2022-2023

Best suited device architectures and selective contacts for thin film Van der Waals materials based on Sb₂Se₃ chalcogenide and SbSeI chalcohalide compounds

Sander Moens

Master of Energy Engineering Technology

Introduction

Thin film solar cells have become a hot topic for their interesting applications in building integrated photovoltaics (BIPV) and the possibility to achieve higher efficiencies with multi-junction devices by combining them with existing PV technologies. A big focus lays on the development of these technologies from environmentally friendly materials to ensure safety and sustainability. chalcohalide, like antimony selenide (Sb₂Se₃) and antimony selenoiodide (SbSeI), share these advantages and shows useful wide bandgap properties for PV applications.

Device synthesis

SbSeI is an emerging thin film material and has limited research on device architecture and electron/hole selective contacts. This master's thesis will mainly be focused on the synthesis of different possible device configurations and selective contacts by comparing them to a reference absorber material like Sb₂Se₃. This is achieved by using proven materials as selective contacts.

Characterization results

Efficiency and V_{oc} to annealing temperature.

- SbSeI devices show no response
- Trendline visible with previously synthesized devices at different annealing temperatures
- Increasing annealing temperature decreases device efficiency
- \succ Sb₂Se₃ device XRD angles match with experimental pattern, intensities not so much
- SbSeI device XRD angles and intensities show high similarity to experimental pattern

X-ray Diffractogram (XRD) from synthesized devices and experimental patterns from Sb₂Se₃ and SbSeI.

Presence of

ETL's:

- Cadmium sulfide (CdS)
- \succ Titanium dioxide (TiO₂)
- > Vanadium pentoxide (V_2O_5)

HTL's:

- Molybdenum (Mo)
- \succ Molybdenum trioxide (MoO₃)
- ➢ PEDOT

Conclusion

- SbSeI absorber layers do not really form thin films and show a very uneven surface morphology making the deposition of contact layers difficult
- ➤ More precursor reacts with increasing annealing temperature worsening absorber coverage due to column like structures which leads to an increase in shunt paths
- Diffractograms from devices with SbSeI show similarities to experimental pattern based on powder, indicating non-uniform crystalline orientation

Finished substrate device

containing SbSeI absorber.

- Columnar structures seem to be very fragile to external forces, broken due to centrifugal forces that occur during spin coating
- Future work could focus on minimizing column heights and maximizing layer coverage and strength. Introducing a type of passivation layers might reduce shunt phenomenon.

Prof. Dr. Edgardo Saucedo (UPC) Supervisors / Co-supervisors / Advisors Prof. Dr. Bart Vermang (UHasselt/Imomec)

References: [1] K. Zeng, D.-J. Xue, and J. Tang, "Antimony selenide thin-film solar cells," Semiconductor Science and Technology, vol. 31, no. 6, p. 063001, Apr. 2016, doi: 10.1088/0268-1242/31/6/063001.

