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 Abstract 

 Lung  cancer  has  the  second  highest  mortality  rate  among  cancer  phenotypes  and  is  linked 
 with  an  increasing  incidence  of  2.4  million  by  2035,  raising  the  need  for  more  efficient 
 diagnosis  and  accurate  prognosis.  Radiomics  can  be  a  useful  tool  to  support  both  purposes. 
 This  master’s  thesis  aims  to  uncover  the  possible  distinguishing  powers  of  radiomics  data 
 between healthy and lung cancer tissue.  

 A  cohort  of  49  patients  was  diagnosed  with  NSCLC  by  18  F-FDG  PET  imaging  for  more 
 accurate  staging  and  underwent  a  lobectomy.  The  VOI  of  the  lung  lesion  was  first  segmented 
 in  the  ACCURATE  tool  (developed  by  Prof.  Dr.  Boellaard).  Then,  the  previously  segmented 
 VOIs  are  exactly  translated  in  the  ACCURATE  tool  to  the  opposite  lung  including  only 
 healthy  lung  tissue.  Next,  radiomics  features  were  extracted  from  both  the  tumor  and  the 
 healthy  VOI,  providing  504  features.  A  paired  t-test  unveiled  69  irrelevant  features  in 
 differentiating  both  tissue  types.  Next,  a  principal  component  analysis  (PCA)  was  performed 
 to  establish  clustering,  remove  noise  and  uncover  relevant  features.  Lastly,  discriminative 
 models were created to distinguish healthy and tumor tissue. 

 The  PCA  indicates  separate  clustering  of  both  tissue  types,  with  the  noise-reduced  dataset  of 
 269  features  showing  the  best  results.  A  set  of  30  features  still  performed  adequately.  The 
 Fine  and  Weighted  K-Nearest  Neighbors,  and  Bagged  Trees  and  Subspace  Discriminant 
 ensemble learning models show an accuracy of 98.3% in predicting tissue type. 





 Abstract (in Dutch) 

 Longkanker  heeft  het  tweede  hoogste  sterftecijfer  onder  kankers  en  een  toenemende 
 incidentie  van  2,4  miljoen  tegen  2035.  Dit  vergroot  de  behoefte  aan  efficiënte  diagnose  en 
 nauwkeurige  prognose.  Radiomics  kan  een  hulpmiddel  zijn  om  beide  doelen  te  ondersteunen. 
 Deze  masterproef  heeft  als  doel  om  gezond  en  longkankerweefsel  te  kunnen  onderscheiden 
 aan de hand van radiomics-data. 

 Een  cohort  van  49  patiënten  werd  gediagnosticeerd  met  NSCLC  door  18  F-FDG 
 PET-beeldvorming  voor  een  nauwkeurigere  stadiëring,  en  onderging  een  lobectomie.  De  VOI 
 van  de  longlaesie  werd  eerst  gesegmenteerd  in  de  ACCURATE  tool.  Vervolgens  worden  de 
 eerder  gesegmenteerde  VOI's  in  deze  tool  exact  vertaald  naar  de  andere  long,  met  enkel 
 gezond  longweefsel.  Daarna  werden  radiomics-features  geëxtraheerd  uit  beide  VOIs,  wat  504 
 features  opleverde.  Een  gepaarde  t-test  vond  69  features  die  irrelevant  zijn  in  het 
 onderscheiden  van  de  twee  weefseltypes.  Daarna  werd  een  PCA  uitgevoerd  om  clustering 
 vast  te  stellen,  ruis  te  verwijderen  en  relevante  kenmerken  te  onthullen.  Ten  slotte  zijn  er 
 discriminerende modellen gecreëerd om gezond en tumorweefsel te onderscheiden. 

 De  PCA  geeft  gescheiden  clustering  van  beide  weefseltypen  aan,  waarbij  de  dataset  met 
 ruisonderdrukking  van  269  features  de  beste  resultaten  laat  zien.  Een  set  van  30  features 
 presteerde  nog  adequaat.  De  Fine-  en  Weighted  KNN,  en  Bagged  Trees  en  Subspace 
 Discriminant  ensemble  modellen  tonen  een  nauwkeurigheid  van  98,3%  bij  het  voorspellen 
 van het weefseltype. 





 1  Introduction 

 Every  year,  over  2  million  people  worldwide  receive  a  lung  cancer  diagnosis  [1].  This 
 number  is  estimated  to  continue  to  rise  in  the  coming  years  [2].  The  survival  rate  for  lung 
 cancer  has  been  shown  to  correlate  with  the  disease's  stage  [3].  Due  to  a  general  lack  of 
 symptoms  in  the  early  stages  of  lung  cancer,  a  proper  diagnosis  often  takes  place  when  the 
 disease  has  already  reached  later  stages  [4].  Only  17%  of  lung  cancer  cases  are  detected  early 
 and  mostly  by  accident  [5].  Because  of  this,  lung  cancer  was  responsible  for  an  estimated  1.8 
 million  deaths  in  2020  alone  [6].  Chapter  two  will  introduce  the  principles  behind  cancer  and 
 its  specific  metabolism  and  will  take  a  closer  look  at  lung  cancer  and  non-small  cell  lung 
 carcinoma (NSCLC) in particular. 

 A  topic  gaining  popularity  in  cancer  research  is  radiomics.  It  encompasses  the  extraction  of 
 features  (higher  dimensional  data)  from  images.  The  image  can  be  the  volume  of  interest 
 (VOI)  of  a  tumor  itself.  These  features  contain  quantitative  information  based  on  the 
 intensity,  shape,  size  or  volume,  and  texture  of  tumor  phenotype  and  its  microenvironment.  It 
 is  an  extension  of  computer-aided  diagnosis  and  detection  (CAD)  systems  [7-8].  Radiomics 
 and its applications in cancer research are elaborated on in Chapter four. 

 The  ProLung  study  is  a  research  project  at  Ziekenhuis  Oost-Limburg  (ZOL)  located  in  Genk 
 and  is  funded  by  ‘Kom  op  tegen  Kanker’.  This  study  focuses  on  patients  diagnosed  with 
 NSCLC  who  underwent  a  lobectomy  as  part  of  their  standard-of-care  treatment  plan.  The 
 tumor staging in these patients ranges from stage I-IIIA. 

 This  Master’s  thesis  focuses  on  patients  with  NSCLC,  which  comprises  80%  of  lung  cancer 
 cases,  and  the  resulting  radiomic  data  retrieved  from  the  tumor  volume  of  interest  (VOI). 
 Radiomics  in  lung  cancer  has  shown  promising  results  concerning  diagnosis  and  prognosis 
 [9].  Following  the  extensive  research  done  in  this  area,  this  study  aims  to  distinguish  healthy 
 lung  tissue  from  NSCLC  tissue  solely  using  radiomics  features  extracted  from  the  segmented 
 VOI.  Furthermore,  this  Master’s  thesis  aims  to  find  a  statistical  discriminative  model  for  the 
 aforementioned  tissues.  The  purpose  of  both  objectives  is  to  establish  whether  radiomics  can 
 form a basis for assisting in and/or automation of diagnosis and prognosis. 

 This  study’s  methodology  starts  at  Chapter  six.  A  patient  cohort  of  49  patients  is  used  for  the 
 purposes  of  this  study.  All  patients  comply  with  the  aforestated  conditions,  namely  stage 
 I-IIIA  NSCLC  and  a  lobectomy  as  part  of  their  standard-of-care  treatment  plan.  18  F-FDG 
 PET/CT  images  were  gathered  using  the  Biograph  Horizon  camera  (Siemens  Healthineers). 
 Tumor  segmentation  was  performed  semi-automatically  on  the  PET  images  using  the 
 Accurate  tool  (developed  by  the  research  team  of  Prof.  Dr.  Boellaard,  Amsterdam  UMC). 
 The  CT  images  captured  concurrently  are  used  to  correct  the  segmented  VOIs  for  breathing 
 artifacts.  A  total  of  504  features  were  then  extracted  using  the  Radiomics  tool  (developed  by 
 the  research  team  of  Prof.  Dr.  Boellaard,  Amsterdam  UMC).  These  can  be  subdivided  into 
 498 radiomics features and 6 PET Uptake Metrics per patient. Afterward, the same procedure 



 was  used  to  create  a  second  dataset  for  healthy  tissue  VOIs  resulting  in  the  same  number  of 
 extracted features. 

 Firstly,  a  paired  t-test  was  performed  on  both  datasets  to  eliminate  features  that  showed  no 
 significance  in  discriminating  between  healthy  and  tumor  tissue  VOIs.  This  resulted  in  435 
 remaining features. 

 Secondly,  the  new  dataset  of  435  features  is  visualized  using  a  dendrogram,  which  is  a 
 tree-based  representation  of  the  hierarchical  clustering  of  data.  This  method  of  visualization 
 shows  relationships  between  objects  of  a  dataset  and  can  be  useful  in  revealing  clustering  of 
 those objects. In this case, the objects are the 435 features. 

 Thirdly,  the  healthy  and  tumor  VOI  datasets  with  the  reduced  number  of  features  underwent  a 
 principal  component  analysis  (PCA).  This  analysis  is  used  to  visualize  high-dimensional 
 datasets  by  reducing  them  to  principal  components  (PCs)  to  form  a  two-dimensional  plot. 
 This could indicate clustering of the data and reveal relevant radiomics features. 

 Finally,  the  Matlab  classification  learner  tool  is  used  to  find  models  able  to  predict  certain 
 classifications  of  the  patients,  such  as  tumor  or  healthy  tissue,  diabetes,  packyears,... 
 Therefore,  the  patient  cohort  is  split  into  two  groups  of  30  and  19  patients  each.  These  groups 
 are used for training the model and using that model to make predictions respectively. 

 The  results  of  these  analyses  are  laid  out  in  Chapter  eight,  as  well  as  demographic  data 
 collected  for  the  patient  cohort.  The  results  consist  of  the  eliminated  features  based  on  the 
 paired  t-test,  a  dendrogram  visualizing  the  features,  a  PCA  to  see  clustering,  and  uncover  the 
 most relevant features and models used to train and test based on distinguishing classifiers. 

 Chapter  nine  elaborates  on  the  features  showing  the  most  significance  in  differentiating 
 healthy  tissue  from  NSCLC  tissue.  This  elaboration  consists  of  a  general  description 
 combined with a mathematical definition for each feature. 

 The  discussion  of  the  used  methodology  and  the  resulting  findings  can  be  found  in  Chapter 
 ten. Possible pitfalls and future extensions of this study are also part of this chapter. 

 Chapter  eleven  comprises  the  conclusion  of  this  research  concerning  the  two  objectives  set 
 forth  in  this  chapter.  These  objectives  are  distinguishing  healthy  lung  tissue  from  NSCLC 
 tissue  solely  using  radiomics  features  extracted  from  the  segmented  VOI  and  finding  a 
 statistical discriminative model for the aforementioned tissues. 
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 2  Cancer 

 Cancer  is  a  leading  cause  of  death  worldwide,  accounting  for  nearly  10  million  deaths  in 
 2020,  or  nearly  one  in  six  deaths.  The  most  common  types  are  breast,  lung,  colon  and  rectum, 
 and  prostate  cancers  [  6  ].  Whenever  a  normal  cell's  basic  traits  and  behaviors  become 
 distorted  and  a  loss  of  normal  biological  controls  occurs,  the  cell  becomes  cancerous. 
 Generally,  these  cancer  cells  have  three  fundamental  phases.  The  first  phase  of  these  cells  is 
 uncontrolled  division.  The  mechanisms  which  control  cell  division  fail  and  the  population  of 
 malfunctioning  cells  expands  rapidly.  Secondly,  due  to  this  rapid  increase  in  the  population  of 
 cancerous  cells,  the  surrounding  tissue  can  be  invaded  and  destroyed.  The  third  and  final 
 phase  is  the  colonization  of  distant  body  sites,  also  called  metastasis  [  10  ].  After  the  third 
 phase,  the  process  can  start  over  in  the  current  sites.  A  distinction  can  be  made  between  two 
 types  of  cancer,  namely  benign  and  malignant  cancer.  A  benign  tumor  only  adopts  the  first  of 
 the  aforementioned  traits  while  a  malignant  tumor  invades  other  nearby  and/or  distant  tissues 
 [11].  A  malignant  tumor  is  therefore  more  life-threatening  and  poses  another  problem.  What 
 is  the  primary  tumor  site?  A  nodule  found  in  the  lungs  does  not  automatically  mean  the 
 patient  started  with  lung  cancer.  This  can  make  treatment  more  difficult  and  underlines  the 
 importance of proper screening and diagnosis [12]. 

 2.1  Biology of cancer 

 “The  Hallmarks  of  cancer”,  as  originally  defined  by  Hanahan  and  Weinberg,  are 
 characteristics  that  describe  the  transformation  of  normal  cells  to  cancerous  cells.  In  time, 
 more  hallmarks  have  been  discovered  and  now  ten  hallmarks  are  widely  accepted.  These  are 
 visualized in Figure 1 [13]. 
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 Figure 1: The Ten Hallmarks of Cancer  [13]. 

 When  normal  cells  undergo  some  or  most  of  these  hallmarks  and  become  cancerous,  their 
 population  increases  dramatically.  This  explosion  in  population  means  an  increased  energy 
 demand  to  sustain  the  continued  cell  growth  and  division.  New  metabolic  pathways  are 
 created  to  accommodate  this  increased  need  for  energy.  Warburg  demonstrated  that  tumor 
 cells  exhibit  a  high  rate  of  glucose  metabolism  compared  to  normal  cells.  Two  more 
 properties,  lactate  secretion,  and  oxygen  availability  combined  with  the  glucose  uptake  make 
 up  the  Warburg  effect  [14-15].  The  mechanism  has  been  visualized  in  Figure  2.  This  Warburg 
 effect  can  clinically  be  exploited  by  18  F-FDG  PET  imaging  as  will  be  discussed  in  a  later 
 paragraph. 
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 Figure  2:  Warburg  effect,  glycolysis  and  TCA-cycle  metabolism 
 pathways  [  15  ]  . 

 2.2  Lung Cancer 

 Lung  cancer  has  the  second  highest  incidence  of  all  types  of  cancer.  The  International 
 Agency  for  Research  on  Cancer  (IARC),  a  subdivision  of  the  World  Health  Organization 
 (WHO),  estimates  an  incidence  of  2.206.771  new  cases  of  lung  cancer  in  2020  alone,  making 
 it  the  second  most  prevalent  type  of  cancer  globally  behind  breast  cancer,  as  can  be  seen  in 
 Figure 3 [1]. 
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 Figure  3:  Pie  chart  of  estimated  new  cancer  cases  in  2020,  World,  both  sexes,  all  ages  (excl.  NMSC) 
 [1]. 

 Research  has  shown  a  clear  link  between  the  survival  rate  for  lung  cancer  and  the  stage  of  the 
 disease  at  the  time  of  diagnosis  [  3  ].  Due  to  a  general  lack  of  symptoms  in  the  early  stages  of 
 lung  cancer,  a  proper  diagnosis  often  takes  place  when  the  disease  has  already  reached  later 
 stages  [4].  Only  17%  of  lung  cancer  cases  are  detected  early  and  mostly  by  accident  [5]. 
 Because  of  this,  lung  cancer  is  responsible  for  an  estimated  1.8  million  deaths  in  2020  alone 
 [6]. 

 It  has  long  been  recognized  that  smoking  is  the  leading  cause  of  lung  cancer  [  16-17  ].  This  is 
 also  highlighted  in  a  study  by  Alberg  et  al.  which  comprised  Table  1  with  known  causes  for 
 lung cancer [18]. 
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 Table 1: Key factors associated with risk of lung cancer [18]. 

 Factor  Description 

 A.  Single  most  important 
 causal  determinant  of 
 individual  population  risk, 
 most  valuable  indicator  of 
 clinical risk  1 

 Active smoking of cigarettes and other tobacco products: 

 -  Individual  risk  increases  with  greater  number  of 
 cigarettes  smoked  per  day  and  greater  number  of 
 years  of  smoking.  Population  risk  increases  with  the 
 prevalence  of  current  smokers  because  population 
 prevalence  predicts  lung  cancer  occurrence  with  a 
 latency period of about 20 years. 

 B.  Other  risk  factors 
 causally  associated  with 
 lung cancer  2 

 -  Secondhand smoke exposure 
 -  Ionizing radiation, including radon 
 -  Occupational  exposures,  e.g.  arsenic,  chromium, 

 nickel, asbestos, tar and soot 
 -  Indoor and outdoor air pollution 

 C.  Additional  clinical  risk 
 factors  3 

 The risk factors noted above, plus: 

 -  Older age 
 -  Male  sex,  particularly  among  those  of  African 

 American ancestry 
 -  Family history of lung cancer 
 -  Acquired  lung  disease,  e.g.  COPD,  TB, 

 pneumoconiosis,  idiopathic  pulmonary  fibrosis  and 
 systemic sclerosis 

 -  Occupational exposures, such as to silica dust 
 -  HIV infection 

 D.  Examples  of  association 
 with  consistent  evidence  but 
 causal  role  not  presently 
 established 

 -  Fruit and vegetable intake (decreased risk) 
 -  Physical activity (decreased risk) 
 -  Marijuana smoking (not associated with risk) 

 1  COPD, chronic obstructive pulmonary disease; TB,  tuberculosis. 

 2  The evidence for factors listed in these categories  is extremely strong to meet epidemiologic criteria for causality. 

 3  The  factors  listed  under  clinical  risk  indicators  are  all  strongly  associated  with  increased  risk  of  lung  cancer  but  are 
 listed  in  this  category  either  because  they  are  intrinsic  characteristics  of  the  patient  (age,  sex,  ethnic  ancestry  and 
 family  history)  or  are  factors  with  consistent  evidence  of  increased  risk  that  presently  falls  short  of  being  rated  as 
 causal 

 A  study  by  luo  et  al.  shows  that  the  incidence  of  lung  cancer  by  2035  is  projected  to  increase 
 dramatically  in  most  countries.  In  general,  the  findings  indicate  an  increase  in  new  lung 
 cancer  patients  among  females,  while  the  incidence  for  males  declines.  A  change  in  smoking 
 and working habits among genders is put forth as a driving force for this change. [  19  ]. 
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 2.2.1  Non-small cell lung carcinoma 

 Lung  cancer  is  split  into  two  categories:  small  cell  lung  carcinoma  (SCLC)  and  non-small  cell 
 lung  carcinoma  (NSCLC).  In  80%  of  the  cases,  it  concerns  NSCLC.  There  are  five  stages  of 
 cancer  regarding  NSCLC,  starting  with  stage  0,  categorized  by  the  TNM  system  [20].  In 
 stage  0,  abnormal  cells  are  detected  only  in  the  lungs.  In  stage  I,  the  abnormal  cells  become 
 cancer  cells  where  the  size  of  the  tumor  is  a  maximum  of  3  cm.  If  the  size  of  the  tumor  is 
 between  4  and  5  cm,  it  is  classified  as  stage  II.  In  the  next  stage,  stage  III,  tumor  cells  have 
 reached  some  lymph  nodes.  Finally,  in  stage  IV  the  tumor  can  be  any  size  and  has  reached 
 many  lymph  nodes  and  even  other  organs  [21].  The  link  between  the  stage  of  lung  cancer  and 
 the  survival  rate  becomes  apparent  here.  The  5-year  survival  for  NSCLC  remains  below  25% 
 [22].  A  study  from  2019  showed  that  in  stage  I,  there  is  around  55%  survival  rate  while  the 
 percentage  in  stage  4  is  only  around  5%  [23].  This  is  also  highlighted  by  data  from  IARC  as 
 seen in Figure 4. 

 Figure 4: Survival by stage and time since diagnosis of NSCLC for both sexes, age 15-99  [  24  ]. 

 It  is  evident  from  these  statistics  that  early  diagnosis  and  better  prognostic  tools  could  aid  in 
 formulating a treatment plan- and increase a patient's chances of survival. 
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 3  Medical imaging for lung cancer 

 Due  to  being  less  invasive  than  a  biopsy,  medical  imaging  has  been  the  main  methodology  for 
 screening,  diagnosing,  and  staging  lung  cancer.  Screening  is  often  done  by  taking  a  low-dose 
 computed  tomography  (CT)  image  [  25  ].  For  staging,  the  merger  of  18  F-FDG  PET  and  CT  is 
 shown  to  improve  its  diagnostic  accuracy  in  NSCLC  [  26  ].  The  use  of  18  F-FDG  PET  and  CT 
 merged  images  has  shown  prognostic  capabilities  over  other  modalities.  More  specifically, 
 SUV  is  shown  to  be  a  predictor  of  overall  survival  [27].  This  study  will  examine  PET 
 imaging  and  the  potential  of  data-mining  of  these  images.  Before  this  can  be  addressed,  the 
 principles of positron-emitting tomography will be discussed in this paragraph. 

 3.1  Computed tomography (CT) 

 Computed  tomography  (CT)  is  a  form  of  medical  imaging  created  by  Godfrey  Hounsfield  in 
 1972.  The  principle  of  this  form  of  imaging  is  shooting  X-rays,  photons,  through  a  patient. 
 The  X-rays  interact  with  the  different  tissues  it  goes  through  and  undergo  a  process  called 
 attenuation,  the  gradual  loss  of  intensity  [  28  ].  This  attenuation  μ  is  density-based  and  thus 
 tissue  specific.  On  the  opposite  side  of  the  body,  the  resulting  X-rays  are  collected  in 
 detectors.  With  a  known  flux  of  X-rays  entering  the  body  and  the  remaining  rays  being 
 detected  at  the  other  end,  a  density  map  can  be  created  of  the  body.  More  precisely,  the  source 
 of  the  X-rays  (X-ray  tube)  and  the  detectors  are  mounted  on  a  ring  opposite  to  each  other  as 
 seen  in  Figure  5.  This  ring  rotates  creating  a  slice.  Translating  the  patient  through  the  gantry 
 creates  multiple  slices  which  make  up  the  final  3D  image  [29].  For  lung  cancer,  a  CT  image 
 is  taken  of  the  thorax  and  since  this  modality  can  capture  lung,  soft  tissue,  and  bone  detail 
 simultaneously, it is often the preferred way of imaging [30]. 

 Figure 5: Layout of a CT gantry [  31]. 
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 3.1.1  The X-ray tube 

 The  source  of  the  X-rays  for  a  CT  is  an  X-ray  tube.  This  device  consists  of  four  main 
 components,  namely:  the  tube,  the  high-voltage  generator,  the  control  console,  and  the 
 cooling  system  as  represented  in  Figure  6.  The  tube,  containing  the  anode  and  cathode,  is 
 under vacuum so the electrons are not obstructed while accelerating. 

 Figure 6: Components of the X-ray tube [29]. 

 The  production  of  X-rays  starts  by  heating  up  the  filament  (cathode)  and  in  turn  releasing  free 
 electrons.  When  these  electrons  are  released,  they  feel  the  voltage  in  the  tube  and  are 
 accelerated  toward  the  anode  (often  made  from  tungsten).  The  voltage  used  to  accelerate  the 
 electrons  is  between  30  and  150  kV  [32].  The  higher  the  voltage,  the  more  energy  the 
 resulting  rays  will  have.  The  higher  the  current  (in  mA  range),  the  higher  the  flux  of  X-rays. 
 Finally,  the  electrons  reach  the  anode  and  can  travel  close  to  the  tungsten  nuclei,  feeling  their 
 attractive  positive  force.  They  deflect,  losing  a  large  portion  of  their  energy  in  the  form  of 
 heat  and  radiation.  The  generation  of  heat  is  the  reason  an  X-ray  tube  needs  proper  cooling. 
 The  radiation  that  is  produced  when  charged  particles  undergo  acceleration  is  called 
 Brehmsstrahlung  and  these  are  the  useful  X-rays  [29].  Another  effect  can  occur  when  the 
 electrons  approach  the  tungsten  atoms.  They  can  interact  with  the  electron  shell,  exciting  the 
 atom.  The  return  to  its  ground  state,  the  atom  can  release  an  X-ray  photon.  These  are 
 characteristic  X-rays  and  are  mono-energetic  [33].  The  final  spectrum  of  the  produced 
 X-rays, both characteristic as from  Bremsstrahlung  is visualized in Figure 7. 
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 Figure 7: X-ray spectrum produced in an X-ray tube [33]. 

 3.2  Positron-emitting tomography (PET) 

 PET  is  a  form  of  nuclear  medicine.  Whereas  CT  and  magnetic  resonance  imaging  (MRI)  give 
 a  physician  morphological  information,  a  PET  scan  gives  information  on  metabolic  activity. 
 It  can  be  defined  as  a  combination  of  nuclear  medicine  and  biochemical  analysis  [34].  The 
 main  principle  behind  this  way  of  imaging  is  the  detection  of  radiation  originating  from  an 
 intravenously  injected  radiopharmaceutical.  The  radiation  has  to  be  positron  emission  also 
 known  as  β  +  -decay.  This  form  of  radioactive  decay  consists  of  an  unstable  nucleus  converting 
 a proton into a neutron, releasing a positron in the process [35]. 

 This  positron  is  a  positively  charged  electron  and  can  be  seen  as  the  electron's  antiparticle. 
 Therefore,  when  an  electron  and  a  positron  meet,  they  undergo  annihilation.  The  particles 
 disappear  resulting  in  two  γ-rays  flying  away  at  about  180°  from  each  other.  Figure  8 
 visualizes this process. 
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 Figure 8: The process of positron-electron annihilation [36]. 

 For  PET  imaging,  this  annihilation  is  the  key.  The  formed  photons  flying  away  at  180°  form  a 
 line  of  reference.  A  PET  scanner  is  a  ring  of  detectors  made  to  detect  the  coincidences  of  two 
 photons  and  reconstruct  the  lines  of  response  (LOR).  This  way,  the  origin  of  the  annihilation 
 can  be  found  [37].  The  detection  is  based  on  a  ring  of  photon  counters  and  scintillators.  The 
 scintillator  comprises  a  scintillation  crystal,  a  photomultiplier  tube  (PMT),  and  amplifiers  as 
 seen in Figure 9. 

 Figure  9:  Principles  of  a  scintillation  detector  for  gamma 
 rays [38]. 

 Figure 10: Block detector setup [39] 

 The  main  component  is  the  scintillation  crystal.  Here,  the  spectrum  of  the  radiation  that  enters 
 is  absorbed  and  re-emitted  in  the  visible  spectrum.  This  re-emitted  light  is  proportional  to  the 
 energy  deposited  by  the  radiation.  The  PMT  creates  a  signal  by  producing  photoelectrons  for 
 each  entering  photon.  These  electrons  are  then  multiplied  to  create  the  signal.  In  modern 
 detectors,  multiple  pairs  of  a  scintillator  and  a  PMT  are  put  together  to  form  blocks  as 
 visualized  in  Figure  10.  Finally,  amplifiers  are  used  to  further  strengthen  the  signal  [38][40]. 
 However,  the  detection  is  not  as  straightforward.  Not  all  coincidences  are  true  coincidences. 
 Figure 11 represents the different events that can occur. 
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 Figure 11: Illustration of the events detected in a PET scanner [  41  ]. 

 As  shown  in  Figure  11,  some  photons  can  undergo  Compton  scattering  with  electrons 
 resulting  in  a  false  LOR.  A  certain  time  interval  is  used  to  detect  a  coincidence.  This  interval 
 can  be  large  enough  for  two  separate  events  to  produce  a  false  measurement,  a  random 
 coincidence. Finally, only one of the two photons is detected resulting in a single event [42]. 

 The PET image reconstruction process involves several steps, including [43]: 

 -  Attenuation  correction:  PET  gamma  rays  are  attenuated  (absorbed  or  scattered)  as 
 they  pass  through  the  body,  which  affects  the  accuracy  of  the  reconstructed  image. 
 Attenuation correction is the process of estimating and correcting for this attenuation. 

 -  Image  reconstruction:  The  2D  projection  data  acquired  by  the  PET  scanner  is 
 mathematically  processed  in  a  sinogram  to  create  a  3D  image  of  the  radiotracer 
 distribution  in  the  body.  This  is  typically  done  using  iterative  algorithms  that 
 iteratively  refine  the  estimate  of  the  radiotracer  distribution  until  it  converges  into  a 
 stable solution. 

 -  Post-processing:  The  reconstructed  PET  image  is  often  post-processed  to  enhance  the 
 quality  of  the  image  and  to  extract  quantitative  information  about  the  radiotracer 
 distribution. This may involve filtering, smoothing, and segmentation techniques. 

 Multiple  positron-emitting  isotopes  exist,  but  not  all  are  useful.  The  International  Atomic 
 Energy  Agency  (IAEA)  has  summarized  some  of  the  most  used  radioisotopes  for  PET 
 imaging as seen in Table 2. 
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 Table 2: Most frequently used radioisotopes for PET [  41  ]. 

 Two main prerequisites are put forth by the IAEA for an isotope to be acceptable for PET: 

 -  Readily  available  or  (relatively)  easy  to  produce,  in  adequate  quantities,  and  with  the 
 required purity; 

 -  Suitable  for  the  synthesis  of  radiopharmaceuticals  that  allow  the  study  of  biochemical 
 processes in vivo [  41  ]. 

 The  radioisotope  is  then  bound  to  a  specific  molecule  that  has  an  affinity  for  accumulating  in 
 specific  locations.  As  explained  in  a  previous  chapter,  glucose  is  used  by  cancerous  cells  at 
 higher  rates  than  normal  cells.  This  means  the  glucose  concentration  will  be  higher  in  and 
 around  tumors  [44].  By  labeling  glucose  with  a  radioisotope,  these  higher  concentrations  can 
 be  pinpointed  using  PET.  A  commonly  used  glucose  analog  is  fludeoxyglucose  (FDG).  This 
 molecule  is  mostly  marked  with  an  18  F  atom  substituting  a  hydroxyl  group  to  form  the 
 [  18  F]-2-deoxy-2-fluoro-D-glucose.  The  18  F  is  produced  in  a  cyclotron  facility  [45-46].  To 
 assess  glucose  metabolism,  the  standardized  uptake  value  (SUV)  is  used.  This  is  a 
 semi-quantitative  method  based  on  the  activity  concentration  of  the  injected 
 radiopharmaceutical. It can be calculated by Formula 1. 

 𝑆𝑈𝑉    =     𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦     𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛     𝐴𝑡     𝑇𝑖𝑚𝑒     𝑂𝑓     𝑃𝐸𝑇    [ 𝐵𝑞  /  𝑚𝑙 ]
 𝐼𝑛𝑖𝑡𝑖𝑎𝑙     𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦     𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑    [ 𝐵𝑞 ] /     𝑝𝑎𝑡𝑖𝑒𝑛𝑡     𝑤𝑒𝑖𝑔ℎ𝑡    [ 𝑚𝑙 ]  (1) 

 34 



 4  Radiomics 

 4.1  What is radiomics? 

 A  topic  gaining  popularity  in  cancer  research  is  radiomics.  It  encompasses  the  extraction  of 
 features  (higher  dimensional  data)  from  images.  The  image  can  be  the  volume  of  interest 
 (VOI)  of  a  tumor  itself.  These  features  contain  quantitative  information  based  on  the 
 intensity,  shape,  size  or  volume,  and  texture  of  tumor  phenotype  and  its  microenvironment.  It 
 is  an  extension  of  computer-aided  diagnosis  and  detection  (CAD)  systems  [7-8].  Several 
 studies  have  shown  that  the  aforementioned  features  extracted  from  computer  tomography 
 (CT),  magnetic  resonance  imaging  (MRI),  ultrasound  (US),  or  nuclear  medicine  imaging 
 correlate  with  underlying  tumor  biology  changes  as  summarized  by  Ardakani  et  al.  [47]. 
 Moreover,  some  features  have  indicated  prognostic  capabilities  for  lung  and  head-and-neck 
 cancer  patients  [48].  This  suspected  prognostic  ability  will  be  discussed  in  this  research 
 paper.  It  is  important  to  note  that  the  extracted  data  can  be  cancer-specific  [49].  Therefore  this 
 study  focuses  on  radiomics  research  concerning  lung  cancer  and  more  specifically  non-small 
 cell lung cancer (NSCLC). 

 4.1.1  Radiomics features 

 Radiomics  data  consists  of  quantitative  results  of  image  features.  First  and  foremost, 
 radiomics  features  are  descriptive  data.  They  summarize  the  characteristics  and  distribution 
 of  a  set  of  data  values  and  include  include  “minimum,”  “maximum,”  “range,”  “percentile,” 
 “mean,”  “median,”  “mode,”  “mean  deviation,”  “standard  deviation,”  “variance,”  “skewness,” 
 and  “kurtosis.”  This  type  of  data  represents  information  that  can  be  used  as  the  basis  for 
 comparing  how  data  series  differ  [50].  The  extracted  features  can  be  grouped  into  multiple 
 classes: first-order, shape, second-order or texture, and higher-order features. 

 First-order  features  ,  also  referred  to  as  intensity  histogram  features  and  statistical  features, 
 provide  information  about  the  distribution  of  voxel  intensities  within  the  segmented  region  of 
 the  image.  Features  found  in  this  class  are  the  ones  listed  previously  with  the  addition  of 
 energy (magnitude of voxel values). 

 Shape  features  ,  subdivided  into  3-dimensional  and  2-dimensional  shape  features,  describe 
 the  shape  and  size  of  the  VOI.  These  are  also  called  morphology  features.  This  class  includes 
 features such as volume, surface area, sphericity, diameter, elongation, and flatness. 

 Second-order  or  texture  features  supply  information  on  the  texture  of  the  VOI.  The 
 quantification  of  the  texture  is  based  on  the  arrangement  of  voxel  gay-level  intensities  in  the 
 VOI.  These  features  are  further  subdivided  in  five  groups.  Gray  Level  Co-occurrence 
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 Matrix  (GLCM)  features  describe  textural  indices  based  on  the  arrangements  of  pairs  of 
 voxels.  More  specifically,  the  features  describe  how  combinations  of  discretized  gray  levels 
 of  neighboring  pixels  of  voxels  are  distributed  along  an  image  direction.  Gray  Level  Run 
 Length  Matrix  (GLRLM)  Features  represent  the  quantification  of  a  length  or  number  of 
 consecutive  pixels  with  the  same  gray  level  value,  also  known  as  a  run  length.  Gray  Level 
 Size  Zone  Matrix  (GLSZM)  Features  provide  data  on  the  gray  level  zones  of  the 
 segmented  area  of  the  image.  These  gray  level  zones  are  areas  of  connected  voxels  sharing 
 the  same  gray  level  intensity,  thus  indicating  uniformity.  Neighboring  Gray  Tone  Difference 
 Matrix  (NGTDM)  Features  quantify  the  difference  between  a  voxel  gray  level  and  the 
 average  gray  level  of  its  neighbors  in  all  three  dimensions  within  a  given  distance.  Finally, 
 Gray  Level  Dependence  Matrix  (GLDM)  Features  describe  the  gray  level  dependency  of  a 
 number of connected voxels within a certain distance of the centermost voxel. 

 Higher-order  features  can  be  obtained  after  transformation  or  filtering  of  the  original 
 segmented region. These features, however, are not part of this study. [51-54] 

 This  paper  will  use  the  nomenclature  set  forth  in  the  Image  Biomarker  Standardisation 
 Initiative (IBSI) [53]. 

 4.2  Radiomics: the state of affairs 

 Radiomics  is  used  in  different  ways  for  all  different  kinds  of  cancer,  going  from  non-small 
 cell  lung  cancer  (NSCLC)  to  pancreas  cancer.  This  research  only  looks  at  lung  cancer  tumors, 
 but  it  can  be  helpful  to  look  further  than  only  lung  cancer  research  and  take  a  look  at  all  kinds 
 of  previous  radiomics  research.  The  results  of  these  previous  studies,  the  implementation,  and 
 the difficulties will be discussed in this chapter. 

 4.2.1  Radiomics for lung cancer 

 Although  radiomics  is  a  relatively  new  method,  the  results  found  in  multiple  lung  cancer 
 studies  are  promising.  Most  research  about  lung  cancer  radiomics  uses  (  18  F)FDG-PET/CT 
 scans  whereby  a  positron-emitting  radionuclide  (  18  F)  is  bound  to  a  glucose  molecule, 
 fludeoxyglucose  (FDG),  and  injected  into  a  patient.  Cancer  cells  use  sugar  at  higher  rates 
 than  normal  cells  which  increases  the  concentration  of  the  18  F  in  those  regions.  The  positron 
 emitting  tomography  (PET)  camera  detects  the  radiation  born  from  the  18  F-FDG  and  produces 
 an  image  detailing  the  areas  with  higher  glucose  uptake.  When  combining  these  images  with 
 computed  tomography  (CT)  images  giving  anatomical  information,  possible  cancerous  cells 
 can be pinpointed in the body [55]. 

 In  the  radiomics  lung  cancer  studies,  the  data  is  extracted  by  a  professional  who  marks  the 
 region  of  interest.  In  general,  the  steps  in  radiomics  research  are  segmentation,  quantification, 

 36 



 extracting  the  different  features,  and  performing  statistical  analyses  on  the  radiomics  datasets. 
 There  are  different  methods  to  perform  these  steps,  and  the  data  from  the  extracted  features 
 highly  depends  on  them.  There  is  still  no  standardized  approach  for  radiomic  research  which 
 is  still  an  issue,  but  the  results  are  very  useful  for  predicting  prognosis  and  response  to 
 different  therapies  [9].  What  is  essential  for  the  standardization  of  radiomics  studies  is  quality 
 and  reproducibility.  Studies  about  data-driven  gating  and  free-breathing  PET-CT  acquisitions 
 show  that  the  radiomic  features  derived  from  pulmonary  lesions  located  inferior  to  the 
 superior  lobes,  and  pulmonary  lesions  of  a  smaller  size,  have  a  more  significant  variability 
 [56].  Reconstruction  and  delineation  are  also  two  important  factors  when  it  comes  to 
 radiomic  research.  Studies  show  that  many  features  have  similar  standardized  uptake  values 
 (SUV),  which  is  a  simple  way  of  determining  activity  in  PET  imaging  and  is  used  to  measure 
 the  response  of  cancers  to  treatment.  In  general,  the  performance  of  radiomic  studies  depends 
 more  on  the  delineation  method  than  on  the  applied  reconstruction  algorithm  [57-58].  Finally, 
 there  are  different  types  of  segmentation.  Research  shows  that  reproductivity  and  reliability 
 are  better  for  semi-automatic  segmented  volumes  than  for  manually  segmented  ones.  It  is 
 suggested  that  there  is  a  development  needed  for  fully  automatic  segmentation  tools.  This 
 will  minimize  the  impact  of  contouring  uncertainties  as  well  as  increase  the  repeatability  and 
 reproducibility of studies concerning radiomics [59]. 

 4.2.2  Radiomics applications in other types of cancer 

 Radiomics  is  not  only  used  for  lung  cancer  research.  Head-and-neck  cancer  radiomic  studies 
 show  that  radiomics  can  be  used  to  identify  patients  with  a  high  risk  of  local  tumor  recurrence 
 in  an  early  stage  [60].  Radiomics  is  also  used  for  liver  fibrosis,  which  is  a  disease  that  results 
 in  liver  failure,  cirrhosis,  and  portal  hypertension.  Applying  radiomics  has  shown  promising 
 results  in  staging  liver  fibrosis  and  characterizing  hepatocellular  carcinoma,  but  there  is  still 
 no agreement on how to use these properly for specific applications [61-62]. 

 The  use  of  radiomics  in  breast  cancer  research  is  a  relatively  new  topic.  It  is  used  to  improve 
 the  diagnosis  and  characterization.  Where  lung  cancer  radiomic  research  uses  mostly 
 PET-CT,  breast  cancer  research  mostly  involves  magnetic  resonance  imaging  (MRI).  Since 
 these  studies  are  in  an  early  stage,  research  on  high-quality  prospective  and  reproductivity  is 
 still needed. At the time of writing, there are still quality limitations [63]. 

 At  last,  radiomics  can  also  help  in  the  research  of  prostate  tumors,  but  previous  studies  have 
 shown that the features vary greatly in their repeatability [64]. 

 37 



 4.2.3  Prognosis 

 Other  than  retrieving  detailed  information  about  a  tumor  and  its  VOI,  studies  have  been 
 focussing  on  producing  prognostic  models  for  a  wide  range  of  cancer  phenotypes.  For 
 example,  radiomics  can  be  used  to  predict  the  recurrence  of  acute  pancreatitis  (AP).  Here  the 
 radiomics  features  are  used  as  a  biomarker  and  in  combination  with  the  radiomics  model  it 
 could help predict the recurrence of AP as a quantitative analysis method [65]. 

 Going  back  to  the  lungs,  radiomic  features  capturing  detailed  information  about  the  tumor 
 phenotype  can  be  used  as  a  prognostic  biomarker  for  distant  metastasis  in  lung 
 adenocarcinoma  [66].  This  type  of  cancer  is  found  on  the  outside  of  the  lungs  compared  to 
 NSCLC  which  is  typically  an  internal  form  of  lung  cancer.  For  this  same  type  of  cancer, 
 another  study  demonstrated  the  link  between  imaging  characteristics  and  patient  survival 
 [67]. 

 For  lung  cancer,  in  general,  Chen  et  al.  were  able  to  predict  a  prognosis  in  80.7%  of  the  cases 
 using  radiomics  and  high  throughput  data  extraction  [68].  More  proof  of  the  prognostic 
 capabilities  comes  from  Jiang  et  al.  who  put  together  a  prognostic  model  by  combining 
 metabolomic  and  radiomic  features  of  primary  gastrointestinal  diffuse  large  B  cell  lymphoma 
 [69].  It  is  important  to  note  that  studies  have  indicated  that  the  software  platform  version  can 
 affect  feature  reliability  in  CERR  and  LIFEx.  Features  identified  as  having  a  significant 
 relationship to survival varied between these platforms [70]. 

 4.3  Workflow of a radiomics study 

 The  workflow  of  a  radiomics  study  consists  of  several  steps  and  is  visualized  in  Figure  12.  In 
 general,  these  steps  are  the  acquisition  of  the  images,  the  segmentation  of  the  volumes  of 
 interest,  the  feature  extraction,  the  selection  of  the  features,  and  finally  the  data  analyses. 
 However,  the  standardization  of  these  steps  is  still  a  debated  issue  because  different  studies 
 use different methods for these different steps [9]. 

 Figure 12: A simple scheme showing that  18  F-FDG PET/CT 
 imaging may mirror the genotype of tumors [9]. 
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 The  first  step  in  the  radiomics  workflow  is  image  acquisition.  These  are  medical  images,  such 
 as  MRI,  CT,  and  PET,  of  study  patients.  Image  acquisition  is  an  important  step  because  the 
 extracted  features  depend  on  the  quality  of  the  images.  Therefore,  to  produce  generalizable 
 data,  the  process  of  image  acquisition  should  be  standardized  [9].  In  the  case  of  NSCLC, 
 PET/CT  images  are  used  to  visualize  the  tumor.  The  images  of  this  study  are  anonymized  so 
 that the identity of the different patients is unknown. 

 After  the  imaging  is  done,  the  next  step  is  the  segmentation  of  the  two-dimensional  region  of 
 interest  (ROI)  or  the  three-dimensional  volume  of  interest  (VOI).  In  the  case  of  NSCLC, 
 there  has  to  be  a  segmentation  of  the  tumor  tissue.  The  segmentations  have  to  be  done  by  a 
 professional,  for  example,  a  doctor  who’s  specialized  in  lung  cancer.  There  are  also  other 
 techniques  for  segmentation,  such  as  semi-automatically  and  fully  automatic.  In 
 semi-automatic  segmentation,  standardized  algorithms  are  used,  while  fully-automatic 
 segmentation  uses  deep  learning  algorithms  [71].  In  this  study,  the  image  segmentation  is 
 done  by  a  semi-automatically  method  with  an  SUV  threshold  of  0%.  The  VOI,  created  on  the 
 basis  of  this  threshold  is  then  checked  and  adjusted  manually  by  a  medical  professional.  After 
 the segmentation, the radiomics features, which are discussed in  3.1.1  , can be extracted. 

 In  general,  feature  extraction  is  the  calculation  and  quantification  of  the  characteristics  of  the 
 gray  levels  within  the  segmented  regions.  It  can  be  done  by  different  programs,  such  as 
 LifeX, Moddicom, and Pyradiomics. 
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 5  Statistical analyses 

 5.1  Student t-test 

 When  comparing  two  population  groups  and  whether  they  express  a  significant  or 
 non-significant  difference,  a  Student  t-test  can  be  used.  A  requirement  for  this  statistical  tool 
 is  that  both  datasets  approximate  a  normal  distribution.  Generally,  a  t  score  is  calculated  and  a 
 t  distribution  is  produced.  The  t  score  is  defined  by  the  ratio  of  the  mean  difference  to  the 
 standard error as seen in Formula 2. 

 (2)  𝑡     𝑠𝑐𝑜𝑟𝑒    =     𝑀𝑒𝑎𝑛     𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑     𝐸𝑟𝑟𝑜𝑟 

 The  t  distribution  is  based  on  a  probability  distribution  and  parameterized  by  the  degrees  of 
 freedom  for  the  dataset.  These  degrees  of  freedom  equal  the  total  sample  size  minus  two  for  a 
 student  t-test.  Having  more  degrees  of  freedom  correlates  with  the  distribution  increasingly 
 favoring  the  mean.  Based  on  this,  a  threshold  value  can  be  determined  and  the 
 aforementioned t-score can be compared with this threshold [72]. 

 A  paired  t-test  is  a  form  of  t-test  used  on  before-and-after  observations  on  the  same  subjects 
 [73].  For  example,  for  comparing  healthy  and  cancerous  tissue  in  the  same  patient,  a  paired 
 t-test  could  prove  useful.  Apart  from  a  t-score,  a  paired  t-test  returns  other  significant  results. 
 First  and  foremost  the  null  hypothesis  H0  is  tested.  In  the  case  of  the  healthy  and  cancerous 
 tissue,  H0  would  be  that  both  datasets  are  the  same.  When  the  statistical  test  is  performed,  an 
 H  value  of  0  or  1  is  returned,  accepting  or  rejecting  the  null  hypothesis  respectively.  A  second 
 result  is  the  p  -value.  It  can  be  described  as  a  probability  of  how  likely  the  similarity  or 
 difference  between  the  two  datasets  is  due  to  chance.  P  has  a  value  ranging  from  0  to  1.  The 
 closer  to  0,  the  less  likely  the  result  is  by  chance  and  the  more  statistically  significant  the 
 result  is  [74].  A  third  resulting  parameter  is  the  t  score  or  t  stat,  described  in  this  paragraph. 
 Finally,  the  paired  t-test  returns  the  degrees  of  freedom  (df)  of  the  dataset.  This  is  the  number 
 of variables that can be changed without breaking any restraints [75]. 
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 5.2  Machine learning 

 5.2.1  Classification trees 

 Tree  classification  is  a  fundamental  task  in  the  field  of  machine  learning  and  pattern 
 recognition,  aimed  at  categorizing  data  samples  into  distinct  classes  or  categories  based  on 
 their  features.  It  is  an  easy  and  fast  way  to  interpret  the  data  and  to  find  a  good  fitting  and 
 prediction [76]. 

 It  is  similar  to  a  regression  tree,  but  a  classification  tree  is  used  to  predict  a  qualitative 
 response  rather  than  a  quantitative  one.  The  ‘most  commonly  occurring  class’  of  each 
 observation  is  predicted  in  the  region  to  which  it  belongs.  Not  only  the  class  prediction 
 corresponding  to  a  particular  terminal  node  region  is  important,  but  also  the  class  proportions 
 among  the  training  observations  that  fall  into  that  region  are  interesting  for  interpreting  the 
 results [77]. 

 5.2.2  Support vector machine 

 The  support  vector  machine  (SVM)  is  an  objective  of  support  that  classifies  the  data  points 
 by  finding  a  hyperplane  in  an  N-dimensional  space.  There  are  many  possible  hyperplanes  that 
 could  be  chosen  to  separate  two  classes  of  the  dataset.  This  is  done  by  finding  a  plane  that  has 
 a maximum distance between the data points of both classes as shown in Figure 13 [78]. 

 Figure 13: Possible hyperplanes [78]. 

 By  maximizing  the  margin  distance  between  the  data  points,  the  better  future  data  points  can 
 be  classified.  The  data  points  that  are  closer  to  the  hyperplane  are  the  support  vectors,  and 
 they  influence  the  position  and  the  orientation.  The  SVM  that  is  used,  uses  these  points  to 
 build the classifier [78]. 
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 5.2.3  K-nearest neighbors algorithm 

 The  K-nearest  neighbors  algorithm  is  a  supervised  machine  learning  algorithm  used  for  both 
 classification  and  regression  tasks.  It  operates  by  finding  the  k  data  points  in  the  training  set 
 that  are  closest  to  a  given  test  point,  based  on  a  chosen  distance  metric.  KNN  assigns  the 
 class  label  of  the  majority  of  the  K-nearest  patterns  in  the  data  space.  The  K  stands  for  the 
 neighborhood  size  and  it  defines  the  locality.  Figure  14  shows  the  difference  between  a  KNN 
 for  a  small  neighborhood  (a)  and  a  larger  neighborhood  (b).  For  a  small  K-value,  the 
 prediction  is  local,  while  a  larger  K-value  ignores  these  small  agglomerations  of  patterns 
 [79]. 

 Figure 14: Visualization of the K-nearest neighbors algorithm for different K values [79]. 

 5.2.4  Ensemble learning 

 Ensemble  learning  is  a  machine  learning  technique  that  combines  the  predictions  from 
 multiple  models.  There  are  an  unlimited  number  of  ensembles  that  can  be  developed,  but 
 there are three methods that are most commonly used: 

 -  Bagging  stands  for  bootstrap  aggregating.  For  this  method,  many  decision  trees  are 
 fitted and the predictions are averaged for the final prediction. 

 -  Stacking  is  a  method  that  uses  another  model  that  learns  how  to  combine  the 
 predictions of many different prediction models to make a final prediction 

 -  Boosting  is  an  iterative  ensemble  learning  technique  where  base  learners  are  trained 
 sequentially,  and  each  subsequent  model  focuses  on  correcting  the  mistakes  made  by 
 the previous models. 

 Overall, ensemble learning is a powerful technique that can enhance the accuracy and 
 reliability of machine learning models [80]. 
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 5.3  Cluster analysis 

 5.3.1  Dendrogram 

 A  dendrogram  is  a  tree-based  representation  of  the  hierarchical  clustering  of  data.  It  visually 
 displays  the  relationships  between  different  objects  or  groups  of  objects  based  on  their 
 similarities.  In  a  dendrogram,  each  object/group  of  objects  is  represented  by  a  leaf/branch  of 
 the  tree.  The  objects  that  are  more  similar  to  each  other  are  clustered  together  and  connected 
 by  branches.  The  height  of  the  branches  in  the  dendrogram  represents  the  dissimilarity  or 
 distance  between  the  clustered  objects.  The  longer  the  branch,  the  greater  the  dissimilarity 
 [77]. 

 The  visualization  of  a  dendrogram  is  shown  in  Figure  15.  It  shows  how  the  data  can  be 
 clustered,  where  the  dashed  line  indicates  the  cut-off  height.  The  left  side  of  Figure  15  shows 
 the  dendrogram  with  complete  linkage  and  Euclidean  distance.  The  center  shows  the 
 dendrogram  with  a  cut  at  a  height  of  nine,  which  forms  two  clusters.  The  right  side  of  Figure 
 15 shows the dendrogram with a cut at a height of 5, which forms three clusters [77]. 

 Figure 15: Hierarchical clustering with a dendrogram [77]. 
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 5.4  Principal Component Analysis (PCA) 

 The  Singular  Value  Decomposition  (SVD)  provides  a  systematic  way  to  determine  a 
 low-dimensional  approximation  to  high-dimensional  data  in  terms  of  dominant  patterns.  This 
 technique  is  data-driven  in  that  patterns  are  discovered  purely  from  data,  without  the  addition 
 of  expert  knowledge  or  intuition.  The  SVD  is  numerically  stable  and  provides  a  hierarchical 
 representation  of  the  data  in  terms  of  a  new  coordinate  system  defined  by  dominant 
 correlations  within  the  data.  Principal  component  analysis  (PCA)  is  one  of  the  most  important 
 applications  of  SVD.  PCA  is  based  on  reducing  the  dimensionality  of  a  data  set  made  up  of  a 
 large  number  of  interrelated  variables.  The  important  aspect  of  this  method  is  that  the 
 variation  present  in  the  dataset  is  retained  as  much  as  possible  To  achieve  this  goal,  the 
 original  variables  are  transformed  into  a  new  set  of  variables,  the  principal  components. 
 These  principal  components  are  vectors  that  are  uncorrelated  and  ordered  in  such  a  way  that 
 the  first  few  hold  most  of  the  variation  originally  present  in  the  variables  [81].  The  first 
 principal  component  is  the  direction  along  which  the  samples  have  the  largest  variation.  The 
 second  principal  component  is  the  direction  along  which  the  samples  show  the  largest 
 variation while being uncorrelated to the first component [82]. 

 PCA  can  also  serve  as  a  tool  for  data  visualization.  When  handling  datasets  of  multiple 
 observations,  each  containing  a  large  number  of  features  or  variables,  it  will  produce  a  large 
 number  of  scatterplots,  each  providing  very  little  information  about  the  dataset  as  a  whole. 
 PCA  can  be  used  to  reduce  this  to  a  lower  dimensional  plot  for  example  while  retaining  most 
 of  the  variation.  This  can  aid  in  visually  determining  if  studied  characteristics  can  be  grouped 
 as seen in Figure 16 [77]. 

 Figure  16:  PCA  results  enabling  grouping  of  benign  and  malignant  tumors  (left) 
 and visualization of relevant features (right)[83]. 

 Combining  both  graphs  from  Figure  16  creates  a  biplot.  The  cosine  of  the  angle  between  a 
 vector  and  an  axis  indicates  the  importance  of  the  contribution  of  the  corresponding  variable 
 to  that  principal  component.  The  cosine  of  the  angle  between  pairs  of  vectors  indicates  the 
 correlation  between  the  corresponding  variables.  Highly  correlated  variables  point  in  similar 
 directions;  uncorrelated  variables  are  nearly  perpendicular  to  each  other.  Points  that  are  close 
 to each other in the biplot represent observations with similar values [84]. 
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 6  Objectives 

 The  main  objective  of  this  Master’s  Thesis  is  to  unearth  possible  distinguishing  powers  of 
 radiomics,  extracted  from  the  18  F-FDG  PET  images  of  a  homogeneous  group  of  49 
 early-stage  NSCLC  patients.  More  specifically,  can  these  features  be  used  to  discriminate 
 healthy  tissue  from  NSCLC  tissue?  The  hypothesis  is  that  the  radiomics  features,  based  on 
 image  characteristics,  are  a  good  tool  for  separating  both  tissue  types.  Hereto,  this  study  aims 
 to  create  an  optimized  discriminative  model  using  different  sets  of  radiomics  features  to 
 distinguish  healthy  from  NSCLC  tissue.  In  the  case  of  clear  separation  and  a  model  with  high 
 accuracy  values  can  be  obtained,  it  is  important  to  know  which  features  are  most  important  in 
 this  discrimination.  Additionally,  it  will  be  investigated  if  these  classifiers  are  able  to  make 
 predictions  on  the  tissue  type.  This  is  further  expanded  by  training  and  testing  models  on 
 other  clinical  parameters,  as  described  in  the  patient  demographics.  These  extra  parameters 
 include: tumor phenotype; tumor tissue location; diabetes; glycemia levels and packyears. 
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 7  Materials and methods 

 7.1  Patient cohort 

 The  ProLung  study  is  a  research  project  at  Ziekenhuis  Oost-Limburg  (ZOL)  located  in  Genk 
 and  is  funded  by  ‘Kom  op  tegen  Kanker’.  The  study  is  made  up  of  two  branches, 
 metabolomics,  and  radiomics  applied  to  patients  with  primary  lung  cancer,  specified  type 
 NSCLC.  For  this  study,  a  patient  cohort  consisting  of  53  patients  is  used.  Each  patient 
 underwent  a  PET/CT  scan  in  ZOL  followed  by  an  anatomopathological  analysis  test  of  the 
 tissue  of  interest  to  determine  the  tumor  phenotype.  Four  patients  from  the  original  patient 
 cohort  were  removed  from  the  study  since  it  did  not  concern  a  malignant  tumor,  but 
 inflammation.  The  remaining  49  patients  were  all  diagnosed  with  NSCLC  stage  I-IIIA.  No 
 metastasis  of  the  tumor  had  occurred  and  all  patients  underwent  a  lobectomy  as  part  of  their 
 standard-of-care  treatment  plan.  The  treatment  and  imaging  took  place  at  ZOL.  All  patients 
 provided  written  consent  to  be  included  in  the  ProLung  study  and  they  can  choose  to  leave 
 the study at any time. 

 7.2  PET-CT scanner 

 To  obtain  the  PET  images  needed  for  the  radiomics  analyses,  all  patients  had  a  PET-CT  scan 
 taken  with  a  Biograph  Horizon  PET-CT  scanner.  This  machine  uses  lutetium  oxyorthosilicate 
 (Lu2(SiO4)O,  LSO)  scintillation  crystals.  The  technical  specifications  of  the  PET  part  of  this 
 scanner  are  shown  in  Table  3.  The  imaging  procedure  followed  the  guidelines  of  the 
 European  Association  of  Nuclear  Medicine  (EANM).  This  study  focuses  on  the  meta-data 
 extraction  of  PET  images,  but  the  CT  images  were  used  by  Prof.  Dr.  Mesotten  to  adjust  the 
 images  for  attenuation.  All  the  images  obtained  from  the  scan  are  saved  in  the  Picture 
 Archiving and Communications Systems (PACS). 

 Table 3: Technical specifications of the PET imager [85  ]. 

 Biograph Horizon PET 

 Axial field of view  16.4, 22.1* cm 

 Crystal size  4 x 4 x 20 mm 

 Confidence window  4.1 ns 

 Effective sensitivity  14.9, 26.5*cps/kBq 

 Effective peak NEC rate  224, 336* kcps ≤26 kBq/cc 
 * Optional 
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 7.3  18  F-FDG-PET scanning procedure 

 As  laid  out  in  Chapter  3.2,  18  F-FDG  is  used  as  the  radiopharmaceutical  biomarker  for  the 
 imaging  of  the  patients  in  this  study.  An  autoinjector,  Iris  automated  multidose  injection  by 
 Comecer,  is  used  to  deliver  the  18  F-FDG  to  the  patient  while  minimizing  the  radiation  dose  to 
 the  medical  personnel.  An  hour  elapses  between  the  administration  of  the 
 radiopharmaceutical  and  the  PET/CT  imaging.  Firstly,  a  CT  image  (25  mA,  130  kV)  is 
 obtained  where  the  imaging  field  extends  from  the  midthighs  to  the  base  of  the  skull  resulting 
 in  a  512  x  512  matrix.  Secondly,  a  PET  scan  covering  the  same  area  is  performed  for  15  -  20 
 minutes.  Based  on  the  mass  of  the  patients,  <50  kg,  50-80  kg-  and  >80  kg  the  emission  time 
 per bed position is one minute, one minute and a half, and two minutes respectively. 

 7.4  Data acquisition 

 During  a  previous  study,  the  PET-CT  images  have  been  anonymized  and  tumor  segmentation 
 has  been  performed  in  the  ACCURATE  tool,  developed  by  the  research  team  of  Prof.  Dr. 
 Boellaard  (Amsterdam,  UMC)  as  seen  in  Figure  17.  This  segmentation  is  semi-automatic 
 where  the  tool  suggests  the  tumor  VOI  coördinates  based  on  an  SUV  threshold  with  a 
 medical  professional,  Prof.  Dr.  Mesotten,  performing  any  necessary  corrections.  The 
 segmentation  is  performed  solely  on  PET  images  and  an  SUV  threshold  of  0%  is  maintained. 
 The  CT  images  acquired  during  the  PET/CT  scan  are  used  to  correct  the  PET  images  for 
 breathing  artifacts.  The  created  VOIs  are  saved  as  projects  (.prj)  containing  the  PET  .dcm 
 files and the VOI (.nii and .voi files). 

 Figure 17: The ACCURATE tool showing a PET image. 

 Next,  the  projects  of  the  VOIs  are  loaded  in  the  RADIOMICS  tool  also  developed  by  the 
 research  team  of  Prof.  Dr.  Boellaard  (Amsterdam,  UMC).  The  radiomics  analysis  is 
 performed  resulting  in  an  Excel  file  containing  498  radiomics  features  and  6  PET  Uptake 
 Metrics per patient. 
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 To  be  able  to  compare  the  aforementioned  radiomics  of  tumor  tissue  with  healthy  tissue, 
 VOIs  of  healthy  tissue  of  the  same  patient  have  to  be  segmented.  The  shape,  volume,  and 
 surface  of  this  new  VOI  must  match  the  tumor  VOI  exactly.  The  accurate  tool  can  translate 
 and  rotate  VOIs,  making  this  comparison  possible.  The  location  of  the  healthy  VOI  is  also 
 important  for  the  radiomics  data  [86].  This  study  by  Trojani  et  al.  suggests  three  possible 
 options  for  segmenting  healthy  tissue  for  comparison  with  NSCLC  tissue:  the  liver,  the 
 opposite  lung  at  the  same  height,  and  the  upper-right  lung  above  the  aortic  arch.  For  the 
 purposes  of  this  research  paper,  a  VOI  in  the  opposite  lung  at  the  same  height  was  chosen  in 
 agreement  with  the  medical  professional  in  charge  of  the  tumor  segmentation.  Analogous  to 
 the  NSCLC  tissue,  the  RADIOMICS  tool  is  used  to  extract  the  same  498  radiomics  features 
 and  6  PET  Uptake  Metrics  per  patient.  A  more  detailed  step-by-step  plan  of  the  data 
 acquisition for both tumor and healthy tissue is added in Annex IV. 

 Finally,  the  504  obtained  features  for  both  the  tumor  and  healthy  lung  tissue  per  patient  are 
 gathered  in  an  Excel  file  with  dimensions  106  x  504  for  data  analysis.  The  head  of  this  file  is 
 shown in Figure 18. 

 Figure 18: Head of the Excel file containing the  features for both healthy and tumor tissue. 
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 7.5  Data analysis 

 The  first  step  is  to  filter  out  the  features  which  are  not  useful  in  differentiating  between  the 
 two  types  of  tissue.  This  comparison  is  similar  to  a  before-and-after  observation  of  the  same 
 patient.  A  paired  student  t-test  is  therefore  optimal  for  preprocessing  the  dataset.  The  null 
 hypothesis  H  0  indicates  that  a  feature  for  healthy  tissue  is  correlated  with  a  feature  for  tumor 
 tissue.  Features  in  agreement  with  H  0  are  not  relevant  in  the  differentiation  and  are  removed 
 from  the  dataset.  A  p  -value  of  0.05  or  higher  is  used  to  determine  the  validity.  This  statistical 
 test is performed in Matlab  1  . 

 The  second  step  is  clustering  the  features  by  making  a  dendrogram  in  Matlab.  This  is  done  on 
 the  t-test  corrected  dataset.  This  dataset  still  has  unknown  values.  The  features  that  have 
 unknown  values  are  deleted  before  performing  the  linkage  function  which  is  used  to  form  the 
 tree  that  will  form  the  dendrogram.  To  classify  the  different  branches  of  the  dendrogram, 
 different  cut-off  heights  are  implemented  because  the  clusters  form  on  different  levels  in  the 
 dendrogram  1  . 

 To  further  visualize  the  data,  PCA  is  used  since  the  dataset  contains  504  features/dimensions. 
 By  reducing  the  features  to  principal  components  (PC)  that  explain  most  of  the  variance 
 while  being  uncorrelated  between  themselves,  a  lower-dimensional  dataset  can  be  produced. 
 Possible  clustering  of  the  data  can  be  observed  this  way  in  a  scatter  plot.  This  plot  can  be 
 further expanded by adding vectors of the most relevant features, creating a biplot  1  . 

 7.6  Discriminative model 

 The  final  goal  is  to  train  different  models  in  the  Matlab  app  ‘Classification  learner’.  The  goal 
 here  is  to  train  models  to  differentiate  NSCLC  tissue  from  healthy  tissue.  There  is  also 
 demographic  information  available  that  can  be  used  as  classifiers.  The  demographic  features 
 used  as  classifiers  are  glycemia,  tumor  type,  lung  side  (left  or  right),  diabetes,  and  packyears. 
 The  models  are  trained  on  the  first  30  patients.  The  model  that  gives  the  best  accuracy  is  then 
 used  to  make  predictions  for  the  other  19  patients  of  the  dataset.  The  results  are  then 
 visualized in a confusion matrix. 
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 8  Results 

 8.1  Demographics 

 For  the  purposes  of  this  study,  PET  images  of  a  cohort  of  49  patients,  each  diagnosed  with 
 NSCLC  stages  I-IIIA,  are  used.  Table  4  gives  an  overview  of  the  most  relevant  demographic 
 features  of  the  patient  group.  The  table  includes  packyears  since  there  exists  a  strong 
 correlation  between  smoking  and  lung  cancer  [  16-17  ].  Furthermore,  information  on  tumor 
 location,  diabetes  status,  and  glycemia  measurements  before  the  scan  are  included.  These 
 characteristics  are  used  as  classifiers  for  the  machine  learning  models.  Figures  19  -  24 
 provide  a  more  detailed  overview  of  specific  demographic  characteristics  of  the  patient 
 cohort. 

 Table 4: Relevant demographic data of the patients included in this study. 
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 Figure 19: Bar chart of the ProLung patients’ age. 

 Figure 20: Bar chart of the ProLung patients’ pack years. 

 Figure 21: Bar chart of the ProLung patients’ BMI. 
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 Figure 22: Bar chart of the diameter of the tumor of the ProLung patients. 

 Figure 23: Pie chart of the gender of the ProLung patients. 

 Figure 24: Pie chart of the lobe position of the ProLung patients. 
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 8.2  Statistical results 

 8.2.1  Paired student t-test 

 A  paired  student  t-test  was  performed  on  the  radiomics  dataset  using  Matlab  to  check  which 
 features  are  relevant  in  distinguishing  healthy  and  NSCLC  tissues.  A  null  hypothesis  of  zero 
 means  a  feature  is  similar  in  both  types  of  tissues  and  therefore  not  useful  for  this  study.  A 
 high  p  -value  means  the  result  is  likely  due  to  chance.  Tabel  5  displays  the  radiomics  features 
 that are removed from the study based on their null hypothesis and/or a high  p  -value. 

 Table 5: Radiomics features not significant in differentiating healthy and NSCLC tissue. 
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 As  presented  in  Table  5,  most  of  the  features  fall  under  the  ‘Morphology’  or  ‘Texture 
 Features’  subgroup.  Since  the  VOI  for  the  healthy  tissue  and  the  Tumor  tissue  is  identical  and 
 these  features  do  not  take  into  account  the  gray  levels  of  the  voxels  in  the  image,  these 
 parameters  are  the  same  for  both  and  can  therefore  not  be  the  basis  for  a  differentiating  study. 
 The same applies to the ‘PET Uptake Metrics -ExcatVolume’ feature. 

 Both  the  Gray  Level  Co-occurrence  Matrix  (GLCM)  features,  which  describe  textural  indices 
 based  on  the  arrangements  of  pairs  of  voxels,  and  the  Neighboring  Gray  Tone  Difference 
 Matrix  (NGTDM)  Features,  which  quantify  the  difference  between  a  voxel  gray  level  and  the 
 average  gray  level  of  its  neighbors  in  all  three  dimensions  within  a  given  distance,  have 
 multiple  parameters  not  relevant  in  making  out  healthy  tissue  form  NSCLC  tissue  according 
 to the paired t-test. 

 Gray  Level  Size  Zone  Matrix  (GLSZM)  Features  provide  data  on  the  gray  level  zones  of  the 
 segmented  area  of  the  image.  These  gray  level  zones  are  areas  of  connected  voxels  sharing 
 the  same  gray  level  intensity,  thus  indicating  uniformity.  Both  2D  and  3D  ‘zone  size 
 non-uniformity  normalized’  features,  which  measure  the  variability  of  size  zone  volumes  in 
 the  image,  with  a  lower  value  indicating  more  homogeneity  in  size  zone  volumes,  are  not 
 included in this research paper. 

 The  Final  feature  that  will  be  excluded  is  the  skewness  trait  of  the  ‘Intensity  histogram  (First 
 order)  features’.  This  represents  the  skewness  of  the  histogram  made  of  the  intensities  of  the 
 gray levels in the VOI. 
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 8.2.2  Dendrogram 

 The  corrected  radiomics  dataset  exists  out  of  435  features.  These  features  can  be  linked  and 
 clustered.  To  visualize  these  clusters,  a  dendrogram  is  made  and  the  biggest  clusters  are 
 marked. This is shown in Figure 25. 

 Figure 25: Dendrogram of the radiomics dataset. 

 There  are  8  clusters  marked  in  this  dendrogram.  The  features  that  belong  to  each  cluster  are 
 shown  in  Table  6.  Also,  the  cutoff  height  is  mentioned,  this  is  the  height  of  the  position  of  the 
 highest branch of the cluster. 

 58 



 Table 6: Information about the clusters in Figure 25. 

 Cluster  Information features 

 A (cutoff = 30)  Mostly  the  entropy,  average,  dissimilarity,  emphasis,  and  uniformity 
 features of the GLCM, GLRLM, GSZM, GLDZM, and NGLDM 

 Also  statistical  features  variance,  minimum,  10th  percentile  and 
 interquartile  range,  as  intensity  histogram  features  as  mean  absolute 
 deviation and entropy 

 B (cutoff = 5)  Mostly  joint  maximum,  angular  second  moment,  inverse  variance, 
 first  measure  of  information  correlation  and  low  gray  level  features  of 
 the GLCM, GLRLM, GSZM, GLDZM, and NGLDM 

 Also  morphology  feature  Moran's  I,  statistical  features  Coefficient  of 
 variation  and  Quartile  coefficient  and  intensity  features  volume  at  int 
 fraction  90,  Coefficient  of  variation,  Quartile  coefficient  and 
 Uniformity 

 C (cutoff = 5)  Mostly  correlation,  second  measure  of  information  correlation,  short 
 run  emphasis,  Run  length  non  uniformity  normalized,  run  percentage 
 and  zone  percentages  of  the  GLCM,  GLRLM,  GSZM,  GLDZM  and 
 NGLDM 

 Also  intensity  features  volume  at  int  fraction  10  and  difference  vol  at 
 int fraction 

 D (cutoff = 5)  Mostly inverse difference features of the GLCM, GLRLM, GSZM, 
 GLDZM and NGLDM 

 Also morphology feature Geary's C 

 E (cut off = 48)  Pet Uptake metrics features as intensity peaks, statistical features as 
 mean, maximum and range, GLCM features as difference variance 
 and joint entropy 

 F (cutoff = 360)  Mostly joint variance, sum average, contrast features of GLCM and 
 gray level variance features of GLRLM, GLSZM, GLDZMand 
 NGLDM 

 Also intensity histogram features variance and maximum 

 G (cutoff = 1200)  GLCM features sum variance and cluster tendency 

 H (cutoff = 5500)  GLCM autocorrection features and high gray level emphasis features 
 of GLRLM, GLSZM, GLDZMand NGLDM 
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 8.3  Principal component analysis 

 The  same  t-test  corrected  dataset  of  the  cohort  of  49  patients  underwent  a  principal 
 component  analysis  using  Python.  The  script  to  perform  the  analyses  and  create  the  plots  in 
 this  chapter  can  be  found  in  Annex  III.  Firstly,  all  features  were  used  to  determine  a  set  of 
 principal  components.  The  first  two  components,  explaining  the  most  variance  while  being 
 uncorrelated  among  themselves,  were  then  used  to  create  a  two-dimensional  representation  of 
 the  435-dimensional  original  dataset.  Since  PCA  is  often  used  as  a  noise  reduction  operator, 
 the  most  significant  features  are  extracted  after  the  first  analysis.  The  30  most  important 
 features  resulting  from  this  first  PCA  were  used  to  perform  a  second  PCA.  Finally,  a  third 
 PCA using only the five most significant features was then performed. 

 8.3.1  PCA using all 435 features 

 The  first  PCA  is  performed  using  all  435  features.  For  all  the  features  of  the  49  patients 
 included  in  the  study,  the  principal  components  and  their  explained  variance  were  derived,  as 
 seen in Figure 26. 

 Figure 26: The first ten PCs showing the greatest variance. 

 Figure  26  shows  the  10  most  relevant  principal  components  and  their  explained  variance. 
 These  can  be  used  to  visualize  the  high-dimensional  dataset  in  a  lower-dimensional  space.  In 
 this  case,  the  first  two  components  explaining  58.4%  and  11.8%  of  the  variance  respectively, 
 for a total of 70.6%, are used to make a 2D plot as seen in Figure 27. 
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 Figure  27:  Scatterplot  of  PC1  and  PC2  indicating  clustering  of  healthy 
 and tumor tissue. 

 Figure  27  displays  the  2D  scatterplot  of  the  two  most  relevant  PCs.  The  data  points  of  healthy 
 tissue  VOIs  are  marked  in  blue,  while  the  tumor  tissue  VOIs  are  marked  in  red.  The  combined 
 variance  of  70.6%  is  enough  to  almost  completely  distinguish  between  healthy  and  NSCLC 
 tissue  in  the  VOIs.  The  first  principal  component  has  a  higher  impact  on  the  spread  since  it 
 also  contributes  more  to  the  explained  variance.  There  is  however  some  overlap  around  the 
 coördinates  (-7  ,  -6).  Furthermore,  one  tumor  VOI  has  been  clustered  with  the  healthy  tissue 
 at coördinate (-19 , 10). Figure 28 shows this more in detail. 

 Figure  28:  The  scatterplot  of  PC1  and  PC2,  highlighting  a  wrongly  clustered 
 result. 
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 From  this  PCA,  the  most  important  features  contributing  to  the  principal  components  can  be 
 identified.  Table  7  shows  the  30  most  prevalent  features  and  their  loading  scores.  Similar 
 scores indicate their weight in determining the principal components was alike. 

 Table  7:  The  30  most  significant  features  in  differentiating  between  healthy  and  tumor  tissue 
 found using PCA. 
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 To  further  visualize  the  PCA,  a  biplot  showing  both  the  scatterplot  and  the  vectors  of  the  10 
 most prevalent features is shown in Figure 29. 

 Figure 29: Biplot of the PC clusters and the vectors of the 10 most relevant features. 

 The  vector  length  has  been  scaled  to  distinguish  different  feature  vectors.  The  angle  between 
 a  vector  and  the  axis  indicates  its  importance  to  the  principal  components  on  that  axis.  Angles 
 between  vectors  indicate  their  underlying  correlation.  Table  8  serves  as  a  legend  for  the 
 letters in Figure 29. 

 Table 8: Legend for biplot Figure 29. 

 Letter  Radiomics feature 

 A  glcmFeatures2Dmrg - difference entropy 

 B  Statistics - 90th percentile 

 C  Intensity Histogram - 90th percentile 

 D  glcmFeatures2Davg - difference entropy 

 E  Statistics - maximum 

 F  Intensity histogram - range 

 G  PET Uptake Metrics - Original max 

 H  intensity volume - int at vol fraction 10 

 I  Intensity histogram - maximum 

 J  Intensity histogram - Robust mean absolute deviation 
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 8.3.2  PCA with noise reduction (269 features) 

 PCA  is  a  statistical  test,  often  used  to  remove  noise  in  large  datasets.  The  435  features  and  the 
 absolute  values  of  their  loading  scores  are  visualized  in  Figure  30.  This  shows  that  a  drop-off 
 occurs after the first 269 features, which indicates reduced importance of those features. 

 Figure 30: Plot of the loading- scores in descending  order and their corresponding features  . 

 As  indicated  by  Figure  30,  a  drop  in  loading  scores  is  present  at  the  270th  feature.  This  in 
 turn  points  to  166  features  or  38.1%  of  the  t-test  corrected  features  being  noise.  The  PCA  is 
 performed  again  using  the  269  leftover  features.  This  resulted  in  the  bar  chart  of  Figure  31 
 with the ten most relevant PCs, and the scatter plot in Figure 32. 

 Figure 31: The first ten PCs showing the greatest variance after noise reduction. 
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 Figure  32:  Scatterplot  of  PC1  and  PC2  after  noise  reduction  indicating 
 clustering of healthy and tumor tissue. 

 Figure  32  shows  both  healthy  and  tumor  tissue  groups  appearing  more  clustered  after  the 
 noise  reduction.  As  well  as  improved  clustering,  a  higher  explained  variance  of  89.7%  by  the 
 first two PCs can be observed. 

 To observe the influence of the ten most influential features, a biplot is shown in Figure 33. 

 Figure  33:  Biplot  of  the  PC  clusters  and  the  vectors  of  the  10  most  relevant  features  after  noise 
 reduction. 
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 Table 9: Legend for biplot Figure 33. 

 Letter  Radiomics feature 

 A  Intensity histogram - Robust mean absolute deviation 

 B  Statistics - maximum 

 C  Statistics - 90th percentile 

 D  Intensity histogram - maximum 

 E  intensity volume - int at vol fraction 10 

 F  glcmFeatures3Davg - sum average 

 G  Statistics - root mean 

 H  PET Uptake Metrics - Original max 

 I  glcmFeatures3Davg - joint average 

 J  Intensity histogram - 90th percentile 

 Figure  33  shows  higher  clustering  of  the  ten  most  relevant  features  in  determining  the  spread 
 of  the  data  points  compared  to  the  biplot  before  noise  reduction  from  Figure  32.  Most  of  the 
 features  between  these  two  plots  are  the  same  except  for  some  3D  GLCM  features  being 
 more prevalent than their 2D equivalents before noise reduction  . 

 8.3.3  PCA using the 30 most significant features 

 Next,  the  30  most  significant  features,  as  shown  in  Table  7,  are  used  to  perform  a  third  PCA. 
 The resulting graphs are shown in Figures 34-36, and in Table 10. 

 Figure 34: The five PCs showing the greatest variance for the 30 most 
 significant features. 
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 Figure 35: Scatterplot of PC1 and PC2 for the 30 most significant features. 

 As  seen  in  Figures  34  and  35,  the  first  two  PCs  can  account  for  97.7%  of  the  total  variance  in 
 the  dataset.  Healthy  tissue  clustering  is  improved  compared  to  the  PCA  using  all  435  features. 
 Comparing  the  healthy  tissue  to  the  noise-reduced  PCA  results,  fewer  features  reduce  the 
 overall  cluster  density.  The  tumor  tissue  clustering  worsened  compared  to  both  the  first  (all 
 features) and the second (noise-reduced) PCA. 

 Figure 36: Biplot of the PC clusters and the vectors of the 30 most relevant features. 
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 Table 10: Legend for biplot Figure 36. 

 Letter  Radiomics feature 

 A  Intensity histogram - range 

 B  Statistics - range 

 C  Intensity volume - int at vol fraction 10 

 D  Intensity histogram - maximum 

 E  Statistics - maximum 

 F  PET Uptake Metrics - Original max 

 G  Intensity histogram - Median absolute deviation 

 H  Statistics - 90th percentile 

 I  Intensity histogram - 90th percentile 

 J  Statistics - Root mean 
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 8.3.4  PCA using the five most significant features 

 Finally,  the  five  most  significant  features  are  extracted.  The  bar  chart,  scatterplot,  and  biplot 
 resulting from the PCA as performed before are shown in Figure 37-39, and in Table 11. 

 Figure 37: The five PCs showing the greatest variance. 

 Figure 38: Scatterplot of PC1 and PC2 for the five most significant features. 
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 Figure 39: Biplot of the PC clusters and the vectors of the five most relevant features. 

 Table 11: Legend for biplot figure 39. 

 Letter  Radiomics feature 

 A  PET Uptake Metrics - Original max 

 B  Statistics - maximum 

 C  Intensity histogram - maximum 

 D  glcmFeatures2Davg - difference entropy 

 E  Intensity volume - int at vol fraction 10 

 Figure  38  shows  that  even  based  on  five  radiomics  features,  there  still  is  a  statistical 
 difference  between  the  healthy  and  NSCLC  tissue.  Enough  difference  to  indicate  the 
 clustering  of  both  datasets.  To  visualize  this,  the  scatterplots  of  the  PCA  of  all,  the  best  30, 
 and the best five features are shown in Figure 40. 
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 Figure  40:  Top  to  bottom:  Scatter  Plot  of  PCA  with  all; 
 noise  reduced;  30  most  significant  and  5  most  significant 
 features. 
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 Figure  40  indicates  the  clustering  of  the  different  tissues  for  all  four  PCAs.  The  cluster  of  the 
 tumor  tissue  appears  less  cohesive  when  fewer  features  are  taken  into  account.  The  healthy 
 tissue  data  points  on  the  other  hand  show  tighter  clustering  when  fewer  features  are  used  in 
 the  PCA.  When  using  the  269  features  after  noise  reduction,  the  healthy  tissue  cluster  appears 
 densest.  Fewer  features  are  relevant  for  determining  healthy  tissue  compared  to  tumor  tissue 
 based  on  the  density  of  those  clusters  with  lower  feature  amounts.  Another  aspect  to  note  is 
 that  the  border  between  both  clusters  becomes  less  obvious  when  using  a  limited  amount  of 
 features. Overall, the noise-reduced set of features indicates the best clustering for the data. 
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 8.4  Classification Learning 

 To  train  the  models,  the  patient  cohort  was  subdivided  into  two  groups.  The  first  30  patients, 
 Group  1,  are  used  to  train  the  models  in  Matlab.  The  second  group  of  19  patients,  Group  2,  is 
 used  to  test  the  model.  For  testing,  the  model  with  the  highest  accuracy  is  used  for  each 
 classifier.  The  main  classifier  the  models  are  trained  on  is  ‘tumor’,  to  see  whether  the 
 machine  learning  models  can  differentiate  healthy  and  tumor  tissue  based  on  the  radiomics 
 output.  There  is  also  demographic  information  available  that  can  be  used  as  classifiers.  The 
 extra  classifiers  that  will  be  investigated  in  this  paper  are  diabetes,  glycemia  levels,  tumor 
 location (left or right lung), packyears, and tumor phenotype. 

 8.4.1  Tumor vs healthy tissue 

 After  testing  the  first  30  patients  on  all  the  different  models,  the  models  in  Table  12  give  the 
 best accuracy: 

 Table 12: The 10 models that give the best accuracy for predicting tumor 
 and healthy tissue. 

 Model  Accuracy (%) 

 Fine Tree  96.7 

 Medium Tree  96.7 

 Coarse Tree  96.7 

 Linear Discriminant  96.7 

 Quadratic SVM  96.7 

 Cubic SVM  96.7 

 Fine KNN  98.3 

 Weighted KNN  98.3 

 Ensemble - Bagged Trees  98.3 

 Ensemble - Subspace Discriminant  98.3 

 The  four  last  models  give  the  best  accuracy,  the  confusion  matrices  of  these  four  models  are 
 shown in Figure 41. 
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 Fine KNN  Weighted KNN 

 Ensemble - Bagged Trees  Ensemble - Subspace Discriminant 

 Figure  41:  Confusion  matrix  for  the  Fine  KNN,  the  Weighted  KNN,  Bagged  Trees 
 (Ensemble),  and  Subspace  Discriminant  (Ensemble)  model  for  predicting  tumor  (1)  or 
 healthy (0) tissue of a cohort of 30 patients. 

 For  the  Fine  KNN  and  Subspace  Discriminant  model,  the  healthy  tissue  of  the  ProLung63 
 patient  is  misclassified.  For  the  Weighted  KNN  and  Bagged  trees  model,  the  tumor  tissue  of 
 the  ProLung11  patient  is  misclassified.  The  scatter  plots  of  the  models  for  the  two  first 
 features  can  be  found  in  Annex  I,  Figures  S1-S4.  Here,  the  blue  dots  represent  the  healthy 
 tissue and the orange dots represent the tumor tissues. The cross is the misclassified one. 

 These  four  models  are  then  used  to  predict  the  other  19  patients.  The  confusion  matrices  are 
 shown in Figure 42. 
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 Fine KNN  Weighted KNN 

 Ensemble - Bagged Trees  Ensemble - Subspace Discriminant 

 Figure  42:  Confusion  matrix  for  the  Fine  KNN,  the  Weighted  KNN,  Bagged  Trees  (Ensemble),  and 
 Subspace  Discriminant  (Ensemble)  model  for  predicting  tumor  (2)  or  healthy  (1)  tissue  of  a  cohort 
 of 19 patients. 

 The patients that are misclassified in these models are shown in Table 13: 

 Table 13: Misclassified patients 

 Patient  Fine KNN  Weighted KNN  Bagged Trees  Subspace Disc. 

 ProLung098_tumor  x 

 ProLung101_gezond  x 

 ProLung102_tumor  x 

 ProLung107_gezond  x 

 ProLung112_tumor  x  x  x 

 ProLung113_tumor  x  x  x  x 
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 The  model  Fine  Tree  with  an  accuracy  of  96.7%  is  also  an  interesting  model  because  it  gives 
 a  tree  only  one  feature  to  classify  the  tumor  and  healthy  tissues.  The  decision  tree  of  the  Fine 
 Tree model that is trained on a cohort of 30 patients is shown in Figure 43. 

 Figure  43:  Decision  tree  of  the  Fine  Tree  model  for  predicting  tumor  (1)  or  healthy  (0)  tissue 
 of a cohort of 30 patients. 

 8.4.2  Glycemia 

 The  median  of  the  glycemia  is  98  mg%.  The  goal  is  to  classify  the  patients  to  know  if  the 
 amount  of  glycemia  is  larger  or  smaller  than  98  mg%.  After  testing  the  first  30  patients  on  all 
 the  different  models,  the  two  models  that  give  the  best  results  are  the  Logistic  Regression 
 model  with  an  accuracy  of  66.7%,  and  the  Ensemble  -  Subspace  Discriminant  model  with  an 
 accuracy of 53.3%. The confusion matrices of these two models are shown in Figure 44. 

 Logistic Regression  Ensemble - Subspace Discriminant 

 Figure  44:  Confusion  matrix  for  the  Logistic  Regression  model  and  Subspace  Discriminant 
 (Ensemble)  model  for  predicting  if  the  glycemia  is  larger  than  98  mg%  (1)  or  smaller  than 
 98 mg% (0) of a cohort of 30 patients. 
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 These  two  models  are  then  used  to  predict  the  other  19  patients.  The  confusion  matrices  are 
 shown in Figure 45. 

 Logistic Regression  Ensemble - Subspace Discriminant 

 Figure  45:  Confusion  matrix  for  the  Logistic  Regression  and  Subspace  Discriminant 
 (Ensemble)  model  for  predicting  if  the  glycemia  is  larger  than  98  mg%  (2)  or  smaller  than 
 98 mg% (1) of a cohort of 19 patients. 

 For  the  Logistic  Regression  model,  only  4  out  of  19  patients  are  classified  correctly  and  for 
 the Subspace Discriminant model classifies 13 out of 19 patients correctly. 

 8.4.3  Tumor type 

 In  this  study,  the  three  classes  of  tumor  types  are  neuroendocrine  (NE),  adenocarcinoma 
 (AC),  and  squamous  cell  carcinoma  (SCC).  For  this  test,  the  three  patients  with 
 neuroendocrine  are  not  taken  into  account  since  neuroendocrine  tumors  use  different 
 metabolic  pathways.  Therefore,  the  results  of  comparing  them  to  the  other  tumor  phenotypes 
 would  be  insignificant.  Of  the  30  patients  that  are  used  to  train  the  different  models,  23 
 patients have an AC and 7 have a SCC. 

 After  testing  the  first  30  patients  on  all  the  different  models,  the  Medium  Gaussian  SVM 
 model  gives  the  best  accuracy  (86.2%).  The  confusion  matrix  of  this  model  is  shown  in 
 Figure 46. 
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 Figure 46: Confusion matrix for the Medium Gaussian SVM model 
 for predicting the tumor type of a cohort of 30 patients. 

 This  model  is  then  used  to  predict  the  other  16  patients.  Of  these  16  patients,  12  patients  have 
 an AC and 4 have a SCC. The confusion matrices are shown in Figure 47. 

 Figure  47:  Confusion  matrix  for  the  Medium  Gaussian  SVM 
 model for predicting the tumor type of a cohort of 16 patients. 

 This  shows  that  12  of  the  16  are  classified  correctly,  these  are  all  AC  tumors.  All  four  of  the 
 SCC tumors are misclassified. 
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 8.4.4  Lung side (left or right) 

 Next,  the  goal  is  to  see  if  the  models  are  capable  of  classifying  the  tumor's  location,  where  L 
 stands  for  the  left  lung  and  R  for  the  right  lung.  After  testing  the  first  30  patients  on  all  the 
 different  models,  the  Logistic  Regression  model  gives  the  best  accuracy  (73.3%).  The 
 confusion matrix of this model is shown in Figure 48. 

 Figure 48: Confusion matrix for the Logistic Regression model for 
 predicting the position of the tumor of a cohort of 30 patients 

 This  model  is  then  used  to  predict  the  other  19  patients.  The  confusion  matrices  are  shown  in 
 Figure 49. 

 Figure  49:  Confusion  matrix  for  the  Logistic  Regression  model  for 
 predicting the position of the tumor of a cohort of 19 patients. 

 This shows that only 8 out of 19 are classified correctly. 
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 8.4.5  Diabetes 

 Next,  the  goal  is  to  see  if  the  models  are  capable  of  classifying  the  patients  on  having  diabetes 
 or  not.  After  testing  the  first  30  patients  on  all  the  different  models,  the  two  models  that  give 
 the  best  results  are  the  Linear  Discriminant  model  with  an  accuracy  of  60.0%,  and  the  Fine 
 KNN  model  with  an  accuracy  of  63.3%.  The  confusion  matrices  of  these  two  models  are 
 shown in Figure 50. 

 Linear Discriminant  Fine KNN 

 Figure  50:  Confusion  matrix  for  the  Linear  Discriminant  model  and  Fine  KNN  model  for 
 predicting if the patient has diabetes (1) or not (0) of a cohort of 30 patients. 

 These  models  are  then  used  to  predict  the  other  19  patients.  The  confusion  matrices  are 
 shown in Figure 51. 

 Linear Discriminant  Fine KNN 

 Figure  51:  Confusion  matrix  for  the  Linear  Discriminant  and  Fine  KNN  model  for  predicting  if  the 
 patient has diabetes (2) or not (1) of a cohort of 19 patients. 

 For  the  linear  discrimination  model,  13  out  of  19  predictions  are  correct.  The  Fine  KNN 
 model also predicted 13 out of 19 cases correctly. 
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 8.4.6  Packyears 

 At  last,  the  models  are  trained  to  study  the  number  of  the  patients'  packyears.  Packyears  can 
 be  defined  as  a  number  of  years  smoking  one  pack  of  cigarettes  daily.  The  packyears  of  1 
 patient  are  unknown,  so  these  are  not  taken  into  account  in  this  study.  The  median  of  the 
 number  of  packyears  is  35.  The  dataset  is  split  into  patients  with  more  or  equal  than  35 
 packyears,  and  less  than  35  packyears.  The  effect  of  the  amount  of  packyears  is  tested  on  the 
 dataset with the tumor tissue, and on the dataset with the healthy tissue. 

 Tumor tissue 

 First,  all  models  are  trained  on  the  first  30  patients  of  the  tumor  tissue  dataset.  The  RUS 
 Boosted  Trees  (ensemble)  model  had  the  best  accuracy,  60.0%.  The  confusion  matrix  of  this 
 model is shown in Figure 52. 

 Figure 52: Confusion matrix for the RUS Boosted Trees (ensemble) 
 mode for predicting if the amount of packyears is larger than 35 (1), 
 or smaller (0) of the tumor tissue of a cohort of 30 patients. 

 This  model  is  then  used  to  predict  the  other  18  patients.  The  confusion  matrices  are  shown  in 
 Figure 53. 
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 Figure 53: Confusion matrix for the RUS Boosted Trees (ensemble) 
 model for predicting if the amount of packyears is larger than 38 (1), 
 or smaller (0) of the tumor tissue of a cohort of 18 patients. 

 This shows that 10 out of 18 predictions are correct. 

 Healthy tissue 

 Now,  all  models  are  trained  on  the  first  30  patients  of  the  healthy  tissue  dataset.  The  Subspace 
 KNN  (ensemble)  model  has  the  highest  accuracy,  56,7%.  The  confusion  matrix  of  this  model 
 is shown in Figure 54. 

 Figure 54: Confusion matrix for the Subspace KNN (ensemble) model 
 for predicting if the amount of packyears is larger than 38 (1), or 
 smaller (0) of the healthy tissue of a cohort of 30 patients. 
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 This  model  is  then  used  to  predict  the  other  18  patients.  The  confusion  matrices  are  shown  in 
 Figure 55. 

 Figure 55: Confusion matrix for the Subspace KNN (ensemble) 
 model for predicting if the amount of packyears is larger than 38 
 (1), or smaller (0) of the healthy tissue of a cohort of 18 patients. 

 This shows that 10 out of 18 predictions are correct. 

 To  verify  these  results,  a  PCA  is  performed  using  12  patients  from  the  25th  percentile  and  12 
 patients  from  the  75th  percentile.  The  noise-reduced  269  features  are  used  to  perform  the 
 analysis resulting in Figure 56. 

 Figure 56: Scatter Plot of PCA of packyears. 

 Figure  56  shows  no  clear  clustering  of  tissue  of  heavy  smokers  (more  than  35  packyears) 
 compared to patients who have less than 35 packyears. 
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 This  group  of  two  times  12  patients  is  finally  used  to  train  and  test  the  models  again.  16 
 patients  are  randomly  chosen  to  train  the  models,  the  best  model  is  then  used  to  make 
 predictions  about  the  remaining  eight  patients.  The  highest  accuracy  achieved  by  the  training 
 models  was  43.8%  by  both  the  fine  and  coarse  Gaussian  SVM  models.  This  accuracy  is  too 
 low to meaningfully make predictions on the remaining eight patients. 

 8.5  Classification learning on the noise-reduced dataset 

 In  the  PCA  test,  the  noise-reduced  dataset  of  269  radiomics  features  performed  best  in 
 clustering  the  patients.  These  features  are  therefore  now  used  for  the  classification  learner  to 
 see  if  the  results  are  better  than  the  results  on  the  t-test  corrected  dataset.  The  models  are 
 again  trained  to  differentiate  healthy  and  tumor  tissue,  and  on  the  extra  classifiers  diabetes, 
 glycemia  levels,  tumor  location  (left  or  right  lung),  packyears,  and  tumor  phenotype.  The  first 
 30  patients,  Group  1,  are  again  used  to  train  the  models  in  Matlab.  The  second  group  of  19 
 patients,  Group  2,  is  used  to  test  the  model.  The  confusion  matrices  of  these  tests  can  be 
 found in Annex II (figures S5-S16). 

 8.5.1  Tumor vs healthy tissue 
 The  tests  on  the  noise-reduced  dataset  for  differentiating  healthy  and  tumor  tissue  return  only 
 two  models  with  an  accuracy  of  98.3%.  These  are  the  Fine  Gaussian  SVM  model  and  the 
 Subspace  Discriminant  (ensemble)  model.  After  testing  these  models  on  the  other  19  patients, 
 The  Fine  Gaussian  SVM  came  out  as  the  best  by  only  misclassifying  2  out  of  19  patients. 
 These  are  the  same  patients  as  the  Fine  KNN  model,  which  came  out  as  the  best  in  8.4.1.  The 
 Subspace Discriminant (ensemble) model misclassified five patients. 

 8.5.2  Glycemia 

 Next,  the  models  are  trained  to  classify  whether  the  amount  of  glycemia  is  larger  or  smaller 
 than  98  mg%.  The  model  that  came  out  best  is  the  Logistic  Regression  model  with  an 
 accuracy  of  80%,  which  is  a  better  result  than  the  model  in  7.4.2.  After  testing  these  models 
 on  the  other  19  patients,  this  model  classified  10  out  of  19  patients  correctly.  This  is  worse 
 than the model in 8.4.2. 

 8.5.3  Tumor type 

 For  the  classification  of  tumor  types,  the  three  patients  with  neuroendocrine  are  again  not 
 taken  into  account.  After  testing  the  first  30  patients  on  all  the  different  models,  the  Medium 
 Gaussian  SCM  model  came  out  as  the  best  with  an  accuracy  of  90%.  This  is  a  little  more  than 
 the  result  in  8.4.3,  where  the  accuracy  was  86.2%.  This  model  is  then  used  to  predict  the 
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 other  16  patients.  5  out  of  16  patients  are  misclassified.  This  is  one  more  than  the  model  in 
 8.4.3.  There,  four  patients  with  an  AC  were  misclassified,  and  in  this  model  four  patients  with 
 an AC and one with a SCC. 

 8.5.4  Lung side (left or right) 

 Next,  the  goal  is  to  see  if  the  models  are  capable  of  classifying  the  tumor's  location,  where  L 
 stands  for  the  left  lung  and  R  for  the  right  lung.  After  testing  the  first  30  patients  on  all  the 
 different  models,  the  Logistic  Regression  model  gives  the  best  accuracy  (70.0%).  After  using 
 this  model  to  make  predictions  on  the  other  19  patients,  only  7  out  of  19  patients  were 
 classified correctly. This is one less than in 8.4.4. 

 8.5.5  Diabetes 

 Next,  the  goal  is  to  see  if  the  models  are  capable  of  classifying  the  patients  on  having  diabetes 
 or  not  using  the  tumor  VOI.  After  testing  the  first  30  patients  on  all  the  different  models,  nine 
 models  returned  the  same  accuracy  (76.7%)  and  confusion  matrix.  All  of  these  models 
 however  predicted  none  of  the  patients  had  diabetes.  The  models  in  question  are:  fine, 
 medium,  and  coarse  Gaussian  SVM;  fine,  medium,  coarse,  cosine,  and  cubic  KNN,  and  the 
 boosted  trees  ensemble  learning  model.  The  next  best  models  were  all  the  Tree  models  with 
 an  accuracy  of  73.3%.  These  models  did  make  diabetes  predictions.  To  make  predictions  for 
 the  other  19  patients,  the  Fine  Tree  model  and  the  Fine  KNN  returned  the  best  results.  The 
 Fine  Tree  predicted  12  out  of  19  correctly,  and  the  Fine  KNN  14  out  of  19.  In  8.4.5,  13  out  of 
 19 patients were classified correctly. 

 8.5.6  Packyears 

 At  last,  all  models  are  trained  on  the  first  30  patients  of  the  healthy  tissue  dataset.  The  Kernel 
 naive  Bayes  model  has  the  highest  accuracy,  70.0%.  After  using  this  model  to  make 
 predictions  on  the  other  18  patients,  only  14  out  of  18  patients  were  classified  correctly.  This 
 is four patients more than in 8.4.6. 
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 9  Relevant radiomics features 

 From  the  entire  patient  cohort,  498  radiomics  features  and  6  PET  Uptake  Metrics  were 
 collected  per  patient  using  the  Radiomics  tool.  These  features  are  subdivided  into  groups  as 
 described in Chapter 4.1.1. 

 From  the  statistical  tests  performed,  30  parameters  appeared  to  be  more  relevant.  These 
 features  originate  from  the  following  subgroups:  gray  level  co-occurrence  matrix  (GLCM), 
 intensity  histogram  (first  order  features),  intensity  volume  (3D-shape  features),  and  statistics 
 (first  order  features).  All  features  are  aggregated  using  the  3D  VOI  except  for  some  features 
 from the GLCM. These features will be elucidated in this chapter. 

 9.1  Gray level co-occurrence matrix (GLCM) features 

 To  quantify  combinations  of  discretized  gray  levels  of  neighboring  pixels  (2D)  or  voxels 
 (3D),  distributed  along  an  image  direction,  GLCMs  can  be  used.  By  aggregating  information 
 from  the  different  underlying  directional  matrices,  GLCM  feature  values  are  computed  with 
 improved  rotational  invariance.  The  following  aggregation  methods  can  be  used  as  described 
 by Zwanenburg A. et al [53].: 

 -  Features  are  computed  from  each  2D  directional  matrix  and  averaged  over  2D 
 directions and slices (2Davg). 

 -  Features are computed from a single matrix after merging 2D directional matrices per 
 slice and then averaged over slices (2Dmrg). 

 -  Features are computed from a single matrix after merging 2D directional matrices per 
 direction and then averaged over directions (2DDmrg). 

 -  The  feature  is  computed  from  a  single  matrix  after  merging  all  2D  directional 
 matrices (2Dvmrg). 

 -  Features  are  computed  from  each  3D  directional  matrix  and  averaged  over  the  3D 
 directions (3Davg). 

 -  The  feature  is  computed  from  a  single  matrix  after  merging  all  3D  directional 
 matrices (3DWmrg) 

 9.1.1  Difference entropy 

 The  difference  entropy  feature  is  defined  as  a  measure  of  the  randomness/variability  in 
 neighborhood  intensity  value  differences  [51].  The  2Davg,  2Dmrg,  2DDmrg,  and  3Davg 
 aggregation  methods  are  of  interest,  for  a  total  of  four  GLCM  difference  entropy  features.  To 
 calculate the difference entropy, Formula 3 can be used: 
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 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒     𝑒𝑛𝑡𝑟𝑜𝑝𝑦    =    
 𝑘 = 0 

 𝑁 
 𝑔 
− 1 

∑  𝑝 
 𝑥 − 𝑦 

( 𝑘 ) 𝑙𝑜  𝑔 
 2 
( 𝑝 

 𝑥 − 𝑦 
( 𝑘 ) + ϵ)  (3) 

 Where 
 -  is an arbitrarily small positive number (≈ 2.2×10  -16  ), ϵ
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 -  p(i,j)  is the normalized co-occurrence matrix and  equal to  𝑃 ( 𝑖 , 𝑗 )
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 9.1.2  Joint average 

 Joint  average  is  the  gray  level  weighted  sum  of  joint  probabilities  [53].  Three  features 
 stemming  from  2DDmrg,  3Davg,  and  3DWmrg  aggregation  methods  showed  significance  in 
 this  study.  The  average  gray  level  intensity  of  the  i  distribution  can  be  found  using  Formula  3 
 [51]. 
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 Where 
 -  μ  x  is the mean gray level intensity of  p  x 

 9.1.3  Joint entropy 

 Joint  entropy  is  similar  to  difference  entropy  in  that  it  measures  the  randomness/variability  in 
 neighboring  intensity  values,  but  it  looks  at  similarities  instead  of  differences  [51].  Three 
 GLCM  joint  entropy  features  from  2DDmrg,  2Dvmrg,  and  3DWmrg  aggregation  techniques 
 were found to be significant. The joint entropy feature can be quantified by Formula (5). 
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 9.1.4  Sum average 

 The  sum  average  feature  of  the  GLCM  class  radiomics  features  is  a  measurement  of  the 
 relationship  between  occurrences  of  pairs  with  lower  intensity  values  and  occurrences  of 
 pairs  with  higher  intensity  values.  Mathematically,  the  sum  average  is  twice  the  joint  average 
 from  chapter  8.1.2  [51].  Three  features  aggregated  and  computed  via  2DDmrg,  3Davg,  and 
 3DWmrg  showed  relevance  for  the  purposes  of  this  study.  Using  Formula  6,  the  sum  average 
 can be found. 

 𝑠𝑢𝑚     𝑎𝑣𝑒𝑟𝑎𝑔𝑒    =    
 𝑘 = 2 
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 9.1.5  Sum entropy 

 The  sum  entropy  feature  is  defined  as  the  sum  of  neighboring  intensity  value  differences  [51]. 
 One  feature  using  2Dmrg  aggregation  showed  significance.  This  feature  can  be  calculated 
 using Formula 7. 

 𝑠𝑢𝑚     𝑒𝑛𝑡𝑟𝑜𝑝𝑦    =    
 𝑘 = 2 

 2  𝑁 
 𝑔 

∑  𝑝 
 𝑥 + 𝑦 

( 𝑘 ) 𝑙𝑜  𝑔 
 2 
( 𝑝 

 𝑥 + 𝑦 
( 𝑘 ) + ϵ)    (7) 

 9.1.6  Inverse difference 

 GLCM  -  Inverse  difference  is  a  measure  of  localized  homogeneity  in  an  image. 
 Co-occurrences  in  the  matrix  with  significant  differences  in  gray  levels  are  weighed  less. 
 When  the  gray  levels  are  equal,  this  feature  is  maximal  [53].  This  feature  was  the  basis  for 
 differentiating  healthy  and  tumor  tissue  in  the  Tree  model  in  chapter  8.3.1  when  aggregated 
 using 2Davg. The calculation of this feature can be done using Formula 8 [51]. 

 𝑖𝑛𝑣𝑒𝑟𝑠𝑒     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =    
 𝑘 = 0 

 𝑁 
 𝑔 
− 1 

∑
 𝑝 

 𝑥 − 𝑦 
( 𝑘 )

 1 + 𝑘 
 (8) 

 89 



 9.2  Intensity histogram 

 By  discretizing  the  original  intensity  distribution  of  the  VOI  into  intensity  bins,  an  intensity 
 histogram is made. [53]. All features describe a 3D volume. 

 9.2.1  Entropy 

 The  intensity  histogram  -  entropy  feature  explains  the  uncertainty/randomness  in  the  image 
 values  by  measuring  the  average  amount  of  information  needed  to  encode  those  values  [51]. 
 Entropy  being  an  information-theoretic  concept  is  here  defined  as  Shannon  entropy  and 
 therefore is determined by Formula 9.[53]. 

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦    =    −
 𝑖 = 1 

 𝑁 
 𝑔 

∑  𝑝 ( 𝑖 ) 𝑙𝑜  𝑔 
 2 
( 𝑝 ( 𝑖 ) + ϵ)  (9) 

 Where 
 -  p(i) is the normalized first order histogram and equal to  𝑃 ( 𝑖 )

 𝑁 
 𝑝 

 9.2.2  Statistical intensity histogram features 

 The  intensity  histogram  class  of  radiomics  features  contained  six  more  interesting  features  as 
 indicated  by  the  results  in  this  study.  These  are  statistical  discretized  features  of  the  created 
 histogram and their formulas are briefly summarized here [51],[53]. 

 Interquartile range of the gray level values in the image array. 

 𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒     𝑟𝑎𝑛𝑔𝑒    =     𝑃 
 75 

−  𝑃 
 25  (10) 

 Range of occurring gray levels in the VOI. 

 𝑟𝑎𝑛𝑔𝑒    =  𝑚𝑎𝑥 ( 𝑋 ) −  𝑚𝑖𝑛 ( 𝑋 )  (11) 

 Where 
 -  X is a set of N  p  voxels included in the VOI 

 Maximum gray level intensity in the segmented VOI. 

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚    =     𝑚𝑎𝑥 ( 𝑋 )  (12) 
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 Median absolute deviation. 

 𝑀𝑒𝑑𝑖𝑎𝑛     𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒     𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  1 
 𝑁 

 𝑝  𝑖 = 1 

 𝑁 
 𝑝 

∑     ∣𝑋 ( 𝑖 )   −     𝑀∣     (13) 

 Mean  absolute  deviation,  the  mean  distance  of  all  intensity  values  from  the  Mean  Value 
 of the image array. 

 𝑀𝑒𝑎𝑛     𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒     𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛    =     1 
 𝑁 

 𝑝  𝑖 = 1 

 𝑁 
 𝑝 

∑  𝑋 ( 𝑖 ) −  𝑋 | |  (14) 

 Robust  mean  absolute  deviation,  the  mean  absolute  deviation  calculated  on  the  subset  of 
 the image array with gray levels in between, or equal to the 10th and 90th percentile. 

 𝑅𝑜𝑏𝑢𝑠𝑡     𝑚𝑒𝑎𝑛     𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒     𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛    =     1 
 𝑁 

 10 − 90  𝑖 = 1 

 𝑁 
 10 − 90 

∑  𝑋 
 10 − 90 

( 𝑖 ) −  𝑋 
 10 − 90 

|||
|||  (15) 
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 9.3  Intensity volume 

 The  intensity  volume  class  of  features  expresses  the  relationship  between  a  discretized 
 intensity  i  and  the  fraction  of  the  volume  containing  this  intensity  level  or  more  [51].  One 
 feature  from  this  class  showed  promise  in  the  ability  to  differentiate  healthy  lung  tissue  from 
 NSCLC tissue. 

 9.3.1  Intensity at volume fraction 10 

 The  intensity  at  volume  fraction  10  is  the  minimum  intensity  present  in  a  maximum  of  10% 
 of the VOI. Generally, only fractions 10 and 90 are used as radiomics parameters [  87]  . 

 9.4  Statistical features 

 To  describe  the  general  distribution  of  the  gray  level  intensities  within  a  VOI,  statistical 
 features  are  used.  Unlike  the  statistical  features  concerning  the  intensity  histogram  (chapter 
 9.2),  these  features  are  not  discretized  and  can  therefore  be  used  to  describe  continuous 
 intensity  distributions  [51].  The  six  relevant  statistical  features  for  this  study  are  maximum, 
 90th  percentile,  mean  absolute  deviation,  median  absolute  deviation,  range,  and  RMS.  The 
 calculations  for  the  median  and  mean  absolute  deviation  can  be  done  using  formulas  13  and 
 14. The RMS is found using Formula 15. 

 𝑅𝑀𝑆    =     𝑘 = 1 

 𝑁 
 𝑔 

∑  𝑋 
 𝑘 
 2 

 𝑁 
 𝑔 

 (15) 

 9.5  PET Uptake Metrics - Original maximum 

 The  PET  Uptake  Metrics  consists  of  five  features  that  were  also  extracted  for  the  entire 
 patient  cohort.  These  metrics  provide  a  quantization  of  the  SUV  in  the  VOI.  One  of  these 
 parameters  appeared  useful  in  differentiating  between  healthy  and  tumor  tissue,  namely: 
 Original  maximum.  This  feature  corresponds  to  the  more  commonly  used  SUV  Max  parameter 
 which  measures  tumor  glucose  metabolism.  It  is  also  a  frequently  used  feature  to  quantify 
 tumor FDG uptake [  88  ]. Formula 1 from Chapter 3.2  can be used to calculate the SUV. 
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 10  Discussion 

 The  focal  point  and  the  primary  hypothesis  of  this  research  paper  proposed  the  ability  to 
 distinguish  healthy  from  NSCLC  tissue  using  18  F-FDG-imaging  and  radiomics.  This  has 
 already  shown  promising  results  for  several  organs,  including  the  liver,  lungs,  and 
 prostate.[86],[89-90]. 

 In  this  study,  the  radiomics  extraction  returned  two  sets  of  504  features  concerning  the  tumor 
 and  healthy  VOI.  Not  all  features  are  relevant  and  overfitting  is  a  common  issue  in  radiomics 
 analyses  [91-92].  A  paired  t-test  was  used  to  remove  69  features  from  the  dataset. 
 Furthermore,  a  PCA  is  a  useful  technique  to  reduce  noise  and  is  commonly  used  in  radiomics 
 studies  [93-95]  This  analysis  uncovered  166  features  or  38.1%  of  the  remaining  features 
 which  proved  less  relevant.  The  clustering  of  the  data  points  after  this  noise  reduction 
 improved  greatly,  indicating  a  clear  difference  between  healthy  tissue  and  tumor  tissue 
 radiomics  features.  When  using  the  30  most  significant  features,  as  indicated  by  the 
 noise-reduced  PCA,  good  clustering  could  still  be  observed.  Only  incorporating  the  top  five 
 features  however  generated  clusters  that  appear  less  dense.  In  general,  the  cluster  of  the  tumor 
 tissue  is  more  spread  out  than  the  cluster  of  the  healthy  tissue.  This  is  a  clear  example  of  the 
 Anna  Karenina  principle  since  the  healthy  tissue  of  the  patients  is  more  homogeneous  and 
 consistent  compared  to  tumor  tissue  which  comes  in  all  shapes  and  sizes  [96].  The  tumor  VOI 
 of  ProLung113  was  clustered  in  the  healthy  tissue  group  for  all  PCAs.  After  reviewing  the 
 PET  image  and  the  tumor  nodule,  most  of  the  VOI  consisted  of  central  necrosis  which  affects 
 the  SUV  and  therefore  the  gray  levels  in  the  image.  This  could  explain  the  consistent  miss 
 clustering. 

 The  dendrogram  showed  8  clusters.  The  reason  that  features  are  in  the  same  cluster  is  that 
 they  have  the  same  order  of  magnitude.  The  dataset  consists  of  different  groups,  such  as 
 GLCM,  GLRLM,  etc.  The  clusters  that  were  formed  are  not  linked  to  a  specific  group  but  to 
 the  quantities.  For  example,  all  the  entropy  values  of  the  different  groups  are  in  one  cluster. 
 The  30  most  significant  features  are  spread  over  the  different  clusters.  Therefore,  there  is  no 
 prominent  cluster  in  this  dendrogram.  The  PCA  biplots  showed  grouping  vectors  indicating 
 mutual  correlation.  These  clusters  did  not  however  match  up  with  the  clusters  found  in  the 
 dendrogram. 

 The  second  objective  was  to  find  a  discriminative  model  for  healthy  and  tumor  lung  tissue 
 using  machine  learning  techniques.  Machine  learning  in  high  dimensional  datasets  such  as 
 radiomics  has  gained  popularity  in  recent  years,  specifically  for  the  purposes  of  cancer 
 staging,  segmentation,  and  general  -omics  studies  [97-98].  Other  clinical  parameters  were 
 also  tested  using  the  same  machine-learning  methods.  These  were  glycemia,  tumor 
 phenotype,  VOI  location,  diabetes,  and  packyears.  The  patient  cohort  was  subdivided  into  a 
 group  of  30  patients  used  for  training  the  models  and  a  second  group  of  19  patients  to  then 
 test the best model(s). 
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 The  first  classifier  was  based  on  whether  the  VOI  concerned  ‘tumor’  or  ‘healthy’  tissue. 
 After  training  all  different  models  for  distinguishing  the  healthy  tissue  from  the  NSCLC 
 tissue  on  the  first  30  patients,  the  Fine  KNN,  Weighted  KNN,  Bagged  trees,  and  Subspace 
 Discriminant  came  out  as  the  best  models  with  an  accuracy  of  98.3%.  They  only  classified 
 one  patient  tissue  wrong.  After  using  these  four  models  to  make  predictions  on  the  other  19 
 patients,  the  KNN  model  gave  the  best  result  by  only  classifying  two  of  the  19  patients 
 wrong,  corresponding  to  an  accuracy  of  89.5%.  All  four  models  classified  ProLung113 
 wrong.  This  is  the  same  patient  that  came  out  of  the  PCA  test  as  misclassified.  The  other 
 misclassified  tissues  are  different  for  the  different  models.  The  Fine  Tree  model  gave  an 
 accuracy  of  96.7%.  The  tree  model  only  uses  the  ‘glcmFeatures2Davg-inverse  difference’. 
 When  this  value  is  smaller  than  0.737313,  it  is  classified  as  a  tumor.  The  inverse  difference  is 
 a  measure  of  homogeneity.  A  tumor  tissue  in  general  is  more  heterogeneous  than  healthy 
 tissue,  which  makes  this  feature  a  good  indication  for  discriminating  between  the  two  tissue 
 types.  In  general,  the  results  of  the  classification  models  are  good,  compared  to  previous 
 studies  where  the  accuracy  has  a  value  of  97.3%.  For  CT  images,  radiomics  features  have 
 shown  to  be  a  good  method  in  differentiating  healthy  from  tumor  tissue  in  pancreatic  cancer 
 [99].  For  PET,  radiomics  coarseness  features  showed  the  ability  to  distinguish  carcinoma 
 from healthy tissue [100]. 

 Next,  glycemia  was  used  as  a  differentiating  parameter.  The  Logistic  Regression  model  with 
 an  accuracy  of  66.7%,  and  the  Ensemble  -  Subspace  Discriminant  model  with  an  accuracy  of 
 53.3%  came  out  on  top.  These  models  correctly  predicted  4  and  13  out  of  19  patients 
 respectively.  Similar  results  are  found  in  other  studies.  In  a  study  by  M.  Eskian  et  al.,  using 
 8380  patients,  glycemia  was  significantly  correlated  with  decreased  SUV  in  brain  and  muscle 
 tissue  and  increased  SUV  in  liver  tissue.  Contrarily,  no  correlation  was  found  between  SUV 
 and  glycemia  in  tumor  tissue  [101].  This  was  also  concluded  in  a  study  by  K.  A.  Büsing  et 
 al.,  which  found  no  impact  of  diabetes  and  glycemia  levels  on  SUV  [102].  The  findings  in 
 this  study  lean  towards  the  latter  and  the  created  models  are  not  sufficient  in  distinguishing 
 tumor VOIs based on the patients’ glycemia levels. 

 Tumor  phenotype  was  the  next  parameter.  The  two  types  of  nodules  studied  in  this  paper  are 
 adenocarcinoma  (AC)  and  squamous  cell  carcinoma  (SCC).  The  noise-reduced  set  of 
 radiomics  features  produced  the  best  results.  The  Medium  Gaussian  SVM  model  achieved  an 
 accuracy  of  90%.  The  same  model  predicted  11  out  of  16  correctly.  Using  radiomics  and  MRI 
 on  different  brain  tumor  types,  a  study  by  F.J.  Diaz-Pernas  et  al.  reported  increased 
 performance  in  classifying  the  types  into  meningioma,  glioma,  and  pituitary  tumors.  [103]. 
 Prognostic  capabilities  and  tumor  phenotype  determination  of  radiomics  features  have  also 
 been  found  for  lung  and  head-and-neck  cancer[48].  The  high  accuracy  of  the  trained  Medium 
 Gaussian  SVM  model  combined  with  positive  findings  in  previous  studies  suggest  further 
 research  should  be  done  to  predict  lung  tumor  phenotype  using  radiomics  features  and 
 machine learning. 

 Models  able  to  determine  the  location  of  the  tumor  VOI  were  tested  next.  The  Logistic 
 Regression  model  gave  the  highest  accuracy  (73.3%).  When  predicting  the  location  in  the 

 94 



 second  patient  group,  8  out  of  19  predictions  were  correct.  The  location  of  the  VOI  has  been 
 shown  to  affect  feature  quantification.  [86].  This  study  was  not  able  to  build  a  model  capable 
 of consistently predicting VOI location between the left and the right lung. 

 The  results  from  the  classifier  learner  for  diabetes  indicated  that  the  Linear  Discriminant 
 model  with  an  accuracy  of  60.0%,  and  the  Fine  KNN  model  with  an  accuracy  of  63.3%  were 
 the  best  models.  Both  models  predicted  13  out  of  19  cases  correctly  in  the  test  group.  Linked 
 with  glycemia,  no  relevant  correlations  have  been  found  between  diabetes  and  SUV  uptake  in 
 tumor  tissue.  [102].  This  was  extended  to  lung  cancer  specifically  in  a  study  by  Gorenberg  M. 
 et  al.  [104].  The  accuracy  of  the  models  in  this  study  is  too  low  to  reasonably  predict  diabetes 
 based on radiomics features. 

 The  final  clinical  parameter  used  for  training  the  models  was  packyears.  The  median  of 
 packyears  (35)  for  the  patient  cohort  was  used  to  make  the  two  groups  since  there  was  only 
 one  non-smoker  in  this  study.  The  RUS  Boosted  Trees  (ensemble  learning)  model  achieved 
 the  highest  accuracy  for  the  tumor  VOIs,  with  60.0%.  This  corresponds  to  12  out  of  30 
 patients  being  misclassified.  When  making  predictions  on  the  remaining  18  patients,  the 
 model  correctly  predicted  ten  cases.  For  healthy  tissue,  the  Subspace  KNN  (ensemble 
 learning)  model  has  the  highest  accuracy,  56,7%.  This  model  predicted  10  out  of  18  patients 
 correctly  from  the  test  group.  To  create  a  more  significant  difference  between  both  groups  in 
 healthy  tissue,  the  patients  under  the  25th  percentile  and  above  the  75th  percentile  were  used. 
 to  make  two  new  groups.  The  models  attained  a  maximum  efficiency  of  43.8%  and  the  PCA 
 did  not  reveal  any  data  clustering  even  though  the  difference  in  tobacco  burden  was  more 
 significant.  It  has  been  shown  that  SUV  using  FDG  correlates  with  tobacco  burden  in  current 
 smokers.  This  effect  diminishes  after  the  cessation  of  smoking  [105].  Another  study  by 
 Schroeder  et  al.  demonstrated  increased  uptake  of  FDG  in  smoke-exposed  lungs  compared  to 
 control  lungs  [106].  The  combination  of  smoking  and  diabetes  has  been  shown  to  increase 
 FDG  uptake  as  well  [107].  A  study  by  D.A.  Torigian  et  al.  on  the  other  hand  found  no 
 relation  between  smoking  and  FDG  uptake  [108].  Due  to  the  lack  of  non-smokers  in  this 
 study,  the  median  of  packyears  was  used  to  divide  the  patient  cohort  into  two  groups.  The 
 models  are  not  sufficient  in  determining  the  difference  between  both  groups  of  (mostly) 
 smokers.  Refining  the  tests  by  making  the  gap  between  both  groups  bigger  did  not  yield 
 better results. 

 In  summary,  this  study  found  separated  clustering  of  healthy  tissue  and  tumor  tissue 
 following  a  PCA.  This  clustering  was  optimal  after  removing  noise  and  still  apparent  when 
 using  only  30  features  with  the  highest  loading  scores.  The  discriminative  models  were 
 capable  of  classifying  the  two  tissue  types  with  an  accuracy  of  89.5%,  based  on  a  training 
 model with an accuracy of 98.3%. 

 The  method  of  segmentation  has  a  substantial  effect  on  these  results.  In  this  study,  the 
 segmentation  of  the  VOIs  was  exclusively  conducted  on  18  F-FDG  PET  images.  A  study  by 
 Lu  et  al.  found  that  the  selected  segmentation  method  had  an  impact  on  the  quantification  of 
 radiomics  features.  Similarly,  differences  were  observed  in  the  radiomics  data  obtained  from 
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 18  F-FDG  and  11C-choline.  The  study  observed  the  influence  of  the  chosen  imaging  technique 
 and  the  used  radiopharmaceutical  [109].  It  is  also  important  to  emphasize  the  consistency  of 
 the  radiomics  data,  as  the  delineation  of  tumors  on  the  PET-CT  images  was 
 semi-automatically  performed  by  a  single  radiologist.  A  previous  study  by  Zhao  et  al. 
 demonstrated  inconsistencies  in  VOI  delineation  when  three  different  radiologists  were 
 involved  [110].  These  possible  pitfalls  in  radiomics  research  have  also  been  summarized  by 
 Somasundaramet  al.,  who  also  listed  pre-processing  and  noise  as  possible  challenges  [111]. 
 Generally,  reproducibility  is  found  to  be  dependent  on  the  scanner  or  acquisition  and 
 reconstruction  settings  making  validation  of  radiomics  studies  difficult  [112-115].  The 
 specific  methodologies  and  conditions  are  detailed  in  this  paper.  Nevertheless,  we 
 acknowledge  that  the  reproducibility  of  this  data  using  different  technologies  may  lead  to 
 differing  outcomes,  as  discussed  by  Gillies  RJ  et  al.  [8].  In  their  report,  they  enumerate 
 various  factors  contributing  to  this  phenomenon  in  radiomics  data,  including  technical 
 intricacies,  data  overfitting,  incomplete  result  reporting,  and  unidentified  confounding 
 variables in the utilized databases. 

 This  study  concerns  data  from  one  healthy  and  one  tumor  VOI  per  patient  and  can  therefore 
 be  labeled  as  pre/post  intervention  data.  Consequently,  the  data  is  intrinsically  paired  which 
 was  not  taken  into  account.  A  possible  novel  analysis  technique  for  this  datatype  is  proposed 
 by  P.  Jonsson  et  al.,  namely  orthogonal  partial  least  squares-effect  projections  (OPLS-EP). 
 This  is  a  multivariate  statistical  analysis  strategy  allowing  paired  or  dependent  analysis  of 
 individual  effects  [116].  OPLS-discriminant  analysis  (OPLS-DA)  has  also  been  advised  over 
 PCA  for  similar  studies  since  it  uses  separation  based  models  instead  of  variance  based 
 models [117]. 

 The  sample  size  for  training  classifiers  affects  the  models’  accuracy.  A  smaller  sample  size 
 can  increase  variance  but  removing  outliers  can  decrease  variance.  The  effects  of  sample  size 
 on  machine  learning  is  not  studied  enough  to  draw  immediate  conclusions  as  summarized  by 
 D.  Rajput  et  al.  [118].  Furthermore,  guidelines  and  methodological  conduct  for  machine 
 learning clinical prediction models are limited [119]. 

 Looking  forward,  it  could  prove  useful  comparing  healthy  tissue  of  smokers  and 
 non-smokers.  This  study  included  only  patients  with  a  smoking  history,  bar  one,  making  it 
 difficult  to  draw  conclusions.  Additionally,  the  same  analyses  can  be  done  using  CT 
 segmented  VOIs  of  the  same  patient  cohort  since  these  images  were  taken  concurrently.  This 
 could  expand  the  findings  of  this  study  to  another  modality  as  well  as  allowing  for 
 cross-modality  comparisons.  Furthermore,  the  methodology  used  in  this  study  could  be 
 applied  to  tissues  from  other  organs.  To  determine  the  validity  of  the  machine  learning 
 results,  sample-size  calculations  can  be  performed  ex  post  facto  by  fitting  a  learning  curve 
 [120].  A  larger  patient  cohort  could  prove  useful  in  validating  the  results  and  allowing 
 conclusions  from  the  other  clinical  classifiers.  We  hypothesize  that  the  models  will  be  able  to 
 differentiate  tumor  from  healthy  lung  tissue  and  smokers  from  non-smokers.  Based  on  our 
 findings  and  current  findings  in  the  literature,  we  expect  no  significantly  different  results  for 
 the other classifiers used in this study. 
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 In  the  long  term,  this  preliminary  study  can  form  the  basis  for  automated  detection  and 
 diagnosis  of  NSCLC.  The  results  indicate  a  statistical  difference  in  the  radiomics  data 
 between  healthy  lung  tissue  and  lung  tumor  tissue.  Future  studies  can  verify  if  this  also  goes 
 for  other  tissues  compared  to  an  NSCLC  VOI.  A  possible  implementation  could  be  a  system 
 that  automatically  subdivides  a  PET  image  into  small  cubic  areas/VOIs  and  runs  a  radiomics 
 analysis  on  each  of  the  segmented  cubes.  From  this  data,  the  system  can  then  decide  if  and 
 where  the  patient  has  a  tumor  nodule  by  checking  the  grid  elements  corresponding  to  tumor 
 tissue. This system can be AI-driven. 
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 11  Conclusion 

 This  study  aimed  to  test  the  hypothesis  that  tumor  and  healthy  lung  tissue  can  be 
 differentiated  solely  using  18  F-FDG  PET-based  radiomics  data.  Hereto,  different 
 discriminating  classifiers  were  created  with  full  and  reduced  datasets  of  radiomics  features. 
 Firstly,  the  PCA  based  on  the  full  dataset  showed  separated  clustering  of  the  tumor  and  the 
 healthy  tissue.  This  differentiation  was  even  more  clear  after  noise-suppression,  reducing  the 
 dataset  to  the  269  features  with  the  highest  loading  scores.  A  set  of  30  features  still  performed 
 adequately.  The  second  major  finding  was  that  four  different  machine  learning  models 
 attained  an  accuracy  of  98.3%  in  predicting  the  tissue  type:  Fine  KNN,  Weighted  KNN, 
 Bagged  trees,  and  Subspace  Discriminant  models.  The  Fine  Tree  model  achieved  an  accuracy 
 96.7%  using  only  one  radiomics  feature:  glcmFeatures2Davg-inverse  difference.  Machine 
 learning  models  based  on  radiomics  were  not  able  to  determine  other  clinical  parameters,  i.e. 
 diabetes,  glycemia  levels,  tumor  location  (left  or  right  lung),  number  of  packyears,  and  tumor 
 phenotype (adeno- or squamous cell carcinoma). 

 This  study  adds  promising  results  to  the  rapidly  expanding  field  of  radiomics.  The  identified 
 models  may  assist  in  the  further  development  of  (semi)automated  tools  and  provide  a  basis 
 for further research in  18  F-FDG PET- based lung cancer diagnosis. 
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 Annex I: Scatter plots healthy vs tumor tissue 

 Figure  S1:  The  scatter  plot  of  the  Fine  KNN  model  on  a  cohort  of  30  patients,  where  the  blue  dots 
 represent  the  correct  classified  healthy  tissues,  the  orange  dots  the  correct  classified  tumor  tissues, 
 and  the  orange  cross  the  incorrect  classified  tumor  tissue.  This  for  the  first  two  radiomics  features 
 ‘PET  Uptake  Metrics  -  local  intensity  peak’  (x-axis)  and  ‘PET  Uptake  Metrics  -  global  intensity 
 peak’ (y-axis). 
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 Figure  S2:  The  scatter  plot  of  the  Weighted  KNN  model  on  a  cohort  of  30  patients,  where  the  blue 
 dots  represent  the  correct  classified  healthy  tissues,  the  orange  dots  the  correct  classified  tumor 
 tissues,  and  the  blue  cross  the  incorrect  classified  healthy  tissue.  This  for  the  first  two  radiomics 
 features  ‘PET  Uptake  Metrics  -  local  intensity  peak’  (x-axis)  and  ‘PET  Uptake  Metrics  -  global 
 intensity peak’ (y-axis). 
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 Figure  S3:  The  scatter  plot  of  the  Ensemble  -  Bagged  Trees  model  on  a  cohort  of  30  patients,  where 
 the  blue  dots  represent  the  correct  classified  healthy  tissues,  the  orange  dots  the  correct  classified 
 tumor  tissues,  and  the  blue  cross  the  incorrect  classified  healthy  tissue.  This  for  the  first  two 
 radiomics  features  ‘PET  Uptake  Metrics  -  local  intensity  peak’  (x-axis)  and  ‘PET  Uptake  Metrics  - 
 global intensity peak’ (y-axis). 
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 Figure  S4:  The  scatter  plot  of  the  Ensemble  -  Subspace  Discriminant  model  on  a  cohort  of  30 
 patients,  where  the  blue  dots  represent  the  correct  classified  healthy  tissues,  the  orange  dots  the 
 correct  classified  tumor  tissues,  and  the  orange  cross  the  incorrect  classified  tumor  tissue.  This  for 
 the  first  two  radiomics  features  ‘PET  Uptake  Metrics  -  local  intensity  peak’  (x-axis)  and  ‘PET 
 Uptake Metrics - global intensity peak’ (y-axis). 
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 Annex  II:  Classification  learner  results  on  the 
 noise-reduced dataset 

 Tumor vs healthy tissue 

 Fine Gaussian SVM  Ensemble - Subspace Discriminant 

 Figure  S5:  Confusion  matrix  for  the  Fine  Gaussian  SVM  and  Subspace  Discriminant  (Ensemble) 
 model  for  predicting  tumor  (1)  or  healthy  (0)  tissue  of  a  cohort  of  30  patients,  with  an  accuracy  of 
 98.3%. 

 Fine Gaussian SVM  Ensemble - Subspace Discriminant 

 Figure  S6:  Confusion  matrix  for  the  Fine  Gaussian  SVM  and  Subspace  Discriminant  (Ensemble) 
 model for predicting tumor (2) or healthy (1) tissue of a cohort of 19 patients. 
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 Glycemia 

 Logistic Regression 

 Figure  S7:  Confusion  matrix  for  the  Logistic  Regression  model  and  Subspace  Discriminant 
 (Ensemble)  model  for  predicting  if  the  glycemia  is  larger  than  98  mg%  (1)  or  smaller  than  98  mg% 
 (0) of a cohort of 30 patients, with an accuracy of 80.0%. 

 Figure  S8:  Confusion  matrix  for  the  Logistic  Regression  and  Subspace  Discriminant  (Ensemble) 
 model  for  predicting  if  the  glycemia  is  larger  than  98  mg%  (2)  or  smaller  than  98  mg%  (1)  of  a  cohort 
 of 19 patients. 
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 Tumor type 

 Figure S9: Confusion matrix for the Medium Gaussian SVM model 
 for predicting the tumor type of a cohort of 30 patients, with an 
 accuracy of 90.0%. 

 Figure  S10:  Confusion  matrix  for  the  Medium  Gaussian  SVM 
 model for predicting the tumor type of a cohort of 16 patients. 
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 Lung side (left or right) 

 Figure S11: Confusion matrix for the Logistic Regression model for 
 predicting the position of the tumor of a cohort of 30 patients, 

 with an accuracy of 70.0%.. 

 Figure  S12:  Confusion  matrix  for  the  Logistic  Regression  model 
 for predicting the position of the tumor of a cohort of 19 patients. 
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 Diabetes 

 Tree models  76.7% accuracy models 

 Figure  S13:  Confusion  matrix  for  the  tree  model  and  the  nine  highest  scoring  models  for  predicting 
 if the patient has diabetes (1) or not (0) of a cohort of 30 patients. 

 Fine Tree  Fine KNN 

 Figure  S14:  Confusion  matrix  for  the  Linear  Discriminant  and  Fine  KNN  model  for  predicting  if 
 the patient has diabetes (2) or not (1) of a cohort of 19 patients. 
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 Packyears 

 Figure S15: Confusion matrix for the Kernel Naive Bayes model 
 for predicting if the amount of packyears is larger than 35 (1), or 

 smaller (0) of the healthy tissue of a cohort of 30 patients. 

 Figure S16: Confusion matrix for the SKernel Naive Bayes 
 model for predicting if the amount of packyears is larger than 35 
 (1), or smaller (0) of the healthy tissue of a cohort of 18 patients  . 
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 Annex III: Codes 

 Python code for PCA 

 import pandas as pd 
 import numpy as np 
 import seaborn as sns 
 from sklearn.decomposition import PCA 
 from sklearn import preprocessing 
 import matplotlib.pyplot as plt 

 quantificatie=FILE_WITH_FEATURES_DATA 
 features=FILE_WITH_FEATURE_NAMES 
 index=FILE_WITH_TUMOR(1)_HEALTHY(0) 

 scaled_data = preprocessing.scale(quantificatie) 

 pca = PCA() #  make PCA object 
 pca.fit(scaled_data) #  Calculation of the PCs 
 pca_data = pca.transform(scaled_data)  #generate coordinates 

 per_var  =  np.round(pca.explained_variance_ratio_*100,  decimals=1)  #  %  of  the  variance  per 
 PC 

 labels = ['PC' + str(x) for x in range(1, len(per_var)+1)] 
 plt.bar(x=range(1,len(per_var)+1), height=per_var, tick_label=labels) 
 plt.ylabel('% Explained variance’) 
 plt.xlabel('Principal component') 
 plt.xlim(0,10.5) 
 plt.show() #  graph with the ten most relevant PCs 

 pca_df = pd.DataFrame(pca_data, columns=labels) 
 tumor_array = pca_df[::2] 
 healthy_array = pca_df[1::2] 
 plt.scatter(tumor_array.PC1, tumor_array.PC2,c='red', label='tumor') 
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 plt.scatter(healthy_array.PC1, healthy_array.PC2,c='blue', label='healthy') 
 plt.xlabel('PC1 - {0}%'.format(per_var[0])) 
 plt.ylabel('PC2 - {0}%'.format(per_var[1])) 
 plt.legend(loc='lower right') 
 plt.show()  #scatterplot with the first two PC’s as  axis and the data plotted out accordingly 

 loading_scores = pd.Series(pca.components_[0], index=features) 
 sorted_loading_scores = loading_scores.abs().sort_values(ascending=False) 
 top_10_features = sorted_loading_scores[0:10].index.values 

 print(loading_scores[top_10_features])  #show  the  10  most  relevant  features  and  their  loading 
 scores 

 def  biplot(score,coeff,labels=None):  #  structure  for  the  biplot  with  the  10  most  relevant 
 features 

 xs = score[:,0] 
 ys = score[:,1] 
 n = coeff.shape[0] 
 scalex = 1.0/(xs.max() - xs.min()) 
 scaley = 1.0/(ys.max() - ys.min()) 
 plt.scatter(xs * scalex,ys * scaley,s=10) 
 for i in range(10): 
 plt.arrow(0, 0, coeff[i,0]*1, coeff[i,1]*12,color = 'r',alpha = 0.5) 
 if labels is None: 

 plt.text(coeff[i,0]*  1,  coeff[i,1]  *  1,  "Var"+str(i+1),  color  =  'green',  ha  =  'center',  va  = 
 'center') 

 else: 
 plt.text(coeff[i,0]* 1, coeff[i,1] * 1, labels[i], color = 'g', ha = 'center', va = 'center') 

 plt.xlabel("PC{}".format(1)) 
 plt.ylabel("PC{}".format(2)) 

 plt.figure(figsize=(12, 6)) 

 biplot(pca_data,  np.transpose(pca.components_[0:2]), 
 list(loading_scores[top_10_features].index)) 

 plt.grid() 
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 Matlab code 

 t-test 

 data = xlsread('Dataset_Boellaard_t_2.xlsx');  % Load data 
 [rows,cols] = size(data);  % Define number of rows and columns 
 features = (cols-1)/2;  % Define amount of features 

 results=zeros(features, 5);  % Empty matrix to store results 

 for i = 1:features 
 tumor = data(:,i);  % First column 
 gezond = data(:,i+features+1); 
 [h,p,ci,stats] = ttest(tumor, gezond); 

 MyFieldNames = fieldnames(stats);  % Field to values 
 for j=1:3 

 stat(j,1) = getfield(stats,MyFieldNames{j}); 
 end 
 results(i,1) = h;  % Store results 
 results(i,2) = p; 
 results(i,3) = stat(1,1); 
 results(i,4) = stat(2,1); 
 results(i,5) = stat(3,1); 

 end 
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 Dendrogram 

 data = xlsread('Dataset_dendrogram.xlsx');  % Load the data 
 data_trans=transpose(data);  % Transpose data matrix (for linkage function) 
 [rows,cols] = size(data_trans);  % Define rows and cols 
 tree = linkage(data_trans,'average');  % Create tree with the linkage function 
 cutoff = 5;  % Define cutoff height 
 [H, T, outperm] = dendrogram(tree,0,'ColorThreshold',cutoff);  % Create dendrogram 
 outperm=transpose(outperm); 
 linesColor = cell2mat(get(H,'Color'));  % Get lines color; 
 colorList = unique(linesColor, 'rows'); 
 data_trans_color     = zeros(rows,3);  % Create zero vectors for saving data later 
 data_trans_cluster   = zeros(rows,1); 
 for iLeaf = 1:rows 

 [iRow, ~] = find(tree==iLeaf); 
 color = linesColor(iRow,:);  % Assign color to each observation 
 data_trans_color(iLeaf,:) = color;  % Assign cluster number to each observation 
 data_trans_cluster(iLeaf,:) = find(ismember(colorList, color, 'rows')); 

 end 

 set(gca,'YScale','log');  %  Set  the  plot  in  logarithmic  scale  for  better 
 view 

 Classification learner 

 yfit = Glycemie_LogReg.predictFcn(DATASET.xls);  % Load prediction function 
 yfit = transpose(yfit); 
 predictions = table(yfit); 
 predicted_class = table2array(predictions); 
 true_class = A;  % Correct values of the input data 
 C = confusionmat(true_class, predicted_class);  % Create confusion matrix 
 confusionchart(C); 
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 Annex  IV:  Guidelines  for  radiomics  data  extraction  of 
 healthy  and  tumor  tissue  in  the  Accurate  and  Radiomics 
 tools (Prof. Dr. Boellaard, Amsterdam UMC) 

 Step  1:  First  of  all,  you  have  to  check  whether  all  necessary  files  are  at  hand.  The  following 
 image  shows  what  a  normal  patient  file  looks  like.  The  most  important  files  for  the  data 
 extraction are .prj, .nii and .voi 

 Important  note:  make  sure  that  the  path  of  the  patient  file  does  not  contain  spaces!  Verify  this 
 by  right-clicking  a  file  in  the  patient  folder,  go  to  properties  and  search  for  the  location.  The 
 entire path of the file should be displayed as seen in the image below. 
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 Step  2  :  To  create  a  new  volume  of  interest  (VOI)  for  the  healthy  tissue,  copy  the  NII-file  of 
 the VOI. 

 Add  _healthy  to  his  newly  created  NII-file.  Now  there  should  be  2  files  for  the  VOI.  One 
 which  contains  the  tumor  tissue,  and  one  which  will  be  used  to  create  a  volume  of  healthy 
 tissue. 
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 Step  3  :  Open  the  Accurate  tool  (developed  by  a  research  team  at  Amsterdam  UMC  under 
 Prof.  Dr.  Boellaard)  by  launching  ‘accurate4petct_v06022022’,  press  ‘Click  to  continue’  and 
 click yes for the scrollable version. The application should look like this: 

 Note  that  the  tool  can  crash  when  you  miss  click  or  when  an  error  occurs.  When  this  happens, 
 go back to Step 3. 

 Step  4  :  Next,  the  patient  project  has  to  be  loaded  into  the  tool.  This  can  be  done  by  clicking 
 ‘File’  in  the  toolbar  and  ‘LoadProject’.  Access  the  folder  of  the  patient  you  want  to  analyse 
 and open the .prj file. 
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 When  done  correctly,  the  PET  image,  patient  info  and  radiopharmaceutical  info  should 
 appear. 

 Step  5  :  Check  if  the  patient  weight,  height  and  the  plasma  glucose  fields  are  filled  in  correctly 
 and  click  ‘VALIDATE  DATA/IMAGES’.  A  pop-up  will  appear  saying  you  can  continue  the 
 analysis, click ‘ok’. 

 Open the ‘Volume of interest’ view by clicking the third tab under the toolbar. 
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 This view should appear: 

 Step 6  : In the taskbar, click NIFTI -> Open VOI (Nifti).  Now load in the VOI of the tumor. 

 The VOI should appear marked in red. 

 By  scrolling  right  in  the  tool,  the  VOI  information  will  become  visible.  Take  note  of  the 
 Threshold. This should be the same for all images in the study. In this case it is set at 0.00%. 

 Step 7  : Press save Voi Stats -> select the VOI-file  and click ‘open’. 
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 A new Excel file should appear in the patient folder containing the statistical data of the VOI. 

 Step  8  :  Open  the  VOI  you  want  to  use  to  create  the  healthy  tissue  VOI  by  clicking  NIFTI  -> 
 Open VOI (Nifti) -> open the file with _healthy created earlier. 

 Step  9  :  Since  this  is  just  a  copy  of  the  tumor  VOI,  the  Red  marked  volume  will  still  be  on  the 
 tumor.  By  using  the  reposition  buttons  as  indicated  below,  the  healthy  tissue  can  be 
 segmented. 

 Important  to  note  that  the  healthy  VOI  can  only  contain  lung  tissue.  To  get  a  better  view  of 
 the images, click ‘VT 3 VIEWS’ . 
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 This is an example of a translated VOI to the opposite lung of where the tumor is. 

 Step  10  :  Save  the  newly  created  VOI  by  going  to  VOI  in  the  taskbar  ->  Save  VOI.  The 
 patient folder should now contain the following new files for the healthy tissue. 

 Step 11  : Click save Voi Stats -> select the VOI-file  of the healthy tissue and press ‘open’. 

 Now  another  Excel  file  should  appear  in  the  patient  folder  containing  the  statistical  data  of 
 the healthy VOI. 
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 Step 12  : Close the Accurate tool and open the Radiomics  tool. This should look as follows: 

 Step  13  :  Verify  if  the  ‘preset’  and  ‘scaling  fields’  are  correct.  Next,  change  the  ‘USER 
 LABLE’.  Use  appropriate  naming  for  both  tumor  and  healthy  tissue  as  well  as  the  patient 
 number. 

 Step  14  :  Click  ‘Process  1  Study’  ->  select  the  project  (.prj)  ->  select  the  VOI-file  (.voi).  Do 
 step  13  and  14  twice  per  patient,  once  for  the  tumor  radiomics  extraction  and  once  for  the 
 healthy tissue radiomics extraction. 

 The  following  Excel  files  should  be  visible  in  the  patient  folder.  These  contain  the  extracted 
 radiomics features. 
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 Step 15  : Open the Excel files. The data will look like this, in one column: 

 This  can  be  solved  by  selecting  the  column  containing  the  data  and  using  the  text  to  columns 
 function under the data tab. Select comma as dividing symbol. 

 The dataset will look as follows: 

 Repeat this process for the following four datasets per patient: 
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 Step  16  :  Combine  all  the  extracted  radiomics  data  per  patient  in  one  file.  Row  one  contains 
 the patients (two sets per patient). Do the same fort he VOI stats in a separate file/tab. 

 Step  17  :  Repeat  these  steps  for  each  patient  in  the  study  and  add  the  datasets  to  the  file  from 
 step 16. 

 134 


