
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Network Stack Optimizations for QUIC

Olaf Van Bylen
Scriptie ingediend tot het behalen van de graad van master in de informatica

2022
2023

PROMOTOR :

Prof. dr. Peter QUAX

BEGELEIDER :

De heer Joris HERBOTS

De heer Mike VANDERSANDEN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Network Stack Optimizations for QUIC

Olaf Van Bylen
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Peter QUAX

BEGELEIDER :

De heer Joris HERBOTS

De heer Mike VANDERSANDEN

Universiteit Hasselt

Masterproef voorgedragen tot het behalen van de
graad van master in de informatica

Network stack optimizations for QUIC

Auteur :

Olaf Van Bylen

Promotor :

Prof. Dr. Peter Quax

Begeleiders :

Drs. Joris Herbots
Drs. Mike Vandersanden

Academiejaar 2022-2023

Acknowledgements

I would like to thank my promotor Prof. Dr. Peter Quax for giving me the opportunity to
write this thesis, the support, and the provided hardware. I also want to express my gratitude
towards my mentors: Joris Herbots and Mike Vandersanden for their regular input, feedback,
discussions on this topic, email responses during the weekend, and forwarding the relevant
publications they found during their own research.

2

Abstract

QUIC, an alternative to TCP, is a new network protocol released in 2021 and designed to be
compatible with older network infrastructure (hardware and software). Therefore most QUIC
implementations also reuse the UDP implementation and other parts of the host network stack
provided by the operating system. While TCP has had countless optimizations in the kernel
boosting its efficiency, QUIC performance is partially held back by implementation and design
choices made before its existence. In this thesis, we use an experimental approach to discover
and test the main bottlenecks in network stacks for QUIC performance

To do so we start by looking into important background information: the protocols and headers
that we need to implement, the packet flow through the Linux kernel network stack, the impor-
tant things to consider in terms of performance and how AF XDP, the kernel bypass solution
that we will be using, works.

We use this knowledge in combination with prior research to determine good candidates for
performance optimizations. To easily experiment with changes and optimizations that can
be made to a network stack we implement a relatively simple network stack in user space
by utilizing AF XDP sockets. The main advantage of this choice is that the network stack
can easily be modified without having the recompile the entire Linux kernel. We essentially
develop a UDP socket on top of AF XDP for which we provide an interface similar to the
UDP socket interface provided by the Linux kernel. This is to show the feasibility of offering a
user space network stack and the potential performance benefits it brings as an almost drop-in
replacement. For our testing, we utilize lsquic to implement an HTTP/3 server and client to
perform performance measurements for a real-world application: an HTTP/3 file transfer over
QUIC.

By utilizing our user space network stack to experiment we do find several factors that heavily
impact performance. The number of system calls, the number of data copies, the use of check-
summing, and the size of buffers all impact performance. However, it is also clear that not
all optimizations always provide better performance, for the Linux kernel network stack we do
not measure improved performance by using hardware offloading. If we disable checksumming
entirely in our user space network stack we also do not measure a significant difference unless
we also increase the send buffer size. We conclude that the applied optimizations do have a
significant impact on QUIC performance in our tests and we expect them to improve QUIC
performance in general. However how much they improve performance might vary depending
on which other bottlenecks are present, the use case and used hardware.

3

Nederlandstalige Samenvatting

QUIC, een alternatief voor TCP is een relatief nieuw protocol dat werd gestandardiseerd in 2021
en ontworpen is om compatibel te zijn met oudere netwerk infrastructuur. Daarom hergebruiken
de meeste QUIC implementaties ook bestaande delen van de host netwerk stack (bijvoorbeeld
in de Linux kernel). Terwijl er voor TCP talloze optimalisaties zijn toegepast doorheen de
jaren worden de prestaties van QUIC deels tegengehouden door implementatie en design keuzes
die gemaakt werden voor zijn bestaan. In deze thesis gaan we op zoek naar de voornaamste
knelpunten voor de prestaties van QUIC.

Hierbij stellen we ons de onderzoeksvraag: “Welke prestatieknelpunten zijn aanwezig in network
stacks die de prestaties van QUIC negatief bëınvloeden?” met als subvraag: “Kunnen we
de impact van deze knelpunten verminderen of deze knelpunten compleet omzeilen en wat
is de impact op een real-world test, namelijk een HTTP/3 bestandsdownload over QUIC?”.
We kijken hiervoor naar de prestaties gemeten als goodput en de relatieve tijd die de QUIC
implementatie spendeert aan de netwerk stack en andere taken.

We kijken specifiek naar verbetering voor QUIC omdat QUIC ons een goede kandidaat lijkt
door het verschil tussen zijn prestaties en die van TCP. Verder is onze hypothese dat niet
alle generieke optimalisaties een even goede impact hebben op QUIC: mogelijks veroorzaken
sommige optimalisaties voor een hogere throughput op UDP niveau maar ook voor een hogere
latentie wat mogelijks een negatieve impact heeft op congestion control en flow control. Om
de onderzoeksvraag en subvraag te beantwoorden gaan we gebruik maken van AF XDP en
kernel-bypass oplossing waarmee we een netwerk stack gaan implementeren die in user space
draait en waar we makkelijk aanpassingen en optimalisaties kunnen op uitproberen. Aangezien
deze methode mogelijks niet enkel in de academische wereld maar ook voor echte toepassingen
een goede oplossing is, stellen we onszelf een tweede onderzoeksvraag: “Kan alle functionaliteit
die aangeboden wordt door de Linux kernel netwerk stack ook gëımplementeerd worden in een
netwerk stack die bovenop AF XDP wordt gëımplementeerd?”.

Achtergrondkennis

Om de onderzoeksvragen te beantwoorden bespreken we eerst de nodige achtergrondkennis.
We bespreken de nodige kennis van network protocollen die we gaan gebruiken namelijk Eth-
ernet, Internet Protocol v4 (IPv4), User Datagram Protocol (UDP) en QUIC. We bespreken
de hardware waarmee we interageren en waarlangs alle data passeert, namelijk de Network
Interface Controller (NIC). Hierbij leggen we de focus op de hardware offloads die deze aan-
biedt, voornamelijk checksum en segmentatie offloads. Checksum offloads zorgen ervoor dat de
checksum die gebruikt wordt in de IPv4 en UDP headers niet meer (volledig) door de processor
moet worden berekend. Segmentatie offloads zorgen ervoor dat minder en grotere pakketten
doorheen de netwerk stack kunnen vloeien en in de NIC worden opgesplitst wat toelaat minder
berekeningen te doen voor dezelfde hoeveelheid data.

Verder bespreken we de packet en data flow doorheen de Linux kernel network stack en de
features die deze aanbiedt. Hierbij leggen we een focus op de prestatierelevante onderdelen.
Hardware interrupts worden gebruikt door de NIC om de kernel te melden dat nieuwe paketten
zijn aangekomen maar deze veroorzaken een context verandering die relatief veel kost. Software

4

5

interrupts zijn vergelijkbaar maar worden door de kernel zelf gegenereerd. We zien dat NAPI
wordt gebruikt om het aantal hardware en software interrupts te beperken door soms aan
polling te doen met hardware interrupts van de NIC tijdelijk uitgeschakeld. Verder wanneer
een applicatie die in user space draait data wil lezen of schrijven van of naar een socket moet
deze communiceren met de kernel, dit gebeurt via system calls. Ook deze veroorzaken een
context wisseling van user space naar kernel space welke ook kostelijk is. Bovendien wordt er
steeds een geheugenkopie gemaakt tussen kernel space en user space.

We sluiten de achtergrondkennis af met de werking van AF XDP, waar we uitleggen hoe het
gedeelde geheugen tussen kernel en user space werkt, hoe de rings werken en hoe we ze kunnen
gebruiken om pakketen te sturen en te ontvangen. Verder leggen we de verschillende locaties
uit waar XDP pakketen kan onderscheppen: in het begin van de kernel netwerk stack of recht-
streeks in de NIC driver. Alsook hoe zero-copy ervoor zorgt dat er een geheugenkopie wordt
uitgespaard.

Gerelateerd werk

In het gerelateerd werk kijken we naar andere methoden om aan kernel-bypass te doen of om
netwerk stack performance te verbeteren alsook naar relevante publicaties die reeds onderzocht
hebben waar prestatieknelpunten zich kunnen bevinden. Zo toont Jaeger et al. [Jae+23] aan
dat netwerk stack performance een relevant topic is voor QUIC omdat in hun metingen de
processor de meeste tijd spendeerd aan packet I/O, de operatie die in de netwerk stack gebeurt,
bij het verzenden van data over QUIC. Andere publicaties gaan dan weer in het algemeen
op zoek naar knelpunten in de prestaties van de Linux kernel network stack zoals Cai et al.
[Cai+21]. Anderen lossen knelpunten op zoals Netmap [Riz12], DPDK [Foua], mTCP [Jeo+14]
en Onload [Xil]. We bekijken ook kort de evolutie en prestatieverbeteringen binnen XDP alsook
XDP voor Windows.

Implementatie

Voor de implementatie maken we gebruik van AF XDP om de Linux kernel netwerk stack
te omzeilen en om een simpele netwerk stack in user space te bouwen. We beginnen met te
motiveren waarom er voor AF XDP is gekozen: het is goed gëıntegreerd in de Linux kernel,
behoudt het gebruik van interrupts en vereist bijgevolg niet dat er altijd gepolld wordt zoals bij
de meeste DPDK drivers wel het geval is. Dit heeft het voordeel dat er minder processergebruik
en dus minder energieverbruik is als er weinig inkomende pakketen zijn.

We houden de API van onze implementatie gelijkend aan die van de Linux kernel zodat het
makkelijk is om bestaande code om te vormen om onze netwerk stack te gebruiken. Dit passen
we toe voor de voorbeeldprogramma’s van lsquic, specifiek de HTTP/3 server en client. Verder
bouwen we ook een testraamwerk op basis van Ansible dat ons toelaat om makkelijk testen
te draaien op twee hosts en automatisch de resultaten te verzamelen naar een controlecom-
puter.

Ten slotte bespreken we ook hoe we functionaliteit die de kernel aanbiedt, namelijk Netfilter en
het Address Resolution Protocol (ARP) kunen implementeren of vervangen door een gelijkaardig
alternatief. Voor Netfilter kunnen we de functionaliteit in user space programeren of gebruik
maken van eBPF. Voor ARP kunnen we de ARP pakketjes met behulp van eBPF forwarden
naar de kernel of kunnen we de functionaliteit ook in user space implementeren.

Experimenten en resultaten

Bij de experimenten en resultaten bespreken we eerst de hardware die we gebruiken om te testen,
vervolgens doen we enkele algemene testen om een idee te krijgen van de performantie. Daarna
gaan we enkele optimalisaties uitproberen, we vinden enkele dingen die een duidelijke impact
hebben op de prestaties. Een geheugenkopie vermijden, het aantal system calls verminderen
door pakketjes te bundelen en slechts één system call te doen voor meerdere pakketten, de

6

Baseline Alle Optimalisaties
0

20

40

60

80

100

Pe
rf

 s
am

pl
es

 (%
)

12 20

28

50

60

29

Conn. Mmgt
Crypto
Uncategorized
I/O
Packet I/O

Figure 1: Relatief aantal perf samples dat gespendeerd wordt in elke categorie, onze
baseline (AF XDP NATIVE) versus de versie met alle optimalisaties. Het aandeel van
Uncategorized en I/O is zo klein dat deze onzichtbaar zijn: ze bevatten minder dan 1%
van de samples en dit cijfer staat ook niet in de grafiek.

buffergroottes optimaliseren en checksumming uitzetten blijken allemaal een positief effect te
hebben op de prestaties. Hoewel blijkt dat niet alle optimalisaties in alle gevallen helpen, zo
hebben te kleine buffers een negatief effect op de prestaties maar dit is enkel het geval als
we reeds enkele andere optimalisaties hebben toegepast. Wat erop wijst dat dit knelpunt zich
enkel voordoet als de processor snel genoeg pakketten kan genereren. Verder, bij het pakketen
bundelen merken we dat meer pakketjes bundelen niet altijd een voordeel is, als we lsquic
toelaten tot 1024 pakketjes te bundelen zijn de prestaties slechter dan bij 32. We zien het
eindresultaat versus de baseline gemeten in aantal perf samples dat de processorkern in elke
categorie spendeert in Figuur 1, de netwerk stack komt overeen met de packet I/O categorie.
We zien een grote reductie in relatieve tijd die aan de netwerk stack wordt gespendeerd.

Conclusie

In de conclusie besluiten we dat de gevonden factoren gecombineerd een significant effect hebben
op de prestaties en dat bijgevolg de relatieve CPU tijd die gespendeerd wordt aan de netwerk
stack zakt van ongeveer 60% naar 29%. Bovendien zien we dat hoewel de netwerk stack in onze
implementatie eerst het onderdeel was dat veruit de meeste tijd kostte, de crypto operaties voor
QUIC na onze optimalisaties het duurste worden met ongeveer 50% van het processorgebruik.
Bovendien zien we dat de prestaties gemeten als goodput van 1700 Mbps voor optimalizaties
naar 3348 Mbps na optimalisaties stijgen. We kunnen ook de onderzoeksvragen beantwoorden,
de voornaamste knelpunten zijn: geheugenkopieën, system calls, checksumming en suboptimale
buffergroottes. Verder kunnen we bevestigen dat deze knelpunten oplossen een impact heeft
op de real-world performance. Daarnaast kunnen we ook de tweede onderzoeksvraag beant-
woorden. Het is momenteel niet mogelijk om alle features uit de kernel netwerk stack of een
gelijkwaardig alternatief in AF XDP te gebruiken. Hardware offloads vallen volledig weg en
ook voor traffic control is er momenteel geen oplossing die in alle gevallen werkt. Al bespreken
we in het toekomstig werk wel manieren waarop dit in de toekomst opgelost zou kunnen wor-
den.

Contents

1 Introduction 9

2 Background information 11
2.1 Overview of network stack protocols . 11
2.2 The Network Interface Controller (NIC) . 12

2.2.1 Hardware offload capabilities . 13
2.2.2 Hardware interrupts . 14

2.3 Linux kernel basics . 14
2.4 The basic UDP flow through the kernel . 16

2.4.1 Creating and binding a socket . 16
2.4.2 Sendmsg() . 16
2.4.3 Incoming packet(s) on the NIC . 18
2.4.4 Recvmsg() . 19
2.4.5 Performance considerations . 19

2.5 eBPF eXpress Data Path (XDP) . 20
2.5.1 eBPF . 20
2.5.2 XDP . 20
2.5.3 XDP address family (AF XDP) . 21

3 Related work 26
3.1 Host network stack optimizations . 26
3.2 Direct Cache Access (DCA) . 26
3.3 Alternative network stacks and kernel bypass techniques 26

3.3.1 Data Plane Development Kit (DPDK) . 27
3.3.2 Netmap . 27
3.3.3 mTCP . 27
3.3.4 Onload . 28

3.4 QUIC . 28
3.4.1 In-kernel QUIC . 28
3.4.2 QUIC on top of DPDK . 29

3.5 XDP . 29
3.5.1 XDP applications . 29
3.5.2 Windows XDP . 29

3.6 Other options in the Linux kernel . 30

4 Implementation 31
4.1 The choice for AF XDP . 31
4.2 AF XDP UDP socket . 31

4.2.1 Creating the socket . 32
4.2.2 Sending packets: AF sendmsg() . 32
4.2.3 Receiving packets: AF recvmsg() . 34
4.2.4 Batched sending of packets: AF sendmmsg() 34

7

8 CONTENTS

4.2.5 UMEM layout and default buffer sizes . 35
4.2.6 Netfilter alternative . 35
4.2.7 ARP . 36

4.3 QUIC and HTTP/3 . 36
4.3.1 HTTP server and client . 36

4.4 Testing framework . 37

5 Experiments and results 38
5.1 Setup . 38
5.2 Software . 38
5.3 Naming convention . 39
5.4 Dividing the CPU’s spent time into categories . 40
5.5 Experiments and results . 41

5.5.1 General measurements . 41
5.5.2 Memory copies . 44
5.5.3 System calls . 44
5.5.4 Using AF sendmmsg() . 46
5.5.5 Using sendmmsg() . 48
5.5.6 Cost of checksumming . 49
5.5.7 Buffer sizes . 50
5.5.8 Interrupts . 52
5.5.9 All optimizations . 53

6 Conclusions 55
6.1 Future Work . 57

6.1.1 Traffic control . 57
6.1.2 Hardware offloads in AF XDP . 57
6.1.3 Test on other hardware . 57
6.1.4 Look into NIC drivers . 58
6.1.5 Remove the last memory copy . 58

Chapter 1

Introduction

QUIC is a new protocol designed to improve on the widely used TCP/TLS stack. It was
originally introduced by Google to speed up web traffic via HTTP(S) but has since evolved
into a general-purpose network protocol. It aims to solve some of the biggest performance
issues with TCP. It does so by using TLS 1.3 which implements 0 Round Trip Time (0RTT)
for faster connection setup. Additionally, it supports connection migration, and Head-of-Line
(HoL) blocking removal by supporting multiple streams at transport layer level. This results
in better packet loss resilience as a lost packet in one stream does not affect the others [Marb].
QUIC runs on top of UDP which has several advantages: we can easily implement QUIC in
user space on top of UDP and QUIC is backward compatible with all network hardware that
supports UDP. The latter allows us to circumvent protocol ossification, the loss of flexibility,
extensibility and evolvability of protocols. For example, older hardware such as firewalls might
not support a new layer 4 protocol number [Mara].

Most of the current QUIC implementations that we are aware of run in user space and use the
underlying (UDP) socket interface provided by the operating system kernel. This is great for
compatibility and stability as, for Linux specifically, the network stack is a mature component
that has been in broad use for years. So it’s relatively safe to assume that there are no or little
bugs and compatibility issues. Further, QUIC is still a new protocol compared to TCP and
UDP and has evolved over the years before being standardized by the IETF in 2021 with RFC
9000 [IT21]. An unfinished protocol is hard to ship inside the kernel as changes to the kernel are
rather slow which would slow down the evolution of QUIC. There are also many kernel versions
still in use which means backward compatibility with kernels that ship with older QUIC versions
would be an issue. Implementing QUIC in user space circumvents these problems as QUIC can
simply be updated together with the app, which can automatically update itself. For example,
you can still run the latest Chrome version including the built-in QUIC implementation on an
OS running an older kernel version.

However, there are also disadvantages to this popular approach of implementing QUIC. The
biggest disadvantage is the current performance compared to TCP both in terms of maximum
throughput as in CPU utilization for the same throughput [Marb], due to the way the (Linux)
kernel and UDP work, QUIC has to make a system call for every message it wants to transmit
or receive (assuming the “standard” method of utilizing sendmsg() and recvmsg()). Further,
we are only aware of a handful of popular TCP and UDP implementations: the ones provided
by Linux, Windows, and MacOS. There are many more QUIC implementations and this can
make it hard for all the implementations to interoperate as is evident from [See] and Marx et
al. [Mar+20].

In this thesis, we will be working to answer the following main research question: “Which per-
formance bottlenecks are present in network stacks that degrade the performance of QUIC?”.
We will focus on the underlying software network stack starting from UDP down to the hard-

9

10 CHAPTER 1. INTRODUCTION

ware. We also ask ourselves the following subquestion: “Can we decrease the impact of these
bottlenecks or completely remove them and what is the effect on the performance of an HTTP/3
file download over QUIC?”.

As a hypothesis for this question and subquestion, we hypothesize that user space QUIC imple-
mentations make a large number of system calls which in turn cause expensive context switches.
Therefore we expect this large amount of system calls to form a bottleneck. Further, we do
expect that by improving or solving this and other bottlenecks, we can improve performance.
However, we do believe that testing this in reality is crucial, as we do believe not all general
network stack optimizations will benefit QUIC performance. For example, an optimization that
increases maximum goodput at the UDP level but also increases latency could potentially harm
the goodput at the QUIC level due to flow control and congestion control not playing well with
the increased latency. Additionally, a QUIC implementation also runs connection management
and crypto operations which could for example impact the usage of CPU caches and how much
cache is used for the network stack and some optimizations might unknowingly rely on some
instructions or data being cached to achieve their performance improvement. In general, we
hypothesize that there is some uncertainty about how optimizations impact specific protocols in
real-world performance due to the opaqueness of modern CPUs in terms of cache management,
branch predictions, etc.

To answer this research question we utilize AF XDP, a kernel-bypass solution, to implement a
user space network stack and experiment with different optimizations and modifications. As
AF XDP could potentially be a viable way to implement these improvements in real-world
applications we keep the following secondary research question in mind to asses its viability:
“Can all functionality offered by the Linux kernel network stack also be implemented in a
network stack on top of AF XDP?”.

Chapter 2

Background information

In this chapter we explore the necessary background knowledge in order to understand our
implementation while also introducing mechanisms that have a potential performance impact
that we will experiment with in Chapter 5.

We begin by providing an overview of the network stack, the software layer(s) that allows
applications to communicate with (applications running on) other devices and more specifically
the protocols that we will have to implement in our own network stack. Next, we look at the
Network Interface Controller (NIC), the device we use to transmit and receive packets. As well
as a high-level view of how data passes through the Linux kernel network stack from and to the
NIC. We pinpoint the regions where we can improve performance in later chapters. Interesting
things include where and how copies happen, where and how we do checksumming and how the
CPU core that executes certain functions is chosen in a multi-core system. While also paying
attention to functionality offered by the network stack that we mimic in our own network stack
such as the ARP (Address Resolution Protocol). As well as functionality offered by the network
stack that we (may) lose such as Netfilter and traffic control by using a kernel bypass solution
like AF XDP.

The kernel bypass solution we will utilize to build our own network stack is AF XDP for which
we explain the basis including aspects that can have an impact on performance. We also
show how one can transmit and receive data over an AF XDP socket as we use this in our
implementation and will also optimize this process to improve performance.

During this research we used Linux kernel version 6.4(.9) unless mentioned otherwise. When
referring to specific source code files such as for example /net/udp.h we therefore mean the
file in kernel version 6.4(.9) which is available on Github [Foud], Bootlin (which provides an
easy-to-use website to view the code) [Fouc] or directly from kernel.org (using the git URL they
provide) [Fouh].

2.1 Overview of network stack protocols

The Linux kernel’s network stack implements layers 2 (data link), 3 (network), and 4 (transport)
of the Open Systems Interconnection (OSI) model. We will be focusing on Ethernet, Internet
Protocol v4 (IPv4), User Datagram Protocol (UDP) and QUIC. These are the protocols that
we will be using in our implementation. Using these protocols comes down to filling the right
values in their headers when sending packets or reading and checking the right values when
receiving packets.

For the Ethernet header there is nothing noteworthy, as for the IPv4 and UDP headers they
both contain a checksum. For the IPv4 header this is defined IETF RFC 791 [IET81], and
is calculated over the entire IPv4 header. The UDP checksum is defined in IETF RFC 768

11

12 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.1: Example of a NIC, specifically the (Dell) Intel X540-T2 with a PCI-E
interface and 2 Ethernet ports, image source: [Ser]

[IET80]: it is calculated over the UDP header, an additional pseudo-header, and the UDP
data. In the rest of this chapter we will see where Linux calculates these checksums and in
Section 4.2.2 we will describe how we do this in our implementation.

The main goal of this thesis is to improve the performance of the network stack for QUIC.
While QUIC was originally designed at Google it has evolved a lot and QUIC, as defined in
IETF RFC 9000 was designed by a much broader group than Google alone. QUIC, operates on
top of UDP while technically also being a transport layer protocol. QUIC has been designed
as a replacement for TCP and therefore the core functionality is relatively similar: it operates
on data streams and it automatically retransmits data if the recipient does not confirm that it
has arrived.

QUIC also has the same features as TCP to prevent it from oversaturating the network or
overwhelming a slow receiver. For this congestion control and flow control are used respectively.
For congestion control the algorithm can be chosen just like TCP, notable options are CUBIC
[HRX08] and BBR [Car+16]. The flow control algorithm in QUIC works similarly to that of
TCP.

Notable differences between QUIC and TCP are the fact that QUIC supports 0RTT connection
handshake and multiple streams while also requiring encryption (which is optional for TCP).
This makes encryption an inherent cost for QUIC. Additional goals for QUIC are more protocol
flexibility, meaning the ability to introduce new versions of QUIC [IET]. The ability to extend
QUIC using plugins was also proposed by some [Pir+20].

Further, developing and deploying changes to kernel-level networking protocols can be a time-
consuming process due to the need for rigorous testing and coordination between developers. By
implementing QUIC in user space, developers can iterate and update the protocol more rapidly,
allowing for quicker bug fixes and the incorporation of new features. While also being able to
ship applications with (new versions of) QUIC without having to wait for operating systems to
implement the protocol illustrated by Google Chrome [Lan+17] which has had (google) QUIC
support years before QUIC was standardized by the IETF in 2021 by RFC 9000 [IT21].

While some operating systems do have support for QUIC, notably macOS [App] and Windows
[Micb] many more user space QUIC implementations exist [See] and popular applications such
as Google Chrome and Mozilla Firefox also implement QUIC in user space.

2.2 The Network Interface Controller (NIC)

In this section we take a look at the Network Interface Controller as this will be the main, and
only device where we will be interacting with. A physical Network Interface Controller can
have multiple forms, one of which is as an expansion card with a PCI-Express interface and
one or more ports. A variant of the X540-T2 we use in this thesis can be seen in Figure 2.1. It
can also be integrated onto a laptop, desktop or server motherboard. In essence, its function

2.2. THE NETWORK INTERFACE CONTROLLER (NIC) 13

is taking packets from a cable (or from the air in wireless networks) and delivering them to
system main memory while notifying the CPU of the new packets and vice versa where the
CPU can transmit packets from main memory via the NIC to the network. In this section we
will look into the hardware offloads that the NIC can provide and how it can signal the CPU
that one or more new packets have arrived.

To transfer data to and from main system memory virtually all modern NICs support Direct
Memory Access (DMA). This feature involves the NIC directly reading and writing data from
the main memory without the CPU being involved. This of course is much more efficient
compared to having to involve the CPU in this operation. In the rest of this thesis, when
packets are transferred from the host to the NIC and vice versa we will assume this happens
via DMA

2.2.1 Hardware offload capabilities

Hardware offloads in network interface cards refer to the ability of the NIC to perform certain
networking tasks directly in hardware, offloading the burden from the host system’s CPU. This
capability theoretically improves overall system performance, reduces CPU utilization, and
enhances network throughput. The supported hardware offload functionalities depend on the
NIC, driver and operating system support.

On Linux a list of features can be shown using “ethtool -k device name”. A partial output looks
like this on our system:

$ ethtool -k enp0s25

Features for enp0s25:

rx-checksumming: on

tx-checksumming: on

tx-checksum-ipv4: off [fixed]

tx-checksum-ip-generic: on

tx-checksum-ipv6: off [fixed]

tx-checksum-fcoe-crc: off [fixed]

tx-checksum-sctp: off [fixed]

scatter-gather: on

tx-scatter-gather: on

tx-scatter-gather-fraglist: off [fixed]

To change the offload settings we can run ethtool as root using the command: “sudo ethtool -K
device name offload on/off” to enable or disable an offload.

A complete list of hardware offloads supported by Linux can be found inside the kernel in
/include/linux/netdev features.h for which you can find the mappings to the names shown in
ethtool in /net/ethtool/common.c. We limit ourselves to checksum offloading and segmentation
offloads.

As we have seen both the IP and UDP headers contain a checksum, traditionally these check-
sums were always calculated in software. However today most NICs support offloading (some)
checksum calculations in hardware. This both for transmitting and for receiving packets. An-
other hardware offload provided by many NICs is TCP Segmentation Offload (TSO) which only
works for TCP. As the name suggests it offloads the segmentation of a larger packet into more
small packets in the NIC. As TSO assembles the frame in the NIC it cannot work without TX
checksum offload enabled. This offload is greatly beneficial for performance. There are also
software alternatives to this that are more general purpose as they also work for UDP: Generic
Segmentation Offload (GSO) when transmitting and Generic Receive Offload (GRO) when re-
ceiving. Even though they run in software they can still improve performance by reducing the
number of times the network stack needs to be traversed. Instead of multiple small packets
traversing the stack individually, a large packet is passed through the stack and is segmented
into smaller packets in one of the later stages of the network stack. [Foue].

14 CHAPTER 2. BACKGROUND INFORMATION

2.2.2 Hardware interrupts

A NIC notifies the CPU when new packets have arrived through a hardware interrupt. Hardware
interrupts can be important to take into account when trying to improve performance as they
literally interrupt (preempt) the code (thread) that is currently running on the CPU, having a
lot of interrupts can slow the entire system down, and create latencies [Hatb]. Therefore the
processing done in hardware interrupt handlers is generally limited to the bare minimum and
anything deferrable is typically deferred using a software interrupt [BC05] which we will see in
Section 2.3.

Before the introduction of NAPI (formerly called New API) a NIC would create a hardware
interrupt for every packet that arrived, but NAPI reduces the amount of hardware interrupts
required by forcing the CPU into poll mode. When a new hardware interrupt is triggered, the
CPU will temporarily poll to check if there are new packets with hardware interrupts of new
packet arrivals disabled. We will see how this works in a bit more detail in Section 2.4.3.

The amount of hardware interrupts generated by a device per CPU are logged in the /proc/in-
terrupts file which can look like this when printed, we only show the line of the NIC which in
our case is named enp0s25:

$ cat /proc/interrupts

CPU0 CPU1 CPU2 CPU3

46: 18272 0 0 0 PCI-MSI-0000:00:19.0 0-edge enp0s25

In this case the NIC only interrupts CPU0 and has done so 18272 times since boot.

2.3 Linux kernel basics

In this section we describe several structs, representations and mechanisms provided by the
kernel, specifically those that we will later refer to.

Structs

In the rest of the text we will refer to some C structs defined in the kernel. Our goal here is
to explain them on a high level so you can understand the rest of the text without requiring a
deep understanding of network stack-related data structures.

• sk buff: often abbreviated skb in a name, the “main” structure containing packet data
in the network stack. It is allocated when a packet arrives on the NIC or when the user
space application wants to transmit a packet

• sockaddr: a generic socket address that is not bound to a single address family

• sockaddr in: a struct that fits in the same memory as sockaddr, the “in” stands for
AF INET: the Internet Protocol v4 address family. This struct is used for IPv4 sockets
to define the source and destination, but as the socket related system calls are address
family agnostic it is always cast to a sockaddr pointer before being passed

• msghdr: structure containing both a sockaddr (of the destination) and pointer(s) to the
data of the packet

• ethhdr, iphdr and udphdr: protocol headers, they are defined in such a way that they
are not padded/aligned and a pointer to the right location in packet data can be cast to
them to make it easier to work with the headers

Software interrupts

A software interrupt is similar to a hardware interrupt, it is used to signal a CPU that it
needs to complete some task, for example, process a packet that has arrived. But instead of
a physical signal being sent to the CPU which interrupts it, software interrupts are handled

2.3. LINUX KERNEL BASICS 15

in software and are only checked at specific moments in time. Whenever a system call, which
we will discuss next, is about to return to user space, or a hardware interrupt handler exits,
any software interrupts which are marked pending (usually by hardware interrupts) are run
[Foug].

Although being less invasive than hardware interrupts they still have an impact on performance
as they defer processing the user space application to process the software interrupt.

The amount of software interrupt requests (softirqs) generated for every CPU process is logged
in /proc/softirqs which can look as follows when printed, we only show the network-related
NET TX and NET RX softirqs:

$cat /proc/softirqs

CPU0 CPU1 CPU2 CPU3

NET_TX: 132 475 170 135

NET_RX: 19979 1671223 69 109

System calls, user space, kernel space and context switches

System calls are interfaces that allow user level applications to request services and functionality
from the kernel [2]. These services can include actions like reading or writing files, creating new
processes, managing memory, and interacting with hardware devices or more specifically for
our use case: transmitting and receiving data over the socket interface which provides access to
the Linux kernel network stack. System calls provide a controlled way for user level programs
to access privileged operations and interact with the underlying hardware and resources of the
computer. For our work the relevant system calls are: socket(), bind(), sendto(), sendmsg() and
recvmsg().

Virtual memory is segregated into two distinct areas: user space and kernel space, as the name
implies the user application run in user space and the kernel runs in kernel space. When the user
executes a system call we therefore have to switch from user space to kernel space temporarily
and after the system call has been completed we need to change back to user space. These
switches are called context switches.

These context switches can have a significant impact on performance as they cost at least
several microseconds [LDS07]. This performance impact is caused by the CPU having to save
the current state of the CPU, load the state of a new process and then resume executing the
new process [Ash]. While the context switch itself has a cost, the further execution speed of
the process(es) is also impacted as the CPU caches are (partially) filled with data from the old
thread where we switched from. Context switches are not only caused by system calls but also
in multitasking when the scheduler preempts a process to provide another process its share of
the CPU time or when a hardware interrupt is received [Gar+].

To illustrate why several microseconds, while sounding small, has huge implications for network
performance we calculate the time we have per Maximum Transmission Unit (MTU) sized
packet. We assume that we want to saturate a 10 gbps link and that we have the standard
MTU of 1500 bits.

10 gbps /1500 bits = 666667 packets per second (pps)

1 second /666667 packets = 0.0000015 seconds = 1.5 microseconds

So to achieve line rate with this MTU we have to transmit one MTU-sized packet every 1.5 mi-
croseconds meaning that the cost of a single system call alone would already be too high.

16 CHAPTER 2. BACKGROUND INFORMATION

sendmsg
UDP

Copy msghdr to
kernel space

Calculate
checksum

Ethernet

IPv4

Netfilter

Calculate
checksum

ARP

Traffic
controlNIC

Figure 2.2: High-level flow when doing a sendmsg() system call

2.4 The basic UDP flow through the kernel

In this section we delve into the Linux kernel BSD socket implementation for UDP over IPv4.
As we will be implementing our own alternative network stack that will use very similar function
calls to create, bind, send, and receive messages we also take a quick look at the parameters of
these functions. For the data flow through the kernel we leave out the complexity of discussing
how everything is implemented exactly and instead focus on a high-level view while diving
deeper into the parts that are of particular interest due to their performance impact or the
functionality provided. The performance aspects we will look deeper into are mainly the ones
discussed in Section 2.3 plus memory copies, hardware offloads and optimizations that have
already been implemented in the stack.

2.4.1 Creating and binding a socket

A UDP socket can be created with a call to socket() the full call is the following:

socket(AF_INET, SOCK_DGRAM, 0);

We already filled in the specific arguments to create an IPv4 UDP socket: AF INET stands for
the Internet Protocol (v4) address family and SOCK DGRAM basically tells the kernel that
we want UDP as transport layer protocol.

and the bind() call is the following:

bind(int sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr))

in this call the sockfd is the file descriptor of the socket we are binding, this is returned by the
socket() call, the server addr is a sockaddr in with both the IPv4 address and port number
we want to receive data on. And the last argument is simply the size of the passed address.
Binding a socket associates it with a port number and one or all IP addresses. Any incoming
packets on this port and, if specified, IP address will be directed to this socket.

2.4.2 Sendmsg()

The sendmsg() system call is the following:

sendmsg(int sockfd, const struct msghdr *msg, int flags);

The notable arguments are the sockfd which is the file descriptor of the socket and the msghdr
which should be filled with the sockaddr of the destination and pointer(s) to the packet

2.4. THE BASIC UDP FLOW THROUGH THE KERNEL 17

data.

The overview of the flow inside the kernel is shown in Figure 2.2. When the user application
makes a call to sendmsg() a context switch is done into kernel space and the packet data
and destination in msgshdr are copied from user space to kernel space. For the rest of the
explanation, we assume no type of segmentation offloading is used. The significant tasks in
the context of UDP involve creating the header, which encompasses the computation of the
checksum. If employing software-based checksum calculation the complete UDP checksum is
determined at this point. Alternatively, if hardware offloading is enabled, the checksum will
later be completed by the NIC. However, even if hardware checksum offloading is used, a part
of the checksum, namely the checksum over the pseudo-header is always computed in software.
Therefore it is important that the checksumming operation is implemented efficiently which is
why the code responsible for software-based checksum calculation is tailored to the specific CPU
architecture in use. For instance, on AMD64 (x86-64), an assembly code segment is employed
to compute the checksum.

Once the UDP header has been filled we can pass the packet to the next layer, namely the IP
layer. Here we build the IPv4 header and also compute its checksum which is always done in
software [Foui]. Here we also make our first call to a Netfilter hook. We will now dive a bit
deeper into Netfilter as this is a useful feature provided by the kernel that as we will show here
is non-trivial to implement in a user space network stack due to its tight integration with the
Linux kernel network stack. We also show on a high level how it works in order to be able to
provide an alternative with our implementation.

Netfilter

application routing
LOCAL

OUT

POST

ROUTING

NIC

Figure 2.3: Netfilter hook locations in diamonds in the path from application to the
NIC

Netfilter is a framework that provides packet filtering, network address translation (NAT), and
other network-related functionalities in the Linux operating system. Netfilter is primarily used
for firewalling and network traffic manipulation purposes such as Network Address Translation
(NAT). Netfilter can be used through iptables or nftables[Net].

Netfilter has hooks that are called at different points in the Linux kernel network stack pro-
cessing, for the output path from a user space application to a NIC the hooks are shown in
Figure 2.3. The hook point LOCAL OUT is executed for every packet coming from a user
space application, while the POST ROUTING hook is also run for packets being forwarded
from another interface. When Netfilter is hooked several parameters are passed including the
current packet (skb struct), socket context, and network device. The tight integration with
the kernel network stack data structures and the specific hook points make it non-trivial to
integrate this into a user space network stack.

Instead of diving into the detailed functionality of Netfilter and how it could potentially be
modified to make it work in a kernel-bypass scenario we will learn about alternatives in Section
3.5.1 and our implementation in Section 4.2.6. We do this because these alternatives provide
improved performance and do not require large modifications to kernel code to work together
with AF XDP.

When continuing in the path down to the NIC we are still in the IPv4 section in which the
Address Resolution Protocol (ARP) that is also implemented in the kernel is used.

18 CHAPTER 2. BACKGROUND INFORMATION

NIC
NIC driver

Hardware
interrupt

Software
interrupt NAPI

napi_schedule_irqoff() poll()

CPU

Figure 2.4: Hardware interrupt being generated on an incoming packet, which then
raises a software interrupt inside the NIC driver to start the NAPI poll loop

Address Resolution Protocol (ARP)

The kernel network stack implements the ARP which maps IPv4 (and IPv6) addresses to MAC
addresses in the local network. This is because in the local area network (LAN) hosts are
identified by their MAC address while on the highest level IP addresses are used, or domain
names which are mapped to IP addresses. It is not strictly necessary to implement this protocol
to create a functional network as the user can manually generate a table with these mappings and
keeps it up to date if hosts enter or leave the network. In reality, this might not always be feasible
due to the large number of hosts in a network and frequent changes. If we create our own network
stack we would therefore have to implement the ARP or, as we will see in our implementation
section, figure out a way to utilize the kernel-provided ARP implementation.

ARP uses simple messages on top Ethernet to communicate, we can check the Ethertype inside
the Ethernet header to see if a packet is an ARP message.

The last protocol layer our packet passes through is the Ethernet layer, other than filling the
header nothing of special interest happens. But the Ethernet layer does not pass the packet
directly to the NIC, instead it passes through traffic control first.

Traffic control

The primary goal of traffic control in Linux is to manage the bandwidth and latency of net-
work connections, so that critical applications or services receive the necessary resources while
preventing any single application from overwhelming the network and causing degradation in
performance for other applications.

This is done through queueing discipline (qdiscs) which are basically an algorithm to decide in
which order data is queued to be sent on the NIC. Fq codel, which is currently the default qdisc
does this intelligently by using a stochastic model to classify incoming packets into different
flows. It provides a fair share of the bandwidth to all the flows using the queue. The usage
of traffic control and qdiscs can have a significant effect on the performance of network data
transfers when multiple flows are active [NW13].

Once the packet is queued, the NIC will eventually read the packet data from main memory
using DMA and transmit it. And this concludes our complete packet transmission. We will
now take a look at the reverse scenario where a packet is received.

2.4.3 Incoming packet(s) on the NIC

Unlike packet transmissions, packet receptions do not start with a system call by the receiver
because packets can arrive at any moment. When a packet arrives on the NIC, the NIC places
the packet in a RX ring in main memory using DMA and notifies the CPU by sending a hardware
interrupt. This hardware interrupt is handled in the NIC driver by raising a software interrupt,
which, when the software interrupt is being handled calls a NAPI poll loop to temporarily poll
the RX queue while disabling further hardware interrupts. A schematic overview can be seen

2.4. THE BASIC UDP FLOW THROUGH THE KERNEL 19

in Figure 2.4. The advantage of this NAPI poll method is of course that both the number of
hardware and software interrupts are minimized.

Inside the NAPI poll loop packets are also pushed through the network stack. The traversal
happens in the opposite direction of the one shown for sendmsg and passes through the Ethernet,
IPv4 and UDP implementations while also calling two Netfilter hooks. The last step here is the
received packet being placed in the socket receive buffer. The user space application can then
call recvmsg() to receive this data.

2.4.4 Recvmsg()

The recvmsg call is the following:

recvmsg(int sockfd, struct msghdr *msg, int flags);

With the notable arguments being the socket file descriptor and a pointer to a msghdr struct
which will be filled with the packet data and address of the sender.

As we have seen in the previous section how the data enters the socket buffer through the
network stack we already know that the recvmsg() call, unlike the sendmsg() call does not
traverse the network stack. Instead what recvmsg() does is simply copy the data from the
socket receive buffer to the region in user space. Therefore the only memory copy in the receive
path happens here.

2.4.5 Performance considerations

We finish our discussion of the Linux kernel network stack by discussing some details of where
packets are processed on multi-core systems and we also discuss an optimization already im-
plemented in the kernel to reduce the amount of system calls.

Multi-core systems

For multi-core systems we ask ourselves an important question: “On which CPU are the packets
processed on a multi-core system?”. For transmitting packets the processing of packets happens
on the CPU running the user space application. But what about incoming packets? This is
important as we have seen that receiving packets causes both hardware and software interrupts,
and causes the CPU core to use NAPI polling to retrieve extra packets temporarily. This makes
it so our user space application is temporarily interrupted if it is running on the same core.

In the situation that the NIC only has a single receive queue, incoming hardware interrupts
are handled by a single CPU and this is also the CPU that handles the software interrupt and
the NAPI poll loop. Additionally, when using the kernel network stack, this CPU also pushes
the packets through the kernel network stack and into the receive buffer of the socket. While
modern NICs support multiple queues and can divide the load over multiple CPUs [Hatc], the
CPU handling the interrupts and the one running the user space application can still differ.
Therefore it is not a bad idea to also take the (CPU utilization) of the interrupt handling CPU
into account when considering network stack performance.

sendmmsg() and recvmmsg()

The Linux kernel network stack already includes some optimizations. One of them are send-
mmsg() and recvmmsg() which are alternatives for sendmsg() and recvmsg() respectively. They
can reduce the amount of system calls that need to be made to transmit packets by passing
multiple packets in a single system call. As we have seen in Section 2.3: the context switches
caused by system calls can have a significant performance impact. sendmmsg() and recvmmsg()
work by utilizing a struct mmsghdr instead of the standard struct msghdr which serves the same
purpose but can contain multiple packets intead of just one.

20 CHAPTER 2. BACKGROUND INFORMATION

Behind the scenes these functions make multiple calls to sendmsg() and recvmsg(), which copy
the data one msghdr at a time between user space and kernel space or vice versa. So other than
a reduction in system calls these function do not provide further optimizations.

2.5 eBPF eXpress Data Path (XDP)

eXpress Data Path (XDP) is a high-performance datapath utilizing eBPF. It’s an eBPF data
path used to transmit and receive packets by bypassing the operating system network stack.
Along with XDP a new address family, AF XDP, was introduced, it allows an eBPF program
with XDP to forward packets to an AF XDP socket, effectively bypassing the network stack
and passing data directly to user space. Using this type of socket the user space program can
also transmit data while bypassing the kernel network stack.

In this section we take a look at what eBPF is, how XDP and AF XDP works and the necessary
details to understand the performance implications of some of its options such as the attach
mode and zero-copy mechanism. As well as a high-level understanding of how packets can
be transmitted and received over an AF XDP socket in order to optimally use this in our
implementation.

2.5.1 eBPF

eBPF is a feature in the Linux kernel that allows for programmable data path processing
and packet filtering. Originally derived from the traditional Berkeley Packet Filter (BPF),
eBPF extends its capabilities to provide a more flexible and efficient mechanism for dynamic
instrumentation, observability, and tracing within the kernel. It works by attaching an eBPF
program to a designated code path in the kernel, when the code path is traversed, any attached
eBPF programs are executed.

eBPF programs are small, sandboxed bytecode programs that are safe to execute within the
kernel. These bytecode programs can be loaded into the kernel via system calls or user space
utilities. You can write eBPF code in a pseudo-C style which can then be compiled to bytecode
(or you could write bytecode directly). Then this bytecode can be loaded into the Linux kernel
using the bpf system call. As the program is loaded in the kernel it is first verified to be safe
to run this means:

• The program loading the eBPF program has the correct privileges to do so

• The program does not crash or otherwise harm the system

• The program always runs to completion (it cannot enter an infinite loop)

These restrictions might limit the capabilities of eBPF somewhat, the verification step makes
it so eBPF is not Turing-complete [Bau]. But these restrictions are essential to allow user
space applications to load code into the kernel, if we could load unsafe code into the kernel we
could cause the entire system to crash or cause the kernel to go into an infinite loop effectively
freezing the entire system. But due to the Just-in-Time (JIT) compilation to translate the
generic bytecode into machine-specific instructions, eBPF programs run as efficiently as natively
compiled kernel code or as code loaded as a kernel module [eBP; Fle].

2.5.2 XDP

XDP’s name comes from the fact that it gets access to the packet data early on in the processing
pipeline. Where exactly this happens depends on the mode that is being used. There is
a general mode called SKB which does not require driver support, therefore, making XDP
available without any modifications to the NIC or driver. If however support is added to the
NIC driver we call this NATIVE or driver mode and this has an advantage. As can be seen in
Figure 2.5 the point at which the eBPF XDP program gets called differs, for NATIVE mode

2.5. EBPF EXPRESS DATA PATH (XDP) 21

SKB Mode

NATIVE Mode

NIC Driver

Receive
Packet

eBPF XDP
Program

Create
Skb

Kernel Network
Stack

Receive
Packet

Packet

Figure 2.5: Code flow locations where the eBPF XDP program is called for SKB and
NATIVE mode

this is before an sk buff has been allocated while for SKB mode this is after an sk buff has
been constructed and passed to the Linux kernel network stack. The green and red arrows are
two-directional as the XDP program returns which action to perform on the packet.

In terms of packet handling within a XDP eBPF program, the frame is passed to the program
and can then be read and/or modified and a value is returned to indicate what needs to happen
to the frame. There are several options available [Cil]:

• XDP ABORTED: indicates an error condition, behaves like XDP DROP but also passes
an trace xdp exception tracepoint which can be probed to detect (and debug) misbehavior
[Des]

• XDP DROP: drop the packet right away

• XDP PASS: pass the packet through the Linux kernel network stack (like normal)

• XDP TX: transmit the packet out of the same NIC it just arrived on

• XDP REDIRECT: similar to XDP TX but allows you to transmit the XDP packet
through another NIC, this option can also be used to redirect into a BPF cpumap mean-
ing that the packet can be pushed to another CPU (core) for further processing, this can
also be used to redirect the packet to an AF XDP socket

2.5.3 XDP address family (AF XDP)

The XDP address family (AF XDP) allows the redirection of data frames to user space appli-
cations using an AF XDP socket (xsk). Every xsk has two associated rings: an RX (receive)
ring and a TX (transmit) ring and every xsk is associated with exactly one UMEM, but a single
UMEM can be associated with multiple xsk. A UMEM is a region of virtual contiguous mem-
ory, divided into equal-sized frames. There are two rings associated with the UMEM: a FILL
ring and a COMPLETION ring. When creating the UMEM you need to define the sizes of the
frames, and how many frames there are. You can use a custom value or the default (currently
4096) but you need to accommodate the largest possible packet that could be sent or received.
While also keeping in mind that by default the UMEM operates in aligned frame mode meaning
that the addresses will always be mapped to multiples of the frame size, for example with the
default frame size 4096, addresses will always be aligned to multiples of 4096.

A later patch allows unaligned mode, which provides some advantages such as making it possible
to place frames inside the UMEM wherever you please but also complicates things while also
having a small impact on performance (up to about 1,5%) [Laa].

The functions of the rings are the following:

22 CHAPTER 2. BACKGROUND INFORMATION

• COMPLETION: kernel space fills this rings with the UMEM frames that have been
transmitted

• FILL: user space fills this ring with UMEM frames that can be used by kernel space to
write newly received packets into

• RX: kernel space fills this ring with UMEM locations plus the length of received packets

• TX: user space fills this ring with UMEM locations plus the length of packets it wants to
transmit

A UMEM can be visually represented as can be seen in Figure 2.6. The large rectangle represents
the entire block of memory which is the frame size times the amount of frames.

lengthlengthlengthlength

FILL COMPLETION RX TX

UMEM

Figure 2.6: Visual representation of UMEM plus rings with the arrows representing
the pointers to the UMEM addresses

user space kernel space contains
COMPLETION consumes produces address
FILL produces consumes address
RX consumes produces address and length
TX produces consumes address and length

Table 2.1: All the AF XDP rings, who consumes and produces and what they contain

The rings are summarized in Table 2.1. The RX, TX, FILL and COMPLETION rings can be
divided into two types as seen from the perspective of user space: consumer ring and producer
ring where user space consumes and produces respectively. Depending on the ring the items
contain just a pointer to a UMEM location or also contain the length of the packet.

In summary all the rings (assuming a single AF XDP socket) and UMEM can look like Figure
2.6, where our rings have length 2 (frames) and our UMEM has length 6 (frames). In reality
you would like to avoid a situation such as the one shown. If in the shown situation a new
packet arrives, the NIC driver in kernel space can take a packet from the FILL ring to fill, but it
cannot put another packet in the RX ring, therefore no new packets can be received. You need
to make sure your rings are large enough and that your user space application process clears the
RX and COMPLETION ring fast enough as well as filling the FILL ring fast enough.

A general recommendation for the FILL ring size is the size of the RX ring plus the size of
the hardware RX ring size in the NIC. Assuming you also add new frames to the FILL ring
fast enough this ensures that the NIC driver will never run out of memory (locations) to put
new incoming packets into. This because NIC drivers have not been designed with memory
allocation issues in mind, and if they happen they can be quite expensive. It was designed this
way as while using the kernel network stack, kernel allocated memory is used that only runs
out in Out Of Memory (OOM) situations which should be rare [xdp].

2.5. EBPF EXPRESS DATA PATH (XDP) 23

Transmitting a single packet

TX Ring COMPLETION Ring

20
1242 3 41

512

UMEM

TX Ring COMPLETION Ring

0
1242 3 41

512

UMEM

2
1023

Packet
Data0

Packet
Data1

Packet
Data0

Packet
Data1

Packet
Data2

Schedule a packet
to be transmitted

Figure 2.7: Simplified view of a UMEM, TX ring and COMPLETION ring before and
after scheduling a packet for transmission on an xsk

Already transmitted
packet

Already transmitted
packet Text

New,
smaller
packet

UMEM
frame 2

Frames can be reused
without clearing them

UMEM
frame 2

10231432

Figure 2.8: UMEM frames can be reused without clearing or zeroing out the old data

We visualize the process to transmit a packet using an AF XDP socket in Figure 2.7. We must
always obtain a UMEM frame address to fill with our packet, to grab one we can consume
one from the COMPLETION ring, which contains frames that contain(ed) packets that have
been transmitted by the NIC and are ready to be reused. In the figure the COMPLETION
ring provides us with UMEM frame 2. We then fill the UMEM frame with a packet (including
headers) and submit its location as well as its size to the TX ring. After we have done this
all we must wake up the NIC driver for it to actually transmit the frame. Waking up the
NIC driver is done through a sendmsg() system call (poll() can also be used but is slower [3]).
Unlike when using the kernel network stack we don’t pass any packet or destination with the
sendmsg() call: this call does not result in any data copies or any packets being processed by
the kernel network stack. The NIC driver will use the location to grab the packet data and

24 CHAPTER 2. BACKGROUND INFORMATION

because we passed the length of the packet, it also knows where the packet stops. This makes
it so we do not have to zero out the UMEM frame as it might be larger than the packet and
still contain part of an old packet due to being reused as is illustrated in Figure 2.8.

When the NIC (driver) transmits the packet it reads its location in the UMEM from the TX ring
and once it is done transmitting places a reference to the UMEM frame in the COMPLETION
ring so it can be reused again by the user space application.

Receiving a single packet

Now that we know how we can send frames, we also take a look at receiving frames of which
the process is visualized in Figure 2.9. To check if there are new frame references available we
can peek the RX ring and if there is one available grab it. If there aren’t any available we have
to wake up the NIC driver in order for it to update the RX and FILL ring, we do so by utilizing
a recvfrom() system call, and just like the senmdsg() system call we use when transmitting:
we do not pass any buffers so no copies or real network stack processing happens because of
it. We then grab the UMEM location and packet length (which the NIC filled in) from this
frame reference and utilize it to process the packet, this processing should include basic header
checks: is the frame destined for us? Are the checksums correct? Please note that you could
also choose to implement some or all of these checks in the eBPF program that forwards to
packets to our AF XDP socket. The advantage is that when using NATIVE mode you could
drop the packet directly in the NIC driver before any real processing has been done.

Next, if everything is correct we can pass the packet data to the application running on top
of our xsk, which in our case will be QUIC. For AF XDP we are free to do with this UMEM
frame as we please. After we are done with the UMEM frame we submit a reference to it to
the FILL ring so the frame can be reused by the NIC driver to put another incoming packet
into.

Zero-copy

When utilizing the NATIVE attach mode we can additionally enable zero-copy if the NIC driver
supports this. What this does is make the NIC driver aware of the location of the UMEM and
its frames so when receiving packets the NIC can DMA packets directly into the correct UMEM
frame instead of the packet first having to put in a buffer from the RX ring of the network device
in main memory and then having to be copied to the UMEM. The difference is visualized in
Figure 2.10 for the receive flow. The transmit process is virtually the same but in the opposite
direction, when utilizing zero-copy mode the NIC can directly pull the packet from the UMEM
frame, while without it the packet must be copied from the UMEM frame to a network device
TX ring location in main memory.

Waking up the NIC driver

When describing how to send and receive packets using AF XDP we included waking up the NIC
driver in the process and as we explained this is done through a system call. However there is an
optimization possible. Sometimes the NIC driver might already be running, for example when
in the NAPI poll loop. To prevent us from having to wake up the NIC if this is the case there is
a flag that can be set when creating an AF XDP socket, namely XDP USE NEED WAKEUP.
When this flag is set the user space application can use a libxdp provided function to check if it
needs to wake up the driver before doing so. If it does not, it saves the user space application
from performing a relatively costly system call.

2.5. EBPF EXPRESS DATA PATH (XDP) 25

RX ring FILL ring

0
1242 4

UMEM

RX ring FILL ring

4

UMEM

Packet
Data0

Packet
Data0

Receive a packet
and submit it to

FILL ring for reuse

0

Figure 2.9: Simplified view of a UMEM, RX ring and FILL ring before and after
receiving a packet an xsk

NIC

Main Memory

UMEMRX ring

DMA DMA

Memory
Copy

normal operation

zero-copy mode

Packet

Figure 2.10: Normal operation vs zero-copy mode when receiving a packet

Chapter 3

Related work

In this chapter we look at multiple forms of related work. We look at several publications which
are related to host network stack and QUIC performance, including research into hardware
techniques like Direct Cache Access (DCA). Further, we also look at XDP-related publications,
XDP for Microsoft Windows and several alternatives that provide functionality such as kernel-
bypass similar to that of AF XDP.

3.1 Host network stack optimizations

Cai et al. [Cai+21] discuss host network stack overheads, specifically for the Linux kernel using
100 gbps links. They mention that while NIC link throughput speeds have increased by 4 - 10x
over the past few years, all other host resources including CPU speeds, cache sizes and NIC
buffer sizes have largely been stagnant. As a result the need has emerged to create a more
(CPU) efficient host network stack. They do a deep analysis of the effects of resource sharing
(due to CPU cores in the same NUMA node), the impact of in-network congestion, flow sizes,
DCA, IOMMU and congestion control protocols. The main future directions they see as a result
of their research, which is mainly based on iperf runs over TCP, are zero-copy mechanisms and
CPU-efficient transport protocol design.

3.2 Direct Cache Access (DCA)

DCA is a technique similar to DMA but instead of the NIC being able to write data directly
to the system’s main memory the NIC can write data directly to the CPU cache. Intel’s
implementation of this is called Data Direct I/O (DDIO), works for all I/O devices and is
invisible to software meaning that driver changes are also not required [Intc]. Wang et al.
[WXW22] develop an analytical framework to predict the effectiveness of DCA under certain
hardware specifications, system configurations, and application properties. They conclude that
while DCA can have performance benefits, Intel’s implementation also has disadvantages such
as it being hard to balance low memory traffic, low cache usage and resistance to fluctuations
in workload. As for low memory traffic and low cache usage the buffers need to be relatively
small, but this causes the buffer to fill completely if the workload fluctuates.

3.3 Alternative network stacks and kernel bypass tech-
niques

Chen and Sun conducted a survey about kernel bypass [CS18], they give a (very) high level
overview of the path a packet takes when it arrives on the NIC to the user space application.

26

3.3. ALTERNATIVE NETWORK STACKS AND KERNEL BYPASS TECHNIQUES 27

They classify the kernel network stack overheads into three categories:

• System call overhead, the cost of switching from user space to kernel space and back
which may cause cache pollution, Translation Lookaside Buffer (TLB) flush.

• Extra data copying, namely the copy or copies between the user space and kernel space
buffers

• Per-packet processing: the general processing (routing, netfilter, checksum calculation,
...) that happens for every packet.

They describe and compare several alternatives to the Linux kernel network stack which include
DPDK, mTCP and Netmap.

3.3.1 Data Plane Development Kit (DPDK)

Data Plane Development Kit (DPDK) [Foua], is a set of libraries and drivers that enable high-
performance packet processing in networking applications. It is similar to AF XDP in the sense
that it allows to bypass the kernel network stack and allows an implementation of a custom
network stack in user space.

DPDK applications use a polling model, where they actively poll network interfaces for incoming
packets instead of relying on interrupt-driven approaches used by traditional networking stacks.
This reduces interrupt handling overhead but does cause the CPU core to be constantly busy
with polling, meaning that CPU consumption is always 100% even if no packets are being
processed.

Later on an AF XDP based poll mode driver was also added to DPDK which basically runs
DPDK on top of AF XDP with busy poll mode. This is a disadvantage over using AF XDP
directly as this also allows to use of interrupts and NAPI logic to only poll a short while after
an interrupt has been received which does not cause our CPU utilization to stay at 100% all
the time [Inta].

3.3.2 Netmap

Netmap by Rizzo [Riz12] is a framework for very fast packet I/O from user space. In building
Netmap, they identified and reduced or removed three main packet processing costs:

• per-packet dynamic memory allocations

• system call overheads

• memory copies, eliminated by sharing buffers and metadata between kernel and user space

This is achieved as follows: they remove the memory copies by cutting off the standard kernel
network stack from the NIC and mapping the NIC memory buffers directly to user space.
As these buffers are reused over and over again they are only allocated once, avoiding per-
packet memory allocation. Netmap also reduces the number of system calls by allowing the
transmission of multiple packets per system call.

Netmap works similarly to how AF XDP sockets work: the user has access to a large buffer in
which frames can be placed, inside a Netmap ring the packet sizes are placed and to signal the
NIC to transmit the frames a system call is made. However a disadvantage of their approach of
cutting off the NIC is that while the kernel network stack can still be used, hardware offloads
can no longer be used by the kernel network stack [Gim].

3.3.3 mTCP

mTCP [Jeo+14] is a scalable user space TCP stack. In the architecture of mTCP, a distinct
TCP thread undertakes the responsibility of protocol processing. While the mTCP application
operates on a user-level socket, engaging communication with the TCP thread via a shared

28 CHAPTER 3. RELATED WORK

buffer. Consequently, resource-intensive system calls are eradicated. Instead, mTCP employs
lightweight user-level function calls to fulfill the demands of TCP/IP processing. It extends the
PacketShader I/O engine [Han+10] in order to bypass the kernel network stack.

Additionally, mTCP employs batching techniques to offset the impact of context switches be-
tween application threads and TCP threads. Beyond system calls, batching is also implemented
at the packet I/O level to diminish the overhead associated with processing each packet.

The process of migrating an existing application to mTCP necessitates adjustments from the
standard socket API to the mTCP socket API which has functions that are similar in name
and function making it easy to migrate an application to mTCP (for example accept() and
mtcp accept()). According to their measurements mTCP has the potential to accelerate the
performance of existing applications by up to a factor of 3.

3.3.4 Onload

Onload is a commercially developed product offering a high-performance user-level network
stack, which accelerates TCP and UDP network I/O for applications using the BSD sockets on
Linux [Xil]. The original way this was intended to work is with a specific hardware interface
called ef vi which is provided by select Xilinx network adapters (NICs). This zero-copy interface
provides user space with direct access to the data structures of the NIC. With OpenOnload a
user-level shared library is included that intercepts network-related system calls and automati-
cally converts them to calls to the Onload network stack. Utilizing this library you can change
the network stack from the kernel network stack to the Onload network stack without changing
any networking code.

Compatibility with AF XDP is at the time of writing under development and is not yet at final
release quality. But because of this, it is possible to use OpenOnload on non-Xilinx NICs.

3.4 QUIC

Jaeger et al. [Jae+23] introduce a benchmarking framework for QUIC on top of QUIC in-
terrop runner [See] which they use to compare the performance between different QUIC im-
plementations as well as the impact of different hardware offloads, buffer sizes and AES NI
acceleration.

They draw several conclusions. The first is that performance of (interoperating) QUIC libraries
differs significantly: the best performer, lsquic both in the server and client achieves 3000 Mbps
while the slowest combination which is picoquic as server and mvfst as client only achieves
52 Mbps in their test setup. They inspect CPU cycles spent on each task and conclude that
packet I/O is the most expensive task taking up about 65% of the CPU cycles for lsquic. Their
third conclusion is that the default UDP receive buffer sizes are too small and increasing their
size improves performance. Their next conclusion is that while crypto is also a considerable
cost for QUIC, using a faster cipher does not impact performance significantly while it does
improve performance significantly for TCP/TLS indicating that packet I/O forms a bottleneck
for QUIC. Further they conclude that none of the QUIC implementations tested benefit from
segmentation offloads and that they cannot get sendmmsg or recvmmsg working under lsquic.
Their final conclusion is that the used hardware is highly relevant because the performance
differs significantly between different processors meaning that to compare performance you
need to use the same hardware.

3.4.1 In-kernel QUIC

Wang et al. develop and test an in-kernel implementation of QUIC [Wan+18]. They state
that they expect that the achievable performance with a user space implementation might be
held back because every message triggers a context switch. They use both a real-world wireless

3.5. XDP 29

connection as well as a virtual connection with simulated packet loss to test their implementation
against the TCP implementation in the kernel. They conclude that in most scenarios QUIC is
faster than TCP.

3.4.2 QUIC on top of DPDK

Tyunyayev et al. implement picoquic, a QUIC implementation, on top of DPDK [Tyu+22].
They identify three inefficiencies in the kernel network stack: interrupts, the utilization of the
sk buff structure, and the memory copy between user space and kernel space. They implement
a simple UDP stack compatible with both IPv4 including ARP as well as IPv6. They measure
a goodput that is more than three times higher than picoquic running in user space. Addi-
tionally, they measure that the relative CPU utilization spent on packet I/O is reduced from
18.7% to 5.7%. They also show that the achieved goodput performance is slightly higher than
TCP.

3.5 XDP

Karlsson and Töpel [Kar18] discuss various improvements for AF XDP with the goal to achieve
speeds similar to DPDK. These suggestions made their way into (lib)XDP and the Linux
kernel but not exactly as described. Their suggestions are: a built-in XDP program, XDP
optimizations, Multiple TX rings for one UMEM, forcing in-order completion in order to cut
out the COMPLETION ring, busy polling, and return trampoline (retpoline) optimizations.
The retpoline mechanism in the compiler mitigates Spectre v2 type of attacks but also makes
code less efficient, the performance degradation can be reduced by limiting the number of
indirect function calls. In C these indirect function calls are mainly caused by using function
pointers.

The busy poll options is now supported for AF XPD, just like multiple TX rings (in the form
of multiple xsks) have also been implemented in the kernel. And as they mention this also has
the advantage that you can utilize the QoS and shaping support present in many NICs. Libxdp
also provided a built-in XDP program and is more or less implemented as explained. Some
retpoline optimizations have also been implemented [Lar].

3.5.1 XDP applications

Several applications of XDP have appeared or have been proposed. Miano et al. present
[Mia+19] “Securing Linux with a Faster and Scalable IPtables” in which they use eBPF XPD to
implement an alternative to IPTables (Netfilter). They preserve the IPTables filtering semantics
making a true replacement that does not require rewriting IPTables rules. They benchmark
their implementation and measure a performance that in general is better than IPTables.

3.5.2 Windows XDP

Windows also has an eXpress Data Path similar to that of Linux, during the writing of this
thesis version 1.0.0 was released [Micc]. Just like on Linux it has two modes, a generic mode
which intercepts the packets further down the line in the data path, and a native mode which
requires driver support but intercepts the packets in the device driver. Although eBPF for
Windows is currently not yet released there is a work-in-progress version available [Mica] so
support for this can be expected in the future.

We took a look at the code and sample program [Micd] to see how similar it is to the Linux im-
plementation and what its main differences are. We see that the Windows XDP API, although
not sharing any underlying code with the Linux version, is similar to the Linux version. In their
example program they have TX, RX, FILL and COMPLETION rings of type XSK RING, a

30 CHAPTER 3. RELATED WORK

UMEM with configurable frame size and total size. To create an XDP program the implemen-
tation uses the XDP RULE type with specific filters. These are passed to the XdpCreateProgram()
function, which constructs the program.

3.6 Other options in the Linux kernel

A seemingly similar option to AF XDP sockets are AF PACKET sockets, which also forward the
packet to user space before passing through the network stack [1]. The one big difference is that
the packet is also still forwarded through the network stack. This is useful for packet sniffers
and analyzers, for example the packet capturing library: libpcap used by Wireshark [Gro].
AF PACKET has gone through several revisions and additions such as the PACKET MMAP
facility that can provide great performance benefits [Fouk]. Another option in the Linux kernel
are IPv4 raw sockets. These are similar to AF PACKET sockets but lack layer 2 (link-layer)
headers [Foub].

While we will use a kernel bypass method to achieve zero-copy support, the Linux kernel
actually already supports the MSG ZEROCOPY flag for TCP and UDP socket send calls [Fouj].
This also has the potential to improve performance just like zero-copy with AF XDP [BD17].
However, it does have negative consequences due to the way it is implemented. It used page
pinning to lock the user space memory buffer and allows the kernel space to access and utilize
it as if it were in kernel space. Once the kernel is done with the memory it is released back to
user space. This method however has a significant performance impact [Cor]. Making it only
viable when memory buffers of 10 KB or larger are passed in send calls. This is in contrast
with the AF XDP zero-copy option which does not have an additional locking mechanism that
causes an extra cost.

Chapter 4

Implementation

In this chapter, we discuss the implementation we have made. We start off by explaining our
choice to use AF XDP over other possible technologies that could allow us to achieve the same
or similar results. Then we describe our implementation and discuss some performance-related
things such as batched sending and the default buffer sizes. We also explain the API and
compare it to the one of the UDP socket in the Linux kernel. We also explain an application
utilizing the Linux kernel socket(s) can be converted to utilizing our implementation. This
illustrates how our network stack can be used as an almost drop-in replacement.

4.1 The choice for AF XDP

As we have seen in Chapter 2 the main goal of AF XDP is to provide a kernel bypass path to
directly forward packets as soon as they arrive on the NIC (driver) to a user space socket. The
main reason for this is performance.

When discussing our related work in Chapter 3 we came across several alternatives. These
include DPDK, Netmap, and the PacketShader I/O engine used by mTCP.

We chose AF XDP over these due to its good integration with the Linux kernel and eBPF, for
example it does not require custom drivers and it keeps the NAPI driver functionality. Due
to AF XDP being relatively novel compared to the other techniques it also has had less prior
work done in terms of implementing network stacks directly on top of it. While for example
DPDK already has several user space network stacks available including F-stack [Ten] and
UDPDK [Lai+]. A disadvantage of AF XDP is its performance compared to alternatives using
only polling instead of interrupts.

4.2 AF XDP UDP socket

For our custom UDP socket implementation we use AF XDP and we implement the entire
network stack, namely the three layers we use: Ethernet, IPv4 and UDP in user space. For this
we make several design choices, but in general, we try to make our stack as simple as possible.
We reuse kernel-provided structs and functions where possible. This has two advantages. The
first is that it is easier to reuse already created structs and functions instead of having to redo
this work ourselves. The second reason is that we minimize differences caused by a different
implementation of for example checksumming.

We also keep the interface of our socket implementation relatively close to that of the kernel, in
general the interface provided to the user is the same as with the kernel network stack except
that function names are prepended with “AF”, for example socket() becomes AF socket(). We

31

32 CHAPTER 4. IMPLEMENTATION

will now compare our UDP implementation with the one provided by the kernel and note any
differences.

4.2.1 Creating the socket

We provide the function AF socket() for the user to create an AFXDPUDP socket as we call
it, we return a struct AFXDPUDP socket pointer instead of a file descriptor like the kernel does.
The function definition is the following:

struct AFXDPUDP_socket* AF_create_socket(

struct AFXDPUDP_socketOptions * sockOpts)

Another difference compared to the kernel provided socket() function which we described in
Section 2.4.1 is that we do not take the address family and transport layer type as arguments.
This is because we only support IPv4 and UDP. Instead of also translating the setsockopt()
system calls to our implementation we allow the user to pass a socketOptions struct. We do
this as some of these options are necessary at the time the socket is set up and can not be
changed afterward without having to destroy the underlying socket and UMEM followed by
reconstructing them again.

For the user the exact values in the AFXDPUDP socket pointer are not of importance, they are
simply used to store state, a pointer to the UMEM, a pointer to the xsk etc.

In the AF bind() call we initialize the socket further, the user passes the AFXDPUDP socket

pointer, the name of the interface and the (UDP) port to be used. The function definition is
the following:

AF_bind(struct AFXDPUDP_socket* sock, const char * interface, u16 port)

Further the user provides the interface name of the network interface it wants to bind the xsk
to and the (UDP) port number on which we will send and receive data. We also need to know
our own IPv4 address and MAC address of the given interface when transmitting. But instead
of letting the user provide them to utilize the kernel network stack to grab them. To do so we
create a socket and utilize ioctl() with the file descriptor of the socket to extract these values
as follows:

1 int sockfd = socket(AF_INET , SOCK_DGRAM , 0);

2

3 struct ifreq ifr;

4 strncpy(ifr.ifr_name , interface_name , IFNAMSIZ - 1);

5

6 ioctl(sockfd , SIOCGIFHWADDR , &ifr);

7 // ifr.ifr_hwadr now contains the MAC address

8 ioctl(sockfd , SIOCGIFADDR , &ifr);

9 // ifr.ifr_addr now contains the IPv4 address

We store these values in the AFXDPUDP socket struct so we don’t have to make these system
calls over and over again every time we need these values. This method does work for our setup
but might not work in general as an interface can have multiple IP addresses and the user might
want to use a specific one.

4.2.2 Sending packets: AF sendmsg()

The function definition is the following:

AF_sendmsg(struct AFXDPUDP_socket* sock, struct msghdr* message);

The interface is identical to the one provided by the kernel except that we require a AFXDPUDP socket

pointer to be passed instead of a file descriptor and also don’t support any flags.

The process used for transmitting packets is the one explained in Section 2.5.3. We construct
the packet utilizing the msghdr struct from our function arguments which provides us with the

4.2. AF XDP UDP SOCKET 33

packet data and destination. To construct the outgoing packet we need to build three protocol
headers: Ethernet, IPv4 and UDP.

We use the structs provided by the kernel for this, namely: ethhdr, iphdr and udphdr. The
ethhdr is placed at the beginning of the UMEM frame, the iphdr directly after and the udphdr
directly after the iphdr. After the UDP header we copy the data provided by the msghdr.

Next we describe the operations per header (protocol), which data we fill in and where we get
it from.

Ethernet

In the Ethernet header we need to set several values: first the destination MAC is set. To get
the destination MAC we look up the IPv4 address passed inside the msghdr in the ARP map
that we store in our application as we will explain in section 2.4.2. The EtherType is always
the same for us, namely the IPv4 EtherType. For the source MAC address, we use the one
extracted during the AF bind() call.

IPv4

To fill the values in the IPv4 header we use the IPv4 addresses provided inside the msghdr, for
the source address we use the one extracted during the AF bind() call. Further we also set the
IP version to 4, the correct header length, the TTL to the default, the protocol to UDP, and
all the other fields we haven’t mentioned to 0 as we don’t use them.

The checksum is calculated over the entire IPv4 header with the checksum field set to 0. For
this we copy the functions from the Linux kernel this ensures three things:

• We can assume that the calculation is correct as it has been in use for many years.

• We ensure our checksum is compatible with that of IPv4 sockets running in the Linux
kernel.

• We ensure that the computational complexity of the checksum algorithm is the same for
our AF XDP implementation and the kernel implementation. Therefore we can be certain
that the chosen checksum algorithm is not the cause of any potential performance differ-
ences (assuming both the kernel and AF XDP implementation calculate the checksum in
software).

UDP

For the source port we use the value provided by the user or if the user has not provided one
a default value. The destination port is provided in the msghdr. For the length, we add the
header length to the length of the data provided inside the msghdr.

Just like for the IPv4 header we use checksum functions copied from the Linux kernel and this
provides us with the same benefits as for the IPv4 header. For UDP checksum calculation
a conceptual header is prefixed before the real UDP header containing the source address,
destination address and protocol from the IPv4 header.

The checksum is calculated over the UDP header, pseudo-header, and the UDP data. RFC 768
specifies that the data is “padded with zero octets at the end (if necessary) to make a multiple
of two octets.”. In practice, we do this by making sure our UMEM frames are at least one byte
larger than the maximum frame size and setting the byte after the last byte of our packet to
zero if the amount of bytes of UDP data is uneven. This last step is essential even if initialize
our UMEM with all zero bytes at the start of our program. Because we reuse the UMEM frames
the byte following the new packet data might still contain data from an old, longer packet as
we have seen in Section 2.5.3 and this byte of data can make our checksum invalid.

34 CHAPTER 4. IMPLEMENTATION

TX ring COMPLETION ring

20
1242 3 4

UMEM

TX ring COMPLETION ring

0
1242 42

512

UMEM

3
1023

Packet
Data0

Packet
Data0

Packet
Data1

Schedule packets
to be transmitted

Packet
Data2

Figure 4.1: Sending more than one packet by requesting and submitting multiple pack-
ets at once from and to the COMPLETION and TX ring respectively

4.2.3 Receiving packets: AF recvmsg()

The function definition is the following:

AF_recvmsg(struct AFXDPUDP_socket* sock, struct msghdr* message);

Compared to the recvmsg() system call described in Section 2.4.4 all the arguments are the
same except for the file descriptor which we replace with a AFXDPUPD socket pointer and the
flags which we do not support. The reception of packets is done in the way described in Section
2.5.3: we grab the first descriptor from the RX ring, parse the headers in the UMEM, verify
that they are a UDP header inside an IPv4 header inside an Ethernet header and verify the
checksums of the IP and UDP headers. We copy the data into the provided buffer inside the
msghdr and push the UMEM frame pointer to the FILL ring to be reused.

4.2.4 Batched sending of packets: AF sendmmsg()

As an optimization to reduce the number of system calls, which we will experiment with due to
them being expensive as we have seen in Section 2.3, we also support sending multiple packets
at once, analogue to the sendmmsg() system call described in Section 2.4.5. To do so we use
the same process as for sending a single packet, but instead of working with one UMEM frame
(reference) at a time we can consume multiple at a time from the COMPLETION ring and
submit multiple at a time to the TX ring. This is visualized in Figure 4.1 for a batch of two
packets.

All the packet generation is still done packet per packet just like with the kernel’s sendmmsg().
Compared to using AF sendmsg() the differences are that we only do the TX and COMPLE-
TION ring operations once per batch. We also do the sendmsg() system call once per batch
instead of once per packet.

4.2. AF XDP UDP SOCKET 35

Ring name Ring size
COMPLETION 2 * XSK RING CONS DEFAULT NUM DESCS
FILL 2 * XSK RING PROD DEFAULT NUM DESCS
RX 1 * XSK RING CONS DEFAULT NUM DESCS
TX 2 * XSK RING PROD DEFAULT NUM DESCS

Table 4.1: Default ring sizes

Name Value
XSK RING CONS DEFAULT NUM DESCS 2048
XSK RING PROD DEFAULT NUM DESC 2048
XSK UMEM DEFAULT FRAME SIZE 4096

Table 4.2: Default constant values in our version of libxdp

4.2.5 UMEM layout and default buffer sizes

The default values for the ring sizes are shown in Table 4.1. In the UMEM we use a portion
specifically for receiving and another portion specifically for sending, the portion for transmit-
ting has the same amount of frames as the TX ring size, while the portion for receiving has the
same amount of frames as the FILL ring size. The UMEM frames themselves are
XSK UMEM DEFAULT FRAME SIZE long. We also stick with the aligned UMEM mode as
the unaligned mode has a slight performance penalty as described in Section 2.5.3. All the
default value constants on our system can be seen in Table 4.2.

The reason why we make the RX ring size smaller than all the other rings and half as small as
the FILL ring is because of the reasoning in Section 2.5.3: we don’t want the NIC to run out of
new FILL ring pointers as this can have a large performance impact (we would rather run out
of RX ring descriptors first). And we use aligned mode for the UMEM frames as it does not
have a disadvantage for our use case and unaligned mode has slightly lower performance.

4.2.6 Netfilter alternative

As we have seen in Section 2.4.2 the kernel network stack implements NetFilter which provides
firewall-like functionality as well as NAT and some more general functionality. As we have
seen when describing the path through the kernel the Netfilter hook locations expect to be
called in a specific location in the send or receive path and are tightly integrated with the
kernel network stack functions and dataflow. Therefore utilizing Netfilter with AF XDP is a
non-trivial task.

However there is another way we can implement the functionality offered by Netfilter while
using AF XDP which is in the eBPF XDP program that runs when a packet arrives on the NIC
(using NATIVE mode) or in the network stack (using SKB mode). Using eBPF we can inspect
the packets that arrive, check for certain conditions, even modify the packet to do for example
NAT. The work in Section 3.5.1 provides an IPTables implementation in eBPF.

Instead of implementing an entire firewall in the eBPF program, which is unnecessary for our
tests and experiments we filter out a single type of packet as a proof-of-concept. The packet
type of packet we filter out are ARP packets as we discuss in Section 4.2.7.

Another option is to handle the firewall in the user space application, as with zero-copy the cost
of accessing the packet data in our user space application is minimal we can run our firewall
here. We implement a very limited “firewall” in our application which drops any non-UDP and
non-IPv4 packets. It does so by checking the protocol numbers: if the Ethertype inside the
Ethernet header does not equal IPv4 or the transport layer protocol number inside the IPv4
header does not equal UDP we simply drop the packet without processing it.

36 CHAPTER 4. IMPLEMENTATION

A major disadvantage to this approach is that every application needs to implement its own
firewall or filters, while for Netfilter the filter rules are applied system-wide.

4.2.7 ARP

We provide a way to use the application without the Linux kernel ARP implementation. We do
this by creating an in-memory map that contains IPv4 addresses as key and MAC addresses as
value. As the server never initiates the connection we rely on incoming packets from which we
extract the IPv4 and MAC addresses and add them to the map for later use when responding.
For the client which does initiate the connection we allow the user to pass command line
arguments that specify the IPv4 and MAC address of the server. However, this is not a scalable
approach and also does not let mapping expire like ARP does.

Alternatively, we can keep using the Linux kernel ARP functionality by using eBPF. If we filter
out packets of the ARP Ethertype inside the Ethernet header and instead of forwarding them
to our AF XDP socket we pass it to the kernel using the XDP PASS as we have seen in Section
2.5.2. The section of code we use for this looks as follows:

1 // Assume the packet starts with an Ethernet header

2 struct ethhdr *eth = packetdata;

3 __u16 h_proto;

4

5 // Confirm that the packet is at least the length of an Ethernet header , if not

drop it

6 if (packetdata + sizeof(struct ethhdr) > packetdata_end)

7 return XDP_DROP;

8

9 // If the protocol in the Ethernet header is ARP , pass the packet to the kernel

network stack

10 if (eth ->h_proto == htons(ETH_P_ARP))

11 return XDP_PASS;

12

13 // If the packet is a non -ARP packet forward it to our AF_XDP socket

14 return bpf_redirect_map (&xsks_map , rx_queue_index , 0);

4.3 QUIC and HTTP/3

Instead of implementing the QUIC protocol ourselves, we can use an open-source implemen-
tation such as lsquic [Lit]. This provides us with the benefit of being able to focus on the
underlying network stack as well as providing us with a tested solution that is also compatible
with other QUIC implementations [See]. The choice for lsquic was made due to the fact that
is written in C making it easy to integrate with our own C code.

We set the internal receive buffer size in lsquic to contain the same amount of packets as the
size of the RX ring of our AFXDPUDP socket.

4.3.1 HTTP server and client

The QUIC implementation that we use, namely lsquic comes with several example programs
included. Two of them are a simple HTTP/3 server and client which utilize lsquic. We decide
to modify these to support our own network stack as they are perfect for measuring the perfor-
mance we can achieve over HTTP/3 and QUIC. We use the following features already provided
by these programs:

• The server has a mode built in to serve a block of memory as file instead of reading an
actual file. This eliminates the file I/O costs so we are sure that either QUIC or the
network stack is the bottleneck.

• The client automatically generates statistics namely the average and standard deviation
of: the time to connect, time per download and time to first byte. The client outputs

4.4. TESTING FRAMEWORK 37

these statistics when enabled by a command line flag. We extend this to also output the
exact download time per run to allow a more in-depth analysis.

Because of the way we designed our AFXDPUDP socket, the code modifications to convert from
the kernel provided socket to our own were relatively simple. It comes down to the following
steps:

1. Include our header: #include ”AFXDPUDP.h”

2. Change the build system configuration or compile command to link our library

3. Remove setsockopt() calls because we do not support those, and use our SocketOptions
struct for setting options

4. Change socket function call to include AF in front of them, for example sendmsg()
becomes AF sendmsg() and this for all functions.

5. For lsquic change the struct they use to save the different socket file descriptors to save a
pointer to our AFXDPUDP socket struct instead. In general: change the way the reference
to the socket is changed from an integer file descriptor to a pointer to a AFXDPUDP socket

struct

6. Change any function calls that operate on the socket file descriptor, which we did not
prepend AF to such as the event new() call from libevent used by lsquic example pro-
grams to

These are the modifications we did to the lsquic example programs but they should be applicable
to other C(++) QUIC implementations or even applications running plain UDP or another
protocol on top of UDP.

4.4 Testing framework

While we are aware that a (QUIC) network testing framework already exists [Her+23] it works
by setting up virtual networks using Docker. And while AF XDP can work in such configura-
tions [Fas], we chose to use physical NICs to get realistic measurements as our code does interact
with the NIC driver (by waking up the driver) behaviour and performance might be different
for virtual networks. Therefore we needed a simple way to run multiple tests with different pa-
rameters and over multiple versions to debug our software. During the development of our own
framework another publication released theirs which has similar capabilities [Jae+23].

We used Ansible [Hata] to automatically push the code to the two test systems, compile it
and run a variety of tests. Ansible is a relatively easy-to-use automation tool that can manage
remote systems by utilizing ssh and python. In summary, after compiling has been done, we
start the http server on one system and then start the http client on the other system, the
http client automatically exists when it is done with all its repetitions. If Ansible detects this,
we let it kill the http server on the other host and export the logs to our management computer.
The management computer is connected to the test systems through a second NIC on both test
systems.

To run the client and server Ansible starts bash script on the test systems, in the case that we
are doing a test with specific hardware offloads enabled or disabled we enable/disable them as
described in Section 2.2.1 which for example for checksumming gives us the following simplified
view of a script:

1 sudo ethtool -K enp1s0f0 tx-checksumming off

2 sudo ethtool -K enp1s0f0 rx-checksumming off

3 run server

4 sudo ethtool -K enp1s0f0 tx-checksumming on

5 sudo ethtool -K enp1s0f0 rx-checksumming on

Chapter 5

Experiments and results

In this chapter we present our measurement results for both our own AF XDP UDP socket
as well as the normal kernel UDP socket. We begin by describing our test setup, the exact
hardware used, and some software details of importance. After that we introduce a naming
convention to be able to use abbreviations for the rest of the chapter. We also look at a method
we use to gauge the CPU efficiency of the network stack and last but not least we look at our
experiments and their results.

5.1 Setup

For our tests we have 2 test systems:

Test System 1:
• CPU: Intel Core i3-4160
• RAM: 8GB dual channel
• OS: Ubuntu 22.10
• kernel: 5.19.0-46-generic
• IP: 192.168.0.3

Test System 2:
• CPU: AMD A8-6500
• RAM: 7GB dual channel
• OS: Ubuntu 22.10
• kernel: 5.19.0-46-generic
• IP: 192.168.0.4

A diagram of the test setup can be seen in Figure 5.1. We use two Intel X540-T2 (10 GbE) NICs
connected via PCI Express to the test systems. The choice for these NICs was made because of
them having 10 gbps interfaces, because as Jaeger et al. [Jae+23] show: even without optimiza-
tions some QUIC implementations can reach about 3 gbps on modern CPUs, therefore 1 gbps
NICs would be a bottleneck. Additionally the driver supplied with the kernel (ixgbe) supports
AF XDP (in driver mode) as well as zero-copy. The two NICs are connected using a single
CAT 6A Ethernet cable of approximately 500 centimeters plugged into the first Ethernet ports.
The systems themselves or their specifications were not chosen for a particular reason.

We do tests in two directions: meaning that both Test System 1 and Test System 2 act as
HTTP server and HTTP client, we always mention which one is the server and which one is
the client.

5.2 Software

As testing applications we use the http server and http client provided by lsquic which run
HTTP/3, we modified them to support our AF XDP socket as we explained in Chapter 4.
To test the performance we use the “/file-2G” path provided by the server to serve a file of
approximately 2 gibibyte (exactly 2147483742 bytes) from memory. We serve a file from memory
to avoid (the cost) of file I/O, therefore file I/O does not have an impact on our performance.

38

5.3. NAMING CONVENTION 39

Figure 5.1: Diagram of the test setup

We calculate the goodput by timing how long it takes for the client to receive the entire 2
gibibyte file and then diving the amount of bits by the amount of seconds.

For the kernel network stack we test with and without checksumming, we do this by dis-
abling/enabling both rx-checksumming-all and tx-checksumming-all on the interface using eth-
tool. For segmentation offloading (Generic Segmentation Offload and Generic Receive Offload)
we disable/enable generic-receive-offload, generic-segmentation-offload and tx-udp-segmentation.

Unless mentioned otherwise we use CUBIC as congestion controller. To avoid the impacts of
running the user space application and NIC driver on the same thread, as was explained in
Section 2.4.5, we always run the user space application on another core than the NIC driver by
using “taskset -c core number command”. We check which CPU handles interrupts with the
method described in Section 2.2.2.

5.3 Naming convention

Because the configurations are long to explain over and over again we will use the following
naming convention to refer to the configurations:

• AF XDP SKB: for AF XDP in the default skb mode

• AF XDP NATIVE: for AF XDP in native mode

• AF XDP ZC: for AF XDP in native mode with zerocopy enabled

• KERN: for the Linux kernel network stack with default settings

• KERN NOHWCSUM: same as KERN but with hardware checksumming disabled

• KERN NOSEG: same as KERN but with segmentation offloads (GSO and GRO) disabled

Additionally, we append names to the end of these configurations to indicate further changes:

• MMSG followed by the maximum batch size to indicate that we are utilizing batches
when transmitting and their maximum size. For example AF XDP ZC MMSG 32 means
that we use AF XDP ZC with batched sending and a maximum batch size of 32.

40 CHAPTER 5. EXPERIMENTS AND RESULTS

• CHECKSUM to indicate that calculating checksums is enabled, this is also the default
meaning that if no checksum-related postfix is used we are alos using checksumming

• NOCHECKSUM to indicate that calculating checksums is disabled: both UDP and IPv4
checksums are not calculated

• NOIPCHECKSUM to indicate that we calculate the UDP checksum but not the IPv4
header checksum

• NOUDPCHECKSUM to indicate that we calculate the IPv4 header checksum but not
the UDP checksum

• KERNLIKECHECKSUM to indicate that we simulate checksumming like the Linux ker-
nel performs it by default without segmentation offloads, meaning calculating the IPv4
header checksum and UDP pseudo-header checksum in software and the rest of the UDP
checksum in hardware, to simulate this we do not calculate the UDP checksum that is
normally offloaded to hardware

5.4 Dividing the CPU’s spent time into categories

To estimate where and how many CPU cycles are spent when running the server or client
we utilize the same method as Jaeger et al. [Jae+23] which involves using perf to categorize
functions and estimate how much time is spent in these categories. The categories we consider
are:

• Crypto: functions that have to do with QUIC-related crypto calculations

• Uncategorized: For all functions we cannot assign a category to

• Packet I/O: functions related to moving packets through the network stack including costs
like checksumming

• I/O: functions related to reading/writing files

• Connection management: functions that have to do with QUIC connection management

In case we use the default event the samples reported by perf are measured in CPU cycles [Fouf].
This means that it aligns with the number of clock cycles that were consumed by the CPU
while executing the program or function being profiled. However, it’s important to note that
the number of CPU cycles required to execute a specific instruction or code segment can vary
based on many factors, including the architecture of the CPU, the microarchitecture details,
cache behavior, branch predictions, and more. As a result, the count of CPU cycles can serve
as a relative measure of how efficiently the code is utilizing the CPU, rather than an absolute
measure of time.

We extended the mapping from function names to categories provided by Jaeger et al. to include
the functions used by our AF XDP implementations. For the AF XDP SKB case, 0.37 % of
the samples are uncategorized meaning that the impact of the functions we do not classify is
negligible. While we could theoretically categorize every function, we chose not to as for some
functions it’s unclear where they belong exactly. For example malloc() is one of the functions
generating uncategorized samples but it is used in multiple locations which means assigning it
to a single category is incorrect.

However, this is only for the case where perf does not tell us where malloc() was called. In most
cases perf also provides the function call history and if we for example see that malloc() is called
within a function mapped to the packet I/O category we include the samples for that entire
function in the packet I/O category, including the the CPU cycles of those specific malloc()
and all other subfunctions calls.

We use a sampling rate of 1997 Hz, we don’t use a round number such as 2000 Hz to prevent
sampling in lockstep with periodic activity which could lead to misleading results [Gre].

5.5. EXPERIMENTS AND RESULTS 41

When using the samples to compare implementations we use the amount of samples in a category
relative to the total amount of samples. For example 51.85% of the samples of AF XDP SKB
are spent on packet I/O. The reason why we do not use absolute number of samples is that
the runs differ in length and therefore also in total number of samples, therefore one run
might also have much more samples for packet I/O. This could for example come from a lot
of retransmissions and not from an inefficient network stack. It would therefore be incorrect
to directly compare the absolute number of perf samples for a category between two different
runs and draw conclusions in terms of the efficiency of the processing in that category.

The reason why we don’t simply measure the time sendmsg() and recvmsg() or AF sendmsg()
and AF recvmsg() is that for receiving packets using the kernel network stack there no real
processing happens inside the sendmsg() call. Only a memory copy from the receive buffer to
user space as we have seen in Section 2.4.3. The same is true for the memory copy that happens
for AF XDP SKB and AF XPD NATIVE which happens in the NAPI poll loop handler. For
transmitting we have the same problem: not all processing is done in the function or subcalls:
part of the processing is delayed or potentially offloaded to another CPU, namely the one
running the NIC driver, by using a software interrupt. This means that any processing this
interrupt handler does is not included in the time we measured. For example for AF XDP
adding the UMEM frames back to the COMPLETION ring to be reused can be considered
part of the sending process but this happens in the software interrupt handler. Including the
time until the interrupt handler is done processing the packet is also not a good idea as other
tasks running inside the application or other processes can influence when the software interrupt
is handled: this means another process can impact the performance we measure for the network
stack.

We argue that taking perf samples over the entire run of the application is a good solution as
we only measure the time that is being used for the application plus the network stack. We
do not include the time spent waiting for software or hardware interrupts to be handled or the
time that the CPU spends on another process. We do however include all the operations in the
network stack including handling of software interrupts, this also means that we do not falsely
classify a hypothetical modification that unknowingly causes less processing in user space but
more processing in the software interrupt handler as more efficient.

5.5 Experiments and results

We begin with some general measurements to give us a general feeling of how the performance
is for all the configurations. This also allows us to see if there are any outliers or unexpected
results. After these general measurements, we zoom in on aspects that we expect to have
significant performance impacts from our background knowledge from Chapter 2 as well as
some things we noticed during our experiments.

5.5.1 General measurements

If we take Test System 1 as client and Test System 2 as server and iterate over the possible
configurations we get the goodput results in Figure 5.2. We see a clear difference when the
server is running AF XDP ZC: regardless of the client the performance is clearly the highest
of all the server configurations. We do notice that Test System 2 is the bottleneck with the
CPU consumption of the CPU core running the user space HTTP server at 100% while we saw
varying CPU consumption on Test System 2 of about 60-75% on the CPU running the user
space HTTP client depending on the test scenario.

Further, we notice that for both the client and server, disabling hardware checksumming offload
and disabling segmentation offloads does not make a difference that can be considered signifi-
cant, the average performance with all hardware offloads enabled is in many cases even slower
than with them disabled. Although this is most likely caused by the small variance between
measurements and not the hardware offloading being slower as the results are relatively close.

42 CHAPTER 5. EXPERIMENTS AND RESULTS

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC
KERN

KERN_NOHWCSUM

KERN_NOSEG

server

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC

KERN

KERN_NOHWCSUM

KERN_NOSEG

cli
en

t

1716.39 1722.70 2382.52 1591.25 1634.38 1601.51

1744.00 1782.06 2351.68 1618.49 1645.05 1639.19

1700.36 1686.29 2372.22 1621.14 1640.96 1639.18

2082.80 1960.31 2291.60 1789.55 1841.05 1806.72

1974.08 2090.99 2401.26 1806.59 1835.86 1807.78

2095.69 2079.24 2372.94 1788.86 1843.65 1800.81

1600

1700

1800

1900

2000

2100

2200

2300

2400

M
bp

s

Figure 5.2: Heatmap of the goodput in Mbps of 10 repetitions with Test System 1 as
client and Test System 2 as server

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC
KERN

KERN_NOHWCSUM

KERN_NOSEG

server

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC

KERN

KERN_NOHWCSUM

KERN_NOSEG

cli
en

t

2.16 2.34 4.98 2.32 2.23 3.54

2.31 10.71 6.70 5.41 17.36 8.09

2.16 2.53 4.96 7.88 13.33 7.79

24.70 10.44 7.40 13.45 7.05 13.36

7.68 13.77 8.84 13.96 3.17 14.40

21.39 18.29 8.30 14.71 10.75 8.79

5

10

15

20
M

bp
s

Figure 5.3: Heatmap of the standard deviation of the goodput in Mbps of 10 repetitions
with Test System 1 as client and Test System 2 as server

For the server we can also conclude that there is no measurable performance improvement by
using hardware offloads. Segmentation offloads not making a difference is consistent with the
measurements published by Jaeger et al. [Jae+23]. From the heatmap we can conclude that

5.5. EXPERIMENTS AND RESULTS 43

reducing the amount of copies in this test case definitely does improve the performance signifi-
cantly as is evident from the fact that AF XDP ZC performs much better than AF XDP SKB
and AF XDP NATIVE.

If we look at the heatmap plotting the standard deviations from these measurements in Fig-
ure 5.3 we can see that in general the standard deviation is relatively low indicating that from
run to run there is little difference in the achieved goodput. We conclude that there is no
unexpected behavior in terms of variance between the runs.

Inverse scenario

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC
KERN

KERN_NOHWCSUM

KERN_NOSEG

server

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC

KERN

KERN_NOHWCSUM

KERN_NOSEG

cli
en

t

2095.92 1863.27 2112.85 2711.14 1984.81 2334.67

2102.77 2082.85 2046.94 2941.24 2926.13 2882.61

2279.39 2350.89 2315.18 2904.49 2951.26 3053.01

2435.57 2448.12 2144.39 2489.26 2496.55 2519.21

2498.31 2509.01 2219.58 2518.15 2536.16 2523.76

2480.24 2491.85 2173.29 2484.14 2504.60 2466.44

2000

2200

2400

2600

2800

3000

M
bp

s

Figure 5.4: Heatmap of the average goodput in Mbps of 10 repetitions with Test System
2 as client and Test System 1 as server

If we invert the roles and make Test System 1 the server and Test System 2 we get the results
that can be seen in Figure 5.4, we do again notice that Test System 2 is the bottleneck with a
CPU consumption of 100% while that of Test System 1 stays below 100% all of the time. Unlike
our first heatmap, we do not have a single row or column that clearly has higher values than
the others: there is no configuration that is the fastest in all scenarios. But we do notice that
the highest performance is achieved by using AF XDP on the client and the kernel network
stack on the server. In this case, there does not seem to be a significant difference between
using zero-copy mode or not on the client. In terms of standard deviation which can be seen
in Figure 5.5 we do not notice anything noteworthy.

As we have noticed by now, Test System 2 is the slowest of the two systems, therefore from
now on we will mainly use this node when trying to measure the impact of our optimizations.
This is because improving performance on the non-bottleneck node might not result in any
performance improvements. We do this specifically by changing the code or configuration on
Test System 2 while keeping the code or configuration on Test System 1 constant. In situations
where we are trying to improve receive bottlenecks we will run the client on Test System 2 and
in situations where we are trying to improve transmit performance, we will run the server on
Test System 2. However, we always mention which software configurations the nodes run and
which node runs the server and which one runs the client.

44 CHAPTER 5. EXPERIMENTS AND RESULTS

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC
KERN

KERN_NOHWCSUM

KERN_NOSEG

server

AF_XDP_NATIVE

AF_XDP_SKB

AF_XDP_ZC

KERN

KERN_NOHWCSUM

KERN_NOSEG

cli
en

t

14.75 6.17 3.48 24.63 5.34 10.28

8.96 7.86 8.46 15.54 48.51 27.73

21.39 28.07 32.75 42.45 42.11 17.73

5.20 9.36 13.30 7.56 12.41 12.74

27.66 6.59 7.64 26.96 21.87 17.93

20.83 9.93 4.37 7.17 17.22 9.19

10

20

30

40

M
bp

s

Figure 5.5: Heatmap of the standard deviation of the average goodput in Mbps of 10
repetitions with Test System 2 as client and Test System 1 as server

5.5.2 Memory copies

As we get a great performance improvement when running the server on Test System 2 using
AF XDP ZC we also want to see if this makes it so the CPU spends relatively less time on
packet I/O using the method described in Section 5.4. We visualize this for 10 repetitions with
Test System 1 as client using AF XDP ZC.

configuration Crypto Uncategorized Packet I/O I/O
Connection
Management

KERN 98 279 933 973 889 935 616 223 685 189 640 70 123 993 39 645 657 652
AF XDP SKB 101 223 607 293 1 347 020 137 215 487 222 542 1 738 767 43 395 711 622
AF XDP NATIVE 99 601 602 651 1 277 885 572 211 333 339 171 4 602 733 41 407 722 170
AF XDP ZC 99 146 615 591 1 026 512 257 113 375 337 126 7 717 822 40 573 057 572

Table 5.1: Absolute number of samples from perf

As can be seen in Figure 5.6 our zero-copy version spends relatively less time doing packet I/O
compared to the version using the kernel network stack and the AF XDP versions that do make
copies. The reason that the crypto and connection management bars become higher is that they
now are relatively more expensive but in absolute numbers, we have about the same amount of
samples as can be seen in Table 5.1. As removing a memory copy compared to AF XDP SKB
and AF XDP NATIVE both improves performance significantly and also results in 46% fewer
CPU cycles spent on packet I/O we conclude that reducing the number of memory copies has
a great, positive impact on performance.

5.5.3 System calls

As we have seen in Section 2.3, system calls can be relatively expensive. And as we hypothesized
in Chapter 1 we expect them to have a large impact on performance. Therefore we use strace to
analyze the number of system calls made, because strace makes the program run much slower

5.5. EXPERIMENTS AND RESULTS 45

KERN AF_XDP_SKB AF_XDP_NATIVE AF_XCP_ZC
0

20

40

60

80

100
Pe

rf
 s

am
pl

es
 (%

)

11 12 12 16

27 28 28
39

62 60 60
45

Conn. Mmgt
Crypto
Uncategorized
I/O
Packet I/O

Figure 5.6: Comparison of the relative number of perf samples in each category com-
pared to total, Uncategorized and I/O bars are so small they are (nearly) invisible and
the number is not displayed: they contain less than 1% of the samples in all configura-
tions.

we decided to limit the number of repetitions to five. On the client we used AF XDP ZC as
configuration.

configuration sendto recvfrom sendmsg recvmsg
AF XDP SKB 7 475 059 0 0 14
AF XDP NATIVE 7 474 960 0 0 14
AF XDP ZC 7 475 163 7 0 14
KERN 0 0 6 092 380 2 738 390

Table 5.2: Amount of system calls on the server for five repetitions

configuration packets received packets sent
AF XDP SKB 7 474 970 3 351 537
AF XDP NATIVE 7 474 960 3 492 646
AF XDP ZC 7 474 983 3 714 282
KERN 6 092 359 2 740 231

Table 5.3: Amount of packets the client sent and received in the same test as in Table
5.2

We can see the results in terms of amount of system calls for the sending and receiving system
calls used in Table 5.2. If we compare this to these numbers to the amount of packets received
on the client in Table 5.3 we notice that that the amount of sendto() or sendmsg() calls on
the server equals (almost) exactly the amount of packets received by the client. For the kernel
network stack this is logical as for every sent packet a single sendmsg() system call is made.
For the AF XDP version however, we use the XDP USE NEED WAKEUP flag which means
that the NIC driver only needs to be woken up by a sendto() call if it signals so. As this flag
was introduced to limit the number of times that we need to wake up the NIC we would expect
to see a number lower than the amount of packets sent.

However, this might be caused by strace as it significantly slows down our user space program
execution. While the NIC driver runs on another core and should not be impacted by strace,
meaning that our application might be so slow compared to the NIC driver that the NIC driver
can go to sleep between every transmitted packet while it might not have that opportunity (as

46 CHAPTER 5. EXPERIMENTS AND RESULTS

often) if our user space application is running at normal speed.

To check the amount of wakeup system calls with a normal execution speed we added a counter
to the program to check how many times we need to wakeup for transmitting. The performance
impact of this simple counter is negligible. The result was still always equal to or larger than
the number of packets received by the client. Indicating that even at full speed the NIC driver
still seems to go to sleep in between packet transmissions.

To gain a better understanding of this behavior we checked the NIC driver of our NICs and
we see that it calls xsk set tx need wakeup(pool) if the XDP USE NEED WAKEUP flag is set
for every transmission being handled, this is done in the ixgbe clean xdp tx irq() function in
/driver/net/intel/ixgbe main.c. This means that with a batch size of one, there is no way to
escape waking up the NIC driver for every packet transmission and there is no advantage to using
the XDP USE NEED WAKEUP flag for transmissions with the current ixgbe driver.

As we never came across this fact in any of the AF XDP sources we consulted we dive a bit
deeper and check if this is just a feature that our NICs lack or that there is never an advantage
to utilizing the flag when transmitting. By searching for “xsk clear tx need wakeup()”, which
is the function provided by XDP to clear the need wakeup flag in the TX queue, in the Linux
kernel (6.4) we do find exactly one driver utilizing it: the Melanox mlx5 driver. So only with
(NICs using) this driver we expect a benefit when setting the XDP USE NEED WAKEUP flag
for transmitting. We will come back to this in our future work.

For receiving the ixgbe driver of our NICs does include logic to set or clear the flag, after
receiving a frame in the NAPI poll mode it checks “if (failure || rx ring − > next to clean ==
rx ring − > next to use)”, which returns true if there is a failure or the hardware NIC RX
ring is full. If this is the case it will signal that it needs a wakeup, because NAPI will stop
polling and go to interrupt mode. If the check returns false the signal flag is cleared meaning
that no wakeup is needed, but if there are packets left to process NAPI will keep polling. This
logic explains our measurements of the number of recvfrom() system calls the AF XDP runs
make: all AF XDP SKB and AF XDP NATIVE do not make any and AF XDP ZC makes 7.
We suspect this can be declared by the fact that the driver handles all necessary processing
in the NAPI poll loop, therefore, we do not need to wake up the NIC driver unless the RX
queue in main memory gets full, if this is the case it needs to be woken up so packets that are
in the NICs RX queue can be transferred to the one in main memory: as these packets have
already arrived they won’t automatically generate a new interrupt if the software RX ring is
cleared.

We can use strace to estimate the cost of each system call as can be seen in Table 5.4. We can
estimate the time the program spends in the sendto() system call by multiplying for example
for AF XDP SKB 10 µs times 7 475 059 calls, which would equal 75 seconds which is consistent
with how long the server takes to run with strace enabled but without strace the runtime is
smaller than the time it spents in syscalls with strace enabled (while the syscalls are the same).
Therefore we conclude that strace introduces overhead to the system calls and we cannot trust
its timing to reflect a “normal” use case.

As strace timing cannot be used we time how long sendto() calls take by calling clock() before
and after every call, subtract the two results and we add all these time differences and also
store the amount of calls. We get 0.8391 µs per call to sendto() as result while we make about 7
475 059 calls for five 2G files, which means we make about 1 495 012 calls per file which results
in approximately 1.25 seconds per file spent in the sendto() system call. While the average 2G
file download takes about 7 seconds, therefore we roughly spend 18% of the time processing the
sendto() system calls, making it a good candidate to optimize.

5.5.4 Using AF sendmmsg()

We can decrease the number of system calls made when transmitting by utilizingAF sendmmsg()
which reserves multiple UMEM locations, and fills them with all the packets passed, meaning

5.5. EXPERIMENTS AND RESULTS 47

configuration sendto recvfrom sendmsg recvmsg
AF XDP SKB 10 µs N/A N/A 13 µs
AF XDP NATIVE 10 µs N/A N/A 14 µs
AF XDP ZC 5 µs 7 µs N/A 11 µs
KERN N/A N/A 13 µs 8 µs

Table 5.4: Average time spent per system call for five repetitions according to strace

configuration sendto recvfrom sendmsg recvmsg
AF XDP ZC 7 475 163 7 0 14
AF XDP ZC MMSG 104 538 0 0 14

Table 5.5: Amount of system calls on the server for five repetitions (with maximum
batch size equal to 1024)

that one system call is made for an entire batch of packets instead of one per packet. By doing
this we can drastically reduce the amount of sendto() system calls made as can be seen in Table
5.5. Our version using AF sendmmsg() uses 71 times less sendto() system calls, when utilizing
a maximum batch size of 1024 in lsquic, compared to processing packets one at a time.

We use Test System 2 as server and Test System 1 as client, meaning that in normal operation
with both systems running AF XDP ZC Test System 2 is the bottleneck with the CPU core
at 100% while Test System 1 peaks at about 73%. And since we do 7370625 fewer sendto()
calls (over 5 files) which we estimated at 0.8391 µ seconds per call we expect to be able to save
(7370625/5) * 0.8391 µs = 1,2369 seconds per file.

configuration
average
time
(ms)

std of
time
(ms)

average
goodput
(Mbps)

std of
goodput
(Mpbs)

AF XDP ZC MMSG 1024 7509.69 10.11 2287.69 3.08
AF XDP ZC MMSG 128 6153.41 28.91 2791.93 13.14
AF XDP ZC MMSG 64 5916.05 46.03 2903.94 22.63
AF XDP ZC MMSG 32 5912.60 32.86 2905.64 16.17
AF XDP ZC MMSG 16 5982.84 29.51 2871.52 14.19
AF XDP ZC MMSG 8 6107.67 26.94 2812.84 12.43

Table 5.6: Performance with different batch sizes for 50 runs with client using
AF XDP ZC and a send buffer of 2 times the default

However this expected performance improvement does not happen in reality if we use the
default settings. When we log the batch sizes being sent by the server we saw most of them hit
the maximum allowed by the default maximum lsquic batch size which is 1024 packets. The
performance we measure is even worse than without batches. If we however decrease the batch
size we notice that we do see a performance improvement, as can be seen in Table 5.6. To
achieve these results we also increased to send buffer size, we will explain why in Section 5.5.7.
We achieve the optimal performance at a batch size of about 32, this does limit our reduction
in system calls to a maximum of 32 times, instead of the 112 times fewer system calls we saw
with a batch size of 1024.

We suspect that this behavior is caused by the larger delay between a packet being generated
and actually being submitted to the TX ring with increased batch sizes. Therefore, the larger
the batch size the longer it takes for the first few packets in the batch to be transmitted. This
could potentially have a negative impact on things like congestion control.

But we do still see a reduction in relative CPU cycles spent for Packet I/O as can be seen in
Figure 5.7 we also spend relatively less CPU cycles on Packet I/O leading us to the conclusion

48 CHAPTER 5. EXPERIMENTS AND RESULTS

that reducing the number of system calls has a positive effect on both real-world goodput and
CPU cycles spent.

AF_XDP_SKB AF_XDP_ZC AF_XDP_ZC_MMSG32
0

20

40

60

80

100

Pe
rf

 s
am

pl
es

 (%
)

12 16 17

28
39 42

60
45 40

Conn. Mmgt
Crypto
Uncategorized
I/O
Packet I/O

Figure 5.7: Comparison of the relative number of perf samples in each category com-
pared to total, Uncategorized and I/O bars are so small they are (nearly) invisible and
the number is not displayed: they contain less than 1% of the samples in all configura-
tions.

The batched sending method we have tested here for our AF XDP implementation is based on
the same optimization available in the Linux kernel namely the sendmmsg() system call that
we described in Section 2.4.5]. Next we look into this and check if we achieve similar results
with the Linux kernel network stack.

5.5.5 Using sendmmsg()

Lsquic also allows, for the kernel network stack version, the usage of sendmmsg() as well as
recvmmsg(). The latter provides the same optimization but for receiving. However out of the
box enabling both does not seem to work correctly on the systems we tested this on and Jaeger
et al. [Jae+23] mentions experiencing the same problem and therefore does not report results
with these options enabled. But we did notice that enabling just sendmmsg() does work. We
benchmark the performance impact of using the kernel network stack with sendmmsg() for
transmitting and the “standard” recvmsg() for receiving.

configuration
average
time
(ms)

std of
time
(ms)

average
goodput
(Mbps)

std of
goodput
(Mpbs)

KERN SENDMSG 10746.88 143.75 1598.59 21.43
KERN SENDMMSG 1024 9882.74 63.19 1738.37 11.13
KERN SENDMMSG 128 8983.75 20.43 1912.33 4.36
KERN SENDMMSG 64 8899.31 14.96 1930.47 3.25
KERN SENDMMSG 32 8902.79 16.39 1929.72 3.56
KERN SENDMMSG 16 9107.2 99.04 1886.41 20.55
KERN SENDMMSG 8 9232.92 19.95 1860.72 4.03

Table 5.7: Performance for 10 runs with Test System 2 as server and the client using
AF XDP ZC

As we see in Table 5.7 we get a similar result as with AF sendmmsg() in terms of the improve-
ment compared to not using batched sending. The optimal batch size seems to be in the same
range with batch sizes 32 and 64 achieving the best results. This indicates that this performance
improvement also maps well to the kernel network stack and is not AF XDP or kernel-bypass

5.5. EXPERIMENTS AND RESULTS 49

specific. This is what we expected as system calls have a relatively large cost regardless of the
exact context or implementation they are used in.

5.5.6 Cost of checksumming

A feature that we did expect to provide a performance improvement but did not measure to
actually provide one in our general measurements is hardware checksum offloading. We will
now look further into this and see if we can explain why we did not measure a performance
difference.

Our first step was to verify the results of the measurements we made: we used the method
described in Section 2.2 to enable and disable checksumming and we can also utilize the method
described there to verify that these features are enabled or disabled. But we are unaware of
an easy-to-use method to verify that there is no kind of bug or incompatibility making it so
hardware checksumming is turned on but not being used. Therefore, instead of trying to verify
that hardware checksumming is functional, we utilize our AF XDP network stack to estimate
the cost of checksumming in software. Our AF XDP network stack does not support hardware
offloads but as the checksumming functions are located in our user space program we can easily
time how long they take to execute.

We measure a cost per complete UDP checksum of 1.09726 µs by using clock(). Assuming about
1 500 000 packets being transmitted containing file data this would be about 1.635 seconds per
file. To verify this we can try disabling checksum calculation completely and measuring the
impact. This way we can measure the impact of not having checksum calculation at all on
performance. Additionally, we can check the impact of the UDP and IP checksum individually
by only disabling one.

configuration
average
time
(ms)

std of
time
(ms)

average
goodput
(Mbps)

std of
goodput
(Mpbs)

CHECKSUM 6024.10 27.77 2851.86 13.17
NOCHECKSUM 5182.98 26.80 3314.67 17.17
NOIPCHECKSUM 5872.98 16.00 2925.24 7.98
NOUDPCHECKSUM 5265.69 21.60 3262.61 13.40
KERNLIKECHECKSUM 5356.29 29.08 3207.42 17.44

Table 5.8: Performance for 10 runs with Test System 2 as server with
AF XDP ZC SENDMMSG32 as configuration and checksum calculation as shown in the
table and the client using AF XDP ZC, both with send and receive buffers 8 times the
normal size

configuration
average
time
(ms)

std of
time
(ms)

average
goodput
(Mbps)

std of
goodput
(Mpbs)

CHECKSUM 7271.23 31.92 2362.72 10.39
NOCHECKSUM 6752.51 17.20 2544.22 6.49

Table 5.9: Performance for 10 runs with Test System 2 as server with AF XDP ZC
as configuration and the client using AF XDP ZC, both with send and receive buffers 8
times the normal size

What we see in Table 5.8 is that checksumming definitely does make a difference but not as
much as the 1.635 seconds we estimated. We also increased the buffer sizes in these runs, we will
come back to this in Section 5.5.7. As for KERNLIKECHECKSUM, the pseudo UDP header
and IP header checksum calculations are relatively cheap compared to the UDP data (of MTU
sized packets) but we do still see a noticeable effect in our measurements. This indicates that,

50 CHAPTER 5. EXPERIMENTS AND RESULTS

assuming all other conditions are right, work to move these checksums to hardware should have
an impact on real-world performance.

If we compare checksumming versus no checksumming without batching we also measure a
difference as can be seen in Table 5.9. As for the relative CPU cycles spent on Packet I/O
relative to the other tasks we also see a difference by disabling checksumming as can be seen in
Figure 5.8.

CHECKSUM NOCHECKSUM
0

20

40

60

80

100
Pe

rf
 s

am
pl

es
 (%

)

15 17

36 42

48 40

Conn. Mmgt
Crypto
Uncategorized
I/O
Packet I/O

Figure 5.8: Comparison of the relative number of perf samples with checksum gener-
ation enabled disabled on the server (Test System 2) with both client and server using
AF XDP ZC both with send and receive buffers 8 times the normal size. The number of
Uncategorized and I/O samples is so small they are (nearly) invisible and the number is
not displayed: they contain less than 1% of the samples in all configurations.

5.5.7 Buffer sizes

As we have mentioned a couple of times so far we have increased the buffer sizes for some of the
experiments previously done, this is not without reason as we have noticed that without these
increased buffer sizes performance was worse. We will now look into the effect buffer sizes have
in this section. Both client and server have a receive buffer and send buffer size, this includes
the RX, TX, FILL, and COMPLETION ring, as well as the lsquic internal incoming packet
buffer.

default buffer size
8 times default

buffer size

client server
average
goodput
(Mpbs)

std of
goodput
(Mpbs)

average
goodput
(Mpbs)

std of
goodput
(Mpbs)

AF XDP ZC AF XDP ZC 2372.22 4.96 2320.20 14.72
AF XDP SKB AF XDP SKB 1782.06 10.71 1779.90 11.75
AF XDP NATIVE AF XDP NATIVE 1716.39 2.16 1790.49 17.22

Table 5.10: Measurements using Test System 2 as server and Test System 1 as client

We start by doing our original tests, those without any extra optimizations, again with increased
buffer sizes. We notice that we do not have significant measurable differences as can be seen
in Table 5.10. Results for the other combinations of AF XDP configurations not shown in the
table also did not yield a difference. It’s only once we enable batches and decrease the processing
time per packet by disabling checksumming that we start to notice a difference.

To illustrate we compare some of the results from Section 5.5.6 where we took a look at the
impact of checksumming and did increase the buffer sizes, to the results we obtained without

5.5. EXPERIMENTS AND RESULTS 51

configuration
average
time
(ms)

std of
time
(ms)

average
goodput
(Mbps)

std of
goodput
(Mpbs)

CHECKSUM 7260.91 24.76 2366.08 8.08
CHECKSUM* 7271.23 31.92 2362.72 10.39
NOCHECKSUM 7535.34 93.21 2279.91 28.26
NOCHECKSUM* 6752.51 17.2. 2544.22 6.49

Table 5.11: Performance for 10 runs with Test System 2 as server, Test System 1 as
client and both using AF XDP ZC.
* indicates that the buffer sizes were increased by 8 times

enlarging the buffers. As we can see in Table 5.11 the performance impact of checksumming
does not show if we do not increase the buffer sizes.

We hypothesize that there are two possible reasons why the increased buffer sizes only have an
impact in situations where we have already applied other optimizations:

• The packet processing rate of the NIC versus that of the CPU: the “small”
buffers might only become a bottleneck once the number of packets the CPU can generate
or process per second becomes high enough. For example for the server: if the NIC can
transmit packets much faster than the CPU can generate them it’s hard for the transmit
buffers to be filled completely. But if we improve the packets per second that the CPU
can output, we can also expect larger buffer utilization.

• Bursts of packet transmissions and arrivals:

– On the transmit side: if we use batches a lot of packets are submitted to the TX ring
at once, meaning that our TX buffer must be large enough to contain at least one
batch size. But if the CPU can generate a second (smaller) batch of packets before
the NIC has transmitted the first, the buffer needs to be even larger.

– On the receive side bursts of packets arriving can cause the RX buffer to fill up: in
our tests, Test System 1 has plenty of CPU power to process the packets sent by
Test System 2 (that has a slower CPU, which is the bottleneck). And if the packet
arrival times are spread evenly the CPU can handle the packets at a steady rate. If
however batched sending is used, we can assume that the batched packets arrive in
a small time window (in the best case scenario the NIC would achieve line rate while
transmitting the entire batch) meaning that if the CPU in Test System 2 is not fast
enough to handle packets at line rate, it needs to buffer the sudden influx of packets.

configuration
average
time
(ms)

std of
time
(ms)

average
goodput
(Mbps)

std of
goodput
(Mpbs)

NOCHECKSUM 7535.34 93.21 2279.91 28.26
NOCHECKSUM* 6752.51 17.20 2544.22 6.49
NOCHECKSUM** 6679.96 26.36 2571.85 10.16

Table 5.12: Performance for 10 runs with Test System 2 as server, Test System 1 as
client and both using AF XDP ZC.
* indicates that the buffer sizes were increased by 8 times
** indicates that the transmit buffer size of the server as increased by 8 times

By testing the impact of each buffer individually we found out that the root cause of this
improved performance is the increased transmit buffer size on the server. This can be seen
in Table 5.12 where just increasing the transmit buffer size achieves the same performance as
increasing all the buffer sizes.

52 CHAPTER 5. EXPERIMENTS AND RESULTS

Although our NIC is still much faster at transmitting packets than the CPU in Test System
2 is at generating them. This is because our NIC can hit the line rate of about 10 Gbps with
MTU-sized packets while our CPU cannot. This means that theoretically if we have a TX
ring (buffer) of for example 1024 packets and a maximum batch size of 512 and we start in a
situation with an empty buffer, it would be impossible to fill the buffer completely: if the CPU
submits an entire batch of 512 packets, 512 out of the 1024 slots in the buffer would now be
full. The NIC can now start transmitting them while the CPU can start generating another
batch of 512. And because the NIC is faster, once the CPU is done generating a new batch, the
buffer is already back to empty. But this theoretical model might not be true in practice, as
we’ve discussed the CPU running the network stack does a sendto() system call, which causes
an interrupt request to wake up the NIC driver on another CPU, this wakeup will cost some
time: it is done through a software interrupt so after it has been scheduled it might take until
the next context switch before it is handled. The packet generation CPU has this delay as a
headstart, further since some data structures are synchronized, therefore the NIC driver might
sometimes have to wait for other tasks to complete, or it can be preempted [corbet] making it
unable to send at full speed all of the time.

5.5.8 Interrupts

As we have seen in Section 2.2.2 and 2.3, hardware interrupts and software interrupts respec-
tively can have a significant impact on performance. But we also saw that the core handling
incoming packets is not necessarily the same as the one running the user space application in
Section 2.4.5. So far when looking at CPU consumption we have only looked at the core running
the user space application, in this section we will take a look at the core that is handling the
interrupts and what happens if we run the user space application and interrupt handling on
the same core. We do this in two distinct ways:

1. Run the user space HTTP client and the interrupt handler on different CPUs and measure
the relative time the interrupt handling CPU spends handling the interrupts

2. Run the user space HTTP client and interrupt handling logic on the same CPU core and
measure the performance impact compared to running on different CPUs

configuration
hardware
interrupts
(%)

software
interrupts
(%)

AF XDP SKB 0,00 10.57
AF XDP NATIVE 0,00 7.62
AF XDP ZC 0,00 0.29
KERN 0,00 23.41

Table 5.13: Relative CPU time spent on handling interrupts for the CPU that han-
dles the NIC’s hardware interrupts on the client. With Test System 1 as server using
AF XDP ZC and Test System 2 as client, with the configuration in the table and 10
repetitions.

For 1 we can see the results in Table 5.13. It is clear that the different configurations have
a significant difference in terms of relative time spent in software interrupts. We suspect the
reason why the amount of time spent in hardware interrupts is virtually zero is because NAPI
limits the amount of hardware interrupts by using polling. Using the method mentioned in
Section 2.2.2 we look at the amount of hardware interrupts the NIC generates. Per repetition,
about 40 000 hardware interrupts are generated while we receive about 1 500 000 packets for a
2G file. This indicates that NAPI works as we expect with our background knowledge from 2.2
and 2.4.3. So while a hardware interrupt is expensive due to the context switch, the number
of interrupts that happen is very limited compared to the number of received packets and in
addition, the hardware interrupt handler performs virtually zero processing. So we consider our
measurement of virtually zero relative CPU time spent on hardware interrupts realistic.

5.5. EXPERIMENTS AND RESULTS 53

The NAPI polling is executed inside a software interrupt and it is here that the actual processing
is done. For AF XDP ZC the processing is virtually none, the only thing that needs to happen is
to update the AF XDP rings to indicate that a packet has arrived. For AF XDP NATIVE and
AF XDP SKB the data also needs to be copied to the UMEM first, which is why we expect to
see a larger utilization compared to AF XDP ZC and this is indeed what we measure. In SKB
mode, the hook point is a bit later compared to NATIVE mode, and a sk buff is constructed
with the packet data which could explain the higher CPU consumption.

As for the KERN, inside the NAPI poll loop the packet is also pushed through the network stack
as we have seen in Section 2.4.5. Thus the CPU utilization measured includes the processing
for the network stack: Ethernet, Netfilter, IPv4 and UDP as well as creating a sk buff but no
memory copies happen.

different core same core

Client
average
goodput
(Mpbs)

std of
goodput
(Mpbs)

average
goodput
(Mpbs)

std of
goodput
(Mpbs)

relative
change in
goodput
(%)

AF XDP ZC 2272.29 12.61 2181.44 11.95 -4.00
AF XDP SKB 2136.91 29.82 1827.10 15.81 -14.50
AF XDP NATIVE 2139.24 31.86 1840.42 16.59 -13.97
KERN 2208.24 14.05 1922.84 13.06 -12.92

Table 5.14: Performance when running NIC driver and user space application on dif-
ferent cores vs running on the same core. Using Test System 1 as server as AF XDP ZC
and Test System 2 as client with the configuration in the table.

For 2 we can see the results in Table 5.14, as we can see the performance impact with
AF XDP ZC is minimal, this can be explained by having virtually no processing done in the
NAPI poll loop. For AF XDP SKB and AF XDP NATIVE the results are as expected, but
for the kernel network stack we would have expected the highest impact due to the high CPU
utilization for software interrupts we saw before. But it seems like the operations the kernel
network stack performs impact the performance less when running on the same core. We hy-
pothesize this might be because AF XDP SKB and AF XDP NATIVE make a copy of the data
in the NAPI loop while the kernel network stack does not.

5.5.9 All optimizations

In this section we take a look at the goodput and relative CPU samples collected by perf if we
combine all the optimizations we discussed so far. This includes:

• Removing a memory copy by using AF XDP zero-copy mode

• Using batched sending as described in Section 4.2.4, more specifically with a maximum
batch size of 32, sending to decrease the number of system calls

• Disabling checksumming

• Increasing buffer sizes by 8 times compared to the default we described in Section 4.2.5

implementation
goodput
(Mbps)

Kernel 1621.14
AF XDP NATIVE 1700.36
All Optimizations 3348.41

Table 5.15: Average goodput over 10 runs for different implementations running on
Test System 2 as server and the client running AF XDP ZC for all

54 CHAPTER 5. EXPERIMENTS AND RESULTS

KERN AF_XDP_NATIVE All Optimizations
0

20

40

60

80

100
Pe

rf
 s

am
pl

es
 (%

)

11 12 20

27 28

50

62 60

29

Conn. Mmgt
Crypto
Uncategorized
I/O
Packet I/O

Figure 5.9: Relative number of perf samples spent in every category of the kernel
network stack, our baseline AF XDP NATIVE implementation, and our implementation
with all optimizations enabled. Uncategorized and I/O bars are so small they are (nearly)
invisible and the number is not displayed: they contain less than 1% of the samples in
all configurations except with all optimizations enabled they contain 1% of the samples.

The result in terms of perf samples can be seen in Figure 5.9, AF XDP NATIVE is our baseline
as this is the configuration to which we added all the optimizations. As we can see we drop
the time spent on the network stack (Packet I/O) from 60% to 29%. This also results in
crypto-related operations relatively almost doubling from 28% to 50%. Therefore with all our
optimizations, the crypto operations are now more expensive than the network stack. In terms
of achieved goodput we see similar results in Table 5.15 with the goodput almost doubling with
our optimizations.

Chapter 6

Conclusions

To conclude this thesis, we provide a summary of our final result, do a personal reflection and
discuss potential future work.

Our final implementation is a UDP socket implemented utilizing AF XDP to bypass the Linux
kernel which we integrated into the HTTP/3 server and client included with lsquic to perform
real-world HTTP/3 file transfer tests. As we kept our implementation simple and because all
processing happens in user space, we could relatively easily tweak our implementation for a
variety of experiments that we conducted. Additionally, due to the kernel bypass aspect, we
could limit the system calls and memory copies.

In the introduction of this thesis, the research question we asked ourselves is which performance
bottlenecks are present in the network stack that degrade QUIC performance. As a subquestion,
we wondered if it is feasible to improve the performance of these bottlenecks and if these
improvements have an impact on real-world performance.

We have successfully identified several bottlenecks with our experimental approach. The first
bottleneck is memory copies. By utilizing zero-copy mode in AF XDP and therefore avoiding
a single memory copy we see a performance improvement of 40%. A second optimization is to
reduce the number of system calls, because AF XDP uses NAPI polling we already saw a very
small number of system calls to receive packets. But to send packets we saw one system call
per packet. To reduce this we used batched sending on the server which improved goodput by
22%. We also noticed that buffer sizes affected our performance and by doing multiple tests
concluded that specifically, the size of the send buffer on the server was causing a bottleneck.
By increasing its size we improved goodput by 12%. A last factor is checksum calculations,
which we could not offload to hardware with AF XDP so we simply disabled them improving
goodput by 16%.

The combined effect of our optimizations is a goodput improvement of 97%. Although we have
also shown that some of the bottlenecks are correlated: increasing buffer sizes does not have an
effect until we have applied some other optimizations that improve the rate at which the CPU
can send packets. This means that how large the performance improvement of an optimization
is, also depends on the performance of other components. For example the faster we can get
the CPU to send packets, the more we expect small buffer sizes to become a bottleneck and
the larger the impact of increasing the buffer sizes becomes. Therefore we conclude from the
goodput improvements we measured that the listed optimizations are significant in our tests
and on our hardware. However the performance benefit might be smaller, nonexistent, or even
greater in other scenarios and/or on other hardware. Although the optimizations we found
were not novel and had already been described and implemented for other protocols. We did
prove that they translate well to QUIC as is evident from the performance improvements we
measured. Therefore, as there is nothing specific about QUIC that completely undermines these

55

56 CHAPTER 6. CONCLUSIONS

optimizations, we expect them to also translate well to a variety of QUIC use cases as well as
QUIC running on other hardware.

We also believe to have tackled the most restricting bottlenecks in terms of CPU utilization.
This is evident if we compare the relative amount of CPU time spent on each of the core tasks of
a QUIC implementation. As we have discussed in Section 5.5.9 the relative amount of CPU time
spent on Packet I/O is 60% in our baseline and drops to 29% with all our optimizations.

As a result, the underlying network stack is no longer the most expensive operation for lsquic in
terms of relative time spent: with all optimizations enabled crypto-related operations are more
expensive than packet I/O. We have also shown that the CPU load on the CPU that handles
incoming packet interrupts is reduced from 7.62% in our baseline AF XDP NATIVE test to
0.29% by enabling zero-copy mode. For reference: the kernel network stack has about 23.41%
CPU consumption as the complete network stack processing of incoming packets happens on
this CPU. While this processing happens on the CPU running the user space process in case
of AF XDP, we consider this an advantage when scaling to multiple parallel connections on a
multi-core CPU.

As for our secondary research question, we have shown that part of the functionality that is
lost, namely ARP and Netfilter can be implemented with AF XDP. But while we have discussed
traffic control and hardware offloads in the Linux kernel network stack, we have not provided
these or an alternative in our implementation. This is because, as far as we are aware, it is
currently not possible to use these with AF XDP or provide alternatives that offer exactly the
same functionality. We will discuss how this could be solved in our future work.

Personal reflection

This thesis deviated from its original idea significantly. The original idea, to look into imple-
menting QUIC in the kernel to gain a performance benefit, was abandoned relatively fast. This
is because, during the literature study, it became evident that the state of the art of network
performance was not to move components into the kernel but rather to use kernel bypass so-
lutions. Bypassing the kernel circumvents one of its inherent properties that negatively affects
performance: the separation between kernel space and user space.

This separation for the network stack, NIC and NIC driver is avoided by kernel bypass solutions
which, as we have shown leads to a large part of their performance benefit: decreased memory
copies and system calls. However, I personally believe it is necessary to look critically at this,
as the separation between user space and kernel space was put into place for a reason: security
and stability. Due to a user space application not being able to access kernel space, it can
not cause the entire kernel and therefore operating system to crash or go into an infinite loop.
And although kernel bypass solutions were designed to mostly provide the same features, for
example, eBPF which is used for AF XDP sockets can run code in kernel space but in a safe
manner as we have seen in Section 2.5. But it can cause the network interface to go down for
the rest of the system: it is able to drop all incoming packets meaning that while errors in an
eBPF program can’t do harm to the kernel, it can prevent other user space applications from
working correctly.

I believe that choosing for kernel bypass was not a wrong choice but I do believe that it is
not suited for all scenarios. I believe that for end-user devices which typically run a variety of
tasks and applications the kernel-provided separation between user space and kernel space is
the most useful. While for (virtual) servers which typically run a single application such as an
HTTP server, I do believe that the performance benefits outweigh the negatives.

As for my personal experience with this thesis: while I was pretty confident with my background
research that AF XDP could be used for what I intended, I am glad to say that it worked exactly
as expected. There were some issues along the way: AF XDP was more difficult to get working
than expected, there were some bugs present once I integrated my socket in lsquic, some of
which were very hard to squash as I initially did not get TLS decoding to work in Wireshark

6.1. FUTURE WORK 57

and did not write any tests or checks. In hindsight, it might have been better to approach this
in another way by creating some tests first or making sure I got TLS decoding to work so I
could use the QUIC packet data to make sense of what was going on.

6.1 Future Work

In this section we will look into future work stemming from discoveries we made ourselves as well
as work already described by others that we were unable to complete during this thesis.

6.1.1 Traffic control

A feature that we have not implemented in our own network stack is traffic control, this can
be a major disadvantage when many streams are active as one (or more) could potentially
overwhelm the others as we discussed in Section 2.4.2. But for our test scenarios consisting of a
single stream of data the default fq codel queuing discipline would not have made a difference as
within a stream it queues packets in a first in first out way. While not trivial we do see several
ways to get traffic control working using AF XDP. In the scenario where all traffic originates
from the same application but we have multiple sockets, we can use a shared UMEM: as we
have seen in Section 2.5.3 a single UMEM can have multiple xsks associated with it. We could
then run a scheduling thread and instead of submitting the completed packets to the TX ring
associated with the UMEM we would submit them to queue managed by the scheduling thread,
which runs a qdisc and submits the packets to the TX queue in the determined order. The
method described here is similar to how the scheduler in DPDK works [Intb].

When running multiple applications that are not designed to cooperate this method would not
work. The only possibility we see in this scenario is a traffic controller in hardware or using
programmable NICs (smartNICs). The latter is the approach Xi et al. [XLW22] use to offload
packet scheduling.

6.1.2 Hardware offloads in AF XDP

In its current form it is impossible to run hardware offloads while using AF XDP but as we
prove in our measurements software checksumming can have a negative impact on performance.
It would be beneficial to get hardware offloading working for AF XDP. Therefore we see this as
a way to make AF XDP even faster in the future and as we have measured, the way the kernel
network stack works without segmentation offloads is not optimal: the IP header checksum
and UDP pseudo-header checksum are always calculated in software. And those do have a
measurable impact on performance compared to not calculating the checksum at all so also
in the kernel network stack better (more) hardware checksum offload support could improve
performance.

For AF XDP, hardware based XDP-hints [Jr17] might provide a way to implement hardware
offloads in the future.

6.1.3 Test on other hardware

As we have seen in Section 5.5.3 the ixgbe NIC driver that we utilize does not have full support
for the XPD USE NEED WAKEUP for the transmit path. The Melanox mlx5 driver does
seem to have better support for this. It would pique our curiosity to assess the performance
implications of utilizing this flag by testing on such a NIC and driver. Additionally, it would be
interesting to test on CPUs with multiple NUMA nodes, to see what the performance impact
is if the CPUs have to share packet data across different NUMA Nodes. Or CPUs with direct
cache support to see what its impact is.

58 CHAPTER 6. CONCLUSIONS

6.1.4 Look into NIC drivers

As we discovered in Section 5.5.3 some NIC drivers contain logic for when they require the
user space thread to wakeup the NIC driver when utilizing AF XDP while others such as the
ixgbe driver that we use do not. As far as we are aware there is no inherent reason why some
drivers cannot support this. It would be interesting to see if logic can be added, if it improves
performance and if the logic can be tweaked to increase performance even further.

6.1.5 Remove the last memory copy

We have shown the effect of reducing the amount of memory copies in Section 5.5.2. But we
did not reduce the amount of copies in our implementation to zero. This is because we designed
our implementation with the goal to easily replace the kernel-provided socket API. However as
we have seen in Section 2.4.2 when calling sendmsg() the application needs to pass an allocated
msghdr. The only way to get the data from the buffer referenced in this struct to a UMEM
frame is by a memory copy. When utilizing AF XDP zero-copy mode this is the only memory
copy that still happens for packet data. However, it is not impossible to remove this last
memory copy. The QUIC implementation just needs to be adapted to generate packets directly
into the UMEM frames, for this a bit of management code is necessary as unlike the msghdr,
the UMEM frames can’t be directly reused after sendmsg() or in our case AF sendmsg() has
been called. We therefore need some additional logic in the QUIC implementation so it can
consume UMEM frame pointer from (a wrapper around) the COMPLETION ring.

Bibliography

[1] Linux manual page: packet (7). url: https://man7.org/linux/man-pages/man7/
packet.7.html (visited on 06/05/2023).

[2] Linux manual page: syscalls (2). url: https://man7.org/linux/man-pages/
man2/syscalls.2.html (visited on 08/12/2023).

[3] libxdp: library for attaching XDP programs and using AF XDP sockets. url: https:
//www.mankier.com/3/libxdp (visited on 08/17/2023).

[App] Apple. Apple Developer Documentation: QUIC Options. url: https://developer.
apple.com/documentation/network/quic_options (visited on 08/13/2023).

[Ash] Satyadeep Ashwathnarayana. Understanding Context Switching and Its Impact on
System Performance. url: https : / / blog . netdata . cloud / understanding -

context-switching-and-its-impact-on-system-performance/ (visited on
08/12/2023).

[Bau] Laura Bauman. Harnessing the eBPF Verifier. url: https://blog.trailofbits.
com/2023/01/19/ebpf-verifier-harness/ (visited on 08/07/2023).

[BC05] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel: from I/O ports
to process management. ” O’Reilly Media, Inc.”, 2005.

[BD17] Willem de Bruijn and Eric Dumazet. “sendmsg copy avoidance with MSG ZEROCOPY”.
In: The Technical Conference on Linux networking. Vol. 2. 2017.

[Cai+21] Qizhe Cai et al. “Understanding Host Network Stack Overheads”. In: Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual Event, USA:
Association for Computing Machinery, 2021, pp. 65–77. isbn: 9781450383837. doi:
10.1145/3452296.3472888. url: https://doi.org/10.1145/3452296.3472888.

[Car+16] Neal Cardwell et al. “BBR: Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time”. In: Queue 14.5 (2016), pp. 20–
53.

[Cil] Cilium. Cilium 1.15.0 developer documentation: Program Types. url: https://
docs.cilium.io/en/latest/bpf/progtypes/#xdp (visited on 08/07/2023).

[Cor] Jonathan Corbet. Page pinning and filesystems. url: https://lwn.net/Articles/
894390/ (visited on 08/14/2023).

[corbet] corbet (username). Driver porting: the preemptible kernel. url: https://lwn.net/
Articles/22912/ (visited on 08/09/2023).

[CS18] Ruining Chen and Guoao Sun. “A Survey of Kernel-Bypass Techniques in Net-
work Stack”. In: Proceedings of the 2018 2nd International Conference on Com-
puter Science and Artificial Intelligence. CSAI ’18. Shenzhen, China: Association
for Computing Machinery, 2018, pp. 474–477. isbn: 9781450366069. doi: 10.1145/
3297156.3297242. url: https://doi.org/10.1145/3297156.3297242.

[Des] Mathieu Desnoyers. The Linux Kernel documentation: Using the Linux Kernel Tra-
cepoints. url: https://docs.kernel.org/trace/tracepoints.html (visited on
08/07/2023).

[eBP] eBPF. What is eBPF? An Introduction and Deep Dive into the eBPF Technology.
url: https://ebpf.io/what-is-ebpf/ (visited on 08/07/2023).

[Fas] John Fastabend. XDP for virtio net. url: https://lwn.net/Articles/708380/
(visited on 08/08/2023).

59

https://man7.org/linux/man-pages/man7/packet.7.html
https://man7.org/linux/man-pages/man7/packet.7.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.mankier.com/3/libxdp
https://www.mankier.com/3/libxdp
https://developer.apple.com/documentation/network/quic_options
https://developer.apple.com/documentation/network/quic_options
https://blog.netdata.cloud/understanding-context-switching-and-its-impact-on-system-performance/
https://blog.netdata.cloud/understanding-context-switching-and-its-impact-on-system-performance/
https://blog.trailofbits.com/2023/01/19/ebpf-verifier-harness/
https://blog.trailofbits.com/2023/01/19/ebpf-verifier-harness/
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://docs.cilium.io/en/latest/bpf/progtypes/#xdp
https://docs.cilium.io/en/latest/bpf/progtypes/#xdp
https://lwn.net/Articles/894390/
https://lwn.net/Articles/894390/
https://lwn.net/Articles/22912/
https://lwn.net/Articles/22912/
https://doi.org/10.1145/3297156.3297242
https://doi.org/10.1145/3297156.3297242
https://doi.org/10.1145/3297156.3297242
https://docs.kernel.org/trace/tracepoints.html
https://ebpf.io/what-is-ebpf/
https://lwn.net/Articles/708380/

60 BIBLIOGRAPHY

[Fle] Matt Fleming.A thorough introduction to eBPF. url: https://lwn.net/Articles/
740157/ (visited on 08/07/2023).

[Foua] Linux Foundation. DPDK. url: https://www.dpdk.org/ (visited on 08/08/2023).
[Foub] Linux Foundation. Linux manual page: IPv4 raw sockets (7). url: https://linux.

die.net/man/7/raw (visited on 06/05/2023).
[Fouc] Linux Foundation. Linux source code (v6.4.9) - Bootlin. url: https://elixir.

bootlin.com/linux/v6.4.9/source (visited on 08/12/2023).
[Foud] Linux Foundation. Linux v6.4. url: https://github.com/torvalds/linux/

tree/v6.4 (visited on 08/12/2023).
[Foue] Linux Foundation. Linux wiki: GSO. url: https://wiki.linuxfoundation.org/

networking/gso (visited on 06/20/2023).
[Fouf] Linux Foundation. Sampling with perf record. url: https://perf.wiki.kernel.

org/index.php/Tutorial#Sampling_with_perf_record (visited on 08/22/2023).
[Foug] Linux Foundation. Software Interrupt Context: Softirqs and Tasklets. url: https:

//archive.kernel.org/oldlinux/htmldocs/kernel-hacking/basics-softirqs.

html (visited on 08/12/2023).
[Fouh] Linux Foundation. The Linux Kernel Archives. url: https://www.kernel.org/

(visited on 08/12/2023).
[Foui] Linux Foundation. The Linux Kernel documentation: Checksum Offloads. url:

https://docs.kernel.org/networking/checksum- offloads.html (visited
on 08/12/2023).

[Fouj] Linux Foundation. The Linux Kernel documentation: MSG ZEROCOPY. url:
https://www.kernel.org/doc/html/v4.15/networking/msg_zerocopy.html

(visited on 08/14/2023).
[Fouk] Linux Foundation. The Linux Kernel documentation: Packet MMAP. url: https:

//docs.kernel.org/networking/packet_mmap.html (visited on 06/05/2023).
[Gar+] Jim Garside et al. COMP25111 - Knowledge Base Index. url: https://web.

archive.org/web/20220511053226/https://xerxes.cs.manchester.ac.uk/

comp251/kb/Context_Switching (visited on 08/12/2023).
[Gim] Sergio Gimenez. Using netmap with TCP/IP application layer stack · Issue 711 ·

luigirizzo/netmap. url: https://github.com/luigirizzo/netmap/issues/711
(visited on 08/14/2023).

[Gre] Brendan Gregg. Perf timed profiling. url: https://www.brendangregg.com/
perf.html#TimedProfiling (visited on 08/22/2023).

[Gro] The Tcpdump Group. libpcap code. url: https://github.com/the-tcpdump-
group/libpcap/blob/master/pcap-linux.c (visited on 06/05/2023).

[Han+10] Sangjin Han et al. “PacketShader: A GPU-Accelerated Software Router”. In: SIG-
COMM Comput. Commun. Rev. 40.4 (Aug. 2010), pp. 195–206. issn: 0146-4833.
doi: 10.1145/1851275.1851207. url: https://doi.org/10.1145/1851275.
1851207.

[Hata] Red Hat. Ansible. url: https://www.ansible.com/ (visited on 08/08/2023).
[Hatb] Red Hat. Red Hat Customer Portal: Hardware Interrupts. url: https://access.

redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_

time/7/html/reference_guide/chap-hardware_interrupts (visited on 08/12/2023).
[Hatc] Red Hat. Red Hat Customer Portal: Receive Flow Steering (RFS) Red Hat En-

terprise Linux 6. url: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rfs

(visited on 08/11/2023).
[Her+23] Joris Herbots et al. “Vegvisir: A Testing Framework for HTTP/3 Media Stream-

ing”. In: Proceedings of the 14th Conference on ACM Multimedia Systems. MMSys
’23. Vancouver, BC, Canada: Association for Computing Machinery, 2023, pp. 403–
409. isbn: 9798400701481. doi: 10.1145/3587819.3592550. url: https://doi.
org/10.1145/3587819.3592550.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: a new TCP-friendly high-speed
TCP variant”. In: ACM SIGOPS operating systems review 42.5 (2008), pp. 64–74.

https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://www.dpdk.org/
https://linux.die.net/man/7/raw
https://linux.die.net/man/7/raw
https://elixir.bootlin.com/linux/v6.4.9/source
https://elixir.bootlin.com/linux/v6.4.9/source
https://github.com/torvalds/linux/tree/v6.4
https://github.com/torvalds/linux/tree/v6.4
https://wiki.linuxfoundation.org/networking/gso
https://wiki.linuxfoundation.org/networking/gso
https://perf.wiki.kernel.org/index.php/Tutorial#Sampling_with_perf_record
https://perf.wiki.kernel.org/index.php/Tutorial#Sampling_with_perf_record
https://archive.kernel.org/oldlinux/htmldocs/kernel-hacking/basics-softirqs.html
https://archive.kernel.org/oldlinux/htmldocs/kernel-hacking/basics-softirqs.html
https://archive.kernel.org/oldlinux/htmldocs/kernel-hacking/basics-softirqs.html
https://www.kernel.org/
https://docs.kernel.org/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v4.15/networking/msg_zerocopy.html
https://docs.kernel.org/networking/packet_mmap.html
https://docs.kernel.org/networking/packet_mmap.html
https://web.archive.org/web/20220511053226/https://xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching
https://web.archive.org/web/20220511053226/https://xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching
https://web.archive.org/web/20220511053226/https://xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching
https://github.com/luigirizzo/netmap/issues/711
https://www.brendangregg.com/perf.html#TimedProfiling
https://www.brendangregg.com/perf.html#TimedProfiling
https://github.com/the-tcpdump-group/libpcap/blob/master/pcap-linux.c
https://github.com/the-tcpdump-group/libpcap/blob/master/pcap-linux.c
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207
https://www.ansible.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-hardware_interrupts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-hardware_interrupts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-hardware_interrupts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rfs
https://doi.org/10.1145/3587819.3592550
https://doi.org/10.1145/3587819.3592550
https://doi.org/10.1145/3587819.3592550

BIBLIOGRAPHY 61

[IET] IETF. RFC 9369 - QUIC Version 2. url: https://datatracker.ietf.org/doc/
rfc9369/ (visited on 08/13/2023).

[IET80] IETF. User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/RFC0768.
url: https://www.rfc-editor.org/info/rfc768.

[IET81] IETF. Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791. url:
https://www.rfc-editor.org/info/rfc791.

[Inta] Intel. Data Plane Development Kit 23.07.0 documentation: AF XDP Poll Mode
Driver. url: https://doc.dpdk.org/guides/nics/af_xdp.html (visited on
08/14/2023).

[Intb] Intel. Data Plane Development Kit 23.07.0 documentation: QoS Scheduler Sam-
ple Application. url: https://doc.dpdk.org/guides/sample_app_ug/qos_
scheduler.html (visited on 08/15/2023).

[Intc] Intel. Intel® Data Direct I/O Technology. url: https : / / www . intel . com /

content/www/us/en/io/data- direct- i- o- technology.html (visited on
08/12/2023).

[IT21] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000. May 2021. doi: 10.17487/RFC9000. url: https://www.rfc-
editor.org/info/rfc9000.

[Jae+23] Benedikt Jaeger et al. “QUIC on the Highway: Evaluating Performance on High-
rate Links”. In: 2023 IFIP Networking Conference (IFIP Networking). 2023, pp. 1–
9. doi: 10.23919/IFIPNetworking57963.2023.10186365.

[Jeo+14] Eun Young Jeong et al. “MTCP: A Highly Scalable User-Level TCP Stack for
Multicore Systems”. In: Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation. NSDI’14. Seattle, WA: USENIX Association,
2014, pp. 489–502. isbn: 9781931971096.

[Jr17] Peter P. Waskiewicz Jr. “Accelerating XDP Programs Using HW-based Hints”. In:
(2017).

[Kar18] Magnus Karlsson. “The Path to DPDK Speeds for AF XDP”. In: 2018. url: http:
//vger.kernel.org/lpc_net2018_talks/lpc18_paper_af_xdp_perf-v2.pdf.

[Laa] Kevin Laatz. XDP unaligned chunk placement support. url: https://lwn.net/
Articles/795014/ (visited on 08/07/2023).

[Lai+] Leonardo Lai et al. UDPDK: A minimal UDP stack based on DPDK. url: https:
//github.com/leoll2/UDPDK (visited on 08/14/2023).

[Lan+17] Adam Langley et al. “The QUIC Transport Protocol: Design and Internet-Scale
Deployment”. In: Proceedings of the Conference of the ACM Special Interest Group
on Data Communication. SIGCOMM ’17. Los Angeles, CA, USA: Association for
Computing Machinery, 2017, pp. 183–196. isbn: 9781450346535. doi: 10.1145/
3098822.3098842. url: https://doi.org/10.1145/3098822.3098842.

[Lar] Michael Larabel. Linux 5.1 Getting A Minor Spectre V2 Retpolines Optimization
For Select Instances - Phoronix. url: https://www.phoronix.com/news/Linux-
5.1-Retpoline-GCC-Opt (visited on 08/08/2023).

[LDS07] Chuanpeng Li, Chen Ding, and Kai Shen. “Quantifying the Cost of Context Switch”.
In: Proceedings of the 2007 Workshop on Experimental Computer Science. ExpCS
’07. San Diego, California: Association for Computing Machinery, 2007, 2–es. isbn:
9781595937513. doi: 10.1145/1281700.1281702. url: https://doi.org/10.
1145/1281700.1281702.

[Lit] Litespeedtech. lsquic: LiteSpeed QUIC and HTTP/3 Library. url: https://github.
com/litespeedtech/lsquic (visited on 07/31/2023).

[Mara] Robin Marx. HTTP/3 From A To Z: Core Concepts — Smashing Magazine. url:
https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/

(visited on 08/07/2023).
[Marb] Robin Marx. HTTP/3: Performance Improvements (Part 2) — Smashing Maga-

zine. url: https://www.smashingmagazine.com/2021/08/http3-performance-
improvements-part2/ (visited on 08/07/2023).

https://datatracker.ietf.org/doc/rfc9369/
https://datatracker.ietf.org/doc/rfc9369/
https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://doc.dpdk.org/guides/nics/af_xdp.html
https://doc.dpdk.org/guides/sample_app_ug/qos_scheduler.html
https://doc.dpdk.org/guides/sample_app_ug/qos_scheduler.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.23919/IFIPNetworking57963.2023.10186365
http://vger.kernel.org/lpc_net2018_talks/lpc18_paper_af_xdp_perf-v2.pdf
http://vger.kernel.org/lpc_net2018_talks/lpc18_paper_af_xdp_perf-v2.pdf
https://lwn.net/Articles/795014/
https://lwn.net/Articles/795014/
https://github.com/leoll2/UDPDK
https://github.com/leoll2/UDPDK
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://www.phoronix.com/news/Linux-5.1-Retpoline-GCC-Opt
https://www.phoronix.com/news/Linux-5.1-Retpoline-GCC-Opt
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/1281700.1281702
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/
https://www.smashingmagazine.com/2021/08/http3-performance-improvements-part2/
https://www.smashingmagazine.com/2021/08/http3-performance-improvements-part2/

62 BIBLIOGRAPHY

[Mar+20] Robin Marx et al. “Same Standards, Different Decisions: A Study of QUIC and
HTTP/3 Implementation Diversity”. In: Proceedings of the Workshop on the Evo-
lution, Performance, and Interoperability of QUIC. EPIQ ’20. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 14–20. isbn: 9781450380478. doi:
10.1145/3405796.3405828. url: https://doi.org/10.1145/3405796.3405828.

[Mia+19] Sebastiano Miano et al. “Securing Linux with a Faster and Scalable Iptables”. In:
SIGCOMM Comput. Commun. Rev. 49.3 (Nov. 2019), pp. 2–17. issn: 0146-4833.
doi: 10.1145/3371927.3371929. url: https://doi.org/10.1145/3371927.
3371929.

[Mica] Microsoft. eBPF for Windows. url: https://github.com/microsoft/ebpf-for-
windows (visited on 08/08/2023).

[Micb] Microsoft. MsQuic documentation: platform support. url: https://github.com/
microsoft/msquic/blob/9f74f69d0c16fadb62a332246daabac704bc7db0/docs/

Platforms.md (visited on 08/13/2023).
[Micc] Microsoft. Release XDP 1.0 for Windows. url: https://github.com/microsoft/

xdp-for-windows/releases/tag/v1.0.0 (visited on 08/08/2023).
[Micd] Microsoft. XDP for Windows forwarding sample. url: https://github.com/

microsoft/xdp-for-windows/blob/v1.0.0/samples/xskfwd/xskfwd.c (visited
on 08/08/2023).

[Net] Netfilter. The netfilter/iptables project. url: https : / / www . netfilter . org /

index.html (visited on 08/11/2023).
[NW13] David Ros Naeem Khademi and Michael Welzl. Evaluating CoDel, FQ CoDel and

PIE: how good are they really? 2013. url: https://www.ietf.org/proceedings/
88/slides/slides-88-iccrg-4.pdf (visited on 08/15/2023).

[Pir+20] Maxime Piraux et al. QUIC Plugins. Tech. rep. draft-piraux-quic-plugins-00. Work
in Progress. Internet Engineering Task Force, Mar. 2020. 19 pp. url: https://
datatracker.ietf.org/doc/draft-piraux-quic-plugins/00/.

[Riz12] Luigi Rizzo. “netmap: A Novel Framework for Fast Packet I/O”. In: 2012 USENIX
Annual Technical Conference (USENIX ATC 12). Boston, MA: USENIX Associa-
tion, June 2012, pp. 101–112. isbn: 978-931971-93-5. url: https://www.usenix.
org/conference/atc12/technical-sessions/presentation/rizzo.

[See] Marten Seemann. QUIC Interop Runner. url: https://interop.seemann.io/
(visited on 07/31/2023).

[Ser] Servermonkey. Intel X540-T2 Dual Port 10GB Network Card. url: https : / /
www.servermonkey.com/dell-intel-x540-t2-dual-port-10gbe-network-

adapter.html (visited on 08/12/2023).
[Ten] Tencent. F-Stack — High Performance Network Framework Based On DPDK. url:

https://www.f-stack.org/ (visited on 08/14/2023).
[Tyu+22] Nikita Tyunyayev et al. “A High-Speed QUIC Implementation”. In: Proceedings of

the 3rd International CoNEXT Student Workshop. CoNEXT-SW ’22. Rome, Italy:
Association for Computing Machinery, 2022, pp. 20–22. isbn: 9781450399371. doi:
10.1145/3565477.3569154. url: https://doi.org/10.1145/3565477.3569154.

[Wan+18] Peng Wang et al. “Implementation and Performance Evaluation of the QUIC Pro-
tocol in Linux Kernel”. In: Proceedings of the 21st ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems. MSWIM
’18. Montreal, QC, Canada: Association for Computing Machinery, 2018, pp. 227–
234. isbn: 9781450359603. doi: 10.1145/3242102.3242106. url: https://doi.
org/10.1145/3242102.3242106.

[WXW22] Minhu Wang, Mingwei Xu, and Jianping Wu. “Understanding I/O Direct Cache
Access Performance for End Host Networking”. In: Proc. ACM Meas. Anal. Com-
put. Syst. 6.1 (Feb. 2022). doi: 10.1145/3508042. url: https://doi.org/10.
1145/3508042.

[xdp] xdp-project. xdp-project bpf-examples: AF XDP-example README. url: https:
//github.com/xdp-project/bpf-examples/blob/master/AF_XDP-example/

README.org (visited on 08/07/2023).

https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3371927.3371929
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/msquic/blob/9f74f69d0c16fadb62a332246daabac704bc7db0/docs/Platforms.md
https://github.com/microsoft/msquic/blob/9f74f69d0c16fadb62a332246daabac704bc7db0/docs/Platforms.md
https://github.com/microsoft/msquic/blob/9f74f69d0c16fadb62a332246daabac704bc7db0/docs/Platforms.md
https://github.com/microsoft/xdp-for-windows/releases/tag/v1.0.0
https://github.com/microsoft/xdp-for-windows/releases/tag/v1.0.0
https://github.com/microsoft/xdp-for-windows/blob/v1.0.0/samples/xskfwd/xskfwd.c
https://github.com/microsoft/xdp-for-windows/blob/v1.0.0/samples/xskfwd/xskfwd.c
https://www.netfilter.org/index.html
https://www.netfilter.org/index.html
https://www.ietf.org/proceedings/88/slides/slides-88-iccrg-4.pdf
https://www.ietf.org/proceedings/88/slides/slides-88-iccrg-4.pdf
https://datatracker.ietf.org/doc/draft-piraux-quic-plugins/00/
https://datatracker.ietf.org/doc/draft-piraux-quic-plugins/00/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://interop.seemann.io/
https://www.servermonkey.com/dell-intel-x540-t2-dual-port-10gbe-network-adapter.html
https://www.servermonkey.com/dell-intel-x540-t2-dual-port-10gbe-network-adapter.html
https://www.servermonkey.com/dell-intel-x540-t2-dual-port-10gbe-network-adapter.html
https://www.f-stack.org/
https://doi.org/10.1145/3565477.3569154
https://doi.org/10.1145/3565477.3569154
https://doi.org/10.1145/3242102.3242106
https://doi.org/10.1145/3242102.3242106
https://doi.org/10.1145/3242102.3242106
https://doi.org/10.1145/3508042
https://doi.org/10.1145/3508042
https://doi.org/10.1145/3508042
https://github.com/xdp-project/bpf-examples/blob/master/AF_XDP-example/README.org
https://github.com/xdp-project/bpf-examples/blob/master/AF_XDP-example/README.org
https://github.com/xdp-project/bpf-examples/blob/master/AF_XDP-example/README.org

BIBLIOGRAPHY 63

[Xil] Xilinx. OpenOnload high performance user-level network stack. url: https://
github.com/Xilinx-CNS/onload (visited on 08/15/2023).

[XLW22] Shaoke Xi, Fuliang Li, and Xingwei Wang. “FlowValve: Packet Scheduling Of-
floaded on NP-based SmartNICs”. In: 2022 IEEE 42nd International Conference
on Distributed Computing Systems (ICDCS). 2022, pp. 347–358. doi: 10.1109/
ICDCS54860.2022.00041.

https://github.com/Xilinx-CNS/onload
https://github.com/Xilinx-CNS/onload
https://doi.org/10.1109/ICDCS54860.2022.00041
https://doi.org/10.1109/ICDCS54860.2022.00041

	Introduction
	Background information
	Overview of network stack protocols
	The Network Interface Controller (NIC)
	Hardware offload capabilities
	Hardware interrupts

	Linux kernel basics
	The basic UDP flow through the kernel
	Creating and binding a socket
	Sendmsg()
	Incoming packet(s) on the NIC
	Recvmsg()
	Performance considerations

	eBPF eXpress Data Path (XDP)
	eBPF
	XDP
	XDP address family (AF_XDP)

	Related work
	Host network stack optimizations
	Direct Cache Access (DCA)
	Alternative network stacks and kernel bypass techniques
	Data Plane Development Kit (DPDK)
	Netmap
	mTCP
	Onload

	QUIC
	In-kernel QUIC
	QUIC on top of DPDK

	XDP
	XDP applications
	Windows XDP

	Other options in the Linux kernel

	Implementation
	The choice for AF_XDP
	AF_XDP UDP socket
	Creating the socket
	Sending packets: AF_sendmsg()
	Receiving packets: AF_recvmsg()
	Batched sending of packets: AF_sendmmsg()
	UMEM layout and default buffer sizes
	Netfilter alternative
	ARP

	QUIC and HTTP/3
	HTTP server and client

	Testing framework

	Experiments and results
	Setup
	Software
	Naming convention
	Dividing the CPU's spent time into categories
	Experiments and results
	General measurements
	Memory copies
	System calls
	Using AF_sendmmsg()
	Using sendmmsg()
	Cost of checksumming
	Buffer sizes
	Interrupts
	All optimizations

	Conclusions
	Future Work
	Traffic control
	Hardware offloads in AF_XDP
	Test on other hardware
	Look into NIC drivers
	Remove the last memory copy

