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Preface 
 
In this master’s thesis, methods for analyzing acceleration waveforms of rowing strokes are 
developed. Strokes in the rowing sport is the method of propulsion using an oar connected 
to the rowing boat. The dynamics of applying power to this oar and the movement of the boat 
result in typical acceleration waveforms that can be analyzed to deduce the technique of a 
rower. Rowing is a difficult and technical sport. With the methods in this thesis, the efficiency 
of the learning process can be improved. This thesis is written in function of my master’s 
degree in Electronics and ICT Engineering Technology of the joint study program of UHasselt 
and KU Leuven. This research project started in October 2022 and ended in June 2023. 
 
The subject of this thesis was proposed by me because of my interest in rowing. I was a 
member of the UCLL rowing team during my bachelor's education. I did my bachelor’s in 
applied sciences in electronics and ICT at the UCLL before taking part in the bridging program 
to get my master’s degree. Over a period of 2 years, I learned to row and fell in love with the 
sport. It is both physically and technically challenging, while the physics and dynamics of the 
rowing boat are complex. When I learned to row, I started to research papers and read 
analyses of great national rowing teams. I also was a technical coach in the UCLL rowing team 
for the experienced boat (often referred to in rowing as the varsity boat) during my bridging 
year. 
 
The inspiration for the proposal of this subject is the lack of competition between electronics 
manufacturers in the rowing sport. In every competitive rowing boat, the products of Nielsen-
Kellerman (NK) are used. They have a monopoly on the rowing electronics market, and this 
results in the lack of modernization in applied technologies over the past decades. I also have 
first-hand experience of the tedious manual analysis process that is used today. 
 
I would like to thank the UHasselt and KU Leuven to enable me to work on this research 
project. In particular prof. dr. Kris Aerts, he authorized this proposed subject and contacted 
colleagues to guide me through this journey. Next, I want to thank my promotors dr. Nikolaos 
Tsiogkas and ing. Luc Coenegracht. Nikolaos gave direct feedback with his vast amount of 
experience in the field of scientific research with his specialization in robotics and artificial 
intelligence. Luc guided me through the prototyping and data filtering with his years of 
experience as a lecturer on embedded Linux and microcontrollers. Without their help, this 
challenging research project was not possible. 
 
Lastly, I want to thank my family who supported me throughout all my educations. Without 
their support I could not be here today, presenting you my master’s thesis. Also, did they 
proofread my thesis multiple times and improving the quality of the text. 
 
I hope you find the thesis interesting and enjoy reading it. 
 
Dieter Verbruggen 
Heist-op-den-Berg, 9th of June 2023 
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Glossary 
 
Catch 

The beginning of a rowing stroke is when the blades enter the water. 
 
Drive phase 

The acceleration phase of a rowing stroke. Rowers use physiological power to propel 
the boat forward. 

 
Finish 

The end of the acceleration phase of a stroke. The blades are removed from the water. 
 
Oarlock 

A U-shaped plastic part used in rowing to connect the oar to the boat, allowing for 
smooth rotation and efficient propulsion. 

 
Race pace 

The high stroke rate at which rowers move when rowing a competitive race. This 
stroke rate is typically between 30 and 40 strokes a minute depending on the race 
plan. 

 
Recovery Phase 

The recovery phase is the movement the rowers make after the finish. They slide 
forward and prepare for the catch of the next phase. 

 
Steady state 

Steady state is the tempo the rowers train the most at for enhancing their technique. 
It is a relaxed stroke rate they can endure for a longer period to focus on control 
throughout the strokes. Typically, this zone ranges from 16 to 22 strokes a minute. 

 
Stroke rate 

The stroke rate is the standard in rowing for expressing the pace of the strokes. In some 
literature, it is referenced as SPM which means strokes per minute. 
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Abstract 
 
Compared to mainstream sports, rowing lags concerning the adoption of electronic 
technologies and 'smart software'. By advancing the technologies used inside the rowing 
boat, crews can improve the efficiency of the training sessions with more real-time data and 
eliminate the overhead effort of coaches to analyze the captured data. In this study, a method 
for extracting features from acceleration waveforms is developed and validated. These 
features are necessary for using complex algorithms on rowing strokes to automate the 
analysis process. The features represent the rowing technique phases based on the use of the 
rower’s body parts. 
 
This thesis proposes a stroke detection algorithm to separate individual strokes. First, a 
Kalman filter is used on the waveform to remove noise. Then, the features are extracted from 
the strokes with timing relative to the stroke length. The features are validated with 
correlation matrices and outliers are removed from the dataset. Last, an automated analysis 
algorithm is developed and validated. 
 
The algorithm can differentiate strokes with good or bad techniques with an accuracy of 97% 
in the acquired dataset. Three methods to identify technical errors are tested with promising 
results. However, to further develop these methods and algorithms, more participation in the 
training planning is necessary to record specific stroke rates and power efforts. Because of 
the lack of collaboration with the coach, there were no strokes recorded between steady 
state and race pace.  
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Abstract in Dutch 
 
In vergelijking met andere sporttakken loopt de roeisport achter in het gebruik van 
elektronica en “slimme software”. Door modernisering van technologieën in een roeiboot kan 
de efficiëntie van trainingen verbeterd worden met snellere feedback door sterk 
gereduceerde analyse-tijd voor de coaches. In deze studie wordt een methode ontwikkeld en 
gevalideerd om ‘features’ af te leiden uit acceleratiecurves. De extractie van features is nodig 
voor het gebruik van complexe algoritmes om het analyseproces te automatiseren. Deze 
features geven de verschillende fases in een slag weer, op basis van de lichaamsdelen die een 
roeier gebruikt op een gegeven punt in de tijd. 
 
In deze scriptie wordt een algoritme voorgesteld om slagen te detecteren en te scheiden. 
Eerst wordt een Kalman-filter toegepast op de ruwe data om de ruis te verwijderen. Daarna 
zijn de features geëxtraheerd in functie van de lengte van een slag. De validatie van de 
geëxtraheerde data gebeurt met correlatiematrices en statistische methodes. Ten slotte 
wordt een automatisch analyse-algoritme ontwikkeld en getest. 
 
Het algoritme kan slagen, met goede of slechte techniek, onderscheiden met een 
nauwkeurigheid van 97% in de verkregen dataset. Drie methoden identificeren technische 
problemen met veelbelovende resultaten. Om deze methodes en algoritmes verder te 
ontwikkelen is er meer inspraak over de trainingen nodig voor de nodige data op te nemen. 
In dit onderzoek is er door de samenwerking met de trainer geen slagen tussen steady state 
en race pace opgenomen.  
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1 Introduction 
 
Rowing as a sport is becoming more popular. Aside from competitions, is it a great way to do 
full-body exercise. Rowing is a combination of strength, technique, and endurance. Advancing 
the rowing technique is crucial for maximizing efficiency and minimizing the losses of the 
applied physiological power. Traditionally, the rowing technique is assessed during the 
training session with visual observations and after the training session by analyzing recorded 
data on accelerations and forces. This method is time-consuming and limits the potential gain 
in the technique of every training session. In recent years, there has been growing interest in 
using fast and accurate feedback systems to deliver more real-time data about the 
performance of the rowing boat. 
 
In commercial devices, the incorporation of modern techniques has been stagnant for more 
than a decade. There is only one large manufacturer of rowing-specific electronics called 
Nielsen-Kellerman (NK). NK produces the stroke coach and speed coach; these products are 
used in almost every rowing boat in the world. Because of the lack of competition, there have 
not been many added features since the first generations launched in 1984. 
 
Acceleration waveforms, obtained through wearables and recording devices attached to 
rowing equipment, provide valuable information about the rowing stroke. These waveforms 
contain small details that are indicators of potential problems. By analyzing these relevant 
details or features from the acceleration waveforms, it is possible to develop a systematic 
approach for identifying technical problems in the rowing technique. 
 
The primary objective of this research project is to explore the use of feature extraction 
techniques on acceleration waveforms to identify and characterize technical problems in 
rowing strokes. The analyzed features are: peak accelerations, acceleration slopes, and 
duration of removing the blade from the water. The aim is to develop a comprehensive 
framework that can automatically detect and quantify deviations from an optimal rowing 
technique. 
 
This research is motivated by the need for fast and reliable methods to assess the rowing 
technique with less effort, which can help coaches, athletes, and researchers in providing 
targeted feedback. Also, create a better understanding of the underlying biomechanical 
factors that contribute to technical problems. Furthermore, the outcomes of this study have 
the potential to enhance rowing performance, reduce the risk of injuries, and improve overall 
training efficiency. 
 
To achieve these objectives, this research project will employ a mixed-methods approach, 
integrating data collection, signal processing, and machine learning techniques. By collecting 
a dataset of acceleration waveforms from experienced and novice rowers. A robust 
framework is defined for analyzing the raw training sessions into a dataset of all strokes. This 
framework contains noise filtering, stroke detection, and feature extraction. The developed 
framework is validated with visual representations such as scatter plots, also a machine 
learning classification algorithm is implemented to predict whether a stroke is good or bad. 
Using weights of the individual features in the classification model, new strokes are validated 
to identify the relatively worst-performing feature. 
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For creating a methodical implementation and a better understanding of the workflow the 
project is divided into 4 phases: 
 

- Data capturing: Training sessions are recorded, and noise is filtered out. 

- Stroke detection: Individual strokes are separated in the long training sessions. 

- Feature extraction: Features are identified and extracted from all strokes to create a 

dataset. 

- Analysis models: With machine learning and statistical methods, the worst-

performing feature is identified for every stroke. 

The implemented methods heavily rely on the results of the proceeding phase. Therefore, 
data recording is an individual section in the thesis (Chapter 4). Without the results of the 
recording setup and a visualization of the rowing data, the following methods cannot be 
explained. The other 3 phases are included under data analysis methods and results in 
Chapters 5 and 6. 
 
It is important to acknowledge that this research has some limitations, the feature set used is 
small due to the complexity of the project and time limitations. The recorded rowers are 
students from the UCLL rowing team, who have limited on-the-water time. This means their 
training sessions are very valuable to them. They cannot change their planned training 
sessions for recording more desirable data. 
 
Overall, this thesis aims to contribute to the field of rowing technique analysis by introducing 
an objective and data-driven approach through the feature extraction of acceleration 
waveforms. The findings of this research have the potential to reduce the effort of coaches 
to analyze recorded data and give more real-time feedback to rowers to correct their 
technique faster. 
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2 Theory of rowing 
 
Rowing is a complex and physically demanding sport. However, the sport is gaining more 
traction with recreationists because of the low impact on ligaments and as a good full-body 
workout. In this chapter, more details and background information are given on the setup of 
a rowing boat and the biomechanical aspect. 
 
 
2.1 Setup of a rowing boat 
 
In Figure 1, a typical rowing boat setup is illustrated. The most important parts are the sliding 
seat, the oarlocks, and the foot stretcher. The rower is facing backwards compared to the 
movement of the boat. This is to be able to use the legs as efficiently as possible. When the 
rower stretches its legs, the seat will slide along with the rower. The foot stretcher is firmly 
connected to the hull of the boat with carbon fiber rods and a clamping system. The foot 
stretcher needs to be adjusted to the length of the rower’s legs to correctly be positioned in 
comparison to the oarlocks which are mounted outboard on the riggers. This position to the 
oarlocks is important for the angle of the oars in relation to the max power opening of the 
rower’s body. This position at maximum power needs to be with the oars perpendicular to 
the hull for maximum power transfer. When the oars and thus the blades are angled, some 
power will be lost due to the vectorization of the applied forces. When not perpendicular a 
small vector component will be directed to or away from the hull. This is one of the losses of 
the blade. 
 

 
Figure 1: Top-down view of boat setup [1] 
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2.2 Biomechanics 
 
A rowing stroke is divided into two parts: the recovery and the drive. In Figure 2 the transitions 
of these parts are visualized. During the recovery, the rower resets his position from the finish 
(A in Figure 2) of the stroke back to the catch (D in Figure 2). The finish is a resting moment 
where the blade is extracted from the water and is feathered to reduce wind resistance. The 
first phase of the recovery is sending away the hands with the legs and upper body fixed, this 
is represented in part B in Figure 2. The next step is leaning forward with the upper body 
followed by bending of the legs, parts C and D respectively. At this point, the rower is in the 
catch position and ready for the next stroke.  
 
The stroke starts with the insertion of the blade into the water. The driving phase is the 
reverse order of the recovery phase. So, in part E of the figure, the legs are extended with the 
back muscles engaged. The second phase of the drive is the upper body, the rower uses its 
weight with extended arms to convert as much power to the oar, this is visualized in part F. 
The transition from F back to A is the last phase of the drive into the finish, pulling with the 
arms. The arms are not used to give additional acceleration to the boat but rather to keep the 
maximum velocity as long as possible before the drag of the water slows the boat down again. 
The balance of the boat is the most difficult and crucial during recovery. If the boat is not ‘set’ 
(or stable), the rowers will struggle to insert the blades synchronously at the catch. When the 
boat is not level, extra drag will be introduced due to the extra wetted area of the hull and 
the blades dragging across the water. 
 

 
Figure 2: Body positions for the phases of a rowing stroke, finish A and end of drive F [2] 

 
During the acceleration phase, there are microphases due to the dynamics of the rowers in 
relation to the boat. The rowing boat as a system is a combination of the rowing boat and the 
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rowers. The dynamics during the drive are completely different than during recovery, due to 
the fixation of the blade in the water when power is applied. Not only the boat is propelled 
forward but also the rowers themselves. Collectively, the rowers are always the biggest mass 
in the boat, this is important during the recovery. When the rowers are moving in the 
direction of the boat, and they reset their position back for the catch. The rowers pull the 
boat underneath themselves giving extra acceleration to the boat and not the system. The 
microphases that result from the separation of the masses into rower and boat are the 
following: initial rowers’ acceleration, initial boat acceleration, main rowers’ acceleration, and 
main boat acceleration  [3], [4]. In the paper by Kleshnev, the microphases are defined by a 
temporal analysis and isolating system accelerations on rowing strokes [4]. In this thesis, only 
boat acceleration waveforms are used. 
 
Lastly, the transition in dynamics between steady-state and race pace. At steady state, the 
distribution of the drive is a third of the total stroke time. Resulting in a recovery phase that 
is twice as long as the drive phase. This is important to find rest in the recovery, to feel the 
balance in the boat. When accelerating above 22 strokes per minute, the faster stroke is a 
result of a more explosive drive. Hereby shortening the absolute drive time and keeping the 
recovery the same. During the recovery, the boat gets an extra acceleration as mentioned 
before. By reducing this acceleration, the drag of the water is limited. At around 24-26 strokes 
per minute also the recovery must be shortened to reduce the time of a stroke. At race pace, 
the distribution between drive and recovery is almost 50-50. This is only possible because the 
time between the drive phases is short enough that the higher drag of a fast recovery is 
outweighed by the extra acceleration. 
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3 Related work 
 
In this chapter, the theories of related work are given and explained. Firstly, the comparison 
between national-level rowing crews and the best of the best (Olympic crews) for identifying 
differences in acceleration waveforms. Lastly, the change in training feedback cycles is given 
from novice to more advanced rowers.  
 
 
3.1 Comparison rowing technique 
 
By analyzing trends in changes of the accelerometer waveforms on rowers in the whole range 
of abilities, the level of technique can be identified. In Figure 3 a comparison of waveforms is 
given between Olympic and national-level rowing crews. The most noticeable and important 
differences between the two are: the minimum peak at the catch is deeper and sharper for 
the Olympians; the slope between negative and positive peaks is steeper for the Olympians; 
the initial boat acceleration is not present in the national crew [3]. 
 

 
Figure 3: Comparing inertia waveforms of Olympic and national-level rowing crews [3] 

 
 
3.2 Rowing training feedback 
 
In Figure 4, two different feedback cycles are given for training athletes at high levels. Method 
A is the cycle that is currently being used with all national and Olympic rowers. After the 
training session, the coach needs time to evaluate the recorded data and it takes at least 90 
minutes before the rowers get feedback on their last training session [5]. On club or college-
level rowing, this delay between training sessions and the feedback is even larger. Most times 
is there only one feedback session in the evening from all the training sessions on that day.  
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Figure 4: comparing the traditional feedback cycle to the modern approach [5] 

 
For experienced rowers, this method works but is not as efficient as method B, which Harfield 
P. suggested in his Ph.D. study. With method B the rowers get more real-time feedback and 
specific information derived from the recorded waveforms [5]. In his conclusion, he added 
testimonies of elite rowers who learned so much about the technique due to the fast analysis 
feedback cycle [5]. 
 
For training indoors, there are a lot of analysis tools developed for giving automated 
feedback, ranging from vision tracking to force analysis. But there is a large problem with 
these rowing simulators. Besides feedback from a coach, rowers also receive auditory 
feedback from the sound of the rowing boat. Experienced rowers can judge the sharpness of 
the catch and finish by the sound of the oars. This is a large problem in the use of simulators. 
The feeling of handling the oar can be simulated but the auditory feedback cannot [6].  
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4 Data recording 
 
In this chapter, the methods and results of the data recording are given. This phase of the 
project is separate as explained in the introduction. Without recorded data and a fixed 
framework to get this data consistently, the other phases cannot be developed. First, the 
methods of the recording prototype are explained. Then secondly, the results of the selected 
methods and recorded rowing data itself are given. 
 
 
4.1 Methods and materials 
 
For analyzing rowing strokes to detect errors in technique, first acceleration waveforms must 
be recorded. In this section, the hardware setup, methods of noise filtering, and development 
of the capturing software are explained. Also, some test scenarios are thought out for 
validating individual filtering techniques without using the valuable training sessions of the 
rowing team. All the acceleration waveforms talked about in this thesis are in the moving 
direction of the rowing boat. Depending on the mounting of the sensor in relation to the 
boat’s forward direction the x or y-axis is used. Only for the blade movement detection in 
Chapter 5.2.2, the gravitational axis is used for detecting changes in dynamic noise. 
 
 
4.1.1 Capture device setup 
 
For the data-capturing prototype, the following components were used: Raspberry Pi 3 
running Linux, an MPU9250 motion sensor, and a portable USB power bank. These 
components were selected because of availability and prior experiences. They are mounted 
firmly into a watertight box to keep the electronics safe and prevent jitter in the data. The 
MPU9250 accelerometer module supports both SPI1 and I2C2 communication protocols. 
However, library support for SPI interfaces is lacking so I2C is used in this case. The 
communication speed of the I2C interface is manually set to the maximum of 400kHz in the 
Raspberry Pi OS which means a sample rate of 800 Hz can be achieved across the 3-axes. 
Python is used as the programming language on the Raspberry Pi. This decision was made 
because of the wide range of libraries available and the rapid prototyping aspect of this high-
level programming language. The integration of tools for the Raspberry Pi itself is a nice 
welcome. For controlling the Raspberry Pi, the Wi-Fi functionality is used as a hotspot. This 
enables the connection of a smartphone or laptop without the need for an active network 
nearby. 
 
  

 
1 Serial peripheral interface: Digital communication protocols for interfacing sensors and actuators. 
2 Inter Integrated Circuit: Communication bus for digital communication between multiple slave devices and a 
master. 
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4.1.2 Noise filtering 
 
All accelerometers are prone to static and dynamic noise, this noise will negatively impact the 
stroke detection and feature extraction applied in the following chapters. The MPU9250 
accelerometer module has built-in digital low-pass filtering with a cutoff frequency 
programmable from 5 to 260Hz.  This built-in filter is a good way to implement noise reduction 
for fast prototyping and prefiltering. In most cases, there is however a need for more intensive 
algorithm-based filters like Kalman or complementary filters [7]. In this application, a Kalman 
filter is implemented from the open-source library pykalman [8].  
 
A Kalman filter is a two-step filter, there is a predicting step followed by the update step. In 
the prediction step, the filter will predict the next sample value based on the last state and 
the knowledge of the system. The predicted value and the measurement are then brought 
together with a weighted average in the update step. The weights are assigned based on the 
confidence of the measurement method. In the case of the accelerometer data, due to 
physics, the data should not erratically change. The inertia of an object cannot change so 
quickly. This means that there will be more confidence in the predicted measurement. The 
actual data point after filtering will be the relative difference between the predicted and 
measured values. If The difference between the two values is still significant, the filtered data 
will have noise still present. 
 
Kalman is mostly used in sensor fusion. With sensor fusion, the goal is to combine multiple 
inaccurate sensors to use their strengths to compensate for the downsides of another sensor. 
For this application Kalman is only used for the noise filtering of the accelerations, there is 
only a linear relation. This is implemented in pykalman by setting the transition and 
observation matrix to 1. The initial state mean is set to the first measurement to start the 
filtering with the first value loaded. The observation covariance is set to 5 because the 
accelerometer data is very noisy. This observation covariance sets the amount of 
unpredictability of the measurements. Lastly, the transition covariance sets the 
unpredictability of the underlying system. For this case, it is set to 0.005 to give a smoother 
acceleration waveform. 
 
Another filtering method that is considered for the development of the prototype is a moving 
average filter. This filter calculates the average over all the samples that are within a window. 
With every new data point, the window is advanced one step. This results in a digital low-pass 
filtering method where erratic changes are averaged out and significantly reduced in size. The 
parameter for filtering is the size of the window, a larger window will result in better rejection 
of sudden erratic changes in the waveform. These filtering methods are tested with different 
parameters and combinations in different scenarios which is explained in the next paragraph. 
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4.1.3 Testing scenarios 
 
To record as much data of the limited training sessions the rowing team has, the recording 
setup must be validated with artificial scenarios to represent certain aspects of rowing 
accelerations. For this data-capturing device, three important testing scenarios are defined 
for finding a good balance between accuracy and noise rejection. The scenarios are: 
 

- No movement: To get an idea of what the static noise of an accelerometer looks like. 
- Impulses: At catch and finish with sudden vertical movements of the oars, the boat 

gets loads of vibrations which distort the waveforms. Impulses are given by tapping 
the accelerometer when laid down. 

- Pendulum swings: This gives a sinewave-like acceleration curve similar to boat 
movements and is used to see if a filtering method deforms the waveform. 

 
 
4.1.4 Capturing software 
 
For logging purposes, there is a need for a framework that reads the 3 accelerometer axes 
from the module. For the offline analysis of the waveforms, samples need to be logged into a 
file with their corresponding timing. This way the waveform can be reconstructed after the 
fact. The interfacing of the MPU9250 is done with the open-source imusensor library [9]. IMU 
is a different term for the accelerometer and stands for inertial measurement unit. The library 
directly uses SMBus [10] for interfacing over the I2C protocol. The data is stored along with 
epoch3 time strings in a comma-separated value file (CSV) using the built-in file functions of 
Python. 
 
  

 
3 Time in seconds counting since January the first of 1970.  
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4.2 Results and discussion 
 
In this chapter, the results of the data-capturing process are presented with also the results 
of the sub-components. First, the filtering techniques are validated, and a filtering technique 
is selected for the implementation. At last, the recorded data from a rowing training is given 
with the final capturing prototype.  
 
 
4.2.1 Filtering results on testing scenarios 
 
In this chapter, the results of the individual filters are given on the three different testing 
scenarios. Because the digital low-pass filter is applied in the sensor module itself, the 
unfiltered data and low-pass filtered data are not originally the same. Rather, they are 
recorded at a different time. However, the test is still relevant, and conclusions can still be 
drawn based on this comparison. In Figure 5, the results of the filters on data of the still 
scenario are visualized. The low-pass filtering does not perform well to reject static noise as 
expected. Only high-frequency (above 5 Hz) noise is reduced which introduces artifacts to the 
waveforms. In this case, the waveform is swinging up and down because the low-frequency 
oscillations are still present. The same goes for the moving average filter. Just before the 400th 
sample is a period where the waveform is erratic due to the large changes in the original 
noise. This fast-changing noise is significantly reduced but still noticeably present. In this 
specific scenario, the Kalman filter also struggles to reject the noise. This is due to the adaptive 
specification of a Kalman filter. In this case, the filter predicts the next value based on the 
knowledge about the noise in the system. 
 

 
Figure 5: Filtering comparison on the still scenario 
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The next scenario is the vibrations applied to the sensor for simulating the shocks in the boat 
at the catch and finish. The results are visualized in Figure 6. Firstly, the original data is an 
example of the mathematical ‘sinc’ function with limitations in the beginning due to the cut-
off frequency with the sample rate. 
 
Secondly the low-pass filter, the first observation is the reduction in acceleration swing. The 
original data has a swing typically around 14 m/s2 while the low-pass filter reduced this to 
only 3 m/s2. However, the extreme dampening of the higher frequencies is not favorable for 
recovering faster from an impulse. Next the Kalman filter, the acceleration swing is 
significantly reduced to only 2,5 m/s2. On top of that, the waveform recovers a lot better 
after an impulse compared to low-pass filtering. However, there is a large negative peak 
present most likely due to the overcompensation of the adaptive filtering. When a Kalman 
filter is adjusted on the static noise and gets an unexpected impulse, the filter will try to adjust 
to the new dynamics of the system. This is a reasonable explanation when looking at the 
second impulse in the graph. The second impulse is marginally better filtered out compared 
to the first. Lastly, the moving average filter. The moving average filter reduced the 
acceleration swing a little less than the Kalman filter. The recovery of an impulse is similar but 
slightly better than the other filters.  
 

 
Figure 6: Filter comparison on the vibration scenario 
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The last testing scenario is the pendulum swings to recreate the movement of a rowing boat 
during the strokes. The filtering results of this scenario are given in Figure 7. The first 
comparison; of the low-pass filter; is difficult as the original data before filtering is not 
available to compare the waveforms. However, it can be concluded that in this scenario the 
result is also negatively impacted by the lack of higher frequencies in the spectrum. Some 
parts of the waveform are leveled out and there is consistently a double peak. The Kalman 
and moving average filters perform similarly. There is slightly more noise present in the 
Kalman-filtered data, but the shape of the waveform is more accurate. The peaks of the 
moving average waveform are blunt and wider than the original which is an important factor 
for data analysis on acceleration waveforms. On rowing accelerations, the details of the peaks 
are very important, certainly for extracting features. 
 

 
Figure 7: Filter comparison on the pendulum scenario 

 
An important factor of the moving average filter that is not taken into consideration yet is the 
unreliable method of filtering. The form of the waveform is altered and smeared out due to 
averaging the window. This also means that the timing of the resulting zero crossings or peaks 
is not accurate. This is an even larger problem when the amount of time delay added to the 
zero crossings for example is not constant but is dependent on the slope of the waveform. 
When the slope is steeper, the zero crossing will be detected relatively earlier compared to a 
slow slope. 
 
Following the results of the testing scenarios, a Kalman filter is the best choice for the 
application of removing noise from acceleration waveforms on rowing strokes. It has a good 
balance of noise removal, scale, and form of waveforms. 
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4.2.2 Rowing data results 
 
After selecting the filtering method for the first recording prototype, the first training session 
is recorded. The result of 2 random rowing strokes with and without Kalman filtering is given 
in Figure 8. On the left is the noisy accelerometer data without any filtering displayed. The 
noise in this case is very erratic and a good example of how well the Kalman filter works for 
this application. The filtered data on the right is clean while the details are present, and the 
scaling is not altered. This means that the peaks still have the same maximum values, which 
is necessary for extracting features.  
 

 
Figure 8: Recorded data comparison, with and without Kalman applied 

 
Following the results of recording acceleration waveforms inside a rowing boat, Kalman is the 
best filtering method for this use case. The recording setup and software work perfectly, now 
the data can be recorded and filtered with a consistent method for the further analysis of the 
next chapters. The next step of data recording is gathering as much data as possible on the 
rowing training sessions of novice and more experienced rowers to create a dataset.  
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5 Data analysis methods 
 
In this chapter, the methods of analyzing the captured data are given, this includes the 
methods of phase 2 to phase 4 of the project. Firstly, strokes are detected and separated from 
the raw waveform. Secondly, the features to extract are identified and then extracted. With 
the extraction, a dataset of the features of all strokes is created. Lastly, the dataset is 
preprocessed for the machine learning implementation and the worst-performing feature 
methods are implemented. 
 
 
5.1 Stroke detection 
 
Stroke detection is a very important phase of the project (phase 2). The results of the feature 
extraction and analysis models are directly dependent on the accuracy and efficiency of the 
stroke detection algorithm. Therefore, a good and efficient method of detecting strokes and 
separating them from training sessions is needed. Firstly, the requirements of the algorithm 
are analyzed. Then secondly, a method is given for calculating zero crossings and filtering the 
correct ones with peak detection algorithms. The stroke detection and the steps that follow 
are done completely offline in Jupyter Notebooks4.  
 
 
5.1.1 Problem statement 
 
The stroke detection needs to be performed consistently because this detection will impact 
the timing of extracted features. If the detection is based only on the maximum of positive 
peaks the timing can vary every stroke. In theory, the negative peak could be suited for peak 
detection. Because in an experienced boat the most negative peak is always right after the 
catch, before the power is applied in the drive. However, the impulse of the catch gives noise 
even after Kalman filtering. The problem is even worse in boats with less experienced rowers. 
The smallest deviation in synchrony of the rowers will result in erratic noise and peaks with 
inconsistent timing. With this method, the timing could variate 13% of the full stroke on 
steady state strokes. This is derived from the two negative peaks in Figure 9, these peaks have 
both the potential to be the detected minimum. It is statistically also preferred that the stroke 
detection is as accurate as possible so that when features are extracted it can be concluded 
that outliers in the dataset are irregularities of the boat and not from the detection algorithm. 
  

 
4 Jupyter Notebooks is an open-source web application for creating interactive documents containing code, 
visualizations, and text, commonly used for data engineering tasks. 
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Figure 9: Stroke of novice rowers with 2 potential min peaks 

 
The implementation should also easily be implemented to run real-time with the data 
recording so that in future projects all these methods can be built into the rowing device. This 
means that computationally expensive machine learning or deep learning cannot be applied 
to adapt to the setup of the boat. The proposed methods should work for every training 
session recorded with the prototype in the boat. When implementing these methods in an 
embedded device the algorithms and the whole analysis process will be written in a low-level 
programming language like C or C++ to minimalize the overhead and increase the 
performance.  
 
 
5.1.2 Implementation 
 
When analyzing the recorded data after filtering, it is apparent that the only time of the stroke 
there is clean data is in the transition between the negative and positive peak. Even for the 
most inexperienced rowers, the drive phase has the least chance of fatal errors which could 
prevent the algorithm to work. The zero crossings between the two peaks have to be selected 
for the most accurate stroke detection. 
 
The method in this case is calculating all the zero crossings of the waveform data and then 
filtering out the zero crossings in the drive phase from minimum to maximum peaks. With 
NumPy [11] the zero crossings can easily be calculated with the difference in the sign bit 
function. For filtering out the correct crossings two peak detection algorithms are needed, 
one for the negative and one for positive peaks. The requirement for peak detection is that it 
needs to work on all rowing boats with different levels of technique. 
 
The solution is to dynamically calculate the threshold for deciding if a peak is the largest of 
the stroke, a window function is used for this. The window is 2000 samples in size and keeps 
track of the (largest) peaks and the relative samples they were recorded at. If the peak is 
outside the window the data is thrown away, and the second-largest peak of the last frame 
became the largest. If the boat is decelerating by putting down less power in the drive phase 
this window function will make sure that the threshold is dynamically lowered to still detect 
only the strokes. For accelerating the algorithms just updates the new maximum peak with 
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every stroke. In Figure 10 there is a secondary relative maximum between 1000th and 1250th 
sample in the stroke due to the recovery, the boat is being pulled forward by the rowers. This 
peak is rejected because it is lower than the dynamic threshold, if in some cases this peak is 
still registered the algorithm will still work perfectly for filtering the zero crossings. This 
windowed peak detection is implemented for the negative peaks in the same way.  
 

 
Figure 10: Recorded stroke from novice rowers 

 
In the last step, the correct zero crossings are filtered out by accepting the crossings between 
a negative peak and a positive peak. When the algorithm goes through all zeros it remembers 
the zeros in a list with the sample number. After the maximum peak is detected, the 
temporary zero is accepted and the start of a stroke is detected. The zero crossings are also 
counted, if there is more than one zero detected in the filter window everything is rejected 
because this means something went wrong with the peak detection algorithm.  
 
The stroke detection during the entire training session is validated by plotting the stroke rate 
of the training session. This is done by finding the time delta between two detected zero 
crossings and calculating the strokes per minute. If the change in stroke rate is too large from 
one stroke to the next, something went wrong in the detection algorithm. There is however 
not a threshold defined to automatically dismiss fast changes in stroke rates. Experienced 
rowers can accelerate very fast from a dead stop to race pace in 2 or 3 strokes. With stroke 
rate plots, it takes a few seconds to validate if the stroke rates are consistent with the training 
that was recorded.  
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5.2 Feature extraction 
 
After the strokes are successfully detected, they are separated from each other for creating 
a dataset of all recorded strokes. The individual strokes of all training sessions are serialized 
into a single dataset of waveforms. The feature extraction methods are applied to this entire 
dataset. Feature extraction (phase 3) itself is necessary for providing details of a waveform in 
a compact and easily comprehensive way. The dataset of the extracted features of all strokes 
is used in the last phase of the project to detect inconsistencies in a rowing stroke. 
 
First, the features to extract need to be identified with the main question, “Which key 
moments and occurrences are important for validating the technique? “. In the second step, 
the methods of extracting these features are developed. A new dataset is created with only 
the extracted features of every stroke and some extra information for the analysis models. 
And lastly, the feature extraction methods are validated by reviewing the generated data in 
comparison to the theory of trends in increasing rowing technique. The manual validations 
are done with a correlation analysis and scatter plots. 
 
 
5.2.1 Identifying relevant features 
 
In chapter 2.2 about the rowing technique theory, the microphases of a stroke and how they 
evolve with better technique are explained. These microphases are the basis for selecting the 
features. In the newsletter by V. Kleshnev, a clear overview of these important key moments 
is given as to how they progress [3]. During the selection process, the difficulty of the 
implementation is also considered. The following features were selected, and their 
explanation is given. 
 

- Maximum peak: Indication of the power and effectiveness of the drive phase. 
- Minimum peak: This represents the “sharpness” of the catch. 
- Blade removal: Gives information about the finish of the stroke. 
- Drive slope: The steepness of the transition between catch and maximum peak. 
- Stroke rate: The amount of time a stroke takes represented in strokes per minute. 

 
For the first three features, the timing is also recorded in relation to the stroke duration. There 
are still a lot of other features which are interesting for evaluating strokes but due to time 
limitations, the feature set is kept limited.  
 
 
5.2.2 Extraction implementation 
 
The maximum and minimum peaks are detected with a simplified version of the detection 
algorithm in Chapter 5.1.2. For every value it checks if the current acceleration is higher/lower 
than the maximum/minimum from that stroke. If this check is successful the peak values and 
time sample are updated, otherwise nothing happens. After all the stroke values were 
checked, the results are then the maximum and minimum values of that stroke. The timing is 
converted to relative timing with the total amount of samples in that stroke. 
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The blade removal is detected on a different accelerometer axis, the gravitational axis. In 
Figure 11 the acceleration waveform in the gravitational axis is plotted alongside the Kalman-
filtered acceleration waveform in the moving direction. At the catch and finish of every stroke, 
the blades are inserted/removed from the water and a significant impulse is observed on the 
raw data.  

 
Figure 11: High-pass filtered gravitational impulses 

 
The gravitational axis is first filtered with a Butterworth high pass filter with a cutoff frequency 
of 50 Hz to remove the gravitation and slow fluctuations in the signal. A Butterworth filter is 
a multi-order filter designed to have an almost perfectly flat frequency response in the pass 
band. In this case, a digital variant is used with the SciPy python package [12]. This filter solely 
aims to remove the gravitational bias and small inconsistencies from the data. The actual 
detection of the finish is done with a windowed RMS filter. The RMS filter calculates the root 
mean square (RMS) for the given window of data samples. This method is commonly used for 
vibration analysis and power measurements. In this case, it will calculate the RMS of the noise 
of the impulses, and if the calculated value is larger than a threshold the finish is detected. 
For this application, the window is 100 samples in length. The duration and timing of the 
detected blade removal are recorded in relation to the full stroke length. The duration 
represents how synchronous the finish is between rowers. The timing is used for comparing 
strokes with the same stroke rate against each other. 
 
Then the last actual feature is the drive slope. This slope is the transition between the 
negative and positive peaks and a positive correlation exists between the steepness of this 
slope and the level of technique of the crew [3]. Because the strokes are detected on the zero 
crossing after the negative peak of the slope, the stroke starts with the positive part of the 
acceleration slope. The negative part is included in the last stroke. This means that the slope 
calculation is done only on the positive part of the acceleration slope, given in Figure 12. In 
theory the negative part and positive part of the slope should be equal. This presumption 
could be used to compare the slopes of two different drive phases in one single stroke due to 
the stroke detection on the zero crossings. In this thesis this last option was not implemented 
because the labeling of the strokes becomes harder. The calculation of one slope is done by 
using the elevation divided over the time delta of the samples.  
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Figure 12: Stroke from the novice boat for visualizing the drive slope 

 
With only one calculation there is a large chance that the measurement is slightly off for that 
sample due to small inconsistencies in measurements, this is why the slope is calculated at 
five points in that initial acceleration slope. These five measurements are then averaged out 
for calculating the feature. This minimizes small errors; the downside is that if the slope is 
rounded, the slope will level off slightly and is not representing the drive around the zero 
crossing. 
 
Then the stroke rate is also calculated to add to the feature dataset. The stroke rate is not a 
traditional feature like the before mentioned features. In the sense that it is not a key moment 
from the stroke. However, it is an important characteristic of the stroke for giving more 
context to the algorithms. The dynamics of a rowing boat change with increasing stroke rates. 
Most on-the-water training sessions are steady state while the races are on race pace, so it is 
very important that this analysis works for both or can differentiate the two. These features 
are then validated using two methods in the next section. 
 
 
5.2.3 Validation of features 
 
The validation of extracted features is a difficult topic. Some features are more important for 
a classification machine learning (ML) model than others, this however does not mean that 
the features of less importance are not necessary. In chapter 5.3.3, the method for classifying 
these strokes is given with some explanation about the importance of the model. In this 
chapter, the validation is done with visual and statistical analysis methods. The first is creating 
a correlation matrix of the features. The second method is analyzing scatter plots, if the 
groups of data can be visually divided then a machine learning model or similar methods 
certainly can. The data is divided into groups of the novice and the more experienced boat, 
but also into race pace and steady state. 
 
A correlation matrix is used in data science for verifying the importance of a feature based on 
the correlation between two features. A feature with a low absolute correlation brings all new 
information to the dataset. A feature with a high correlation with another feature means 
these are somewhat proportionate. Having a low correlation does not mean that the feature 
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brings useful data to the machine-learning model. The importance of a feature will later be 
validated more with machine learning weights after training in Chapter 5.3.3. 
 
 
5.3 Analysis model for detecting the worst features 
 
The analysis of the features extracted from individual strokes is the last phase of the project. 
By identifying the worst-performing feature for a given stroke, the errors in technique can be 
identified and a rowing coach can give real-time feedback.  
 
In this chapter, the feature dataset is used for evaluating the concept of this project. Firstly, 
the raw features after extraction are preprocessed to remove outliers to help the 
classification algorithm. Secondly, the features are normalized to convert the values to the 
same scale. Thirdly, with classification machine learning models, a stroke prediction is done. 
When a newly recorded stroke is presented to the model, can it predict if it originated from 
the novice of the experienced boat? Lastly, methods for analyzing the individual features are 
given to compare the mathematical distance to a perfect stroke. With this distance, feedback 
can be generated for the rowing technique based on the largest distance. This is called the 
worst-performing feature of a specific stroke. By improving the technique which causes this 
worst feature, the technique of the rowers will improve the most. The high-level functions 
used in this part of the research project are implemented with the Sci-kit Learn (SKLearn) 
library [13]. 
 
 
5.3.1 Preprocessing dataset 
 
For the best performance of the model to predict if a stroke originated from a novice or 
experienced boat, the model needs good consistent data. This means that the outliers of the 
individual features need to be removed, these outliers have no statistical significance to the 
model. The cause of these outliers is due to major mistakes in rowing techniques like 
“catching a crab” or a problem with the detection of strokes. Knowing the cause of the 
problems is difficult because there is no extra data available like video footage to support 
these presumptions. 
 
To identify these outliers, the features are plotted in box plots. Both for uncategorized and 
categorized features. The categories used are the boat type (novice or experienced) and 
stroke rate (steady state and race pace). The data points outside of the box plots are outliers 
and are removed from the dataset. The division into categories is important for the removal 
of outliers if the experienced boat had one stroke like the novice rowers this should not affect 
the reference stroke model. The presumption of the model is that all strokes of the 
experienced boat are good, this is a necessary presumption for the classification task and the 
identification of technical problems. By using boxplots to visualize the features, the timing 
and value of a feature can be analyzed separately. If the timing of the maximum peak is good 
but the peak itself is not in the range for a good stroke, the stroke will negatively impact the 
model. This cannot be properly identified in the scatterplots given in Chapter 6.2 of the 
extraction features.  
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The boxplots themselves are only for identifying the limits to remove the outliers and do not 
give more information about the effectiveness. In Chapter 5.3.1 of the results, one example 
of this method to remove outliers is given as an example using the ‘bladeRemove’ feature. 
The outlier removal is also visualized using the scatter plots from Chapter 6.2.3 but with the 
4 classes separate to compare the raw dataset to the resulting dataset with the outliers 
removed. 
 
5.3.2 Feature normalization 
 
The raw features after preprocessing have the scale of the actual parts of the waveform they 
represent. For example, the maximum peak has the values of the peaks from the original 
stroke. When using a wide variety of value ranges the learning algorithm can have difficulties 
calculating the weights for all the features. This results in models that don’t use all the 
features optimally or not at all. When the features are normalized the resulting weights are a 
direct representation of the importance of the feature in the model. The scaling is done with 
the “standardScaler” function of SKLearn. 
 
 
5.3.3 Stroke classification model 
 
For evaluating the dataset, three classification algorithms are implemented to predict if a 
stroke originated from a novice or experienced boat. The first model is logistic regression, 
with logistic regression the weights are calculated for the specific features. This means that 
these weights can be used in the next step for incorporating the importance of the feature 
into the equation. The second model is a neural network, here every node of the network has 
a trained weight. For all layers in the network except the input layer, this weight is not 
representing a single feature but the combinations of all features. The third model is a support 
vector machine (SVM). With SVM the weights are trained for maximizing the margin on the 
support vectors. Support vectors are representing a subset of the training samples close to 
the decision boundary. This means that the weights are not directly applied to the features. 
For the next chapter, the weights of logistic regression are used in the identification of the 
worst feature. 
 
The logistic regression model in this case is a supervised classification model for predicting if 
a stroke originated from a novice or experienced boat. Before the training, the dataset is split 
up into a train-test split of 80-20%. The test set is later used for validating if the model 
generalizes well to the dataset. When the results on the training set are significantly better 
than on the test set, the model is overfitting on the training set. This means that the model 
only works well on the training set, and with the introduction of new data, the model fails to 
classify the strokes.  
 
For validating the model, the f1-score is used. F1-score is the combination of precision and 
recall, two important terms in machine learning. Precision is the ratio of true positive 
predictions to the total positive predictions of the dataset. A high precision score is obtained 
when the model predicts a small number of false positives. On the other hand, recall is the 
ratio of positive predictions to the total true positive records in the dataset. A high recall score 
is obtained when the model predicts a low number of false negatives. The f1-score is the 
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harmonic mean of the recall and precision. Even with very unbalanced datasets, this score is 
a good representation of the model's performance. The f1-score is calculated on the test set 
with the three models and the results are given in Chapter 6.3.2. 
 
 
5.3.4 Rowing technique problem identification 
 
To identify the faults in the rowing technique, it is necessary to select a feature that is 
performing the least compared to a good stroke. This is done using the weights of the trained 
model with normalized features. The weights in this case are a direct representation of how 
important every feature is to the prediction. A statistical calculation is done with the weights 
multiplied by the feature distance to the reference stroke to analyze the individual features. 
The statistical methods which are individually validated are the mean, the standard deviation, 
and the z-score of the features of the strokes originating from the experienced boat. The z-
score is a combination of the mean and the standard deviation. Without applying the weights 
to the features, the algorithm will not consider the amount of contribution of the feature in 
the model. 
 
For comparing the methods, these three models are implemented with or without feature 
scaling, and with or without weights of the model. The results are compared by counting how 
many strokes have the same feature selected across the methods. With a function 
compareLists, the elements of two lists with the same length are evaluated and a score is 
returned of how many elements (strokes in this case) had the same value. This is used in the 
function compareToAll. Here the compareLists function is called for the primary list and a list 
of other lists. In this case, the list to compare is evaluated to the lists of the other methods. 
The number of element-wise correlations is returned. When calculating this for all the lists as 
the primary, the scores can be compared to know which lists have the same in common. This 
gives an idea of the performance identifying the features. However, this method gives not the 
full picture of how the algorithms perform. 
 
The results are also validated by creating frequency distributions of the features in the 
identified worst-performing features. If the frequency of a given feature is not as expected 
based on the representation in the dataset of good and bad strokes, conclusions can be drawn 
about the confidence in the model. 
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6 Data analysis results 
 
After the implementation of the methods for analyzing Kalman-filtered waveforms to 
correctly classify and identify the worst-performing features, the results are given by these 
methods. Firstly, the results of the stroke detection algorithm are given, this is phase 2 of the 
project. Also, the performance of identifying all strokes is given in the recorded training 
sessions. Secondly, the feature extraction is validated using a correlation matrix and scatter 
plots for visualizing the groupings in function of the categories, this is phase 3. Lastly phase 4, 
the results of the analysis model are given along with the performance of the machine 
learning classification model. The classification of the strokes to predict the origin of the 
recorded strokes is also a good validation if the extracted features give a meaningful 
representation of the strokes. 
 
 
6.1 Stroke detection results 
 
In this chapter, the results of the stroke detection algorithm are given. First, the working 
principle of the detection is validated using the detections in stroke waveforms. Secondly, 
stroke rate plots are given from training sessions. The stroke rate plots give a clear view of 
the accuracy of the algorithm, when an error does occur it will be significant enough to detect 
with drops or spikes. 
 
 
6.1.1 Results of stroke detection 
 
The first step in the detection algorithm is the identification of all zero crossings. The novice 
rowers have the highest probability of having zero crossings at the finish, this is visualized in 
Figure 13. On the rising edge between the catch and the drive peak, only one zero crossing is 
detected.  

 
Figure 13: All zero crossings on rowing strokes 

The strokes cannot be detected without filtering the zero crossings on the rising edge. 
However, an important conclusion is that the high accuracy of the zero crossing between the 
catch and maximum drive peak. Due to the physics of a rowing stroke and the working 
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principle of the accelerometer sensor, these correct zero crossings are always in a timeframe 
of 2 samples off the actual zero crossing. With a typical sample size of 1400 for a steady state 
stroke, this results in a maximum deviation of 0.14% in time. This is significantly better than 
the 13% deviation previously stated in Chapter 5.1.1 using only peak detection. 
 
The problem of detecting peaks as explained in Chapter 5.1.1 is applicable in the case of the 
windowed peak detection algorithm. If there are two possible maximum peaks, either of the 
two has a chance to be detected and this results in a deviation of the detection. In the use 
case of filtering the zero crossings, this is not a problem. In Figure 14 the detected peaks are 
given on rowing strokes, both for the catch (negative peak) and the maximum drive peak. The 
algorithm works perfectly for rejecting local maxima based on the dynamic threshold of the 
window filter. Specifically, the acceleration because of the recovery, in Chapter 2.2 this 
phenomenon is already explained. 

 
Figure 14: Detected positive and negative peaks on rowing strokes 

 
Next, the results of the zero-crossing filter in total and subsequently the performance of the 
stroke detection are given. After filtering, the zero crossings left are the detected strokes. In 
Figure 15, the correct zero crossings for detecting the strokes are indicated in red.  
 

 
Figure 15: Resulting zero crossings after filtering 
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6.1.2 Stroke rate results 
 
In this chapter, the stroke detection algorithm is validated by applying the algorithm to the 
training sessions and looking for inconsistencies in the stroke rate. A good example of the 
stroke rates of a training session is given in Figure 16.  
 

 
Figure 16: Stroke rates of a consistent training session 

 
When there is a problem with the detection, or the rowers keep starting and stopping for 
technical drills it manifests as given in Figure 17. When the stroke is incorrectly identified and 
one zero crossing is incorrectly filtered out, the resulting stroke is 2 or 3 strokes long.  
 

 
Figure 17: Stroke rates of an inconsistent training session 

 
For the total of 900 strokes recorded in this research project only 8 were incorrectly identified. 
Which is a success rate of 99,11% for the stroke detection algorithm. This is a very good result 
when considering that the probability is large for those 900 strokes that one rower makes a 
large mistake, which could lead to severe changes to the waveform. The conclusion from 
these statistics is that the detection algorithm is robust enough to generalize well to 
inexperienced rowers’ waveforms.  
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6.2 Feature extraction results 
 
In this section, the results of the feature extraction are given. Feature extraction is phase 3 of 
the project. Firstly, the blade detection waveforms for every step are explained. Secondly, the 
validation of the features is given in the form of a correlation matrix and scatter plots. By 
reviewing what the expected outcome is of a feature with the increase in stroke rate and 
experience the extraction is validated.  
 
 
6.2.1 Blade detection results 
 
With the RMS filter applied to the gravitational data, the amount of noise is calculated in 
Figure 18. With an increase in noise from the blade movements the RMS waveform also 
follows with a small delay, this is due to the sample window. 
 

 
Figure 18: RMS-filtered gravitational impulses 

 
In Figure 19 the RMS waveform is compared with a threshold to decide if the noise level is an 
actual detected blade movement. From the fourth pulse on, there are two detected blade 
movements because of a discontinued RMS signal. This is because the threshold is fixed, and 
no conditioning is done on the selection of movements. This error did not occur often enough 
to increase the complexity of the algorithm. In Chapter 5.3.1, these incorrectly extracted 
features will be filtered out. 
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Figure 19: Detected blade movements on the RMS waveform 

 
Lastly, the detected blade movements are given in combination with the stroke accelerations 
in Figure 20. When focusing on only the extraction of the blade at the finish the problem of 
multiple detections is only presented once, specifically in the third stroke. In total, only 2% of 
all recorded strokes had this issue. These strokes were recorded in the novice rowing boat, 
no strokes in the experienced boat suffered from too much noise fluctuations. In the future, 
this could be used as an additional metric. If an algorithm detects anomalies this does not 
have to be a downside. If a feature is extracted with this uncertainty of this detection 
algorithm, the prediction of problems on novice rowers could be improved. 
 

 
Figure 20: Detected blade movements on stroke waveform 
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6.2.2 Correlation matrix 
 
The correlation matrix of the full dataset of extracted features is given in Figure 21. All the 
features are in both axes represented, which causes the diagonal of 100% correlation with 
themselves. 

 
Figure 21: Correlation matrix of the extracted features 

 
In the first column, the maximum drive peak, the lowest correlating feature is the timing of 
this peak with a 4.9% correlation. This means that the timing of the maximum drive peak is 
not related to the maximum peak value. However, the timing has a correlation factor of 61% 
with the stroke rate. The drive slope has a correlation of 68% with the drive peak. These 
results are expected based on the dynamics of a rowing boat. The high negative correlation 
between the maximum drive peak and the minimum peak at the catch is also expected. In the 
article of Kleshnev V., these observations are also made with the increase of experience in a 
rowing boat. The maximum and minimum peaks become larger and sharper with better 
rowing techniques [3]. 
 
The negative correlation between the minimum peak at the catch and the stroke rate 
indicates that the rowers are more synchronized at higher stroke rates. This is because rowers 
feel the movement of the boat better with larger acceleration swings because of the faster 
drive phases. The high correlation factor between the timing and the duration of the blade 
removal points is caused by problems at the finish of the drive.  
 
From the correlation matrix, the importance of the minimum peak timing can be derived. It 
has no correlation with other features, not even stroke rate. This means that this feature most 
likely is not giving a lot of new data. This is also consistent with the theory of a rowing stroke; 
the stroke starts at the catch which is the most negative peak. The zero crossing after this 
peak is used for stroke detection. The timing between the catch and this detected stroke will 
be within a small range always the same due to the drive acceleration. The small difference 
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will be in the slope of this initial acceleration. The slope of the initial acceleration is more 
defining the outcome in the positive peak. 
 
 
6.2.3 Scatter plots of unprocessed features 
 
The observations from the correlation matrix are better visualized in the scatter plots of the 
extracted features in Figure 22. The data points in these scatter plots are the raw data after 
extraction including outliers of small inconsistencies in detections. For the drive peak, the 
blade, and the drive slope the data are grouped together and a pattern is observed. The data 
points of the negative peaks are also grouped but they all have the same timing except for 
some outliers. This validates the assumptions from the correlation matrix, the minimum peak 
timing is not relevant for identifying the quality of a stroke. For the rest of the features, there 
is a need for more context by dividing the data points into categories. 
 

 
Figure 22: Scatter plots of the raw extracted features with no categories 

 
With the data points divided into the stroke rate classes, the following results are observed 
in Figure 23. At race pace the main drive (maximum positive) peaks are higher or slightly lower 
with more varying timing. This is an expected result based on the changes in boat dynamics 
in the transition from steady state to race pace. With faster stroke rates, the boat reaches a 
higher average boat speed which in term increases the drag. This means that the boat 
decelerates faster and must accelerate more during the drive for continuing this high velocity 
[14]. This increase in drag is also observed in the minimum negative peak, the higher stroke 
rates have lower negative peaks. Although, this observation can also be due to the faster 
recovery and thus larger boat acceleration because of the preparation of the next stroke. 
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Figure 23: Scatter plots of the raw extracted features with stroke rate categories 

 
When comparing the scatter plots with stroke rate classes against the boat classes in Figure 
24 more conclusions can be drawn about the trends of these features. The drive slope for 
example of the experienced boat at steady state is a lot higher than the race pace of the 
novice rowers. This indicates that the technique of the experienced rowers is significantly 
better. The same observation can be made for the maximum and minimum peaks, the 
experienced rowers consistently have higher acceleration peaks and swings. This is a sign that 
their catch and finish are sharper and more synchronized. The timing of the positive peak of 
the novice crew at race pace is not consistent, which is a result of synchronization issues.  
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Figure 24: Scatter plots of the raw extracted features with boat categories 

 
From these conclusions of the rowing technique by looking at the scatter plots the features 
are very useful for identifying technical problems and progress in the rowing technique. The 
extraction is accurate enough to manually analyze the patterns in the scatter plots. In the next 
chapter, the analysis is automated with algorithms to identify the least contributing feature 
value to compare to the good stroke model. 
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6.3 Analysis model results 
 
In this chapter, the results are discussed in the last step of the proposed analysis technique, 
phase 4. Here, the individual stroke analysis for identifying the worst-performing features is 
performed. Firstly, the representation of boat type and stroke rates in the dataset are given 
after the outliers are removed. Secondly, the validation of the machine learning classification 
model is done with f1-scores. Lastly, the feature identification models are analyzed based on 
the frequency of different feature predictions.  
 
 
6.3.1 Dataset after preprocessing 
 
In Figure 25, the outlier removal process on a single feature is given. In this case for the 
bladeRemove feature which is the relative time of the finish. Due to extra noise in the 
waveform at the beginning of the stroke, some data points were detected around zero. Also, 
one late finish was detected at 40%. With the outliers removed based on the left boxplot, the 
data points range from 20.5 to 26%. 
 

 
Figure 25: Boxplot comparison bladeRemove before and after preprocessing 

 
When comparing the raw dataset to the preprocessed features in Figure 26, the following 
conclusions can be drawn. Firstly, the effectiveness of the outlier removal is depended on the 
sample size of the individual classes. The novice race-pace subset is too small to remove 
outliers. Secondly, this subset varies in all the individual features because of the inconsistency 
in technique. The variation is noticeable in the blade removal features. Too many of the data 
points were located far from the group’s epicenter. When removing these outliers, the 
already small subset will halve in size. 
 
A good example of the positive effect of removing the outliers is observed in the minPeak 
feature. A few strokes were incorrectly detected which resulted in an early minimum 
acceleration peak. When these few data points are removed the clusters are much cleaner 
(plot on the right).  
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Figure 26: Preprocessed features comparison, raw features left and processed right 
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The representation of the 4 categories in data points after preprocessing is needed to 
evaluate the analysis model after preprocessing of the dataset. The representation in the 
dataset is given for these classes in Table 1. The representation of recorded strokes of the 
experienced and novice boat is equal, with both 309 recorded strokes. However, an important 
difference lies in the steady state and race pace categories. Only 15% of the recorded novice 
strokes are race pace while for the more experienced boat, 27% are recorded at race pace. 
When dividing up the dataset into subsets to create more specific models, this can only be 
applied to the steady-state subset. There are not enough race-pace strokes recorded to get 
the full idea of the effectiveness of the implementation. This concept is derived from 
overfitting in machine learning.   
 
Table 1: Dataset representation of the 4 categories based on stroke rate and boat type 

Class Total strokes Dataset representation (%) 
Steady state experienced 226 36.6 

Steady state novice 262 42.4 
Race pace experienced 83 13.4 

Race pace novice 47 7.6 
Total 618 100 

 
 
6.3.2 Stroke classification results 
 
In Table 2 the f1-scores calculated on the test set with the three classification models are 
given. As expected, scaling the features enables the models to generalize better. The 
improvement for the logistic regression is 5%. With a neural network, the overall 
performance, and the increase in performance with scaling the features are the best. The 
difference in performance however is not large enough to steer clear from using logistic 
regression. Not all strokes of the experienced boat are perfect, creating an uncertain area in 
the dataset, even after removing the outliers. For the classification model, this means the 
possibility of a slight increase in prediction performance is not increasing the model's 
effectiveness for analyzing the features. 
 

Table 2: F1-score comparison on the test set 

ML model F1 without scaling (%) F1 with scaling (%) 

Logistic regression 86 91 

Neural network 89 97 

SVM 86 94 
 
The recall and precision results of the logistic regression model are given in Table 3. The 
results are given for the boat categories separately and then the weighted average is 
calculated. There is only one conclusion, but it can be looked at from different angles. In short, 
the conclusion of the model is it has a preference to identify a stroke as recorded from a 
novice instead of an experienced boat. This is preferable for the same reason as in the last 
paragraph. The chance that a stroke recorded from the experienced boat is less performing 



 

 51 

is larger than if a stroke from the novice boat is perfect. Often there are still minor faults in 
the experienced-level rowers’ technique.  
 

Table 3: Recall and precision of logistic regression with normalized features 

Boat type Recall (%) Precision (%) 
Novice 92 90 

Experienced 90 92 
Weighted avg 91 91 

 
Overall, these results for classifying the strokes validate the success of the feature extraction. 
With machine learning algorithms there is a clear distinction between technical good and bad 
strokes. This method can be applied to even more data, with more general information to 
detect problems in technique. If the dataset includes a wider range of rowing strokes in 
different levels of technique, the prediction could be made of how experienced the rowers 
are with a quality factor. Also, when data on technical errors or general feedback from a 
training session is included, these machine-learning classification models can be used for 
predicting faults without further statistical analysis. Next, the results of the identification of 
the least-performing feature of a particular stroke are discussed.  
 
 
6.3.3 Feature identification results 
 
In this section, the results are given of the statistical analysis methods to identify the worst-
performing feature in a particular stroke. The identification of the features is given for the 
methods applied to the normalized features. First, the logistic regression weights are given 
for the classification of the strokes as novice or experienced. These weights are the 
representation of the importance of the features in the classification model and are given in 
Table 4. These weights are used in the statistical methods to calculate a reference of a good 
stroke. 
 

Table 4: Learned weights of the logistic regression classification model 

Features: Learned weights: 
maxPeak 5.75 
maxPerc -0.55 
minPeak 0.48 
minPerc -1.01 

driveSlope -0.66 
bladeRemove 1.22 
bladeDuration 1.84 

 
 
Secondly, the results using both the steady state and race pace strokes together are displayed 
to create the reference model of a good stroke. The predictions of worst-performing features 
are given in Table 5. The methods without the weights look promising. These predicted 
features are varying but the identification is different for every method, so no conclusions can 
be drawn because these identifications cannot be verified in the current dataset. For the 
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weighted methods, the models are not working. The maximum drive peak is predicted 
between 70 and 90% for all the strokes. This is not logical because the representation of good 
strokes is 50% in the dataset. With the reference stroke calculated based on these theoretical 
good strokes, at least 25% of the strokes should have other features identified as the worst-
performing. 
 
Table 5: Worst-feature identification methods on the dataset 

Stroke Means Standard 
deviation Z-score Weighted 

means Weighted std Weighted 
z-score 

1 minPerc driveSlope minPerc maxPeak minPerc maxPeak 
2 minPeak maxPeak bladeDuration maxPeak maxPeak maxPeak 
3 minPerc minPerc maxPeak maxPeak maxPeak maxPeak 
4 minPeak driveSlope maxPeak maxPeak maxPeak maxPeak 
5 minPerc bladeDuration bladeDuration maxPeak bladeDuration maxPeak 
6 driveSlope driveSlope driveSlope maxPeak driveSlope maxPeak 
7 bladeDuration bladeDuration bladeDuration maxPeak maxPeak maxPeak 
8 minPerc minPerc maxPeak maxPeak maxPeak maxPeak 
… … … … … … … 

618 driveSlope driveSlope bladeDuration maxPeak maxPeak maxPeak 
 
The frequency distribution of the predicted worst-performing features is given in Table 6. 
Here it is clear that the weighted models are indeed not performing well. Based on the theory 
of the incorporation of weights to represent the importance of every feature, the models 
without weights implemented cannot be accurate. This is also noticeable with the ‘maxPeak’, 
this is the most important feature for the machine learning classification. With the standard 
deviation model, only 9.8% of the strokes are identified with the maxPeak as the worst-
performing.  
 
Table 6: Frequency table of identified features on the dataset 

Feature Means (%) Std (%) Z-score (%) Weighted 
means (%) 

Weighted 
std (%) 

Weighted 
Z-score (%) 

maxPeak 19.1 9.8 20.7 98.7 76.4 98.2 
maxPerc 4.0 33.0 17.5 - 2.1 - 
minPeak 20.9 2.1 5.0 - - - 
minPerc 20.7 12.0 13.4 - 3.7 - 

driveSlope 19.1 23.9 14.6 0.3 3.2 0.2 
bladeRemove 5.5 3.6 7.1 0.3 1.4 0.3 
bladeDuration 10.7 15.5 21.7 0.6 13.1 1.3 

 
The reason for these results is that the reference stroke model is generated with all stroke 
rates of the dataset. The following results are given on the implementation with only the 
steady state subset of the dataset. The steady-state category is the largest category and still 
has enough records to test the proposed methods. In Table 7, the identified worst-performing 
features of strokes are given on only the steady state subset. This time only implemented on 
the weighted identification models. 
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Table 7: Worst-feature identification methods on the steady-state subset 

Stroke Weighted means Weighted std Weighted z-score 

1 maxPeak MinPerc maxPeak 

2 bladeDuration bladeDuration bladeDuration 

3 maxPeak bladeRemove maxPeak 
4 bladeDuration maxPeak bladeDuration 
5 bladeDuration maxPeak bladeDuration 
6 bladeDuration maxPeak bladeDuration 
7 bladeDuration maxPeak bladeDuration 
8 bladeDuration bladeDuration bladeDuration 
… … … … 

488 bladeDuration bladeDuration bladeDuration 
 
The frequency in the steady-state subset of the identified worst-performing feature is given 
in Table 8. These results are more realistic compared to the models applied to all records in 
the full dataset.  
 

          Table 8: Frequency table of identified features on the steady-state subset 

Feature Weighted 
means (%) 

Weighted 
std (%) 

Weighted 
Z-score (%) 

maxPeak 46.3 63.7 58.6 
maxPerc - - - 
minPeak - - - 
minPerc 5.9 3.1 3.3 

driveSlope 2.7 0.4 1.0 
bladeRemove 11.1 2.3 2.4 
bladeDuration 34.0 30.5 34.6 

 
With the count function applied to these 3 weighted methods using the steady-state subset, 
the z-score method scores the best. This means that the z-score identifies the worst-
performing features with the highest correlation to the other two methods. As previously 
stated, this is not a definitive conclusion of the analysis methods. For accurate validation, 
extra information is needed on the individual strokes to check if the identification is true. In 
the next chapter, the conclusion, this shortcoming will be elaborated more. 
 
An important limitation resulting of the recorded training sessions has become clear with the 
separation of the dataset into the subsets of race pace and steady state. The models are too 
different for the dynamics of the 2 different zones in stroke rates. Without more data 
between these 2 stroke rate zones, a model that generalizes well to all stroke rates cannot be 
implemented. 
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7 Conclusion 
 
In this thesis, a method for analyzing technical problems in rowing strokes is developed. These 
methods should reduce the analysis effort of coaches to give feedback on rowing techniques. 
With the automation of the analysis and identification of potential errors, the delay in 
feedback on the training session can be reduced. This will result in a more efficient learning 
process for good rowing techniques. The project is divided into 4 phases. Firstly, acceleration 
waveforms are recorded of training sessions, with novice and experienced rowers. Secondly, 
individual strokes are detected and separated. Thirdly, features are extracted from the 
recorded rowing strokes, and a dataset is generated. Lastly, strokes are analyzed with a 
machine learning classification model and statistical methods to identify technical problems 
using the worst-performing feature.  
 
The first phase, data capturing, is done with a prototype. The recording of data with a 
consistent method is necessary for analyzing the acceleration waveforms in a framework. 
With Kalman filtering the static and dynamic noise is removed on the forward axis of the 
rowing boat. The recording prototype is tested on 3 artificial scenarios to verify the principle 
without using the precious training sessions of the rowers. The data of training sessions are 
successfully recorded with noise filtering. 
 
In phase 2, stroke detection is implemented. Stroke detection analyzes strokes separately and 
keeps a consistent workflow for all recorded data. Without accurate stroke detection, the 
timing of the features is not valuable. The resulting stroke detection is more accurate and 
robust than traditional detection algorithms. Without this proposed method, the 
implemented feature extraction in phase 3 is not possible.  
 
After the stroke detection, the next phase is feature extraction. With feature extraction, the 
dataset used for further analysis of the technique is generated. A total of 4 features are 
extracted from the waveform. The timing of these features is also recorded. The resulting 
dataset has 9 characteristics for all strokes recorded from training sessions. The effectiveness 
of the features is analyzed using correlation and visual validation. The comparison between 
the features of novice and experienced rowers at race pace or steady state are in line with 
the findings of other researchers and personal experience as a coach. The generated dataset 
clearly represents the level of technique with a clear distinction between novice and 
experienced rowers. 
 
The last phase is the analysis model for identifying potential problems in a single stroke. The 
analysis uses the dataset to detect which problems are present in a rowing stroke. The stroke 
is compared to a reference stroke created with the ‘good’ strokes. With a machine learning 
classification model, the importance of every feature is learned by predicting if a stroke is 
recorded in the experienced boat. The 3 methods with the incorporation of these machine 
learning weights give promising results. However, no definitive comparison can be made due 
to the shortcomings of the dataset. For validating the worst-performing feature method, 
extra information is needed on the errors of specific strokes. 
 
Overall, it can be concluded that feature extraction on rowing strokes is necessary to drive 
the next evolution of technical analysis in the rowing sport. However, without the validation 
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of the 3 worst-performing feature algorithms, a final conclusion about the effectiveness 
cannot be drawn. The results of the first 3 phases are a good basis to drive the next 
development of integrating modern data analysis technologies into the rowing sport. 
 
With the cooperation of expert rowing coaches and a more diverse focus group to record 
strokes, the analysis models can be properly validated in the future. Even training models for 
predicting the score per feature are possible if the features are labeled with the level of 
performance. Then, classification algorithms can be used directly to predict the errors in 
technique. 
 
By diversifying the team of rowers and maximizing the influence the researchers have on the 
training session, a better dataset can be created. Currently, no strokes are recorded between 
steady state and race pace. This is because of the planned training sessions of the rowing 
team. For a better understanding of the dynamics of a rowing boat, the whole spectrum of 
stroke rates needs to be recorded with a significant number of strokes in every zone. 
However, this limitation does not disprove the effectiveness of the results of this thesis. 
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