggle to balance security, ease-of-use, and expressiveness.
Bitcoin started with its simple language, akin to the early days of programming. Then
Ethereum shifted towards a more complex, powerful, but risk-prone programming
language, mirroring the rise of languages like C++ or Java. Finally, Cardano seems to
embody the contemporary mindset of flexible, adaptable programming with a range of
tools optimized for specific tasks. This mirror more modern programming languages

113



like Rust and the mindset of adopting a more functional style of programming.

6.3 Personal Reflection
Coming into this thesis I had no experience with developing or working with blockchain
technologies. Understanding and evaluating how every part of a blockchain system
worked took a lot longer than expected, especially since unbiased sources were difficult
to find. I might have underestimated the complexity of a blockchain system.

To attempt to get a better understanding on how a blockchain system is implemented
I tried my hand creating a basic system myself. I was surprised at how easy the basic
datastructures and logic were to implement. The networking side of the implementation
was a different story entirely. I tried to implement a realistic peer-to-peer architecture,
but kept running into issues and complexities. This resulting in the implementation
not being finished due to time-constraints. The effort was not wasted however, and I
learned a lot about how a blockchain works.

As I have only done traditional development, the shift to blockchain programming was
very weird, but also fascinating and challenging. There are no decimals, no patches, or
dynamic upgrades for deployed smart contracts. In traditional programming, if a bug
is found, you push a fix, and move on. In a blockchain environment, the permanence
of the code and its actions requires a much higher level of diligence. Errors can lead to
significant irreversible consequences, as we have seen with numerous smart contract
failures. The constructor event for a smart contracts get only called once during the
deployment phase and results in code having implicit owners.

The most peculiar aspect of programming on blockchain systems is that programs are
essentially deployed to run on “server” supplies by other people. These people then
expect to be compensated for supplying their computation power. The compensation
is supplied to these people in the form of charging your programs a gas fee when the
programs are executed. This fee is paid by the person initiating the transaction to
your program. This model has two side effects:

• The development environment, with Ethereum I used “Foundry” and with Car-
dano I used a local Cardano node, will also charge the developer the same, even
when the node is running on your own machine and using a testnet. This resulted
in some frustration when I tried to deploy smart contracts and I did not have
enough funds in my development wallet and was waiting on faucets to supply
funds to continue developing.

• Code optimization does not mean improving speed or maintainability, but re-
ducing fees when executing code. Here Cardano has a leg up because fees can
be determined locally, but Ethereum has price sheets for operations. This way
of thinking about code was a strange because some easy fixes have to be left in
the code base to optimize gas fees.

This way of working reminds me a lot of embedded programming. In embedded
programming the constraints are the hardware, but in blockchain programming the
gas fees are crucial. Not only the constraints are similar, but also how to think about
the platform where the program is running. In embedded programming the developer
has to take into account the quirks of the hardware, like the clock speed or how the
memory works. In blockchain programming, and especially the EUTXO model in
Cardano, I had to take the quirks of the transaction model into account every step of
the way. It really was a different way of thinking about programming and the learning
curve is pretty steep.

There is one aspect I did not have the time to explore, which is formal verification of
smart contracts. This looked like a very interesting subject, especially in Cardano. To
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properly explore this subject I would have had to learn Liquid Haskell or a similar
framework, but I did not have time to do this.

To conclude, while the transition from traditional programming to a blockchain envi-
ronment comes with its own set of quirks and challenges, the experience was rewarding.
As the saying goes: “A language that doesn’t affect the way you think about program-
ming, is not worth knowing”. The theoretical part of comprehending the blockchain
architecture took a long time, due to this I had less time to work on actual imple-
mentations. I think I have gained a deep understanding on how blockchains work and
I also think this trade-off of investing more time in the theoretical side was worth
it.
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