
Faculteit Industriële
Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-
ICT
Masterthesis

6D pose tracking of bins without CAD model using RGBD data: evaluation of the
BundleTrack algorithm

Koen Fierens
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

2022
2023

PROMOTOR :

Prof. dr. ir. Eric DEMEESTER

BEGELEIDER :

Mevrouw Yanming WU

Gezamenlijke opleiding UHasselt en KU Leuven

Faculteit Industriële
Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-
ICT
Masterthesis

6D pose tracking of bins without CAD model using RGBD data: evaluation of the
BundleTrack algorithm

Koen Fierens
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

PROMOTOR :

Prof. dr. ir. Eric DEMEESTER

BEGELEIDER :

Mevrouw Yanming WU

ACKNOWLEDGEMENTS
I would like to acknowledge the following individuals, groups and organizations for

their invaluable contributions to my master’s thesis:

• Ir. Yanming Wu for her advice and expertise in the field, which were essential

to the successful completion of my thesis.

• Prof. Dr. Ir. Eric Demeester for his guidance and insightful feedback through-

out the course of my research.

• My parents for their support and encouragement throughout my academic

journey.

• My fellow students and friends, who have provided me with valuable in-

sights throughout my studies.

• ACRO for supporting my research.

1 INTRODUCTION .. 15

1.1 Background and motivation ... 15

1.2 Context ... 16

1.3 Problem statement ... 17

1.4 Objectives .. 18

1.5 Structure of the paper .. 18

2 LITERATURE REVIEW .. 21

2.1 Introduction and fundamentals ... 21

2.2 Tracking by detection methods .. 22

2.2.1 Learning-based 6D pose estimation .. 23

2.2.2 Model-based 6D pose estimation ... 27

2.2.3 Limitations of existing detection approaches 28

2.3 Temporal tracking methods ... 30

2.3.1 Feature-based methods .. 30

2.3.2 Model-based methods ... 31

2.3.3 Learning-based methods ... 31

2.3.4 Graph-based methods .. 32

2.3.5 Limitations of existing tracking methods ... 32

2.4 Input modalities ... 33

3 METHODOLOGY ... 35

3.1 Introduction to BundleTrack .. 35

3.1.1 Working principle of BundleTrack .. 36

3.2 Implementation of BundleTrack algorithm ... 40

3.2.1 Prerequisites .. 40

3.3 Initial mask generation .. 41

3.3.1 Utilizing color-based filtering to obtain the object's bounding box 43

3.3.2 Employing text input prompts for acquiring the object's bounding

box .. 44

3.4 Customization of BundleTrack .. 46

4 EXPERIMENTAL SETUP AND EVALUATION METRICS 49

4.1 Camera calibration ... 49

4.2 Creating a model of the pallox ... 50

4.3 Obtaining the ground truth pose ... 52

4.3.1 Obtaining ground truth pose using 6DposeAnnotator 52

4.3.2 Obtaining ground truth pose using markers 54

TABLE OF CONTENTS

4.3.3 Obtaining ground truth pose manually .. 56

4.4 Evaluation metrics ... 57

5 RESULTS ... 59

5.1 Results without reinitialization .. 59

5.2 Results with reinitialization .. 62

6 CONCLUSION AND FUTURE WORK ... 65

REFERENCES .. 66

TABLES

TABLE 1 Overview of advantages and disadvantages of each

 approach. 3 represents the best (performance), and 1

 represents the worst (performance) [4] 29

TABLE 2 Overview of advantages and disadvantages of each temporal

 tracking approach [30] .. 32

TABLE 3 Overview of advantages and disadvantages of LIDAR and

 stereo cameras [41], [42] ... 34

FIGURES

Figure 1: The pallox truck carrying the pallox ... 16

Figure 2: Visualization of 6D pose for five objects: a bowl, a laptop, a camera,

 a mug and a spray can [1] .. 17

Figure 3: Overview of tracking by detection methods for 6D pose estimation .. 23

Figure 4: Example of an Aritificial Neural Network [8] ... 24

Figure 5: Preliminary steps of a Convolutional Neural Network [10] 25

Figure 6: (a) Example of synthetic data (b) Augmented synthetic data to

 increase the training data [13] ... 26

Figure 7: Overview of temporal tracking methods for 6D pose estimation 30

Figure 8: Working principle of BundleTrack [3] ... 37

Figure 9: Working principle of SAM [62] ... 42

Figure 10: SAM using point input prompt ... 43

Figure 11: Failure case of using color-based filtering for bounding box

 extraction .. 44

Figure 12: Output of Grounding DINO and SAM .. 45

Figure 13: Visualization of model in STD format .. 51

Figure 14: Visualization of model in PLY format .. 51

Figure 15: Manually annotated pose for frame 1 and automatically annotated

 poses for frames 10, 20, and 30 using 6DPoseAnnotator 53

Figure 16: Limitations depth data using L515 camera.. 54

Figure 17: Detection and pose estimation of ArUco markers 55

Figure 18: Marker pose converted pallox pose .. 56

Figure 19: Ground truth pallox poses obtained manually using

 6DPoseAnnotator .. 57

Figure 20: Translation and rotation error on pallox data 60

Figure 21: Output of BundleTrack algorithm on pallox data 61

Figure 22: Translation and rotation error on pallox data with reinitialization ... 62

Figure 23: Output of BundleTrack algorithm on pallox data with

 reinitialization .. 63

NOMENCLATURE

Acronyms / Abbreviations

6D pose six degrees-of-freedom pose

ACRO Automatization, Computer vision & Robotics

ADD Average Distance of model points

ADD-S Average Distance of model points-symmetry

AUC Area Under Curve

ANN Artificial Neural Network

CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

DoG Difference-of-Gaussian

ICP Iterative Closest Point

LF-Net Learnable Feature-Net

LIDAR Light Detection and Ranging

OS Operating System

ReLU Rectified Linear Units

RANSAC Random Sample Consensus

ROI Region Of Interest

SAM Segment Anything Model

SIFT Scale Invariant Feature Transform

T-VOS Transductive-VOS

ViT Vision Transformer

WSL Windows Subsystem for Linux

ABSTRACT

The Automatization, Computer vision and Robotics (ACRO) research group of KU

Leuven has developed a robot capable of picking up wooden bins, or palloxes, in an

orchard. To automate this process, determining the six degrees-of-freedom (6D) pose

of a pallox is crucial. A tracking by detection algorithm is used for the first frame, and

a faster temporal tracking method is used for subsequent frames without relying on a

Computer Aided Design (CAD) model. This approach enables the algorithm to accu-

rately and efficiently track the palloxes while being computationally inexpensive.

This paper presents a software solution that utilizes BundleTrack in combination

with the Segment Anything Model (SAM) and custom code. The presented approach

calculates the 6D pose of the object relative to the first frame and uses the RealSense

LIDAR L515 camera for capturing the data.

The solution’s accuracy is evaluated by comparing the algorithm’s output to the

ground truth measurements. For obtaining the ground truth, the 6DPoseAnnotator

algorithm is used. BundleTrack accurately estimates the 6D pose of the pallox, with

an average rotation error of 2.93° and a position error of 7.74 cm. It achieves an Area

Under Curve (AUC) of 26.17 measured by the Average Distance of Points (ADD) met-

ric and an AUC of 72.94 measured by the Average Distance of Points Symmetry

(ADD-S) metric. The algorithm achieves a real-time performance of 6 Hz. However,

further optimization is necessary to achieve full autonomy for the proposed approach.

ABSTRACT IN DUTCH

De onderzoeksgroep Automatisering, Computer vision en Robotica (ACRO) van KU

Leuven heeft een heftruck ontwikkeld die houten bakken, of palloxen, in een boom-

gaard kan oppakken. Om dit te automatiseren, is het belangrijk om de six degrees-of-

freedom (6D)-pose van een pallox te bepalen. Voor het volgen van de palloxen werd

een tracking by detection-algoritme gebruikt voor het eerste frame, en een snellere

temporal tracking-methode zonder een Computer Aided Design (CAD)-model voor

de volgende frames. Op die manier kan het algoritme de palloxen nauwkeurig en ef-

ficiënt volgen, terwijl het weinig rekenkracht vereist.

Deze paper presenteert een softwareoplossing die gebruik maakt van Bund-

leTrack in combinatie met het Segment Anything Model (SAM) en bijkomende code.

Het voorgestelde algoritme berekent de 6D-pose van het object ten opzichte van het

eerste frame en gebruikt de RealSense LIDAR L515 camera voor gegevensvastlegging.

De nauwkeurigheid van de oplossing werd geëvalueerd door de output van het

algoritme te vergelijken met de ground truth-metingen, verkregen met het 6DPoseAn-

notator-algoritme. BundleTrack schat de 6D-pose van de pallox nauwkeurig in, met

een gemiddelde rotatiefout van 2,93° en een positiefout van 7,74 cm. Het behaalt een

Area Under Curve (AUC) van 26,17 voor de Average Distance of Points (ADD) me-

triek en een AUC van 72,94 voor de Average Distance of Points Symmetry (ADD-S)

metriek. Daarnaast heeft het algoritme een realtimeprestatie van 6 Hz, maar vereist

het verdere optimalisatie voor volledige autonomie.

1.1 Background and motivation

The emergence of automatic robots brings great advancements to the industry, ensur-

ing better efficiency and cost savings. This applies to the agricultural sector as well.

For example, machine learning and computer vision enable the automatic harvesting

of fruit and vegetables. Tractors can navigate automatically, crops can be planted

through automation and drones can map and spray the fields. By automating these

tasks, a company operates much more efficiently and achieves cost savings. That is

why the Automatization, Computer vision & Robotics (ACRO) research group of KU

Leuven has sought assistance.

ACRO operates within the Faculty of Engineering Technology and has many

years of experience in vision-based and model-based automation, human-robot inter-

action and collaboration, flexible product handling and robotic grippers, collision-free

trajectory generation and navigation, semi-autonomous & autonomous (dis)assembly

and functional programming for robotics and the cloud.

ACRO has developed a pallox truck capable of picking up and offloading

wooden boxes, also called palloxes. These palloxes will be placed in an orchard and

may contain fruit or be empty. The pallox truck will drive around the orchard and

look for those palloxes in order to move them to another area where the fruit can be

extracted.

While manual operation by a person is possible, ACRO aims to automate this

process due to several disadvantages associated with manual driving. For instance:

- Operators may not use the optimal routes, which results in delays.

- Human errors such as accidents, collisions or overlooking palloxes.

- Labor costs are significant depending on the size of the orchard.

1 INTRODUCTION

16

- Expanding an orchard would result in additional personnel, which means even

higher costs.

Fig. 1 visualizes how the pallox truck and the wooden box look.

Figure 1: The pallox truck carrying the pallox

1.2 Context

As mentioned earlier, ACRO aims to fully automate the process of picking and placing

the palloxes within the orchard. To achieve this goal, the development of several al-

gorithms is required.

Firstly, methods to locate and map the pallox truck’s position within the orchard

are required. Additionally, algorithms that calculate the most efficient route are

needed to efficiently navigate through the orchard. Moreover, the development of al-

gorithms that avoid obstacles is required to ensure the safety of the system. Further-

more, algorithms have to be developed that control the actuators of the pallox truck,

based on the various inputs.

Another critical requirement is that the pallox truck should have mechanisms

capable of detecting and recovering from failures. This is important since the pallox

truck should be able to quickly recover and resume its tasks without compromising

efficiency or safety.

There is also a need for monitoring systems, as these will provide oversight of

the automated processes. These monitoring systems should also allow for anomaly

17

detection. All the aforementioned methods and algorithms should work together with

enough speed to enable real-time performance.

1.3 Problem statement

It is undoubtedly a complex task to fully automate the process of picking and placing

the palloxes, given the numerous challenges. Because of the complexity of the task, it

has been broken down into smaller parts. One of those parts (which is also the prob-

lem this paper aims to solve) is to calculate the position and orientation of the wooden

box relative to the camera coordinate system over multiple frames. This calculation is

crucial because it directly affects the actions of the pallox truck’s actuators.

Determining the position and orientation of an object is commonly referred to as

calculating its six degrees-of-freedom (6D) pose. In Fig. 2, the 6D poses of five distinct

objects are visualized. The bounding box of each object is determined based on the

calculated 6D pose, which includes the position in three dimensions and the orienta-

tion around the x, y, and z axes.

Figure 2: Visualization of 6D pose for five objects: a bowl, a laptop, a camera, a mug and a spray
can [1]

18

1.4 Objectives

The objective of the paper is to present a method that calculates the 6D pose of the

object relative to the first frame for multiple frames. Considering the final objective is

to automate it so that it works in real-time, the algorithm's speed holds significant

importance.

To achieve this objective, the following goals are outlined:

1. Conduct a comprehensive literature review on 6D pose estimation, covering

both tracking by detection and temporal tracking approaches. Tracking-by-

detection methods detect the object in each frame independently, while tem-

poral tracking aims to obtain the pose of the object using the information

from previous frames. Temporal tracking methods, with their ability to uti-

lize temporal information, offer improved speed and efficiency, making them

well suited for real-time applications. After thoroughly reviewing the litera-

ture, a temporal tracking method, namely BundleTrack, that demonstrated

the best trade-off between accuracy and real-time performance, considering

the specific requirements of our use case, was selected.

2. Next, implement BundleTrack on the data from the original paper and repli-

cate the results reported in that paper.

3. After that, execute the selected temporal tracking method on the data for the

paper’s use case and collect ground truth data.

4. Finally, evaluate the performance of BundleTrack using the information ac-

quired in step 3. The evaluation contains information about the algorithm’s

accuracy and speed.

It is noteworthy that this paper assumes that an alternative method is utilized to

calculate the absolute pose of the wooden box in the initial frame. The proposed

method focuses solely on calculating the relative pose compared to the first frame.

1.5 Structure of the paper

The paper is divided into several chapters in order to improve its readability. The first

section is the literature review. This section explores the various types of 6D pose es-

timation methods. It makes a clear distinction between each type and discusses the

underlying principles. Each method will also be examined in different aspects.

Following the literature study, the methodology chapter introduces and explains

the 6D pose estimation method employed in this master’s thesis, namely BundleTrack.

It covers the prerequisites for running the code and discusses the implementation and

customization of the program. Additionally, this section explains the other algorithms

19

that are added to the workflow, which are required to obtain accurate results from the

BundleTrack algorithm. Finally, the methodology section includes the different meth-

ods used to obtain the ground truth pose of the object and the input modalities con-

sidered for the algorithm.

Subsequently, there is a dedicated section that delves into the experimental setup

and evaluation metrics. This part elucidates the steps taken to acquire the ground

truth pose and clarifies the evaluation metrics used to assess the performance of

BundleTrack.

Afterwards, the results section presents and discusses the obtained results, along

with potential approaches for further improvement.

Finally, the paper concludes with a section summarizing the main points and

outlining future work. This section reiterates the significance of the paper's findings

and outlines future directions for utilizing the proposed method in real-world use

cases.

20

21

2.1 Introduction and fundamentals

To better understand the work presented in this paper, it is crucial to have a basic

understanding of the fundamental aspects underlying 6D pose estimation. This com-

puter vision technique determines the 6D pose of an object, which refers to the posi-

tion and orientation of the object. This method uses the features of an object (e.g., cor-

ners or edges) to acquire information about the object’s position expressed in x, y and

z parameters, as well as the orientation of the object expressed in the angle around the

yaw, pitch and roll axes [2].

6D pose estimation can be divided in different ways. First of all, 6D pose estima-

tion methods include two categories: tracking by detection methods and temporal

tracking methods. Tracking by detection methods involves algorithms that compute

the 6D pose of the object on each frame separately. Temporal tracking methods, on the

other hand, leverage temporal information from previous frames.

6D object pose estimation can also be classified based on the availability of the

object model. There are methods that require CAD models, and there are methods that

do not require CAD models. For the methods that require CAD models, they can be

further subdivided into instance-level pose estimation and category-level pose esti-

mation. Instance-level pose estimation requires the CAD model of the exact object that

needs to be estimated. Category-level pose estimation, on the other hand, requires a

CAD model of an object from the same category for training [3].

2 LITERATURE REVIEW

22

2.2 Tracking by detection methods

As stated before, 6D pose estimation can be categorized into tracking by detection

methods and temporal tracking methods. The former is used to find the pose of the

object without relying on previous frames. Tracking by detection methods is divided

into two categories: learning-based and model-based pose estimation, with the latter

being further subdivided into 2D and 3D model-based pose estimation. Learning-

based approaches use machine learning or convolutional neural networks (CNNs) in

order to estimate the pose of the object, and there are several kinds of learning-based

algorithms available [4].

2D model-based pose estimation estimates the pose of an object through the 2D

information in an image and can also be further subdivided into real-image-based ap-

proaches and CAD-image-based approaches, the difference being whether the tem-

plate is a real image or a CAD model. CAD-image-based approaches are often more

accurate, but CAD models can be difficult to obtain.

3D model-based pose estimation, on the other hand, uses the 3D information of

the object in order to determine its location and orientation. It can also be further di-

vided into two sub-categories: matching-based and local descriptor-based approaches.

Matching-based methods directly match the object of interest to a CAD model, while

local descriptor-based approaches (also called feature-based approaches) use key-

points in order to calculate the object’s pose [4]. Fig. 3 shows a summary of tracking

by detection methods.

23

Figure 3: Overview of tracking by detection methods for 6D pose estimation

2.2.1 Learning-based 6D pose estimation

2.2.1.1 Introduction to neural networks

Learning-based pose estimation relies on machine learning to estimate the pose of an

object. Machine learning techniques for finding the 6D pose of an object are mostly

done using neural networks. This is because neural networks can capture complex

relationships between input data (e.g., images) and output predictions (e.g., object

poses). The availability of large-scale labeled datasets and advancements in deep

learning techniques have further contributed to the widespread use of neural net-

works for pose estimation.

Artificial Neural Networks (ANNs) consist of layers and nodes. Each node is

connected to every node of the previous and next layer of nodes, allowing information

to flow through the network. Nodes within each layer are responsible for computa-

tions and information transformation. Each node receives input signals from the

nodes in the previous layer, and these inputs are weighted and summed. An activa-

tion function is then applied to the summed input, introducing non-linearities and

enabling the network to model complex relationships and capture intricate patterns

in the data [5].

The architecture of the ANN, which refers to the number of layers, nodes and

activation functions, is dependent on the specific use case. The number of layers de-

pends on the complexity of the dataset but usually ranges from a few to several dozen.

The number of nodes also depends on the complexity of the dataset, but a typical

24

range for the number of nodes is between 64 and a couple hundred. The activation

functions used in pose estimation include Rectified Linear Units (ReLU) or variants of

the sigmoid or hyperbolic tangent functions.

Neural networks require training and input data. These typically consist of RGB

images containing the object. However, RGBD data can also be used to provide addi-

tional depth information that can be beneficial for more accurate pose estimation [6],

[7]. Using RGBD approaches, the network architecture is designed to process the

depth data alongside the RGB data using additional channels within the network. Fig.

4 illustrates an exemplary structure of an Artificial Neural Network.

Figure 4: Example of an Aritificial Neural Network [8]

A problem with ANNs is that the input size of the neural network can become

large, resulting in high computational power requirements. This is why CNNs are al-

most always used for computer vision tasks, such as pose estimation. The number of

input nodes is reduced using some preliminary steps. These steps are, respectively,

convolution, max pooling, and flattening. The convolution step ensures that only the

important features (such as edges) of the image are taken as input. Max pooling allows

for spatial variance, which means that the CNN can still work for warped images.

Finally, flattening reformats the remaining data in order for it to be valid as an input

to the ANN. Fig. 5 presents a summary of the preliminary steps taken in CNNs [9].

25

Figure 5: Preliminary steps of a Convolutional Neural Network [10]

2.2.1.2 Deep learning

To train an ANN, initially the weights of the network are given a random value. The

training process involves forward propagation and back propagation. The term for-

ward propagation refers to the process of computing the output of a neural network

given an input. Then, using all the nodes, layers and activation functions (which are

dependent on the specific application of 6D pose calculation), the network can (de-

pending on the specific network) manage the 16 output nodes, which correspond to 9

rotation values, 3 translation values and the homogeneous transformation matrix.

Then, the backpropagation step is done. In this step, these output values can be com-

pared to the ground truth. Then, the fault per node is calculated and the weights are

changed [10].

After the network is trained and an input is given to it, certain nodes will activate

while others do not. For example, if an image of a cardboard box is fed into the ANN

with a rotation angle of 30° relative to the camera, the nodes within the network's

layers will activate in a way that generates output values representing the rotation

matrix. This rotation matrix explicitly indicates that the object is rotated by 30°.

2.2.1.3 Training data and data annotation

Training data is crucial for machine learning-based methods. It consists of a lot of

frames that contain the object in them with the corresponding ground truth pose. This

data can be acquired using different methods, such as manual annotation, the use of

depth sensors or synthetic data.

Manual annotation refers to the time-consuming process of people calculating

the pose for each frame. Using the depth data from depth-sensing cameras in combi-

nation with known camera poses can also be utilized to generate accurate ground

truth poses. Another method would be using synthetic data. This method requires a

CAD model and a virtual camera, which are placed in a virtual environment. This

26

approach can be used if a large amount of data should be generated. After obtaining

initial training data, a step called data augmentation can be used. Data augmentation

refers to the process of generating more training data using transformations such as

translations, rotations and scaling on the object within the virtual environment [11],

[12]. Fig. 6 shows an example of synthetic and augmented data.

Figure 6: (a) Example of synthetic data (b) Augmented synthetic data to increase the training
data [13]

2.2.1.4 Keypoint-based approach

Keypoint-based approaches and holistic approaches are two different ways of imple-

menting a learning-based 6D pose estimation algorithm. Keypoint-based approaches

first detect the keypoints on an object, which are then fed into the trained neural net-

work in order to estimate the pose.

Firstly, they are not end-to-end algorithms, which means they require interme-

diate steps and may not be as well optimized as a single-stage method. Secondly, the

loss function or cost function used in these approaches cannot accurately represent

the accuracy of 6D pose estimation, which is a significant limitation. A loss function is

27

some sort of measurement of the model’s performance during training. Existing algo-

rithms include BB8 and PVNET [4], [14], [15].

2.2.1.5 Holistic approach

The holistic approach aims to eliminate the limitations of keypoint-based approaches

by using an end-to-end architecture. This approach is able to calculate the 6D pose of

an object without any intermediate steps. As a result, they are faster than key-point-

based approaches. Existing algorithms include PoseNet, SSD-6D and PoseCNN [4],

[16]–[18].

2.2.1.6 RGBD based approach

Another method for learning-based 6D pose estimation is RGBD-based learning. Al-

gorithms that belong to this approach not only use the color information but also the

depth information. Because extra information is provided, RGBD-based learning ap-

proaches are generally more accurate than key-point-based or holistic approaches. Ex-

isting algorithms that use RGBD-based learning include DenseFusion, G2L-Net and

CosyPose [4], [19]–[21].

2.2.2 Model-based 6D pose estimation

Model-based approaches are yet another way of calculating the 6D pose of an object.

Algorithms that belong to this group always compare the current image of an object,

from which the 6D pose should be calculated, to some sort of template.

2.2.2.1 2D model-based approach

2D model-based approaches only require 2D information about the object. This means

that it is easier to obtain the necessary information using cheaper devices. In 2D

model-based approaches, the shapes, colors and textures are used for 6D pose estima-

tion [4].

As stated before, the information gathered will be compared to some sort of tem-

plate. This template can either be a real-life image or a CAD model. In the latter case,

the CAD model generates a 2D image, which will be used for comparison. The ad-

vantage of using the CAD model as a template is that these generated images are often

of higher quality than the real-life images. This is an important property since it im-

proves the accuracy of pose estimation. Using multiple templates can also improve

accuracy. Algorithms such as FPM and epipolar geometry methods fall under this cat-

egory [4], [22], [23].

Real image-based approaches are used when accurate 3D CAD models are not

available. HoG and multi-cooperative logos are state-of-the-art algorithms that are

commonly used for this approach [24], [25].

28

2.2.2.2 3D model-based approach

3D model-based approaches require 3D information in order to work, which also im-

plies that they are more robust than the previous method. In matching-based ap-

proaches, the current 3D image is compared to either a single CAD model or to mul-

tiple CAD models.

When compared to a single CAD model, the 6D pose relative to the CAD model

is computed. In contrast, when comparing to multiple models, the one with the high-

est correlation is chosen as the corresponding model, and the rotation and translation

values relative to that model are computed. Algorithms that are used for 3D matching-

based approaches include PCOF-MOD in combination with BPT [26].

In local descriptor approaches, two point clouds (a reference and a source) are

compared. One of those (the source) is moved around using a transformation matrix.

With this transformation matrix and the known pose of the reference, the 6D pose of

the object can be found. When using global registration, which means that no manual

alignment is required, geometric features are first found in order to find correspond-

ing points between the two point clouds. Algorithms used for a 3D model-based ap-

proach are ICP, FPFH and RANSAC [27], [28].

2.2.3 Limitations of existing detection approaches

In this section, the advantages and disadvantages previously discussed will be

discussed. While Table 1 illustrates the general performance for each method, it is

important to note that the specific algorithm used can impact these values.

Accuracy is a measure of how well a technology can determine the translation

and rotation of an object. Storage cost refers to the amount of data required for the

method to work. Robustness measures how much performance suffers when noise or

environmental changes occur. The time cost is the amount of time and computational

resources required to run the algorithm. Range of application refers to the specific

scenarios or objects that a 6D pose estimation approach is well-suited for [4].

29

TABLE 1 Overview of advantages and disadvantages of each approach. 3 represents the
best (performance), and 1 represents the worst (performance) [4]

Division
Subdivi-

sion
Accu-
racy

Stor-
age
cost

Robust-
ness

Time
Cost

Online per-
formance

Range of
Applica-

tion

Learning-
based

pose esti-
mation

Keypoint-
based

2 2 2 1 1 2

Holistic 1 2 2 2 2 2

RGBD-
based

3 1 3 1 1 1

Model-
based

pose esti-
mation

2D model-
based

2 3 1 3 3 3

3D model-
based

3 2 2 2 2 1

In addition to each approach having its own advantages and disadvantages,

there are some general challenges concerning pose estimation. The most important

and difficult challenges are [4]:

- Textureless objects do not allow for easy extraction of features since the algo-

rithms that determine those features prefer clear boundaries between edges

and corners. The extraction of the 3D image is also more difficult. To overcome

the latter, a device that does not rely on texture, such as Light Detection and

Ranging (LIDAR), is used for depth calculation.

- Object occlusion presents another challenge for pose estimation. This means

that the object being tracked is obscured by other objects. As a result, not all of

the features of the object are detected, resulting in a more difficult process of

matching to a template when using a model-based approach or less accuracy

when using a learning-based approach.

- Reflections of objects are a challenge. High levels of reflection can make it dif-

ficult to accurately calculate the object's features. Additionally, objects with low

or high reflection can pose difficulties in acquiring depth information.

- Noise in the data can interfere with accurate feature detection on the object.

- Computing power is rather high for tracking by detection algorithms.

- Registration becomes more challenging when dealing with deformable objects

such as clothing.

30

2.3 Temporal tracking methods

The previously discussed methods all belong to tracking by detection algorithms,

which means they determine the 6D pose of objects from a single image. Several of

those methods could be used in real-time, but their accuracy is limited. Also, because

these methods rely on a single image, they ignore the temporal and spatial

information across consecutive image frames, which may lead to inconsistent pose

estimations across consecutive frames [29].

Temporal tracking methods can be divided into model-based methods, feature-

based methods, deep learning-based methods and graph-based methods [30]–[32]. Fig.

7 shows a summary of tracking by detection methods.

Figure 7: Overview of temporal tracking methods for 6D pose estimation

2.3.1 Feature-based methods

Feature-based algorithms do not require a model. These methods can compute the

object's pose by extracting relevant features from a specific area, and then comparing

and matching them with features from the previous frame. Leveraging the algorithm's

understanding of the known pose in the prior frame and the transformations between

the previous and current frame's keypoints, it can accurately determine the object's

pose in the current frame. Algorithms used for feature-based approaches are Optical

flow, Lucas-Kanade Tracker and Kanade-Lucas-Tomasi Tracker [33]–[35].

31

2.3.2 Model-based methods

Model-based methods are also an option for temporal tracking methods. These meth-

ods can also be further divided into 2D or 3D model-based approaches. However, the

algorithms that belong to model-based temporal tracking methods also refine or con-

strain the estimated pose by leveraging information from previous frames.

Motion estimation is one technique that can be used to improve the speed of this

method. As the pose of the previous poses is known, some predictions can be made

for the position and rotation of the object. This prediction serves as a starting point for

the tracking process, reducing the search space and computational load.

Using the position and rotation of the previous frames, some constraints regard-

ing the object's pose can also be made. If the predicted pose of the object for the current

frame is wildly different from the calculated pose of the previous frame, these results

can be flagged as inaccurate and recalculated. Particle swarm optimization and ge-

netic algorithms are methods that are commonly used for this approach [36], [37].

2.3.2.1 2D model-based approach

In 2D model-based approaches for temporal tracking methods, the features of the ob-

ject are extracted from the current image and compared to a set of 2D feature de-

scriptors that originate from either a CAD model or real-life images. However, the

estimated pose is refined by leveraging the information from the previous frames.

Temporal information can also be used to improve the speed of the 2D model

tracking method. Since the keypoints of the object in the frame are compared to the

keypoints of 2D models, a constraint can be used to reduce the number of models it

needs to compare to. It relies on spatiotemporal consistency, which means that the

object will not move abruptly from one frame to another. This means that it can rule

out a large number of models to compare with [30].

2.3.2.2 3D model-based approach

3D model-based approaches use a CAD model in combination with three-dimensional

data to determine the 6D pose of the object. The temporal aspect of these methods

comes into play by utilizing the pose estimate from the previous frame to initialize

and constrain the pose of the object. Local registration methods, such as ICP, are then

used to refine the estimated pose [30].

2.3.3 Learning-based methods

These methods use trained neural networks to estimate the 6D pose of the object. Like

in the learning-based methods for tracking by detection systems, the architecture of

the network depends on the use case. However, in neural networks that are optimized

32

for temporal tracking, the model is adjusted so that previous frames or poses can also

act as input for the neural network.

By increasing the amount of information the neural network receives, it is able

to output more accurate results. Existing algorithms include VIPose and TrackNet [38],

[39].

2.3.4 Graph-based methods

Graph-based methods are methods that extend upon model-based pose estimation or

deep learning-based methods. After the pose is estimated using one of those methods,

the result is stored in a pose graph. This pose graph consists of nodes and edges.

Nodes correspond to a particular pose of the object in a particular frame. The position

of these nodes is dependent on the calculated pose. Edges are lines that connect these

nodes and represent the difference between the poses of the nodes.

The reason the calculated poses are stored in a pose graph is because pose

refinement, also called pose graph optimization for these methods, can be done using

these pose graphs. ICP in combination with pose graph optimization is a commonly

used approach [40].

2.3.5 Limitations of existing tracking methods

Table 2 highlights some of the advantages and disadvantages of each method for

temporal tracking for 6D pose estimation:

TABLE 2 Overview of advantages and disadvantages of each temporal tracking
approach [30]

Method Advantages Disadvantages

Feature-based Very fast Not as accurate

Model-based
High accuracy

Can handle occlusions
Improved robustness

Requires a model of the object
Requires a lot of computational

power

Learning-based Can handle occlusions

Requires large amounts of training
data

Computationally demanding during
training and inference

Requires a model of the object

Graph-based Can handle occlusions
Requires a lot of computational

power
May require initialization

33

Pose estimation is a complex task that involves numerous challenges and diffi-

culties. The process of accurately determining the 6D pose of an object requires over-

coming various obstacles. Each approach to 6D pose tracking brings its own set of

advantages and disadvantages, contributing to the complexity and diversity of this

field.

The selection of a particular 6D pose tracking approach involves considering the

specific advantages and disadvantages associated with each method. Addressing the

challenges of occlusions, real-time performance, and sensor modalities will continue

to drive research and innovation in the field of pose estimation, enabling its applica-

tions in diverse domains.

2.4 Input modalities

Various algorithms for 6D pose estimation necessitate specific types of input data.

Some algorithms solely rely on 2D information, which can be obtained using a simple

RGB camera. However, to achieve a more accurate pose estimation, 3D information of

the object becomes necessary. Different sensors can be utilized to obtain depth images,

with LIDAR and stereo cameras being the most commonly employed options. How-

ever, it is important to note that certain algorithms are tailored to work with specific

camera types due to the distinct output they provide.

Stereo cameras consist of two separate RGB cameras positioned adjacent to each

other at a known distance. These types of cameras use a disparity map to calculate the

distance to objects. A disparity map comprises disparity values, which denote the dis-

tance between corresponding points on different images. Through a mathematical

process known as epipolar geometry, these disparity values can be converted into

depth values [41].

For example, when two RGB cameras capture simultaneous images, the corre-

sponding pixels between these images are extracted, and a disparity value is calcu-

lated. This disparity value is subsequently translated into a distance measurement.

LIDAR cameras operate based on the principle of time-of-flight. They emit short

wave pulses towards a target and calculate the distance by measuring the time it takes

for the light to be received back [42]. Both input modalities offer distinct advantages

and disadvantages. A comparison between LIDAR and RGBD is found in Table 3.

34

TABLE 3 Overview of advantages and disadvantages of LIDAR and stereo cameras [43],
[44]

Camera
type

Advantages Disadvantages

LIDAR

High precision
High data rate

Stable and reliable
Not influenced by temperature or

light

Adverse weather performance
Eye safety regulations limit LIDAR’s signal

strength
 Tied to the reflectivity of the object

Stereo
Low-cost

Provides RGB data

Poor long-distance performance
Poor performance in low-light environ-

ments
High computational resource requirements

Typical examples of LIDAR cameras include the well-known Velodyne cameras,

as well as the Ouster, RealSense and Livox cameras [45]–[47]. In terms of stereo cam-

eras, widely used options include the ZED stereo camera, Intel's RealSense stereo cam-

eras, and the Bumblebee stereo camera series [48]–[50].

For the specific use case addressed in this paper, a LIDAR camera would be the

optimal choice. LIDAR cameras offer distinct advantages, such as being unaffected by

lighting conditions, providing high precision, and enabling long-range operation.

These characteristics make LIDAR cameras well-suited for the requirements of the pa-

per's application.

The RealSense L515 LIDAR camera is utilized in this master's thesis to test the

method employed for 6D pose estimation. However, it is important to note that, be-

cause it is designed for indoor applications and only works up to 9 meters, this camera

is not suitable for real-world use cases and is primarily intended for testing purposes

within the context of the thesis [51].

35

As discussed in the literature review, various methods were explored for calculating

the 6D pose of the object. Given that ACRO aims to fully automate the real-time pro-

cess of picking and placing palloxes, speed becomes a crucial factor. Therefore, the

focus of the paper was solely on temporal tracking methods, excluding tracking by

detection methods due to their limited potential for real-time implementation.

While model-based methods generally offer improved accuracy, they require

computationally intensive comparisons between features of models. Deep learning-

based methods provide a potential solution, but acquiring training data with instance-

level models can be challenging, and category-level models often yield average results

[1]. Additionally, generating custom training data poses laborious challenges.

Feature-based methods have limited accuracy due to their reliance on temporal

information from the previous frame, resulting in high drift. On the other hand,

graph-based methods are computationally heavy, requiring substantial computa-

tional resources for optimizing the pose graph.

However, a solution was devised to mitigate the disadvantages of both feature-

based and graph-based methods. By combining these approaches in an algorithm and

implementing techniques to optimize the graph-based methods, this approach effec-

tively overcame accuracy limitations and alleviated computational heaviness.

3.1 Introduction to BundleTrack

This paper utilizes the BundleTrack framework, which was introduced in 2021 by B.

Wen and K. Bekris. The framework combines various techniques to achieve accurate

6D pose tracking without the need for pre-existing instance- or category-level models.

This implies that the method is applicable to novel objects without any training or

predefined models. This aspect is significant considering the time-consuming process

of creating models for certain objects.

3 METHODOLOGY

36

BundleTrack accomplishes this by integrating a feature-based method with

pose-graph optimization. Additionally, the framework incorporates algorithms for

object segmentation and introduces enhancements to the general pose graph optimi-

zation models through the selection of keyframes.

To handle the computational intensity of multi-pair feature matching and pose-

graph optimization for 6D object pose tracking, BundleTrack utilizes an efficient

CUDA implementation. This allows for parallel processing on a GPU instead of se-

quential computation on the CPU.

It is important to note that BundleTrack functions as a temporal tracking method,

computing the pose relative to the initial frame. Therefore, the accuracy of the initial

pose provided to the algorithm greatly influences the output of BundleTrack. Obtain-

ing this initial pose relies on a tracking by detection algorithm, which is used for a

limited number of frames. The performance and precision of this supplementary

method are crucial, as the overall accuracy of BundleTrack relies on the accuracy of

the initial pose estimation method [3].

3.1.1 Working principle of BundleTrack

3.1.1.1 Main components of BundleTrack

BundleTrack serves as a versatile framework designed to track the 6D pose of novel

objects. It eliminates the need for instance-level or category-level models. The frame-

work leverages the strengths of advanced segmentation and feature extraction algo-

rithms. Additionally, it integrates memory-augmented pose graph optimization, en-

suring consistent spatial and temporal tracking. This powerful combination facilitates

resilient and precise tracking, even in the presence of challenges such as occlusions

and object movements.

The framework consists of multiple interconnected components, each contrib-

uting to the overarching objective of determining the 6D pose of an object. The initial

component is the video segmentation network, responsible for generating segmented

images that highlight the object of interest from the background. The subsequent com-

ponent then identifies the object's features, such as distinct spots or edges, and per-

forms data association by comparing these features to the previous frame. This pro-

cess enables BundleTrack to make an initial estimation of the object's 6D pose based

on the feature's relative position to the previous frame.

Furthermore, BundleTrack incorporates a keyframe memory pool, which plays

a crucial role in the pose graph optimization algorithm. This algorithm refines the in-

itially estimated pose by utilizing the information stored in the keyframe memory

pool. Fig. 8 provides a global overview of the algorithm. Detailed explanations of each

individual component will be presented in the subsequent sections.

37

Figure 8: Working principle of BundleTrack [3]

3.1.1.2 Video segmentation network

The initial step of the BundleTrack algorithm involves utilizing a segmentation net-

work to highlight the object of interest for subsequent stages.

To begin, BundleTrack takes RGB and RGBD images as input. Once the images

are loaded, a video segmentation network is employed to extract the object of interest

as a binary mask from the image. This binary mask represents the region of interest

(ROI) by highlighting it in white, while the background is depicted in black.

Multiple algorithms can accomplish this task. Most of these compute the mask

for each image independently, such as Mask-RCNN [52]. However, these algorithms

are generally less efficient. The approach adopted in this study involves utilizing the

Transductive Video Object Segmentation (T-VOS) network.

The T-VOS network is a neural network trained on a large dataset. Through

training, the network learns to predict object masks at pixel level based on the input

image. Its training on a diverse dataset encompassing various objects, backgrounds,

and scenarios enables it to perform effectively on nearly any novel object encountered.

To utilize the trained network, an initial mask is provided, serving as the starting

point for the subsequent frame. The network employs the knowledge acquired during

training to refine the mask for the new frame by considering the object's appearance

within the image. Additionally, the T-VOS network incorporates temporal infor-

mation from previous frames, utilizing the evolution of prior object masks to ensure

consistent segmentation results [53].

3.1.1.3 Keypoint detection and feature descriptors

In the next step of the BundleTrack algorithm, the focus shifts towards detecting the

keypoints associated with the object, which constitute its distinctive features within

the image. Once the keypoints are detected, a feature vector is generated based on

these characteristics. BundleTrack utilizes both the Learnable Feature-Net (LF-Net)

and the Scale Invariant Feature Transform (SIFT) algorithms, which are employed for

both keypoint detection and feature descriptor extraction [3], [54].

LF-Net consists of two subnetworks: the keypoint subnetwork and the descriptor

subnetwork. The keypoint subnetwork is trained to identify potential keypoints

38

within the ROI, while the descriptor subnetwork extracts feature descriptors using the

image and the calculated keypoints.

The network was trained using ground truth data containing keypoint locations

and feature descriptors. During the training process, the network learned to optimize

the parameters of both subnetworks simultaneously. This optimization ensures that

the loss function considers both keypoint localization and feature descriptor produc-

tion, aligning them effectively for accurate matching [55].

Additionally, BundleTrack also leverages the SIFT algorithm to determine fea-

ture descriptors for the object. This involves analyzing the image at various scales to

identify potential keypoints. This analysis is performed using a Difference-of-Gauss-

ian (DoG) filter. This filter highlights regions in the image where there are noticeable

changes in intensity, indicating keypoints.

Subsequently, the positions of these keypoints are further refined by analyzing

the local neighborhood surrounding each keypoint. This refinement process involves

scrutinizing the intensity values and gradients of nearby pixels, leading to improved

accuracy in keypoint localization. Once the keypoints are accurately determined, the

SIFT algorithm generates a descriptor for each refined keypoint, capturing important

information about its appearance and characteristics [56].

3.1.1.4 Feature matching and pose estimation

When the feature descriptors of two consecutive frames are found, the process of fea-

ture matching is initiated. Feature matching involves finding correspondences be-

tween the detected features across multiple frames.

To accomplish this, the nearest neighbor matching algorithm is employed. This

algorithm compares the feature descriptors of one image with those of another image,

aiming to find the closest match based on the total Euclidean distance of all the fea-

tures in both images [57].

Once the nearest neighbor algorithm performs an initial calculation for feature

matches, another algorithm called Random Sample Consensus (RANSAC) is utilized.

RANSAC is an iterative algorithm that selects a small subset of matches from the near-

est neighbor algorithm. It then estimated a transformation matrix that would convert

the features from the subset in one image to the corresponding features from the same

subset in the other image. RANSAC evaluates the remaining matched features by ap-

plying the same transformation matrix and assessing the distance to the correspond-

ing features in the secondary image. If the distance falls below a certain threshold, the

feature is considered an inlier; otherwise, it is ruled an outlier. RANSAC keeps track

of the number of inliers obtained for this subset of features.

These preceding steps are repeated for a specific number of iterations. After all

the iterations, the transformed model with the highest number of inliers was regarded

as the most reliable estimate of the transformation between the two images. Any

39

feature whose distance to the model exceeds a certain threshold is flagged as false and

removed [58].

Since RANSAC already calculates a transformation matrix and identifies the best

model, an initial estimation of the pose has already been computed. However, this

estimated pose might still contain some inaccuracies due to the presence of noise in

the data. Therefore, the estimated pose is refined to improve its accuracy.

3.1.1.5 Refinement of the estimated pose

Up to this stage, BundleTrack employs various algorithms to compute the object's

pose by leveraging temporal information from the previous frame. However, to min-

imize drift, BundleTrack also integrates a pose graph optimization step. Consequently,

the algorithm not only considers the previous frame but also incorporates additional

frames known as keyframes.

Whenever frames are processed by the BundleTrack algorithm, those with min-

imal motion distortion are stored in the keyframe memory pool. Subsequently, when

refining the pose of an object in an image, pose graph optimization is performed using

a subset of the stored keyframes from the memory pool. The selection of this subset is

based on their mutual viewing overlap with the current frame, ensuring that

keyframes capturing similar perspectives of the object are chosen for participation in

the pose graph optimization step.

The pose graph optimization step leverages the temporal information from not

just the previous frame but several frames sharing similar viewpoints. The algorithm

aims to minimize the total energy of the pose graph, which encompasses the feature

matching error (𝐸𝑓) and geometric error (𝐸𝑔).

To minimize 𝐸𝑓, the algorithm seeks correspondences between features in the

current frame and features from the keyframes. For instance, consider a pose graph

consisting of three nodes: two keyframes (node A and node B), and one node (node C)

representing the current frame requiring refinement. When examining a specific fea-

ture, such as a corner, the program utilizes the corresponding feature descriptor of

this corner and the pose information from nodes A and B to refine the pose of node C.

Meanwhile, to minimize 𝐸𝑔, the program assesses the overall object geometry within

each node, facilitating further refinement of the node.

By incorporating not only temporal information from the previous frame but

also information from all frames with similar viewpoints, BundleTrack ensures low-

drift performance [3].

40

3.2 Implementation of BundleTrack algorithm

To ensure the correct execution of BundleTrack, certain steps needed to be followed.

These steps included fulfilling the prerequisites for running BundleTrack, prepro-

cessing the data, and making specific adjustments to enable BundleTrack to work with

the data according to my use case.

3.2.1 Prerequisites

To address the computational complexity of pose graph optimization, as highlighted

in Section 2.3.5, a GPU was employed for specific stages of the algorithm. Specifically,

BundleTrack optimized its code by implementing a Compute Unified Device

Architecture (CUDA) version to execute the multi-pair feature matching and pose-

graph optimization for efficient 6D pose tracking. CUDA is a software development

platform designed to accelerate parallel computing. It breaks tasks down into multiple

threads that are executed separately, allowing the GPU to run numerous threads

simultaneously, resulting in improved computational speed. This enables developers

to leverage the GPU for general-purpose processing [59].

It is important to note that CUDA is exclusively compatible with NVIDIA GPUs,

although not all NVIDIA GPUs support all CUDA versions. To determine

compatibility, the compute capability of the GPU must be identified. The compute

capability refers to the architectural version of an NVIDIA GPU, which determines the

features and capabilities it supports. Reference [60] can be consulted to verify whether

a specific compute capability is supported by a certain CUDA version.

BundleTrack heavily depends on external dependencies. Docker images were

created to facilitate the installation of required the libraries for running BundleTrack.

Docker is a platform that aids in building, sharing, and running applications by

packaging them into a single file containing all necessary dependencies. While Docker

offers advantages such as readability, version control, and portability, it does not

support persistent storage. This means that all program files are stored directly in the

operating system (OS) environment. Consequently, Docker images may not always be

fully system-independent. For example, while BundleTrack provides a Docker image

with most of the necessary libraries, the program relies on storing files on the system,

highlighting the importance of selecting the appropriate OS for its successful

execution [61], [62].

BundleTrack was originally developed for Linux operating systems. However,

it might be possible to run the code in Windows using Windows Subsystem for Linux

(WSL), which is a compatibility layer enabling the native execution of Linux binaries

on Windows without the need for a virtual machine. With WSL, the Linux file system

can be utilized to save files outside the container. Nevertheless, various errors were

41

encountered when attempting this approach, and the forum did not provide clear

solutions. As a result, a Linux distribution was installed [63].

For this paper, the BundleTrack program was executed using a GTX 1660S

(Super) GPU on Ubuntu 20.04 with CUDA version 10.1. Despite using the Docker

images with external dependencies and the aforementioned setup, several errors still

arose. This was primarily due to the additional commands required to install the

NVIDIA Container Toolkit, which relies on the pre-existing installation of the CUDA

runtime and driver program on the system. This program provides the essential

components for GPU acceleration, and the NVIDIA Container Toolkit utilizes these

components to enable GPU acceleration within Docker containers [64].

Due to the considerable effort invested in resolving issues and running

BundleTrack without errors, a comprehensive document was prepared to assist

ACRO in the installation and utilization of BundleTrack. The document also includes

an explanation and instructions for custom code developed to ensure the correct

execution of BundleTrack, which will be further discussed in Section 3.4.

3.3 Initial mask generation

As observed in Section 3.1.1.2, BundleTrack necessitates an initial binary mask to ini-

tiate the process of determining the 6D pose for each frame. Since the primary objec-

tive is the real-time usage of BundleTrack, automating the creation of the initial mask

is essential. Hence, this paper adopts the Segment Anything Model (SAM) developed

by Meta AI Research in conjunction with the Grounding DINO algorithm.

SAM is a versatile segmentation system that can handle unfamiliar objects and

images without requiring additional training [65]. It is a recently released program,

introduced on April 5, 2023. Utilizing SAM, any object within an image can be seg-

mented by providing input prompts such as foreground and background points or

bounding boxes. SAM comprises three main components [66]:

- The Image Encoder: This encoder processes the input image. The image un-

dergoes several steps of processing, resulting in a numerical representation

that captures crucial features. SAM employs a larger variant of the Vision

Transformer (ViT) model called ViT-H.

- The Prompt Encoder: This component changes the input prompt into a nu-

merical representation, commonly referred to as embedding, to improve the

model's comprehension of the desired segmentation. Currently, available in-

put options include defining a bounding box or selecting a single point.

- The Mask Decoder: This decoder utilizes the image embedding from the ViT-

H encoder and the prompt embedding to predict masks representing the ob-

ject segmentation within the image.

42

In terms of SAM's speed, when utilizing an NVIDIA A100 GPU, the image en-

coder typically requires approximately 150 ms to execute, whereas the prompt en-

coder and mask decoder take around 50 ms each. Fig. 9 illustrates the overview of the

SAM workflow.

Figure 9: Working principle of SAM [66]

By combining these three components, SAM achieves object segmentation in an

image. However, solely relying on this algorithm falls short of enabling real-time func-

tionality for BundleTrack, as the algorithm requires some form of input. One possible

approach is to utilize point input prompts. Nevertheless, it has been demonstrated

that this approach can yield inaccurate results, as demonstrated in Fig. 10.

43

Figure 10: SAM using point input prompt

Another approach would involve using the (inaccurate) bounding box of the

pallox. In this case, the coordinates of the upper left corner and the bottom right corner

of the wooden box are required. By providing these coordinates to SAM, the algorithm

can generate a mask containing the complete wooden box.

3.3.1 Utilizing color-based filtering to obtain the object's bounding box

To find these coordinates, color-based filtering could be employed. Code has been

made that processes the frame and identifies regions of brown within a specified color

range. It then detects the contours of these brown regions and selects the contour with

the largest area. The bounding box of this selected contour is calculated to determine

the object's location and size in the image.

Nevertheless, this method is not foolproof, as there is a possibility of encounter-

ing a brown object in the frame that is larger than the wooden box. Additionally, the

method may fail when the object is in shadow or exposed to excessive light, leading

to a change in color and potential a failure in detection. Due to the limitations and

potential failures of the color-based filtering method, a different solution was chosen

as an alternative. An example of a failure case is shown in Fig. 11.

44

Figure 11: Failure case of using color-based filtering for bounding box extraction

3.3.2 Employing text input prompts for acquiring the object's bounding box

In their paper, SAM also explores the use of text inputs. This approach would enable

the program to segment an object immediately based on input such as "wooden box."

However, this capability has not been released yet. Therefore, for this paper, a pro-

gram called Grounding DINO is utilized instead. Grounding DINO requires both an

image and text as input. It then calculates several object bounding boxes, each with its

own accuracy score. The final output is determined by selecting the bounding box

with the highest accuracy score above a certain threshold [67].

Grounding DINO is an object detector specifically trained to handle novel objects

by generalizing from the known objects it was trained on. Grounding DINO adopts a

dual-encoder-single-decoder architecture. One encoder is responsible for extracting

image features, while the other encoder extracts features from the input text.

These features are then passed to the feature enhancer, where cross-modality

feature fusion takes place. This process involves combining the extracted features, en-

abling the algorithm to gain a comprehensive understanding of what to search for in

the image.

45

Subsequently, a query selection module generates queries based on the text

prompt. For instance, when the input image contains a pallox and the text prompt is

"wooden box," the generated queries may include descriptors like "brown" to corre-

spond with the term "wooden" and "90° edges" to relate to the term "box" within the

text prompt. These queries guide the algorithm's attention to relevant features within

the image.

The process continues with cross-modality decoding, which involves locating

the features corresponding to the generated queries. Finally, the gathered information

is utilized to predict the object's location and bounding box [68].

Fig. 12 presents the output of both Grounding DINO and SAM. The output of

Grounding DINO includes the object's bounding box. Additionally, it showcases the

result of SAM, specifically the generated mask derived from the input provided by

Grounding DINO.

Figure 12: Output of Grounding DINO and SAM

46

3.4 Customization of BundleTrack

After downloading and installing all the required dependencies mentioned in Sections

3.2 and 3.3, it was crucial to appropriately process the input data to ensure error-free

execution of BundleTrack. For this purpose, several Python scripts were developed

specifically to preprocess the input data. Each script is accompanied by a require-

ments.txt file, which specifies the necessary Python version and the required Python

libraries along with their corresponding versions.

To ensure that my efforts could be utilized by ACRO, a comprehensive docu-

mentation file was also prepared. This document offers detailed explanations of the

purpose and usage of each script, along with a recommended sequence for executing

them.

Here is a summary of the scripts involved in the data preprocessing stage. These

scripts are responsible for preparing the data to be compatible with the BundleTrack

algorithm:

- Depth_converter.py: This Python script converts the depth images to the ap-

propriate millimeter scale required by BundleTrack. Since the RealSense L515

camera used in this study produces depth images at a scale of 0.00025 m, this

script ensures their conversion to the correct scale.

- Rename_resize_rgb_depth_images.py: This script serves the purpose of renam-

ing the RGB images and depth images while also resizing the RGB images. The

resizing is necessary to minimize GPU memory usage during mask calculations

by LF-Net. Large image sizes can cause program crashes, so resizing mitigates

this issue.

- Inference_on_a_image.py: This script enables the execution of Grounding

DINO, allowing for detecting the bounding box of the pallox for the initial im-

age.

- Segmentation.py: This script employs SAM to generate the initial mask re-

quired for BundleTrack.

In addition to incorporating the necessary code to enable the functionality of

BundleTrack, modifications to the algorithm itself were essential for its successful ex-

ecution. When applying BundleTrack to the pallox data using the default settings, the

algorithm encountered difficulties in accurately tracking the object's pose when the

camera movement was relatively fast.

To address this issue, BundleTrack offered a configuration file that allowed users

to adjust various algorithmic settings. The configuration file encompassed parameters

pertaining to depth images, bundle adjustment, keyframes, the SIFT algorithm, fea-

ture correspondences and RANSAC calculations.

47

To resolve the problem at hand, it was necessary to expand the search space for

identifying the nearest neighbor, thereby improving the algorithm's ability to handle

faster camera movements.

48

49

When utilizing BundleTrack to calculate the pose of the wooden box, the algorithm

produces the output in the form of text files. This means that in order to accurately

assess the performance of BundleTrack, visualizing the results is crucial. This visuali-

zation provides valuable insights into how the algorithm performs. However, the pa-

per also included various metrics for a more objective evaluation.

Determining the ground truth is essential for obtaining an objective evaluation.

The ground truth poses serve as reference points, allowing for a precise assessment of

the algorithm's accuracy. With the ground truth poses established, various metrics can

be calculated, including the Area Under Curve (AUC) measured by the Average Dis-

tance of Model Points (ADD) score and the Average Distance of Model Points–Sym-

metry (ADD-S) score. Additionally, the average rotation and position errors are com-

puted, and a graph is generated to visualize these errors per frame. Finally, the time

required to compute the pose per frame is recorded for further analysis.

4.1 Camera calibration

To ensure accurate results and evaluate the performance of BundleTrack, it is neces-

sary to calibrate the camera before setting up the experimental setup. The camera used

in this study is the Intel RealSense L515, which utilizes LIDAR technology for depth

measurements. However, since many applications, including BundleTrack, require

depth images rather than point cloud data, typically produced by LIDAR cameras, the

RealSense camera automatically converts the acquired data into an RGB stream and

depth images.

The RealSense L515 camera is designed for indoor environments and has a lim-

ited range of up to 9 meters. It employs a rolling shutter instead of a global shutter,

4 EXPERIMENTAL SETUP AND EVALUATION
METRICS

50

introducing motion blur that can pose challenges for BundleTrack. This camera is suit-

able for close-range objects and slow movements, making it unsuitable for real-world

use cases.

To calibrate the camera, a checkerboard with a known size was created using

[69]. Multiple images of the checkerboard were captured at different rotations. Subse-

quently, the code provided in [70] was utilized to obtain the camera's intrinsic matrix

and distortion coefficients.

The camera intrinsics encompass specific parameters such as the focal lengths

and the coordinates of the principal point. It is represented by a 3x3 matrix with the

following form:

[
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]

Here, 𝑓𝑥 and 𝑓𝑦 denote the focal lengths in the x and y directions, while 𝑐𝑥 and

𝑐𝑦 represent the pixel coordinates of the principal point. Distortion coefficients are

presented as a 1x5 vector with the following general form:

[𝑘1 𝑘2 𝑝1 𝑝2 𝑘3]

The 𝑘1,𝑘2 and 𝑘3 parameters define the amount of radial distortion in the cap-

tured image, while 𝑝1 and 𝑝2 are related to tangential distortion. These parameters

are crucial for accurate pose calculation and result visualization. It is important to note

that these parameters are specific to the camera being used and not the camera type.

In addition to the camera, the hardware used also influences the speed results of

BundleTrack. In this study, the proposed algorithm was tested on an AMD Ryzen 3

3300x CPU and an NVIDIA GeForce GTX 1660 Super.

The object that was used for evaluation was a wooden box with the following

dimensions: a width and length of 123 cm, a thickness of 2 cm, a height of 59.5 cm

without the lower part and a total height of 74 cm.

4.2 Creating a model of the pallox

As mentioned earlier, BundleTrack does not rely on a model to compute the 6D pose

of the object. However, to obtain an objective assessment of BundleTrack's

performance, ground truth information is necessary. Various ground truth methods

were explored in this study, all of which require a model to function.

To generate a point cloud model of the pallox object, a CAD model is needed.

For this paper, FreeCAD was utilized, and the model was exported in STD format.

The model is visualized in Fig. 13.

51

Figure 13: Visualization of model in STD format

To obtain the required ground truth, the model needs to be converted into a

point cloud format. For this purpose, a program called CloudCompare is utilized to

convert the CAD model from STD format to PLY format. Fig. 14 illustrates the point

cloud model of the pallox.

Figure 14: Visualization of model in PLY format

52

4.3 Obtaining the ground truth pose

4.3.1 Obtaining ground truth pose using 6DposeAnnotator

The ground truth pose is obtained using a program called 6DposeAnnotator by

Sakizuki, which serves as an interactive 6D pose annotation tool for point cloud

processing [71]. The program allows the user to transform a point cloud model to align

it with an RGB image, enabling the extraction of the object's pose for that particular

frame.

Upon loading the program, the RGB image, depth image, camera intrinsics,

point cloud model, and initial transformation are provided by the user. The depth

images are crucial for automatically scaling the point cloud model, based on its

position in the image and for facilitating the ICP algorithm, which will be explained

later.

Once all the parameters are loaded, the point cloud model is downsampled to

reduce its density. The downsampled model is then transformed using the initial

transformation, if available. Subsequently, a visualization window is created,

displaying the RGB image with the downsampled point cloud model overlaid.

The 6DposeAnnotator awaits user input for further interaction. To perform the

translation of the point cloud, the user simply needs to click on the image. The

program then retrieves the depth value associated with that position, converting it

into a 3D position within the camera coordinate system. This resulting position

represents the translation vector. In addition to translation, the user has the capability

to rotate the point cloud around the x, y, and z axes. As the user applies rotation, the

program updates the rotation matrix accordingly to visualize the new orientation of

the point cloud.

Additionally, the program incorporates the iterative closest point (ICP)

registration algorithm for pose refinement. ICP is a local registration method used to

align two point clouds: the point cloud model and the depth data transformed into a

point cloud. It accomplishes this by identifying corresponding points between the two

point clouds and estimating a transformation that minimizes the distance between

them [28].

Once the user is satisfied with the alignment between the point cloud and the

object in the RGB image, the final transformation matrix can be saved. Custom code

has been developed to transform this output into the correct format.

However, annotating all frames manually for evaluation purposes can be time-

consuming. To address this, modifications have been made to the program, leveraging

the principle of spatiotemporal consistency. This means that the object's pose should

change gradually over time and follow a realistic trajectory rather than abruptly

jumping from one position to another.

53

As a result, the program has been adjusted to only manually annotate the first

pose, while the poses for subsequent frames are automatically refined using ICP on

the pose of the previous frame. Fig. 15 shows the first manually annotated pose, as

well as the poses for frames 10, 20, and 30, respectively.

Figure 15: Manually annotated pose for frame 1 and automatically annotated poses for frames 10,
20, and 30 using 6DPoseAnnotator

Fig. 15 demonstrates that manually annotating the pose using 6DPoseAnnotator

yields accurate ground truth poses. However, when examining frames that are auto-

matically annotated using ICP (frames 10, 20, and 30), it becomes evident that the ICP

calculation is not sufficiently accurate to serve as ground truth.

The reason ICP fails to work effectively in this particular use case is due to the

limitations of the RealSense L515 camera, which does not provide depth data with the

required level of accuracy for ICP usage. For instance, as depicted in Fig. 16, the RGB

image and depth image for frame 10 illustrate that the edges of the wooden box are

54

not distinctly defined in the depth image. When the depth information does not pro-

vide distinct object edges, it hinders the accurate identification of points that corre-

spond to the surface of the wooden box.

Figure 16: Limitations depth data using L515 camera

4.3.2 Obtaining ground truth pose using markers

An alternative approach for obtaining the ground truth involves the use of markers,

specifically ArUco markers in this thesis. ArUco markers consist of black-and-white

square grids that encode binary patterns. These markers use a predefined dictionary

that specifies the existing patterns and their corresponding IDs. They also come in

different sizes, allowing flexibility for different kinds of objects, such as the wooden

box.

To calculate the pose of the ArUco markers, a program available on [72] was

utilized. This repository contains all the necessary code to generate ArUco tags, detect

them within frames, and calculate their poses. The printed ArUco tags were printed

on A2-sized paper to ensure sufficient recognition and, hopefully, accuracy.

Regarding marker placement, one option was to position the markers on the

pallox itself. However, this approach could potentially impact the performance of

BundleTrack, so an alternative was chosen. Instead, the ArUco markers were placed

in front of the object, allowing for the determination of their orientations while

55

maintaining the performance of BundleTrack. Fig. 17 illustrates the obtained results

for frames 1, 100, 600, and 1100.

Figure 17: Detection and pose estimation of ArUco markers

The code responsible for calculating the pose of the markers has been modified

to extract the pose for each marker individually and convert it to the appropriate

format. Additionally, the calculated marker poses need to be transformed into the

pose of the wooden box. To achieve this, the pose of the pallox for the first frame was

manually determined using 6DposeAnnotator.

By doing this, the necessary information is available to establish the

transformation matrix between the wooden box and one of the markers in that frame.

With this transformation matrix, the poses of the markers in subsequent frames can

be converted to the pose of the wooden box.

For better visualization of the method's output, the bounding box of the pallox

has been incorporated. Fig. 18 showcases frames 1, 100, 600, and 1100, along with the

wooden box's bounding box, providing a comprehensive view of the results.

56

Figure 18: Marker pose converted pallox pose

Initially, the method appears to produce reasonably accurate results for the first

few frames. However, subsequent frames reveal that this approach fails to provide

poses with the necessary level of accuracy for comparison with BundleTrack. As a

result, yet another method had to be employed to obtain poses that met the required

accuracy for comparison with BundleTrack's results.

4.3.3 Obtaining ground truth pose manually

Due to the poor accuracy of the previous results, it was necessary to manually

calculate the ground truth pose. This task was accomplished using the

6DposeAnnotator tool. However, considering the dataset's size of 1153 images,

annotating all frames proved to be inefficient. To ensure a comprehensive

representation of the dataset, 50 frames were chosen, evenly distributed across all

57

frames. This selection process guarantees that the annotated images cover a wide

range of object angles and perspectives.

Modifications were implemented in the code to enhance the annotation process.

Specifically, the code was adjusted to display the object's bounding box instead of the

model's point cloud. This modification greatly improved the precision of the

annotations, allowing for more accurate ground truth poses. Fig. 19 shows the

resulting ground truth poses for frames 1, 368, 759, and 1127.

Figure 19: Ground truth pallox poses obtained manually using 6DPoseAnnotator

4.4 Evaluation metrics

The ADD score and ADD-S score have been computed to objectively assess the per-

formance of BundleTrack. The ADD score represents the average distance between

the calculated pose and the ground truth pose of an object. This is achieved by

58

transforming the point cloud model of the object using both the calculated 6D pose

and the ground truth pose for a single frame. The distance between corresponding

points in the two transformed point cloud models is then calculated, resulting in the

average distance for that frame. This process is repeated for all frames, and the overall

average distance across all frames represents the ADD score. It provides an indication

of the overall alignment between the two transformed models.

To address the challenge posed by symmetric objects, the ADD-S score is intro-

duced. Symmetric objects, such as spheres, can lead to inaccurate pose estimation as

they appear the same from different perspectives. The ADD-S score tackles this by

calculating the distance to the nearest neighbor instead of the corresponding points.

This makes it suitable for evaluating the performance of pose estimation methods on

symmetric objects, while the ADD score is more appropriate for non-symmetric ob-

jects.

The ADD and ADD-S scores are typically represented using the AUC values.

AUC quantifies the performance of the pose estimation method by measuring the area

under the accuracy-threshold curve. The threshold represents the level of accuracy,

and the curve reflects the percentage of frames below that threshold. As the threshold

increases, the number of frames with accuracy below the threshold also increases. By

calculating the average percentage of frames for different thresholds, the AUC value

is obtained and used for comparison.

In addition to the AUC scores, graphs depicting translation error and rotational

error are generated to assess BundleTrack's performance on each frame. The transla-

tion error is measured by calculating the Euclidean distance between the ground truth

translation vector and the calculated translation vector, expressed in meters. As men-

tioned before, vectors represent points in 3D space, and their Euclidean distance is

determined using the formula below:

𝑒𝑑 = √((𝑡𝑐[0] − 𝑡𝑔[0])2 + (𝑡𝑐[1] − 𝑡𝑔[1])2 + (𝑡𝑐[2] − 𝑡𝑔[2])2)

Where 𝑒𝑑 stands for Euclidean distance, 𝑡𝑐 stands for translation calculated and 𝑡𝑔

stands for ground truth translation. To calculate the rotation error, the following for-

mulas have been used:

𝑟𝑛𝑒𝑤 = 𝑟𝑔𝑡.𝑇 ∗ 𝑟𝑐𝑎𝑙𝑐

𝑟𝑒 = acos (
𝑡𝑟𝑎𝑐𝑒(𝑟𝑛𝑒𝑤) − 1

2
) ∗ (

180

𝜋
)

In the provided equations, the notation 𝑟𝑔𝑡.𝑇 denotes the transposed 3x3 ground truth

rotation matrix of the object. On the other hand, 𝑟𝑐𝑎𝑙𝑐 represents the calculated 3x3 ro-

tation matrix of the object. The matrix 𝑟𝑛𝑒𝑤 is obtained by multiplying the aforemen-

tioned matrices, representing the difference between the two rotations. Finally, the

rotation error in degrees, denoted by 𝑟𝑒, is computed [73].

59

5.1 Results without reinitialization

After recording a video of the wooden box and obtaining ground truth pose data for

fifty frames within the video, the results of the BundleTrack program can be analyzed.

In the upcoming paragraphs, a comparison will be made between the results of

BundleTrack in this dataset and in the dataset of BundleTrack’s paper.

The initial focus is on the AUC scores. On the wooden box dataset, BundleTrack

achieved an ADD-based AUC of 26.17 and an ADD-S-based AUC of 72.94. In contrast,

on the YCBInEOAT dataset, the AUCs based on ADD and ADD-S were 87.34 and 92.53,

respectively [3]. These results demonstrate that BundleTrack's performance on the

wooden box dataset is significantly lower compared to its performance on the

YCBInEOAT dataset.

Furthermore, graphs were generated to depict the rotational error in degrees and

the translation error in meters for this particular use case. The x-axis represents the

frames, which encompass the selected 50 frames across the entire dataset. Fig. 20 illus-

trates those errors.

The graphs indicate that the algorithm performs relatively well for the first fifth

of the dataset, as the translation error remains below 5 cm and the rotational error

remains close to 2°. However, starting from frame 10, the translation error gradually

increases. This can be attributed to frames where only the wooden box's edge is visible,

leading to lower-quality depth data and hampering the algorithm's accurate pose

tracking.

Around frame 34 (approximately), there is another notable increase in rotational

and translational errors, coinciding with another edge in the images. Overall,

BundleTrack demonstrates satisfactory performance when the front of the wooden

box is visible, maintaining relatively stable rotational and translational errors.

5 RESULTS

60

However, when the camera rotates around an edge of the wooden box, the algorithm

struggles to precisely track the object's pose.

Figure 20: Translation and rotation error on pallox data

The average translation error of BundleTrack on the pallox data is 7.74 cm, and

the average rotational error is 2.93°. In comparison, when using BundleTrack on the

NOCS dataset, the average translation and rotational errors are 2.1 cm and 2.4°, re-

spectively.

To gain an initial understanding of BundleTrack's performance, a visual repre-

sentation can be observed in Fig. 21. This image indicates that BundleTrack initially

tracks the pose of the wooden box quite accurately. However, as the frames progress,

a noticeable drift in the estimated pose becomes apparent. This drift primarily occurs

when the camera captures the edges of the wooden box. The BundleTrack algorithm

encounters difficulty finding sufficient feature correspondences to precisely estimate

the pose. This limitation arises from the depth data's inadequate quality, which only

provides depth information for a small portion of the wooden box.

61

Figure 21: Output of BundleTrack algorithm on pallox data

To enhance BundleTrack’s performance for this specific use case, two potential

options exist. The first option involves using a camera that offers improved depth im-

aging of the object during camera rotations. With a broader coverage of surface depth

data, the algorithm can identify more object features, thereby reducing drift. Alterna-

tively, reinitializing BundleTrack at regular intervals using a tracking by detection

method can be considered. Since a tracking by detection method is already necessary

for the first frame, it can be employed periodically to maintain high speed while min-

imizing drift.

62

5.2 Results with reinitialization

To simulate the effects of reinitialization using a tracking by detection method, the

pose is reset to the ground truth pose every 100 frames. The results of this simulation

can be observed in Fig. 22 and Fig. 23.

Notably, the performance of BundleTrack significantly improves, with the trans-

lation error remaining below 5 cm and the rotation error hovering around 2°. The av-

erage translation error reduces to 1.83 cm, and the average rotation error decreases to

0.93°.

It is important to note that these results represent an ideal scenario with a perfect

tracking by detection algorithm, which is not achievable in real-world use cases. Ad-

ditionally, implementing a tracking by detection algorithm will impact the speed at

which the solution operates. One suitable method for tracking by detection is the 3D-

model-based approach called Point Pair Feature Matching (PPFM), which eliminates

the need for an initial transformation or training. However, it does require a model

[74].

Figure 22: Translation and rotation error on pallox data with reinitialization

63

Figure 23: Output of BundleTrack algorithm on pallox data with reinitialization

In terms of speed, BundleTrack currently runs at a frequency of 6 Hz, excluding

mask generation. Although this speed is adequate for real-time applications, there is

potential for further enhancements by leveraging a more powerful GPU. In the origi-

nal BundleTrack paper, the algorithm achieved a total speed of 10 Hz utilizing a single

NVIDIA RTX 2080 Ti GPU, which possesses considerably greater computing power

compared to the GPU employed in this study. Additionally, it is worth noting that the

algorithm's speed has not been compromised despite making specific adjustments to

accommodate my particular use case. For instance, enlarging the search area to iden-

tify corresponding features has no impact on the algorithm's overall speed.

64

65

The primary objective of this master's thesis was to achieve real-time tracking of the

6D pose of a pallox without relying on a CAD model. To accomplish this, a temporal

tracking method called BundleTrack was utilized, along with custom code for data

preprocessing and the combined use of Grounding DINO and SAM for initial mask

extraction. Various approaches were explored to obtain accurate ground truth data

for evaluating the performance of the BundleTrack algorithm.

The algorithm demonstrates an average position error of 7.74 cm and an average

rotation error of 2.93°. The AUC values measured by ADD and ADD-S are 26.17 and

72.94, respectively. With the GTX 1660S GPU, the program achieves a real-time speed

of 6 Hz. These results indicate that the algorithm has potential for practical applica-

tions.

Future enhancements will involve employing a different camera capable of cap-

turing depth images with higher quality than the LIDAR L515 camera, aiming to im-

prove the algorithm's accuracy for this specific use case. Another approach for accu-

racy improvement will be the implementation of a tracking by detection method at

regular intervals to reset the object's pose and mitigate drift, as demonstrated in the

obtained results. Finally, further optimization will be required for the proposed

method to achieve full autonomy, as certain steps still necessitate manual intervention.

6 CONCLUSION AND FUTURE WORK

66

REFERENCES

[1] “wenbowen123/BundleTrack: [IROS 2021] BundleTrack: 6D Pose Tracking for

Novel Objects without Instance or Category-Level 3D Models.”

https://github.com/wenbowen123/BundleTrack (accessed Jun. 03, 2023).

[2] “Real-time tracking and pose estimation for industrial objects using geometric

features | IEEE Conference Publication | IEEE Xplore.” https://ieeex-

plore.ieee.org/abstract/document/1242127?casa_to-

ken=1gVIS3YEyOoAAAAA:KP1sAlm-ziZzzFBSnH7E5_uMF1kP_Z6Vr9DEP-

pHUqKsS2ykAbGk0OOrXD3Ta4IZ5_kPZccEDgnqW9A (accessed Jun. 07,

2023).

[3] B. Wen and K. Bekris, “BundleTrack: 6D Pose Tracking for Novel Objects with-

out Instance or Category-Level 3D Models,” p. 2021.

[4] Z. He, W. Feng, X. Zhao, and Y. Lv, “6D Pose Estimation of Objects: Recent

Technologies and Challenges,” 2020, doi: 10.3390/app11010228.

[5] A. D. Dongare, R. R. Kharde, and A. D. Kachare, “Introduction to Artificial Neu-

ral Network,” Certified International Journal of Engineering and Innovative Technol-

ogy (IJEIT), vol. 9001, no. 1, pp. 2277–3754, 2008.

[6] D. Pascual-Hernández, N. Oyaga De Frutos, I. Mora-Jiménez, and J. María Ca-

ñas-Plaza, “Efficient 3D human pose estimation from RGBD sensors ✩,” 2022,

doi: 10.1016/j.displa.2022.102225.

[7] R. Bashirov et al., “Real-time RGBD-based Extended Body Pose Estimation”.

[8] “What is a Neural Network? | TIBCO Software.” https://www.tibco.com/ref-

erence-center/what-is-a-neural-network (accessed Mar. 31, 2023).

[9] K. O’shea and R. Nash, “An Introduction to Convolutional Neural Networks”.

[10] “Deep Learning A-ZTM 2023: Neural Networks, AI & ChatGPT Bonus | Udemy.”

https://www.udemy.com/course/deeplearning/learn/lec-

ture/6761108?start=0#overview (accessed May 19, 2023).

[11] Z. Li et al., “Learning the Depths of Moving People by Watching Frozen People”.

[12] G. Gao, M. Lauri, X. Hu, J. Zhang, and S. Frintrop, “CloudAAE: Learning 6D

Object Pose Regression with On-line Data Synthesis on Point Clouds”, Accessed:

May 30, 2023. [Online]. Available: https://github.com/GeeeG/CloudAAE.

[13] H. Cao, L. Dirnberger, D. Bernardini, C. Piazza, and M. Caccamo, “6IMPOSE:

Bridging the Reality Gap in 6D Pose Estimation for Robotic Grasping”, Accessed:

May 30, 2023. [Online]. Available: https://youtu.

[14] M. Rad and V. Lepetit, “BB8: A Scalable, Accurate, Robust to Partial Occlusion

Method for Predicting the 3D Poses of Challenging Objects without Using

Depth”.

67

[15] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “PVNet: Pixel-wise Voting Net-

work for 6DoF Pose Estimation”, Accessed: Apr. 03, 2023. [Online]. Available:

https://zju3dv.github.io/pvnet/.

[16] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A Convolutional

Neural Network for 6D Object Pose Estimation in Cluttered Scenes”, Accessed:

Apr. 03, 2023. [Online]. Available: https://rse-lab.cs.washington.edu/pro-

jects/posecnn/.

[17] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D: Making RGB-

Based 3D Detection and 6D Pose Estimation Great Again”, Accessed: Apr. 03,

2023. [Online]. Available: https://wadimkehl.github.io/

[18] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A Convolutional Network for

Real-Time 6-DOF Camera Relocalization”.

[19] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “CosyPose: Consistent multi-

view multi-object 6D pose estimation”, Accessed: Apr. 03, 2023. [Online]. Avail-

able: https://www.di.ens.fr/willow/research/cosypose/

[20] W. Chen, X. Jia, H. J. Chang, J. Duan, and A. Leonardis, “G2L-Net: Global to

Local Network for Real-time 6D Pose Estimation with Embedding Vector Fea-

tures”, Accessed: Apr. 03, 2023. [Online]. Available:

https://github.com/DC1991/G2L_Net.

[21] C. Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fu-

sion”, Accessed: Apr. 03, 2023. [Online]. Available:

https://sites.google.com/view/densefusion/.

[22] A. Khosla, A. Torralba, and J. J. Lim, “FPM: Fine Pose Parts-Based Model with

3D CAD Models,” Lecture Notes in Computer Science, pp. 478–493, 2014, doi:

10.1007/978-3-319-10599-4_31.

[23] J. H. White and R. W. Beard, “An Iterative Pose Estimation Algorithm Based on

Epipolar Geometry With Application to Multi-Target Tracking”, doi:

10.1109/JAS.2020.1003222.

[24] J. Yang, W. Liang, and Y. Jia, “Face Pose Estimation with Combined 2D and 3D

HOG Features”, Accessed: Apr. 03, 2023. [Online]. Available: www.baidu.com

[25] “A precision pose measurement technique based on multi-cooperative logo”,

doi: 10.1088/1742-6596/1607/1/012047.

[26] Y. Konishi, K. Hattori, and M. Hashimoto, “Real-Time 6D Object Pose Estima-

tion on CPU,” 2019, Accessed: Apr. 03, 2023. [Online]. Available:

http://isl.sist.chukyo-u.ac.jp/archives4/

[27] B. Han et al., “Point Cloud Registration Method for Pipeline Workpieces Based

on RANSAC and Improved ICP Algorithms,” IOP Conf Ser Mater Sci Eng, vol.

612, no. 3, p. 032190, Oct. 2019, doi: 10.1088/1757-899X/612/3/032190.

[28] “Iterative closest point - Wikipedia.” https://en.wikipedia.org/wiki/Itera-

tive_closest_point (accessed May 31, 2023).

68

[29] R. Ge and G. Loianno, “VIPose: Real-time Visual-Inertial 6D Object Pose Track-

ing”.

[30] H. Uchiyama and E. Marchand, “Object Detection and Pose Tracking for Aug-

mented Reality: Recent Approaches”.

[31] L. Huang, G. N. Mckay, N. J. Durr, and G. N. Mckay, “A Deep Learning Bidi-

rectional Temporal Tracking Algorithm for Automated Blood Cell Counting

from Non-invasive Capillaroscopy Videos”.

[32] E. Mendes, P. Koch, and S. Lacroix, “ICP-based pose-graph SLAM,” SSRR 2016

- International Symposium on Safety, Security and Rescue Robotics, pp. 195–200, Dec.

2016, doi: 10.1109/SSRR.2016.7784298.

[33] D. J. Fleet and Y. Weiss, “Optical Flow Estimation”.

[34] F. A. Moreno, J. L. Blanco, J. González-Jiménez, F. A. Moreno, J. L. Blanco, and

J. González, “An Efficient Closed-Form Solution to Probabilistic 6D Visual

Odometry for a Stereo Camera,” 2007, doi: 10.1007/978-3-540-74607-2_85.

[35] R. Hambali, D. Legono, and R. Jayadi, “Jurnal Teknologi Full Paper THE AP-

PLICATION OF PYRAMID LUCAS-KANADE OPTICAL FLOW METHOD

FOR TRACKING RAIN MOTION USING HIGH-RESOLUTION RADAR IM-

AGES,” 2021, doi: 10.11113/jurnalteknologi.v83.14494.

[36] H. Yang, F. Wang, Z. Li, and H. Dong, “Simultaneous Pose and Correspondence

Estimation Based on Genetic Algorithm,” 2015, doi: 10.1155/2015/828241.

[37] P. Padeleris, X. Zabulis, and A. A. Argyros, “Head pose estimation on depth

data based on Particle Swarm Optimization,” IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, pp. 42–49, 2012, doi:

10.1109/CVPRW.2012.6239236.

[38] R. Ge and G. Loianno, “VIPose: Real-time Visual-Inertial 6D Object Pose Track-

ing,” IEEE International Conference on Intelligent Robots and Systems, pp. 4597–

4603, Jul. 2021, doi: 10.1109/IROS51168.2021.9636283.

[39] B. Wen and K. Bekris, “CVPR 2021 Workshop on 3D Vision and Robotics Data-

driven 6D Pose Tracking by Calibrating Image Residuals in Synthetic Domains

Chaitanya Mitash Amazon”, Accessed: May 31, 2023. [Online]. Available:

https://github.com/wenbowen123/iros20-6d-pose-tracking

[40] E. Mendes, P. Koch, and S. Lacroix, “ICP-based pose-graph SLAM,” SSRR 2016

- International Symposium on Safety, Security and Rescue Robotics, pp. 195–200, Dec.

2016, doi: 10.1109/SSRR.2016.7784298.

[41] A. Dubey, “Stereo vision-Facing the challenges and seeing the opportunities for

ADAS applications”.

[42] “Review on LiDAR technology Srushti Neoge · Ninad Mehendale”, Accessed:

Jun. 12, 2023. [Online]. Available: https://ssrn.com/abstract=3604309

69

[43] “A Closer Look at LiDAR and Stereovision - Edge AI and Vision Alliance.”

https://www.edge-ai-vision.com/2021/07/a-closer-look-at-lidar-and-stereo-

vision/ (accessed Jun. 07, 2023).

[44] “A closer look at LiDAR and stereovision. | Ambarella.” https://www.am-

barella.com/blog/a-closer-look-at-lidar-and-stereovision/ (accessed Jun. 07,

2023).

[45] “Livox LiDAR Sensors - For massive industrial applications.” https://www.li-

voxtech.com/ (accessed Jun. 07, 2023).

[46] “The all-new REV7 sensors powered by the L3 Chip | Ouster.”

https://ouster.com/products/rev7/ (accessed Jun. 07, 2023).

[47] “Envision the Future | Velodyne Lidar.” https://velodynelidar.com/ (accessed

Jun. 07, 2023).

[48] “Stereo Imaging Systems | Teledyne FLIR.” https://www.flir.eu/sup-

port/browse/oem-cameras-components-and-lasers/stereo-imaging-systems

(accessed Jun. 07, 2023).

[49] “Stereo Depth Solutions from Intel RealSense.” https://www.intelre-

alsense.com/stereo-depth/ (accessed Jun. 07, 2023).

[50] “Shop the ZED Store | Stereolabs.” https://store.stereolabs.com/en-

eu?_gl=1*bmpw1u*_ga*MTc0OTg0OTc2LjE2ODYxNjcyNTA.*_ga_LQLT-

WBS792*MTY4NjE2NzI1MC4xLjAuMTY4NjE2NzI1MC42MC4wLjA.&_ga=2.1

01487428.491189895.1686167251-174984976.1686167250 (accessed Jun. 07, 2023).

[51] “LiDAR Camera L515 – Intel® RealSenseTM Depth and Tracking Cameras.”

https://www.intelrealsense.com/lidar-camera-l515/ (accessed Jun. 12, 2023).

[52] “Score-based mask edge improvement of Mask-RCNN for segmentation of fruit

and vegetables - ScienceDirect.” https://www.sciencedirect.com/science/arti-

cle/pii/S0957417421015190?casa_token=-94GhTjPoe-

QAAAAA:xmG1CFYU6tJFH14nO7KktiIUXtZCFCERGnXtJENmZKLw6LU-

aCuLR9rlH1x6keEHnoprwLZdszg4 (accessed Jun. 06, 2023).

[53] Y. Zhang, Z. Wu, H. Peng, and S. Lin, “A Transductive Approach for Video Ob-

ject Segmentation.” pp. 6949–6958, 2020. Accessed: May 31, 2023. [Online].

Available: https://github.com/

[54] “BundleTrack/SIFTImageManager.cpp at master · wen-

bowen123/BundleTrack · GitHub.” https://github.com/wen-

bowen123/BundleTrack/blob/master/src/cuda/SIFTImageManager.cpp (ac-

cessed Jun. 11, 2023).

[55] Y. Ono, E. Trulls, P. Fua, and K. Moo Yi, “LF-Net: Learning Local Features from

Images”.

[56] “Distinctive Image Features from Scale-Invariant Keypoints | SpringerLink.”

https://link.springer.com/article/10.1023/B:VISI.0000029664.99615.94 (ac-

cessed Jun. 06, 2023).

70

[57] “K-nearest neighbor - Scholarpedia.” http://scholarpedia.org/article/K-near-

est_neighbor (accessed Jun. 07, 2023).

[58] K. G. Derpanis, “Overview of the RANSAC Algorithm,” 2010.

[59] “Understanding NVIDIA CUDA: The Basics of GPU Parallel Computing.”

https://www.turing.com/kb/understanding-nvidia-cuda#what-is-cuda? (ac-

cessed May 19, 2023).

[60] “CUDA GPUs - Compute Capability | NVIDIA Developer.” https://devel-

oper.nvidia.com/cuda-gpus (accessed May 19, 2023).

[61] “Are Docker images OS dependent? - Quora.” https://www.quora.com/Are-

Docker-images-OS-dependent (accessed Jun. 07, 2023).

[62] “Docker overview | Docker Documentation.” https://docs.docker.com/get-

started/overview/ (accessed Jun. 07, 2023).

[63] “Install WSL | Microsoft Learn.” https://learn.microsoft.com/en-us/win-

dows/wsl/install (accessed Jun. 07, 2023).

[64] “Installation Guide — NVIDIA Cloud Native Technologies documentation.”

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-

guide.html (accessed Jun. 07, 2023).

[65] “Segment Anything - Wiki | Golden.” https://golden.com/wiki/Segment_An-

ything-6AY9VXG (accessed May 20, 2023).

[66] “Segment Anything | Meta AI.” https://segment-anything.com/ (accessed Jun.

07, 2023).

[67] “IDEA-Research/GroundingDINO: The official implementation of ‘Grounding

DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object De-

tection.’” https://github.com/IDEA-Research/GroundingDINO (accessed Jun.

07, 2023).

[68] S. Liu et al., “Grounding DINO: Marrying DINO with Grounded Pre-Training

for Open-Set Object Detection”.

[69] “Camera Calibration Pattern Generator – calib.io.”

https://calib.io/pages/camera-calibration-pattern-generator (accessed May 24,

2023).

[70] “Camera Calibration with Python - OpenCV - GeeksforGeeks.”

https://www.geeksforgeeks.org/camera-calibration-with-python-opencv/

(accessed May 24, 2023).

[71] “sakizuki/6DPoseAnnotator: An interactive 6 degree-of-freedom (DoF) pose

annotation tool using point cloud processings.” https://github.com/sa-

kizuki/6DPoseAnnotator (accessed May 26, 2023).

[72] “GSNCodes/ArUCo-Markers-Pose-Estimation-Generation-Python: Estimating

pose using ArUCo Markers.” https://github.com/GSNCodes/ArUCo-Mark-

ers-Pose-Estimation-Generation-Python (accessed Jun. 03, 2023).

71

[73] “linear algebra - Comparing two rotation matrices - Mathematics Stack Ex-

change.” https://math.stackexchange.com/questions/2113634/comparing-

two-rotation-matrices (accessed Jun. 09, 2023).

[74] “Point Pair Feature Matching: Evaluating Methods to Detect Simple Shapes |

SpringerLink.” https://link.springer.com/chapter/10.1007/978-3-030-34995-

0_40 (accessed Jun. 09, 2023).

