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ABSTRACT 

The Automatization, Computer vision and Robotics (ACRO) research group of KU 

Leuven has developed a robot capable of picking up wooden bins, or palloxes, in an 

orchard. To automate this process, determining the six degrees-of-freedom (6D) pose 

of a pallox is crucial. A tracking by detection algorithm is used for the first frame, and 

a faster temporal tracking method is used for subsequent frames without relying on a 

Computer Aided Design (CAD) model. This approach enables the algorithm to accu-

rately and efficiently track the palloxes while being computationally inexpensive.  

This paper presents a software solution that utilizes BundleTrack in combination 

with the Segment Anything Model (SAM) and custom code. The presented approach 

calculates the 6D pose of the object relative to the first frame and uses the RealSense 

LIDAR L515 camera for capturing the data. 

The solution’s accuracy is evaluated by comparing the algorithm’s output to the 

ground truth measurements. For obtaining the ground truth, the 6DPoseAnnotator 

algorithm is used. BundleTrack accurately estimates the 6D pose of the pallox, with 

an average rotation error of 2.93° and a position error of 7.74 cm. It achieves an Area 

Under Curve (AUC) of 26.17 measured by the Average Distance of Points (ADD) met-

ric and an AUC of 72.94 measured by the Average Distance of Points Symmetry 

(ADD-S) metric. The algorithm achieves a real-time performance of 6 Hz. However, 

further optimization is necessary to achieve full autonomy for the proposed approach.  



 

 

  



 

 

ABSTRACT IN DUTCH 

De onderzoeksgroep Automatisering, Computer vision en Robotica (ACRO) van KU 

Leuven heeft een heftruck ontwikkeld die houten bakken, of palloxen, in een boom-

gaard kan oppakken. Om dit te automatiseren, is het belangrijk om de six degrees-of-

freedom (6D)-pose van een pallox te bepalen. Voor het volgen van de palloxen werd 

een tracking by detection-algoritme gebruikt voor het eerste frame, en een snellere 

temporal tracking-methode zonder een Computer Aided Design (CAD)-model voor 

de volgende frames. Op die manier kan het algoritme de palloxen nauwkeurig en ef-

ficiënt volgen, terwijl het weinig rekenkracht vereist. 

Deze paper presenteert een softwareoplossing die gebruik maakt van Bund-

leTrack in combinatie met het Segment Anything Model (SAM) en bijkomende code. 

Het voorgestelde algoritme berekent de 6D-pose van het object ten opzichte van het 

eerste frame en gebruikt de RealSense LIDAR L515 camera voor gegevensvastlegging.  

De nauwkeurigheid van de oplossing werd geëvalueerd door de output van het 

algoritme te vergelijken met de ground truth-metingen, verkregen met het 6DPoseAn-

notator-algoritme. BundleTrack schat de 6D-pose van de pallox nauwkeurig in, met 

een gemiddelde rotatiefout van 2,93° en een positiefout van 7,74 cm. Het behaalt een 

Area Under Curve (AUC) van 26,17 voor de Average Distance of Points (ADD) me-

triek en een AUC van 72,94 voor de Average Distance of Points Symmetry (ADD-S) 

metriek. Daarnaast heeft het algoritme een realtimeprestatie van 6 Hz, maar vereist 

het verdere optimalisatie voor volledige autonomie. 



 

 

  



 

 

1.1 Background and motivation 

The emergence of automatic robots brings great advancements to the industry, ensur-

ing better efficiency and cost savings. This applies to the agricultural sector as well. 

For example, machine learning and computer vision enable the automatic harvesting 

of fruit and vegetables. Tractors can navigate automatically, crops can be planted 

through automation and drones can map and spray the fields. By automating these 

tasks, a company operates much more efficiently and achieves cost savings. That is 

why the Automatization, Computer vision & Robotics (ACRO) research group of KU 

Leuven has sought assistance.

ACRO operates within the Faculty of Engineering Technology and has many 

years of experience in vision-based and model-based automation, human-robot inter-

action and collaboration, flexible product handling and robotic grippers, collision-free 

trajectory generation and navigation, semi-autonomous & autonomous (dis)assembly 

and functional programming for robotics and the cloud. 

ACRO has developed a pallox truck capable of picking up and offloading 

wooden boxes, also called palloxes. These palloxes will be placed in an orchard and 

may contain fruit or be empty. The pallox truck will drive around the orchard and 

look for those palloxes in order to move them to another area where the fruit can be 

extracted. 

While manual operation by a person is possible, ACRO aims to automate this 

process due to several disadvantages associated with manual driving. For instance: 

- Operators may not use the optimal routes, which results in delays. 

- Human errors such as accidents, collisions or overlooking palloxes. 

- Labor costs are significant depending on the size of the orchard. 

1 INTRODUCTION 
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- Expanding an orchard would result in additional personnel, which means even 

higher costs. 

Fig. 1 visualizes how the pallox truck and the wooden box look. 

 

 

Figure 1: The pallox truck carrying the pallox 

1.2 Context 

As mentioned earlier, ACRO aims to fully automate the process of picking and placing 

the palloxes within the orchard. To achieve this goal, the development of several al-

gorithms is required. 

Firstly, methods to locate and map the pallox truck’s position within the orchard 

are required. Additionally, algorithms that calculate the most efficient route are 

needed to efficiently navigate through the orchard. Moreover, the development of al-

gorithms that avoid obstacles is required to ensure the safety of the system. Further-

more, algorithms have to be developed that control the actuators of the pallox truck, 

based on the various inputs. 

Another critical requirement is that the pallox truck should have mechanisms 

capable of detecting and recovering from failures. This is important since the pallox 

truck should be able to quickly recover and resume its tasks without compromising 

efficiency or safety. 

There is also a need for monitoring systems, as these will provide oversight of 

the automated processes. These monitoring systems should also allow for anomaly 



 

17 

 

detection. All the aforementioned methods and algorithms should work together with 

enough speed to enable real-time performance.  

1.3 Problem statement 

It is undoubtedly a complex task to fully automate the process of picking and placing 

the palloxes, given the numerous challenges. Because of the complexity of the task, it 

has been broken down into smaller parts. One of those parts (which is also the prob-

lem this paper aims to solve) is to calculate the position and orientation of the wooden 

box relative to the camera coordinate system over multiple frames. This calculation is 

crucial because it directly affects the actions of the pallox truck’s actuators. 

Determining the position and orientation of an object is commonly referred to as 

calculating its six degrees-of-freedom (6D) pose. In Fig. 2, the 6D poses of five distinct 

objects are visualized. The bounding box of each object is determined based on the 

calculated 6D pose, which includes the position in three dimensions and the orienta-

tion around the x, y, and z axes. 

 

 

Figure 2: Visualization of 6D pose for five objects: a bowl, a laptop, a camera, a mug and a spray 
can [1] 
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1.4 Objectives 

The objective of the paper is to present a method that calculates the 6D pose of the 

object relative to the first frame for multiple frames. Considering the final objective is 

to automate it so that it works in real-time, the algorithm's speed holds significant 

importance. 

To achieve this objective, the following goals are outlined: 

1. Conduct a comprehensive literature review on 6D pose estimation, covering 

both tracking by detection and temporal tracking approaches. Tracking-by-

detection methods detect the object in each frame independently, while tem-

poral tracking aims to obtain the pose of the object using the information 

from previous frames. Temporal tracking methods, with their ability to uti-

lize temporal information, offer improved speed and efficiency, making them 

well suited for real-time applications. After thoroughly reviewing the litera-

ture, a temporal tracking method, namely BundleTrack, that demonstrated 

the best trade-off between accuracy and real-time performance, considering 

the specific requirements of our use case, was selected. 

2. Next, implement BundleTrack on the data from the original paper and repli-

cate the results reported in that paper. 

3. After that, execute the selected temporal tracking method on the data for the 

paper’s use case and collect ground truth data. 

4. Finally, evaluate the performance of BundleTrack using the information ac-

quired in step 3. The evaluation contains information about the algorithm’s 

accuracy and speed. 

It is noteworthy that this paper assumes that an alternative method is utilized to 

calculate the absolute pose of the wooden box in the initial frame. The proposed 

method focuses solely on calculating the relative pose compared to the first frame.  

1.5 Structure of the paper 

The paper is divided into several chapters in order to improve its readability. The first 

section is the literature review. This section explores the various types of 6D pose es-

timation methods. It makes a clear distinction between each type and discusses the 

underlying principles. Each method will also be examined in different aspects. 

Following the literature study, the methodology chapter introduces and explains 

the 6D pose estimation method employed in this master’s thesis, namely BundleTrack. 

It covers the prerequisites for running the code and discusses the implementation and 

customization of the program. Additionally, this section explains the other algorithms 
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that are added to the workflow, which are required to obtain accurate results from the 

BundleTrack algorithm. Finally, the methodology section includes the different meth-

ods used to obtain the ground truth pose of the object and the input modalities con-

sidered for the algorithm. 

Subsequently, there is a dedicated section that delves into the experimental setup 

and evaluation metrics. This part elucidates the steps taken to acquire the ground 

truth pose and clarifies the evaluation metrics used to assess the performance of 

BundleTrack. 

Afterwards, the results section presents and discusses the obtained results, along 

with potential approaches for further improvement. 

Finally, the paper concludes with a section summarizing the main points and 

outlining future work. This section reiterates the significance of the paper's findings 

and outlines future directions for utilizing the proposed method in real-world use 

cases. 
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2.1 Introduction and fundamentals 

To better understand the work presented in this paper, it is crucial to have a basic 

understanding of the fundamental aspects underlying 6D pose estimation. This com-

puter vision technique determines the 6D pose of an object, which refers to the posi-

tion and orientation of the object. This method uses the features of an object (e.g., cor-

ners or edges) to acquire information about the object’s position expressed in x, y and 

z parameters, as well as the orientation of the object expressed in the angle around the 

yaw, pitch and roll axes [2]. 

6D pose estimation can be divided in different ways. First of all, 6D pose estima-

tion methods include two categories: tracking by detection methods and temporal 

tracking methods. Tracking by detection methods involves algorithms that compute 

the 6D pose of the object on each frame separately. Temporal tracking methods, on the 

other hand, leverage temporal information from previous frames. 

6D object pose estimation can also be classified based on the availability of the 

object model. There are methods that require CAD models, and there are methods that 

do not require CAD models. For the methods that require CAD models, they can be 

further subdivided into instance-level pose estimation and category-level pose esti-

mation. Instance-level pose estimation requires the CAD model of the exact object that 

needs to be estimated. Category-level pose estimation, on the other hand, requires a 

CAD model of an object from the same category for training [3]. 

2 LITERATURE REVIEW 
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2.2 Tracking by detection methods 

As stated before, 6D pose estimation can be categorized into tracking by detection 

methods and temporal tracking methods. The former is used to find the pose of the 

object without relying on previous frames. Tracking by detection methods is divided 

into two categories: learning-based and model-based pose estimation, with the latter 

being further subdivided into 2D and 3D model-based pose estimation. Learning-

based approaches use machine learning or convolutional neural networks (CNNs) in 

order to estimate the pose of the object, and there are several kinds of learning-based 

algorithms available [4]. 

2D model-based pose estimation estimates the pose of an object through the 2D 

information in an image and can also be further subdivided into real-image-based ap-

proaches and CAD-image-based approaches, the difference being whether the tem-

plate is a real image or a CAD model. CAD-image-based approaches are often more 

accurate, but CAD models can be difficult to obtain. 

3D model-based pose estimation, on the other hand, uses the 3D information of 

the object in order to determine its location and orientation. It can also be further di-

vided into two sub-categories: matching-based and local descriptor-based approaches. 

Matching-based methods directly match the object of interest to a CAD model, while 

local descriptor-based approaches (also called feature-based approaches) use key-

points in order to calculate the object’s pose [4]. Fig. 3 shows a summary of tracking 

by detection methods. 
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Figure 3: Overview of tracking by detection methods for 6D pose estimation 

2.2.1 Learning-based 6D pose estimation 

2.2.1.1 Introduction to neural networks 

Learning-based pose estimation relies on machine learning to estimate the pose of an 

object. Machine learning techniques for finding the 6D pose of an object are mostly 

done using neural networks. This is because neural networks can capture complex 

relationships between input data (e.g., images) and output predictions (e.g., object 

poses). The availability of large-scale labeled datasets and advancements in deep 

learning techniques have further contributed to the widespread use of neural net-

works for pose estimation. 

Artificial Neural Networks (ANNs) consist of layers and nodes. Each node is 

connected to every node of the previous and next layer of nodes, allowing information 

to flow through the network. Nodes within each layer are responsible for computa-

tions and information transformation. Each node receives input signals from the 

nodes in the previous layer, and these inputs are weighted and summed. An activa-

tion function is then applied to the summed input, introducing non-linearities and 

enabling the network to model complex relationships and capture intricate patterns 

in the data [5].  

The architecture of the ANN, which refers to the number of layers, nodes and 

activation functions, is dependent on the specific use case. The number of layers de-

pends on the complexity of the dataset but usually ranges from a few to several dozen. 

The number of nodes also depends on the complexity of the dataset, but a typical 



 

24 

 

range for the number of nodes is between 64 and a couple hundred. The activation 

functions used in pose estimation include Rectified Linear Units (ReLU) or variants of 

the sigmoid or hyperbolic tangent functions.  

Neural networks require training and input data. These typically consist of RGB 

images containing the object. However, RGBD data can also be used to provide addi-

tional depth information that can be beneficial for more accurate pose estimation [6], 

[7]. Using RGBD approaches, the network architecture is designed to process the 

depth data alongside the RGB data using additional channels within the network. Fig. 

4 illustrates an exemplary structure of an Artificial Neural Network. 

 

Figure 4: Example of an Aritificial Neural Network [8] 

A problem with ANNs is that the input size of the neural network can become 

large, resulting in high computational power requirements. This is why CNNs are al-

most always used for computer vision tasks, such as pose estimation. The number of 

input nodes is reduced using some preliminary steps. These steps are, respectively, 

convolution, max pooling, and flattening. The convolution step ensures that only the 

important features (such as edges) of the image are taken as input. Max pooling allows 

for spatial variance, which means that the CNN can still work for warped images. 

Finally, flattening reformats the remaining data in order for it to be valid as an input 

to the ANN. Fig. 5 presents a summary of the preliminary steps taken in CNNs [9]. 
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Figure 5: Preliminary steps of a Convolutional Neural Network [10] 

2.2.1.2 Deep learning 

To train an ANN, initially the weights of the network are given a random value. The 

training process involves forward propagation and back propagation. The term for-

ward propagation refers to the process of computing the output of a neural network 

given an input. Then, using all the nodes, layers and activation functions (which are 

dependent on the specific application of 6D pose calculation), the network can (de-

pending on the specific network) manage the 16 output nodes, which correspond to 9 

rotation values, 3 translation values and the homogeneous transformation matrix. 

Then, the backpropagation step is done. In this step, these output values can be com-

pared to the ground truth. Then, the fault per node is calculated and the weights are 

changed [10]. 

After the network is trained and an input is given to it, certain nodes will activate 

while others do not. For example, if an image of a cardboard box is fed into the ANN 

with a rotation angle of 30° relative to the camera, the nodes within the network's 

layers will activate in a way that generates output values representing the rotation 

matrix. This rotation matrix explicitly indicates that the object is rotated by 30°.  

2.2.1.3 Training data and data annotation 

Training data is crucial for machine learning-based methods. It consists of a lot of 

frames that contain the object in them with the corresponding ground truth pose. This 

data can be acquired using different methods, such as manual annotation, the use of 

depth sensors or synthetic data. 

Manual annotation refers to the time-consuming process of people calculating 

the pose for each frame. Using the depth data from depth-sensing cameras in combi-

nation with known camera poses can also be utilized to generate accurate ground 

truth poses. Another method would be using synthetic data. This method requires a 

CAD model and a virtual camera, which are placed in a virtual environment. This 
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approach can be used if a large amount of data should be generated. After obtaining 

initial training data, a step called data augmentation can be used. Data augmentation 

refers to the process of generating more training data using transformations such as 

translations, rotations and scaling on the object within the virtual environment [11], 

[12]. Fig. 6 shows an example of synthetic and augmented data.  

 

Figure 6: (a) Example of synthetic data (b) Augmented synthetic data to increase the training 
data [13] 

2.2.1.4 Keypoint-based approach 

Keypoint-based approaches and holistic approaches are two different ways of imple-

menting a learning-based 6D pose estimation algorithm. Keypoint-based approaches 

first detect the keypoints on an object, which are then fed into the trained neural net-

work in order to estimate the pose. 

Firstly, they are not end-to-end algorithms, which means they require interme-

diate steps and may not be as well optimized as a single-stage method. Secondly, the 

loss function or cost function used in these approaches cannot accurately represent 

the accuracy of 6D pose estimation, which is a significant limitation. A loss function is 



 

27 

 

some sort of measurement of the model’s performance during training. Existing algo-

rithms include BB8 and PVNET [4], [14], [15]. 

2.2.1.5 Holistic approach 

The holistic approach aims to eliminate the limitations of keypoint-based approaches 

by using an end-to-end architecture. This approach is able to calculate the 6D pose of 

an object without any intermediate steps. As a result, they are faster than key-point-

based approaches. Existing algorithms include PoseNet, SSD-6D and PoseCNN [4], 

[16]–[18]. 

2.2.1.6 RGBD based approach 

Another method for learning-based 6D pose estimation is RGBD-based learning. Al-

gorithms that belong to this approach not only use the color information but also the 

depth information. Because extra information is provided, RGBD-based learning ap-

proaches are generally more accurate than key-point-based or holistic approaches. Ex-

isting algorithms that use RGBD-based learning include DenseFusion, G2L-Net and 

CosyPose [4], [19]–[21]. 

2.2.2 Model-based 6D pose estimation 

Model-based approaches are yet another way of calculating the 6D pose of an object. 

Algorithms that belong to this group always compare the current image of an object, 

from which the 6D pose should be calculated, to some sort of template. 

2.2.2.1 2D model-based approach 

2D model-based approaches only require 2D information about the object. This means 

that it is easier to obtain the necessary information using cheaper devices. In 2D 

model-based approaches, the shapes, colors and textures are used for 6D pose estima-

tion [4]. 

As stated before, the information gathered will be compared to some sort of tem-

plate. This template can either be a real-life image or a CAD model. In the latter case, 

the CAD model generates a 2D image, which will be used for comparison. The ad-

vantage of using the CAD model as a template is that these generated images are often 

of higher quality than the real-life images. This is an important property since it im-

proves the accuracy of pose estimation. Using multiple templates can also improve 

accuracy. Algorithms such as FPM and epipolar geometry methods fall under this cat-

egory [4], [22], [23]. 

Real image-based approaches are used when accurate 3D CAD models are not 

available. HoG and multi-cooperative logos are state-of-the-art algorithms that are 

commonly used for this approach [24], [25]. 
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2.2.2.2 3D model-based approach 

3D model-based approaches require 3D information in order to work, which also im-

plies that they are more robust than the previous method. In matching-based ap-

proaches, the current 3D image is compared to either a single CAD model or to mul-

tiple CAD models. 

When compared to a single CAD model, the 6D pose relative to the CAD model 

is computed. In contrast, when comparing to multiple models, the one with the high-

est correlation is chosen as the corresponding model, and the rotation and translation 

values relative to that model are computed. Algorithms that are used for 3D matching-

based approaches include PCOF-MOD in combination with BPT [26]. 

In local descriptor approaches, two point clouds (a reference and a source) are 

compared. One of those (the source) is moved around using a transformation matrix. 

With this transformation matrix and the known pose of the reference, the 6D pose of 

the object can be found. When using global registration, which means that no manual 

alignment is required, geometric features are first found in order to find correspond-

ing points between the two point clouds. Algorithms used for a 3D model-based ap-

proach are ICP, FPFH and RANSAC [27], [28]. 

2.2.3 Limitations of existing detection approaches 

In this section, the advantages and disadvantages previously discussed will be 

discussed. While Table 1 illustrates the general performance for each method, it is 

important to note that the specific algorithm used can impact these values. 

Accuracy is a measure of how well a technology can determine the translation 

and rotation of an object. Storage cost refers to the amount of data required for the 

method to work. Robustness measures how much performance suffers when noise or 

environmental changes occur. The time cost is the amount of time and computational 

resources required to run the algorithm. Range of application refers to the specific 

scenarios or objects that a 6D pose estimation approach is well-suited for [4].  
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TABLE 1  Overview of advantages and disadvantages of each approach. 3 represents the 
best (performance), and 1 represents the worst (performance) [4] 

Division 
Subdivi-

sion 
Accu-
racy 

Stor-
age 
cost 

Robust-
ness 

Time 
Cost 

Online per-
formance 

Range of 
Applica-

tion 

Learning-
based 

pose esti-
mation 

Keypoint-
based 

2 2 2 1 1 2 

Holistic 1 2 2 2 2 2 

RGBD-
based 

3 1 3 1 1 1 

Model-
based 

pose esti-
mation 

2D model-
based 

2 3 1 3 3 3 

3D model-
based 

3 2 2 2 2 1 

 

In addition to each approach having its own advantages and disadvantages, 

there are some general challenges concerning pose estimation. The most important 

and difficult challenges are [4]: 

- Textureless objects do not allow for easy extraction of features since the algo-

rithms that determine those features prefer clear boundaries between edges 

and corners. The extraction of the 3D image is also more difficult. To overcome 

the latter, a device that does not rely on texture, such as Light Detection and 

Ranging (LIDAR), is used for depth calculation. 

- Object occlusion presents another challenge for pose estimation. This means 

that the object being tracked is obscured by other objects. As a result, not all of 

the features of the object are detected, resulting in a more difficult process of 

matching to a template when using a model-based approach or less accuracy 

when using a learning-based approach. 

- Reflections of objects are a challenge. High levels of reflection can make it dif-

ficult to accurately calculate the object's features. Additionally, objects with low 

or high reflection can pose difficulties in acquiring depth information. 

- Noise in the data can interfere with accurate feature detection on the object. 

- Computing power is rather high for tracking by detection algorithms. 

- Registration becomes more challenging when dealing with deformable objects 

such as clothing. 
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2.3 Temporal tracking methods 

The previously discussed methods all belong to tracking by detection algorithms, 

which means they determine the 6D pose of objects from a single image. Several of 

those methods could be used in real-time, but their accuracy is limited. Also, because 

these methods rely on a single image, they ignore the temporal and spatial 

information across consecutive image frames, which may lead to inconsistent pose 

estimations across consecutive frames [29]. 

Temporal tracking methods can be divided into model-based methods, feature-

based methods, deep learning-based methods and graph-based methods [30]–[32]. Fig. 

7 shows a summary of tracking by detection methods. 

 

Figure 7: Overview of temporal tracking methods for 6D pose estimation 

2.3.1 Feature-based methods 

Feature-based algorithms do not require a model. These methods can compute the 

object's pose by extracting relevant features from a specific area, and then comparing 

and matching them with features from the previous frame. Leveraging the algorithm's 

understanding of the known pose in the prior frame and the transformations between 

the previous and current frame's keypoints, it can accurately determine the object's 

pose in the current frame. Algorithms used for feature-based approaches are Optical 

flow, Lucas-Kanade Tracker and Kanade-Lucas-Tomasi Tracker [33]–[35]. 
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2.3.2 Model-based methods 

Model-based methods are also an option for temporal tracking methods. These meth-

ods can also be further divided into 2D or 3D model-based approaches. However, the 

algorithms that belong to model-based temporal tracking methods also refine or con-

strain the estimated pose by leveraging information from previous frames. 

Motion estimation is one technique that can be used to improve the speed of this 

method. As the pose of the previous poses is known, some predictions can be made 

for the position and rotation of the object. This prediction serves as a starting point for 

the tracking process, reducing the search space and computational load. 

Using the position and rotation of the previous frames, some constraints regard-

ing the object's pose can also be made. If the predicted pose of the object for the current 

frame is wildly different from the calculated pose of the previous frame, these results 

can be flagged as inaccurate and recalculated. Particle swarm optimization and ge-

netic algorithms are methods that are commonly used for this approach [36], [37]. 

2.3.2.1 2D model-based approach 

In 2D model-based approaches for temporal tracking methods, the features of the ob-

ject are extracted from the current image and compared to a set of 2D feature de-

scriptors that originate from either a CAD model or real-life images. However, the 

estimated pose is refined by leveraging the information from the previous frames. 

Temporal information can also be used to improve the speed of the 2D model 

tracking method. Since the keypoints of the object in the frame are compared to the 

keypoints of 2D models, a constraint can be used to reduce the number of models it 

needs to compare to. It relies on spatiotemporal consistency, which means that the 

object will not move abruptly from one frame to another. This means that it can rule 

out a large number of models to compare with [30]. 

2.3.2.2 3D model-based approach 

3D model-based approaches use a CAD model in combination with three-dimensional 

data to determine the 6D pose of the object. The temporal aspect of these methods 

comes into play by utilizing the pose estimate from the previous frame to initialize 

and constrain the pose of the object. Local registration methods, such as ICP, are then 

used to refine the estimated pose [30]. 

2.3.3 Learning-based methods 

These methods use trained neural networks to estimate the 6D pose of the object. Like 

in the learning-based methods for tracking by detection systems, the architecture of 

the network depends on the use case. However, in neural networks that are optimized 
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for temporal tracking, the model is adjusted so that previous frames or poses can also 

act as input for the neural network. 

By increasing the amount of information the neural network receives, it is able 

to output more accurate results. Existing algorithms include VIPose and TrackNet [38], 

[39]. 

2.3.4 Graph-based methods 

Graph-based methods are methods that extend upon model-based pose estimation or 

deep learning-based methods. After the pose is estimated using one of those methods, 

the result is stored in a pose graph. This pose graph consists of nodes and edges. 

Nodes correspond to a particular pose of the object in a particular frame. The position 

of these nodes is dependent on the calculated pose. Edges are lines that connect these 

nodes and represent the difference between the poses of the nodes. 

The reason the calculated poses are stored in a pose graph is because pose 

refinement, also called pose graph optimization for these methods, can be done using 

these pose graphs. ICP in combination with pose graph optimization is a commonly 

used approach [40]. 

2.3.5 Limitations of existing tracking methods 

Table 2 highlights some of the advantages and disadvantages of each method for 

temporal tracking for 6D pose estimation: 

TABLE 2  Overview of advantages and disadvantages of each temporal tracking 
approach [30] 

Method Advantages Disadvantages 

Feature-based Very fast Not as accurate 

Model-based 
High accuracy 

Can handle occlusions 
Improved robustness 

Requires a model of the object 
Requires a lot of computational 

power 

Learning-based Can handle occlusions 

Requires large amounts of training 
data 

Computationally demanding during 
training and inference 

Requires a model of the object 

Graph-based Can handle occlusions 
Requires a lot of computational 

power 
May require initialization 
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Pose estimation is a complex task that involves numerous challenges and diffi-

culties. The process of accurately determining the 6D pose of an object requires over-

coming various obstacles. Each approach to 6D pose tracking brings its own set of 

advantages and disadvantages, contributing to the complexity and diversity of this 

field.  

The selection of a particular 6D pose tracking approach involves considering the 

specific advantages and disadvantages associated with each method. Addressing the 

challenges of occlusions, real-time performance, and sensor modalities will continue 

to drive research and innovation in the field of pose estimation, enabling its applica-

tions in diverse domains. 

2.4 Input modalities 

Various algorithms for 6D pose estimation necessitate specific types of input data. 

Some algorithms solely rely on 2D information, which can be obtained using a simple 

RGB camera. However, to achieve a more accurate pose estimation, 3D information of 

the object becomes necessary. Different sensors can be utilized to obtain depth images, 

with LIDAR and stereo cameras being the most commonly employed options. How-

ever, it is important to note that certain algorithms are tailored to work with specific 

camera types due to the distinct output they provide. 

Stereo cameras consist of two separate RGB cameras positioned adjacent to each 

other at a known distance. These types of cameras use a disparity map to calculate the 

distance to objects. A disparity map comprises disparity values, which denote the dis-

tance between corresponding points on different images. Through a mathematical 

process known as epipolar geometry, these disparity values can be converted into 

depth values [41]. 

For example, when two RGB cameras capture simultaneous images, the corre-

sponding pixels between these images are extracted, and a disparity value is calcu-

lated. This disparity value is subsequently translated into a distance measurement. 

LIDAR cameras operate based on the principle of time-of-flight. They emit short 

wave pulses towards a target and calculate the distance by measuring the time it takes 

for the light to be received back [42]. Both input modalities offer distinct advantages 

and disadvantages. A comparison between LIDAR and RGBD is found in Table 3. 
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TABLE 3  Overview of advantages and disadvantages of LIDAR and stereo cameras [43], 
[44] 

Camera 
type 

Advantages Disadvantages 

LIDAR 

High precision 
High data rate 

Stable and reliable 
Not influenced by temperature or 

light 

Adverse weather performance 
Eye safety regulations limit LIDAR’s signal 

strength 
 Tied to the reflectivity of the object 

Stereo 
Low-cost 

Provides RGB data 

Poor long-distance performance 
Poor performance in low-light environ-

ments 
High computational resource requirements 

 
Typical examples of LIDAR cameras include the well-known Velodyne cameras, 

as well as the Ouster, RealSense and Livox cameras [45]–[47]. In terms of stereo cam-

eras, widely used options include the ZED stereo camera, Intel's RealSense stereo cam-

eras, and the Bumblebee stereo camera series [48]–[50]. 

For the specific use case addressed in this paper, a LIDAR camera would be the 

optimal choice. LIDAR cameras offer distinct advantages, such as being unaffected by 

lighting conditions, providing high precision, and enabling long-range operation. 

These characteristics make LIDAR cameras well-suited for the requirements of the pa-

per's application. 

The RealSense L515 LIDAR camera is utilized in this master's thesis to test the 

method employed for 6D pose estimation. However, it is important to note that, be-

cause it is designed for indoor applications and only works up to 9 meters, this camera 

is not suitable for real-world use cases and is primarily intended for testing purposes 

within the context of the thesis [51]. 
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As discussed in the literature review, various methods were explored for calculating 

the 6D pose of the object. Given that ACRO aims to fully automate the real-time pro-

cess of picking and placing palloxes, speed becomes a crucial factor. Therefore, the 

focus of the paper was solely on temporal tracking methods, excluding tracking by 

detection methods due to their limited potential for real-time implementation. 

While model-based methods generally offer improved accuracy, they require 

computationally intensive comparisons between features of models. Deep learning-

based methods provide a potential solution, but acquiring training data with instance-

level models can be challenging, and category-level models often yield average results 

[1]. Additionally, generating custom training data poses laborious challenges. 

Feature-based methods have limited accuracy due to their reliance on temporal 

information from the previous frame, resulting in high drift. On the other hand, 

graph-based methods are computationally heavy, requiring substantial computa-

tional resources for optimizing the pose graph. 

However, a solution was devised to mitigate the disadvantages of both feature-

based and graph-based methods. By combining these approaches in an algorithm and 

implementing techniques to optimize the graph-based methods, this approach effec-

tively overcame accuracy limitations and alleviated computational heaviness. 

3.1 Introduction to BundleTrack 

This paper utilizes the BundleTrack framework, which was introduced in 2021 by B. 

Wen and K. Bekris. The framework combines various techniques to achieve accurate 

6D pose tracking without the need for pre-existing instance- or category-level models. 

This implies that the method is applicable to novel objects without any training or 

predefined models. This aspect is significant considering the time-consuming process 

of creating models for certain objects. 

3 METHODOLOGY 
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BundleTrack accomplishes this by integrating a feature-based method with 

pose-graph optimization. Additionally, the framework incorporates algorithms for 

object segmentation and introduces enhancements to the general pose graph optimi-

zation models through the selection of keyframes. 

To handle the computational intensity of multi-pair feature matching and pose-

graph optimization for 6D object pose tracking, BundleTrack utilizes an efficient 

CUDA implementation. This allows for parallel processing on a GPU instead of se-

quential computation on the CPU. 

It is important to note that BundleTrack functions as a temporal tracking method, 

computing the pose relative to the initial frame. Therefore, the accuracy of the initial 

pose provided to the algorithm greatly influences the output of BundleTrack. Obtain-

ing this initial pose relies on a tracking by detection algorithm, which is used for a 

limited number of frames. The performance and precision of this supplementary 

method are crucial, as the overall accuracy of BundleTrack relies on the accuracy of 

the initial pose estimation method [3]. 

3.1.1 Working principle of BundleTrack 

3.1.1.1 Main components of BundleTrack 

BundleTrack serves as a versatile framework designed to track the 6D pose of novel 

objects. It eliminates the need for instance-level or category-level models. The frame-

work leverages the strengths of advanced segmentation and feature extraction algo-

rithms. Additionally, it integrates memory-augmented pose graph optimization, en-

suring consistent spatial and temporal tracking. This powerful combination facilitates 

resilient and precise tracking, even in the presence of challenges such as occlusions 

and object movements. 

The framework consists of multiple interconnected components, each contrib-

uting to the overarching objective of determining the 6D pose of an object. The initial 

component is the video segmentation network, responsible for generating segmented 

images that highlight the object of interest from the background. The subsequent com-

ponent then identifies the object's features, such as distinct spots or edges, and per-

forms data association by comparing these features to the previous frame. This pro-

cess enables BundleTrack to make an initial estimation of the object's 6D pose based 

on the feature's relative position to the previous frame. 

Furthermore, BundleTrack incorporates a keyframe memory pool, which plays 

a crucial role in the pose graph optimization algorithm. This algorithm refines the in-

itially estimated pose by utilizing the information stored in the keyframe memory 

pool. Fig. 8 provides a global overview of the algorithm. Detailed explanations of each 

individual component will be presented in the subsequent sections. 
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Figure 8: Working principle of BundleTrack [3] 

3.1.1.2 Video segmentation network 

The initial step of the BundleTrack algorithm involves utilizing a segmentation net-

work to highlight the object of interest for subsequent stages. 

To begin, BundleTrack takes RGB and RGBD images as input. Once the images 

are loaded, a video segmentation network is employed to extract the object of interest 

as a binary mask from the image. This binary mask represents the region of interest 

(ROI) by highlighting it in white, while the background is depicted in black. 

Multiple algorithms can accomplish this task. Most of these compute the mask 

for each image independently, such as Mask-RCNN [52]. However, these algorithms 

are generally less efficient. The approach adopted in this study involves utilizing the 

Transductive Video Object Segmentation (T-VOS) network. 

The T-VOS network is a neural network trained on a large dataset. Through 

training, the network learns to predict object masks at pixel level based on the input 

image. Its training on a diverse dataset encompassing various objects, backgrounds, 

and scenarios enables it to perform effectively on nearly any novel object encountered. 

To utilize the trained network, an initial mask is provided, serving as the starting 

point for the subsequent frame. The network employs the knowledge acquired during 

training to refine the mask for the new frame by considering the object's appearance 

within the image. Additionally, the T-VOS network incorporates temporal infor-

mation from previous frames, utilizing the evolution of prior object masks to ensure 

consistent segmentation results [53]. 

3.1.1.3 Keypoint detection and feature descriptors 

In the next step of the BundleTrack algorithm, the focus shifts towards detecting the 

keypoints associated with the object, which constitute its distinctive features within 

the image. Once the keypoints are detected, a feature vector is generated based on 

these characteristics. BundleTrack utilizes both the Learnable Feature-Net (LF-Net) 

and the Scale Invariant Feature Transform (SIFT) algorithms, which are employed for 

both keypoint detection and feature descriptor extraction [3], [54]. 

LF-Net consists of two subnetworks: the keypoint subnetwork and the descriptor 

subnetwork. The keypoint subnetwork is trained to identify potential keypoints 
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within the ROI, while the descriptor subnetwork extracts feature descriptors using the 

image and the calculated keypoints. 

The network was trained using ground truth data containing keypoint locations 

and feature descriptors. During the training process, the network learned to optimize 

the parameters of both subnetworks simultaneously. This optimization ensures that 

the loss function considers both keypoint localization and feature descriptor produc-

tion, aligning them effectively for accurate matching [55]. 

Additionally, BundleTrack also leverages the SIFT algorithm to determine fea-

ture descriptors for the object. This involves analyzing the image at various scales to 

identify potential keypoints. This analysis is performed using a Difference-of-Gauss-

ian (DoG) filter. This filter highlights regions in the image where there are noticeable 

changes in intensity, indicating keypoints. 

Subsequently, the positions of these keypoints are further refined by analyzing 

the local neighborhood surrounding each keypoint. This refinement process involves 

scrutinizing the intensity values and gradients of nearby pixels, leading to improved 

accuracy in keypoint localization. Once the keypoints are accurately determined, the 

SIFT algorithm generates a descriptor for each refined keypoint, capturing important 

information about its appearance and characteristics [56]. 

3.1.1.4 Feature matching and pose estimation 

When the feature descriptors of two consecutive frames are found, the process of fea-

ture matching is initiated. Feature matching involves finding correspondences be-

tween the detected features across multiple frames. 

To accomplish this, the nearest neighbor matching algorithm is employed. This 

algorithm compares the feature descriptors of one image with those of another image, 

aiming to find the closest match based on the total Euclidean distance of all the fea-

tures in both images [57]. 

Once the nearest neighbor algorithm performs an initial calculation for feature 

matches, another algorithm called Random Sample Consensus (RANSAC) is utilized. 

RANSAC is an iterative algorithm that selects a small subset of matches from the near-

est neighbor algorithm. It then estimated a transformation matrix that would convert 

the features from the subset in one image to the corresponding features from the same 

subset in the other image. RANSAC evaluates the remaining matched features by ap-

plying the same transformation matrix and assessing the distance to the correspond-

ing features in the secondary image. If the distance falls below a certain threshold, the 

feature is considered an inlier; otherwise, it is ruled an outlier. RANSAC keeps track 

of the number of inliers obtained for this subset of features. 

These preceding steps are repeated for a specific number of iterations. After all 

the iterations, the transformed model with the highest number of inliers was regarded 

as the most reliable estimate of the transformation between the two images. Any 
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feature whose distance to the model exceeds a certain threshold is flagged as false and 

removed [58]. 

Since RANSAC already calculates a transformation matrix and identifies the best 

model, an initial estimation of the pose has already been computed. However, this 

estimated pose might still contain some inaccuracies due to the presence of noise in 

the data. Therefore, the estimated pose is refined to improve its accuracy. 

3.1.1.5 Refinement of the estimated pose 

Up to this stage, BundleTrack employs various algorithms to compute the object's 

pose by leveraging temporal information from the previous frame. However, to min-

imize drift, BundleTrack also integrates a pose graph optimization step. Consequently, 

the algorithm not only considers the previous frame but also incorporates additional 

frames known as keyframes. 

Whenever frames are processed by the BundleTrack algorithm, those with min-

imal motion distortion are stored in the keyframe memory pool. Subsequently, when 

refining the pose of an object in an image, pose graph optimization is performed using 

a subset of the stored keyframes from the memory pool. The selection of this subset is 

based on their mutual viewing overlap with the current frame, ensuring that 

keyframes capturing similar perspectives of the object are chosen for participation in 

the pose graph optimization step. 

The pose graph optimization step leverages the temporal information from not 

just the previous frame but several frames sharing similar viewpoints. The algorithm 

aims to minimize the total energy of the pose graph, which encompasses the feature 

matching error (𝐸𝑓) and geometric error (𝐸𝑔).  

To minimize 𝐸𝑓, the algorithm seeks correspondences between features in the 

current frame and features from the keyframes. For instance, consider a pose graph 

consisting of three nodes: two keyframes (node A and node B), and one node (node C) 

representing the current frame requiring refinement. When examining a specific fea-

ture, such as a corner, the program utilizes the corresponding feature descriptor of 

this corner and the pose information from nodes A and B to refine the pose of node C. 

Meanwhile, to minimize 𝐸𝑔, the program assesses the overall object geometry within 

each node, facilitating further refinement of the node. 

By incorporating not only temporal information from the previous frame but 

also information from all frames with similar viewpoints, BundleTrack ensures low-

drift performance [3]. 
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3.2 Implementation of BundleTrack algorithm 

To ensure the correct execution of BundleTrack, certain steps needed to be followed. 

These steps included fulfilling the prerequisites for running BundleTrack, prepro-

cessing the data, and making specific adjustments to enable BundleTrack to work with 

the data according to my use case. 

3.2.1  Prerequisites 

To address the computational complexity of pose graph optimization, as highlighted 

in Section 2.3.5, a GPU was employed for specific stages of the algorithm. Specifically, 

BundleTrack optimized its code by implementing a Compute Unified Device 

Architecture (CUDA) version to execute the multi-pair feature matching and pose-

graph optimization for efficient 6D pose tracking. CUDA is a software development 

platform designed to accelerate parallel computing. It breaks tasks down into multiple 

threads that are executed separately, allowing the GPU to run numerous threads 

simultaneously, resulting in improved computational speed. This enables developers 

to leverage the GPU for general-purpose processing [59]. 

It is important to note that CUDA is exclusively compatible with NVIDIA GPUs, 

although not all NVIDIA GPUs support all CUDA versions. To determine 

compatibility, the compute capability of the GPU must be identified. The compute 

capability refers to the architectural version of an NVIDIA GPU, which determines the 

features and capabilities it supports. Reference [60] can be consulted to verify whether 

a specific compute capability is supported by a certain CUDA version. 

BundleTrack heavily depends on external dependencies. Docker images were 

created to facilitate the installation of required the libraries for running BundleTrack. 

Docker is a platform that aids in building, sharing, and running applications by 

packaging them into a single file containing all necessary dependencies. While Docker 

offers advantages such as readability, version control, and portability, it does not 

support persistent storage. This means that all program files are stored directly in the 

operating system (OS) environment. Consequently, Docker images may not always be 

fully system-independent. For example, while BundleTrack provides a Docker image 

with most of the necessary libraries, the program relies on storing files on the system, 

highlighting the importance of selecting the appropriate OS for its successful 

execution [61], [62]. 

BundleTrack was originally developed for Linux operating systems. However, 

it might be possible to run the code in Windows using Windows Subsystem for Linux 

(WSL), which is a compatibility layer enabling the native execution of Linux binaries 

on Windows without the need for a virtual machine. With WSL, the Linux file system 

can be utilized to save files outside the container. Nevertheless, various errors were 
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encountered when attempting this approach, and the forum did not provide clear 

solutions. As a result, a Linux distribution was installed [63]. 

For this paper, the BundleTrack program was executed using a GTX 1660S 

(Super) GPU on Ubuntu 20.04 with CUDA version 10.1. Despite using the Docker 

images with external dependencies and the aforementioned setup, several errors still 

arose. This was primarily due to the additional commands required to install the 

NVIDIA Container Toolkit, which relies on the pre-existing installation of the CUDA 

runtime and driver program on the system. This program provides the essential 

components for GPU acceleration, and the NVIDIA Container Toolkit utilizes these 

components to enable GPU acceleration within Docker containers [64]. 

Due to the considerable effort invested in resolving issues and running 

BundleTrack without errors, a comprehensive document was prepared to assist 

ACRO in the installation and utilization of BundleTrack. The document also includes 

an explanation and instructions for custom code developed to ensure the correct 

execution of BundleTrack, which will be further discussed in Section 3.4.  

3.3 Initial mask generation 

As observed in Section 3.1.1.2, BundleTrack necessitates an initial binary mask to ini-

tiate the process of determining the 6D pose for each frame. Since the primary objec-

tive is the real-time usage of BundleTrack, automating the creation of the initial mask 

is essential. Hence, this paper adopts the Segment Anything Model (SAM) developed 

by Meta AI Research in conjunction with the Grounding DINO algorithm. 

SAM is a versatile segmentation system that can handle unfamiliar objects and 

images without requiring additional training [65]. It is a recently released program, 

introduced on April 5, 2023. Utilizing SAM, any object within an image can be seg-

mented by providing input prompts such as foreground and background points or 

bounding boxes. SAM comprises three main components [66]: 

- The Image Encoder: This encoder processes the input image. The image un-

dergoes several steps of processing, resulting in a numerical representation 

that captures crucial features. SAM employs a larger variant of the Vision 

Transformer (ViT) model called ViT-H. 

- The Prompt Encoder: This component changes the input prompt into a nu-

merical representation, commonly referred to as embedding, to improve the 

model's comprehension of the desired segmentation. Currently, available in-

put options include defining a bounding box or selecting a single point. 

- The Mask Decoder: This decoder utilizes the image embedding from the ViT-

H encoder and the prompt embedding to predict masks representing the ob-

ject segmentation within the image. 
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In terms of SAM's speed, when utilizing an NVIDIA A100 GPU, the image en-

coder typically requires approximately 150 ms to execute, whereas the prompt en-

coder and mask decoder take around 50 ms each. Fig. 9 illustrates the overview of the 

SAM workflow. 

 

Figure 9: Working principle of SAM [66] 

By combining these three components, SAM achieves object segmentation in an 

image. However, solely relying on this algorithm falls short of enabling real-time func-

tionality for BundleTrack, as the algorithm requires some form of input. One possible 

approach is to utilize point input prompts. Nevertheless, it has been demonstrated 

that this approach can yield inaccurate results, as demonstrated in Fig. 10. 
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Figure 10: SAM using point input prompt 

Another approach would involve using the (inaccurate) bounding box of the 

pallox. In this case, the coordinates of the upper left corner and the bottom right corner 

of the wooden box are required. By providing these coordinates to SAM, the algorithm 

can generate a mask containing the complete wooden box. 

3.3.1 Utilizing color-based filtering to obtain the object's bounding box 

To find these coordinates, color-based filtering could be employed. Code has been 

made that processes the frame and identifies regions of brown within a specified color 

range. It then detects the contours of these brown regions and selects the contour with 

the largest area. The bounding box of this selected contour is calculated to determine 

the object's location and size in the image. 

Nevertheless, this method is not foolproof, as there is a possibility of encounter-

ing a brown object in the frame that is larger than the wooden box. Additionally, the 

method may fail when the object is in shadow or exposed to excessive light, leading 

to a change in color and potential a failure in detection. Due to the limitations and 

potential failures of the color-based filtering method, a different solution was chosen 

as an alternative. An example of a failure case is shown in Fig. 11. 
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Figure 11: Failure case of using color-based filtering for bounding box extraction 

3.3.2 Employing text input prompts for acquiring the object's bounding box 

In their paper, SAM also explores the use of text inputs. This approach would enable 

the program to segment an object immediately based on input such as "wooden box." 

However, this capability has not been released yet. Therefore, for this paper, a pro-

gram called Grounding DINO is utilized instead. Grounding DINO requires both an 

image and text as input. It then calculates several object bounding boxes, each with its 

own accuracy score. The final output is determined by selecting the bounding box 

with the highest accuracy score above a certain threshold [67]. 

Grounding DINO is an object detector specifically trained to handle novel objects 

by generalizing from the known objects it was trained on. Grounding DINO adopts a 

dual-encoder-single-decoder architecture. One encoder is responsible for extracting 

image features, while the other encoder extracts features from the input text. 

These features are then passed to the feature enhancer, where cross-modality 

feature fusion takes place. This process involves combining the extracted features, en-

abling the algorithm to gain a comprehensive understanding of what to search for in 

the image. 
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Subsequently, a query selection module generates queries based on the text 

prompt. For instance, when the input image contains a pallox and the text prompt is 

"wooden box," the generated queries may include descriptors like "brown" to corre-

spond with the term "wooden" and "90° edges" to relate to the term "box" within the 

text prompt. These queries guide the algorithm's attention to relevant features within 

the image. 

The process continues with cross-modality decoding, which involves locating 

the features corresponding to the generated queries. Finally, the gathered information 

is utilized to predict the object's location and bounding box [68].  

Fig. 12 presents the output of both Grounding DINO and SAM. The output of 

Grounding DINO includes the object's bounding box. Additionally, it showcases the 

result of SAM, specifically the generated mask derived from the input provided by 

Grounding DINO. 

 

Figure 12: Output of Grounding DINO and SAM 
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3.4 Customization of BundleTrack 

After downloading and installing all the required dependencies mentioned in Sections 

3.2 and 3.3, it was crucial to appropriately process the input data to ensure error-free 

execution of BundleTrack. For this purpose, several Python scripts were developed 

specifically to preprocess the input data. Each script is accompanied by a require-

ments.txt file, which specifies the necessary Python version and the required Python 

libraries along with their corresponding versions. 

To ensure that my efforts could be utilized by ACRO, a comprehensive docu-

mentation file was also prepared. This document offers detailed explanations of the 

purpose and usage of each script, along with a recommended sequence for executing 

them. 

Here is a summary of the scripts involved in the data preprocessing stage. These 

scripts are responsible for preparing the data to be compatible with the BundleTrack 

algorithm: 

- Depth_converter.py: This Python script converts the depth images to the ap-

propriate millimeter scale required by BundleTrack. Since the RealSense L515 

camera used in this study produces depth images at a scale of 0.00025 m, this 

script ensures their conversion to the correct scale. 

- Rename_resize_rgb_depth_images.py: This script serves the purpose of renam-

ing the RGB images and depth images while also resizing the RGB images. The 

resizing is necessary to minimize GPU memory usage during mask calculations 

by LF-Net. Large image sizes can cause program crashes, so resizing mitigates 

this issue. 

- Inference_on_a_image.py: This script enables the execution of Grounding 

DINO, allowing for detecting the bounding box of the pallox for the initial im-

age. 

- Segmentation.py: This script employs SAM to generate the initial mask re-

quired for BundleTrack. 

In addition to incorporating the necessary code to enable the functionality of 

BundleTrack, modifications to the algorithm itself were essential for its successful ex-

ecution. When applying BundleTrack to the pallox data using the default settings, the 

algorithm encountered difficulties in accurately tracking the object's pose when the 

camera movement was relatively fast. 

To address this issue, BundleTrack offered a configuration file that allowed users 

to adjust various algorithmic settings. The configuration file encompassed parameters 

pertaining to depth images, bundle adjustment, keyframes, the SIFT algorithm, fea-

ture correspondences and RANSAC calculations. 
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To resolve the problem at hand, it was necessary to expand the search space for 

identifying the nearest neighbor, thereby improving the algorithm's ability to handle 

faster camera movements. 
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When utilizing BundleTrack to calculate the pose of the wooden box, the algorithm 

produces the output in the form of text files. This means that in order to accurately 

assess the performance of BundleTrack, visualizing the results is crucial. This visuali-

zation provides valuable insights into how the algorithm performs. However, the pa-

per also included various metrics for a more objective evaluation. 

Determining the ground truth is essential for obtaining an objective evaluation. 

The ground truth poses serve as reference points, allowing for a precise assessment of 

the algorithm's accuracy. With the ground truth poses established, various metrics can 

be calculated, including the Area Under Curve (AUC) measured by the Average Dis-

tance of Model Points (ADD) score and the Average Distance of Model Points–Sym-

metry (ADD-S) score. Additionally, the average rotation and position errors are com-

puted, and a graph is generated to visualize these errors per frame. Finally, the time 

required to compute the pose per frame is recorded for further analysis. 

4.1 Camera calibration 

To ensure accurate results and evaluate the performance of BundleTrack, it is neces-

sary to calibrate the camera before setting up the experimental setup. The camera used 

in this study is the Intel RealSense L515, which utilizes LIDAR technology for depth 

measurements. However, since many applications, including BundleTrack, require 

depth images rather than point cloud data, typically produced by LIDAR cameras, the 

RealSense camera automatically converts the acquired data into an RGB stream and 

depth images.  

The RealSense L515 camera is designed for indoor environments and has a lim-

ited range of up to 9 meters. It employs a rolling shutter instead of a global shutter, 

4 EXPERIMENTAL SETUP AND EVALUATION 
METRICS 
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introducing motion blur that can pose challenges for BundleTrack. This camera is suit-

able for close-range objects and slow movements, making it unsuitable for real-world 

use cases. 

To calibrate the camera, a checkerboard with a known size was created using 

[69]. Multiple images of the checkerboard were captured at different rotations. Subse-

quently, the code provided in [70] was utilized to obtain the camera's intrinsic matrix 

and distortion coefficients. 

The camera intrinsics encompass specific parameters such as the focal lengths 

and the coordinates of the principal point. It is represented by a 3x3 matrix with the 

following form: 

[
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 

Here, 𝑓𝑥 and 𝑓𝑦 denote the focal lengths in the x and y directions, while 𝑐𝑥 and 

𝑐𝑦 represent the pixel coordinates of the principal point. Distortion coefficients are 

presented as a 1x5 vector with the following general form: 

[𝑘1 𝑘2 𝑝1 𝑝2 𝑘3] 

The 𝑘1,𝑘2 and 𝑘3 parameters define the amount of radial distortion in the cap-

tured image, while 𝑝1 and 𝑝2 are related to tangential distortion. These parameters 

are crucial for accurate pose calculation and result visualization. It is important to note 

that these parameters are specific to the camera being used and not the camera type. 

In addition to the camera, the hardware used also influences the speed results of 

BundleTrack. In this study, the proposed algorithm was tested on an AMD Ryzen 3 

3300x CPU and an NVIDIA GeForce GTX 1660 Super. 

The object that was used for evaluation was a wooden box with the following 

dimensions: a width and length of 123 cm, a thickness of 2 cm, a height of 59.5 cm 

without the lower part and a total height of 74 cm. 

4.2 Creating a model of the pallox 

As mentioned earlier, BundleTrack does not rely on a model to compute the 6D pose 

of the object. However, to obtain an objective assessment of BundleTrack's 

performance, ground truth information is necessary. Various ground truth methods 

were explored in this study, all of which require a model to function. 

To generate a point cloud model of the pallox object, a CAD model is needed. 

For this paper, FreeCAD was utilized, and the model was exported in STD format. 

The model is visualized in Fig. 13.  
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Figure 13: Visualization of model in STD format 

To obtain the required ground truth, the model needs to be converted into a 

point cloud format. For this purpose, a program called CloudCompare is utilized to 

convert the CAD model from STD format to PLY format. Fig. 14 illustrates the point 

cloud model of the pallox.  

 

Figure 14: Visualization of model in PLY format 
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4.3 Obtaining the ground truth pose 

4.3.1 Obtaining ground truth pose using 6DposeAnnotator 

The ground truth pose is obtained using a program called 6DposeAnnotator by 

Sakizuki, which serves as an interactive 6D pose annotation tool for point cloud 

processing [71]. The program allows the user to transform a point cloud model to align 

it with an RGB image, enabling the extraction of the object's pose for that particular 

frame. 

Upon loading the program, the RGB image, depth image, camera intrinsics, 

point cloud model, and initial transformation are provided by the user. The depth 

images are crucial for automatically scaling the point cloud model, based on its 

position in the image and for facilitating the ICP algorithm, which will be explained 

later. 

Once all the parameters are loaded, the point cloud model is downsampled to 

reduce its density. The downsampled model is then transformed using the initial 

transformation, if available. Subsequently, a visualization window is created, 

displaying the RGB image with the downsampled point cloud model overlaid. 

The 6DposeAnnotator awaits user input for further interaction. To perform the 

translation of the point cloud, the user simply needs to click on the image. The 

program then retrieves the depth value associated with that position, converting it 

into a 3D position within the camera coordinate system. This resulting position 

represents the translation vector. In addition to translation, the user has the capability 

to rotate the point cloud around the x, y, and z axes. As the user applies rotation, the 

program updates the rotation matrix accordingly to visualize the new orientation of 

the point cloud. 

Additionally, the program incorporates the iterative closest point (ICP) 

registration algorithm for pose refinement. ICP is a local registration method used to 

align two point clouds: the point cloud model and the depth data transformed into a 

point cloud. It accomplishes this by identifying corresponding points between the two 

point clouds and estimating a transformation that minimizes the distance between 

them [28]. 

Once the user is satisfied with the alignment between the point cloud and the 

object in the RGB image, the final transformation matrix can be saved. Custom code 

has been developed to transform this output into the correct format. 

However, annotating all frames manually for evaluation purposes can be time-

consuming. To address this, modifications have been made to the program, leveraging 

the principle of spatiotemporal consistency. This means that the object's pose should 

change gradually over time and follow a realistic trajectory rather than abruptly 

jumping from one position to another. 
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As a result, the program has been adjusted to only manually annotate the first 

pose, while the poses for subsequent frames are automatically refined using ICP on 

the pose of the previous frame. Fig. 15 shows the first manually annotated pose, as 

well as the poses for frames 10, 20, and 30, respectively. 

 

Figure 15: Manually annotated pose for frame 1 and automatically annotated poses for frames 10, 
20, and 30 using 6DPoseAnnotator 

Fig. 15 demonstrates that manually annotating the pose using 6DPoseAnnotator 

yields accurate ground truth poses. However, when examining frames that are auto-

matically annotated using ICP (frames 10, 20, and 30), it becomes evident that the ICP 

calculation is not sufficiently accurate to serve as ground truth. 

The reason ICP fails to work effectively in this particular use case is due to the 

limitations of the RealSense L515 camera, which does not provide depth data with the 

required level of accuracy for ICP usage. For instance, as depicted in Fig. 16, the RGB 

image and depth image for frame 10 illustrate that the edges of the wooden box are 
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not distinctly defined in the depth image. When the depth information does not pro-

vide distinct object edges, it hinders the accurate identification of points that corre-

spond to the surface of the wooden box. 

 

Figure 16: Limitations depth data using L515 camera 

4.3.2 Obtaining ground truth pose using markers 

An alternative approach for obtaining the ground truth involves the use of markers, 

specifically ArUco markers in this thesis. ArUco markers consist of black-and-white 

square grids that encode binary patterns. These markers use a predefined dictionary 

that specifies the existing patterns and their corresponding IDs. They also come in 

different sizes, allowing flexibility for different kinds of objects, such as the wooden 

box. 

To calculate the pose of the ArUco markers, a program available on [72] was 

utilized. This repository contains all the necessary code to generate ArUco tags, detect 

them within frames, and calculate their poses. The printed ArUco tags were printed 

on A2-sized paper to ensure sufficient recognition and, hopefully, accuracy. 

Regarding marker placement, one option was to position the markers on the 

pallox itself. However, this approach could potentially impact the performance of 

BundleTrack, so an alternative was chosen. Instead, the ArUco markers were placed 

in front of the object, allowing for the determination of their orientations while 
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maintaining the performance of BundleTrack. Fig. 17 illustrates the obtained results 

for frames 1, 100, 600, and 1100.  

 

Figure 17: Detection and pose estimation of ArUco markers 

The code responsible for calculating the pose of the markers has been modified 

to extract the pose for each marker individually and convert it to the appropriate 

format. Additionally, the calculated marker poses need to be transformed into the 

pose of the wooden box. To achieve this, the pose of the pallox for the first frame was 

manually determined using 6DposeAnnotator. 

By doing this, the necessary information is available to establish the 

transformation matrix between the wooden box and one of the markers in that frame. 

With this transformation matrix, the poses of the markers in subsequent frames can 

be converted to the pose of the wooden box. 

For better visualization of the method's output, the bounding box of the pallox 

has been incorporated. Fig. 18 showcases frames 1, 100, 600, and 1100, along with the 

wooden box's bounding box, providing a comprehensive view of the results. 
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Figure 18: Marker pose converted pallox pose 

Initially, the method appears to produce reasonably accurate results for the first 

few frames. However, subsequent frames reveal that this approach fails to provide 

poses with the necessary level of accuracy for comparison with BundleTrack. As a 

result, yet another method had to be employed to obtain poses that met the required 

accuracy for comparison with BundleTrack's results. 

4.3.3 Obtaining ground truth pose manually  

Due to the poor accuracy of the previous results, it was necessary to manually 

calculate the ground truth pose. This task was accomplished using the 

6DposeAnnotator tool. However, considering the dataset's size of 1153 images, 

annotating all frames proved to be inefficient. To ensure a comprehensive 

representation of the dataset, 50 frames were chosen, evenly distributed across all 
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frames. This selection process guarantees that the annotated images cover a wide 

range of object angles and perspectives. 

Modifications were implemented in the code to enhance the annotation process. 

Specifically, the code was adjusted to display the object's bounding box instead of the 

model's point cloud. This modification greatly improved the precision of the 

annotations, allowing for more accurate ground truth poses. Fig. 19 shows the 

resulting ground truth poses for frames 1, 368, 759, and 1127. 

 

Figure 19: Ground truth pallox poses obtained manually using 6DPoseAnnotator 

4.4 Evaluation metrics 

The ADD score and ADD-S score have been computed to objectively assess the per-

formance of BundleTrack. The ADD score represents the average distance between 

the calculated pose and the ground truth pose of an object. This is achieved by 



 

58 

 

transforming the point cloud model of the object using both the calculated 6D pose 

and the ground truth pose for a single frame. The distance between corresponding 

points in the two transformed point cloud models is then calculated, resulting in the 

average distance for that frame. This process is repeated for all frames, and the overall 

average distance across all frames represents the ADD score. It provides an indication 

of the overall alignment between the two transformed models. 

To address the challenge posed by symmetric objects, the ADD-S score is intro-

duced. Symmetric objects, such as spheres, can lead to inaccurate pose estimation as 

they appear the same from different perspectives. The ADD-S score tackles this by 

calculating the distance to the nearest neighbor instead of the corresponding points. 

This makes it suitable for evaluating the performance of pose estimation methods on 

symmetric objects, while the ADD score is more appropriate for non-symmetric ob-

jects. 

The ADD and ADD-S scores are typically represented using the AUC values. 

AUC quantifies the performance of the pose estimation method by measuring the area 

under the accuracy-threshold curve. The threshold represents the level of accuracy, 

and the curve reflects the percentage of frames below that threshold. As the threshold 

increases, the number of frames with accuracy below the threshold also increases. By 

calculating the average percentage of frames for different thresholds, the AUC value 

is obtained and used for comparison. 

In addition to the AUC scores, graphs depicting translation error and rotational 

error are generated to assess BundleTrack's performance on each frame. The transla-

tion error is measured by calculating the Euclidean distance between the ground truth 

translation vector and the calculated translation vector, expressed in meters. As men-

tioned before, vectors represent points in 3D space, and their Euclidean distance is 

determined using the formula below: 

𝑒𝑑 =  √((𝑡𝑐[0] − 𝑡𝑔[0])2 + (𝑡𝑐[1] − 𝑡𝑔[1])2 + (𝑡𝑐[2] − 𝑡𝑔[2])2) 

Where 𝑒𝑑 stands for Euclidean distance, 𝑡𝑐 stands for translation calculated and 𝑡𝑔 

stands for ground truth translation. To calculate the rotation error, the following for-

mulas have been used: 

𝑟𝑛𝑒𝑤 = 𝑟𝑔𝑡.𝑇 ∗ 𝑟𝑐𝑎𝑙𝑐 

𝑟𝑒 = acos (
𝑡𝑟𝑎𝑐𝑒(𝑟𝑛𝑒𝑤) − 1

2
) ∗ (

180

𝜋
) 

In the provided equations, the notation 𝑟𝑔𝑡.𝑇 denotes the transposed 3x3 ground truth 

rotation matrix of the object. On the other hand, 𝑟𝑐𝑎𝑙𝑐 represents the calculated 3x3 ro-

tation matrix of the object. The matrix 𝑟𝑛𝑒𝑤 is obtained by multiplying the aforemen-

tioned matrices, representing the difference between the two rotations. Finally, the 

rotation error in degrees, denoted by 𝑟𝑒, is computed [73]. 
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5.1 Results without reinitialization 

After recording a video of the wooden box and obtaining ground truth pose data for 

fifty frames within the video, the results of the BundleTrack program can be analyzed. 

In the upcoming paragraphs, a comparison will be made between the results of 

BundleTrack in this dataset and in the dataset of BundleTrack’s paper. 

The initial focus is on the AUC scores. On the wooden box dataset, BundleTrack 

achieved an ADD-based AUC of 26.17 and an ADD-S-based AUC of 72.94. In contrast, 

on the YCBInEOAT dataset, the AUCs based on ADD and ADD-S were 87.34 and 92.53, 

respectively [3]. These results demonstrate that BundleTrack's performance on the 

wooden box dataset is significantly lower compared to its performance on the 

YCBInEOAT dataset.  

Furthermore, graphs were generated to depict the rotational error in degrees and 

the translation error in meters for this particular use case. The x-axis represents the 

frames, which encompass the selected 50 frames across the entire dataset. Fig. 20 illus-

trates those errors. 

The graphs indicate that the algorithm performs relatively well for the first fifth 

of the dataset, as the translation error remains below 5 cm and the rotational error 

remains close to 2°. However, starting from frame 10, the translation error gradually 

increases. This can be attributed to frames where only the wooden box's edge is visible, 

leading to lower-quality depth data and hampering the algorithm's accurate pose 

tracking. 

Around frame 34 (approximately), there is another notable increase in rotational 

and translational errors, coinciding with another edge in the images. Overall, 

BundleTrack demonstrates satisfactory performance when the front of the wooden 

box is visible, maintaining relatively stable rotational and translational errors. 

5 RESULTS 
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However, when the camera rotates around an edge of the wooden box, the algorithm 

struggles to precisely track the object's pose. 

 

Figure 20: Translation and rotation error on pallox data 

The average translation error of BundleTrack on the pallox data is 7.74 cm, and 

the average rotational error is 2.93°. In comparison, when using BundleTrack on the 

NOCS dataset, the average translation and rotational errors are 2.1 cm and 2.4°, re-

spectively. 

To gain an initial understanding of BundleTrack's performance, a visual repre-

sentation can be observed in Fig. 21. This image indicates that BundleTrack initially 

tracks the pose of the wooden box quite accurately. However, as the frames progress, 

a noticeable drift in the estimated pose becomes apparent. This drift primarily occurs 

when the camera captures the edges of the wooden box. The BundleTrack algorithm 

encounters difficulty finding sufficient feature correspondences to precisely estimate 

the pose. This limitation arises from the depth data's inadequate quality, which only 

provides depth information for a small portion of the wooden box.  
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Figure 21: Output of BundleTrack algorithm on pallox data 

To enhance BundleTrack’s performance for this specific use case, two potential 

options exist. The first option involves using a camera that offers improved depth im-

aging of the object during camera rotations. With a broader coverage of surface depth 

data, the algorithm can identify more object features, thereby reducing drift. Alterna-

tively, reinitializing BundleTrack at regular intervals using a tracking by detection 

method can be considered. Since a tracking by detection method is already necessary 

for the first frame, it can be employed periodically to maintain high speed while min-

imizing drift. 
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5.2 Results with reinitialization 

To simulate the effects of reinitialization using a tracking by detection method, the 

pose is reset to the ground truth pose every 100 frames. The results of this simulation 

can be observed in Fig. 22 and Fig. 23.  

Notably, the performance of BundleTrack significantly improves, with the trans-

lation error remaining below 5 cm and the rotation error hovering around 2°. The av-

erage translation error reduces to 1.83 cm, and the average rotation error decreases to 

0.93°. 

It is important to note that these results represent an ideal scenario with a perfect 

tracking by detection algorithm, which is not achievable in real-world use cases. Ad-

ditionally, implementing a tracking by detection algorithm will impact the speed at 

which the solution operates. One suitable method for tracking by detection is the 3D-

model-based approach called Point Pair Feature Matching (PPFM), which eliminates 

the need for an initial transformation or training. However, it does require a model 

[74]. 

 

Figure 22: Translation and rotation error on pallox data with reinitialization 
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Figure 23: Output of BundleTrack algorithm on pallox data with reinitialization 

In terms of speed, BundleTrack currently runs at a frequency of 6 Hz, excluding 

mask generation. Although this speed is adequate for real-time applications, there is 

potential for further enhancements by leveraging a more powerful GPU. In the origi-

nal BundleTrack paper, the algorithm achieved a total speed of 10 Hz utilizing a single 

NVIDIA RTX 2080 Ti GPU, which possesses considerably greater computing power 

compared to the GPU employed in this study. Additionally, it is worth noting that the 

algorithm's speed has not been compromised despite making specific adjustments to 

accommodate my particular use case. For instance, enlarging the search area to iden-

tify corresponding features has no impact on the algorithm's overall speed. 
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The primary objective of this master's thesis was to achieve real-time tracking of the 

6D pose of a pallox without relying on a CAD model. To accomplish this, a temporal 

tracking method called BundleTrack was utilized, along with custom code for data 

preprocessing and the combined use of Grounding DINO and SAM for initial mask 

extraction. Various approaches were explored to obtain accurate ground truth data 

for evaluating the performance of the BundleTrack algorithm. 

The algorithm demonstrates an average position error of 7.74 cm and an average 

rotation error of 2.93°. The AUC values measured by ADD and ADD-S are 26.17 and 

72.94, respectively. With the GTX 1660S GPU, the program achieves a real-time speed 

of 6 Hz. These results indicate that the algorithm has potential for practical applica-

tions. 

Future enhancements will involve employing a different camera capable of cap-

turing depth images with higher quality than the LIDAR L515 camera, aiming to im-

prove the algorithm's accuracy for this specific use case. Another approach for accu-

racy improvement will be the implementation of a tracking by detection method at 

regular intervals to reset the object's pose and mitigate drift, as demonstrated in the 

obtained results. Finally, further optimization will be required for the proposed 

method to achieve full autonomy, as certain steps still necessitate manual intervention. 

  

6 CONCLUSION AND FUTURE WORK 
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