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Preface 
 

I am pleased to present my master's thesis titled “Affordances-based Recognition of Assembly 

Activities through Probabilistic Modelling”. This research represents the culmination of my study 

in the joint programme in Engineering Technology at UHasselt and KU Leuven. Conducted on 

behalf of the ACRO research group, this thesis explores the use of object affordances for 

recognising operator activities in an assembly task through probabilistic modelling. 

I am deeply grateful to several individuals who have played significant roles in the realisation of 

this research and the completion of this thesis. Foremost, I would like to express my sincere 

appreciation to my esteemed promotor and supervisors, Prof. dr. ir. Demeester, ing. Martijn 

Camer, and ir. Yanming Wu, for their invaluable guidance, expertise, and continuous support 

throughout this journey. Their insightful feedback and exceptional mentorship have been 

instrumental in shaping this work. 

To the reader, I hope this thesis provides you with an engaging exploration of my research and I 

invite you to delve into the pages that follow.  
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Abstract 
 

This master’s thesis, conducted within the ACRO research group, focuses on enhancing flexibility 

and robustness of human-robot collaboration. For this collaboration to work fluently, the robot 

needs to recognise the activity performed by the operator. Specifically, this research explores the 

use of object affordances for recognising operator activities in an assembly task through 

probabilistic modelling. Related studies use mostly human information, which lacks in flexibility 

and robustness. 

The objective of this research is threefold. Firstly, the operator needs to be free to position the 

different assembly parts as desired and assemble the product wherever (s)he likes. Secondly, the 

system needs to be usable by multiple operators. Finally, the success rate aims to be around 78 per 

cent, which is the average success rate of similar conducted research. Initially, different 

probabilistic modelling tools are compared. Next, a Dynamic Bayesian network is modelled that is 

able to infer the assembly activity performed based on the relative distance, motion direction, and 

velocity of the assembly parts. These input variables are deduced from the position of the objects 

by detecting ArUco markers in the video that captures assembly operations. 

The final model works independent of the initial position of the assembly parts, is usable by 

multiple operators, and achieves a success rate of 75 per cent. This research also did a first attempt 

to extract 6D object pose from RGB-D data using Point Pair Feature matching method.  
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Abstract in het Nederlands 
 

Deze masterproef, uitgevoerd binnen de onderzoeksgroep ACRO, richt zich op het verbeteren van 

flexibiliteit en robuustheid van mens-robot samenwerking. Voor een vloeiende samenwerking 

moet de robot de activiteit die door de operator wordt uitgevoerd herkennen. Specifiek bespreekt 

dit onderzoek het gebruik van object affordances om operatoractiviteiten bij assemblagetaken te 

herkennen via probabilistische modellering. Gerelateerd onderzoek maakt voornamelijk gebruik 

van menselijke informatie, wat flexibiliteit en robuustheid mist. 

Dit onderzoek heeft drie doelstellingen. De operator moet vrij zijn om de assemblagedelen naar 

wens te positioneren en het product eender waar te monteren, het systeem moet bruikbaar zijn 

door meerdere operators en men streeft naar een succespercentage van ongeveer 78%, het 

gemiddelde succespercentage van soortgelijk onderzoek. Aanvankelijk worden verschillende 

probabilistische modelleringsmodellen met elkaar vergeleken. Vervolgens wordt een dynamisch 

Bayesiaans netwerk gemodelleerd voor het afleiden van de uitgevoerde assemblageactiviteit op 

basis van de relatieve afstand, bewegingsrichting en snelheid van de onderdelen. Deze 

invoerparameters worden afgeleid aan de hand van ArUco-markers. 

Het finale model werkt onafhankelijk van de oorspronkelijke positie van de onderdelen, is 

bruikbaar door meerdere operators en behaalt een succespercentage van 75%. Dit onderzoek deed 

ook een eerste poging in het afleiden van de 6D poses uit RGB-D data door het gebruik van de 

Point Pair Feature matching-methode. 
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1 Introduction 
 

1.1 Context 
This master's thesis is conducted on behalf of the ACRO research group. The acronym ACRO 

stands for Automation, Computer vision and RObotics. ACRO therefore studies these fields in 

depth. Examples of the research topics are: human-robot interaction and collaboration, collision-

free trajectory generation and navigation and functional programming for robotics in the cloud. 

This research group belongs to the Department of Mechanical Engineering of KU Leuven and is 

located in the Technology Centre at Diepenbeek Campus, see Figure 1 [1].  

 

 

Figure 1: Technology Center in Diepenbeek [1] 

 

This research belongs to ACRO’s robotics branch, more specifically: human-robot interaction and 

collaboration. The branch consists of six professors and 13 researchers. In this topic, a cobot (i.e., 

collaborative robot) is used. This cobot makes human-robot collaboration more efficient because 

humans and cobots are capable of assisting each other while performing collaborative tasks. This is 

a major difference from the past where one had to safely lock the robot behind fences or in cages 

[2]. In this field, ing. Martijn Cramer is active with his doctoral research, "Towards intention-

based human-robot collaborative manufacturing". Here, Mr. Cramer strives for a more flexible 

collaboration between humans and cobots. For example, in an assembly process, the robot will 

constantly try to detect and identify the operator's activities and intentions and then respond 

appropriately in order to provide optimal assistance to the operator. This makes it possible for the 

operator to deviate from his/her predefined task sequence. Recognising operator actions and 

intentions can be done by tracking the operator’s movements (i.e., registering the skeleton data) 

[3]. 

Another ongoing doctoral research at ACRO is "6D object pose tracking", conducted by ir. 

Yanming Wu. The goal of her research is to estimate the 3D translation and rotation of an object 

with respect to the camera coordinate system. Applications include scene understanding, 

augmented reality, robot control and navigation, and human-machine interaction [4]. 



16 

 

This master's thesis searches for an opportunity to link the two previously mentioned doctoral 

studies: the 6D pose tracking algorithms from Ms. Wu’s research should be used as an input for 

recognising assembly activities in Mr. Cramer’s research. This could give an improvement in 

flexibility and robustness in comparison with e.g. the usage of skeleton data. These improvements 

will be elaborated in sections 1.2 and 1.3. 

 

1.2 Problem statement 
Flexibility is a very important term in today's industry. By making the production process as 

flexible as possible, a manufacturing company can respond to individual requirements of different 

customers as quickly as possible. Focused on this research, flexibility can be seen as the ability to 

assemble a product in different ways, depending on the operator's preference; or the ability to 

assemble a product independently of the location and rotation of the different parts on the 

workbench. 

Today, some technologies are already being used in the industry to guide operators in performing 

assembly tasks. An example of this is the Human Interface Mate (HIM), shown in Figure 2, which 

is developed by the Belgian tech company Arkite. HIM guides the operator during assembly by 

using a projector that projects instructions onto the workbench. A depth camera checks the 

presence of all components and tools, and whether they are in their expected locations. In 

addition, the HIM checks that all required actions in the assembly process are performed properly 

and in the required order. The system requires all products to be located in fixed, predefined 3D 

volumes in order to detect their corresponding assembly activities. This of course creates a 

limitation on the flexibility of the system [5].  

 

 

Figure 2: Projections provided by the HIM on the operator’s workbench [5] 

 

There is also a lot of research conducted into state-of-the-art methods for activity recognition, 

including skeleton-based activity recognition. This method focuses only on the operator's 

movements. Certain points on the body of the operator will be observed and based on the 
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movements of these points, the operator’s action is identified. In the scenario of assembling a 

product on a worktable, these points will mainly be placed on the hands so that the actions can be 

identified as accurately as possible. An example of this can be seen in Figure 3. This method is not 

ideal for the discussed application since a lot of information is lost by looking only at the 

movements of the operator and not at the assembly parts that are manipulated [6]. It is basically an 

indirect way of “sensing” the activity. Since different operators perform the same actions in 

different ways, just using skeleton data does not seem to be the most robust solution either [2].  

 

 

Figure 3: A representation of how skeleton data is used to register the movements of the hands by 

tracking specific points of the hand [6] 

 

It is possible to recognise the activity that is performed by using the valuable information that the 

assembly parts offer during assembly. This is done by using object affordances. Affordance 

includes three variables: objects, actions, and effects. Using an affordance model, when two 

variables are known, the third can be predicted. For example, a robot observes assembly parts and 

their poses (objects) lying separately on a table. Next, the robot tracks the relative movements of 

the assembly parts (effect). From this, the robot can predict that the person is performing an 

assembly activity (action). This concept suggests the possibility of estimating assembly activities in 

real-time by looking at the relative displacements of the different parts during assembly [7]. 

 

1.3 Objectives 
Continuing on what was discussed in section 1.2, the main goal is a more flexible and robust 

approach for recognising operator actions. Since the goal of this research is to improve activity 

recognition by using object and pose information as features instead of other types of data, the 

targeted success rate should be at least the same as (but preferably higher than) those of 

researchers who have utilised “indirect” ways of sensing the operator’s activity. In Roitberg et al.’s 

research, skeleton data was used as features and the overall success rate was 78 per cent [8]. This 

research aims for a similar success rate. 

One of the objectives of the system consist of enabling the operator to position the different 

assembly parts on the worktable as desired and assemble the final product wherever s/he likes. 
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This makes it clear that the HIM is not the most optimal solution for this application, since the 

assembly parts need to be in fixed predefined areas.  

Another objective is that the system should not be biased towards a specific operator, but instead 

should perform equally accurate, independent of the operator that is using it. The disadvantage of 

employing skeleton data for activity recognition is that it only takes into account the operator's 

actions and does not use information from what happens to the assembly parts. Different operators 

can perform certain actions in different ways. If the action is thus performed differently from 

when the system is trained, the action may not be recognised by the system. This is where the 

method lacks robustness. 

 

1.4 Methods 
As stated earlier, this thesis tries to link the doctoral research of Mr. Cramer and Ms. Wu. Figure 4 

gives a schematic overview of the process of human activity recognition (HAR), starting from 

acquiring data to classifying the executed action. This thesis will confine itself to part four 

‘Classification’ and will explore methods to recognise which action is performed using 6DOF 

object poses as features instead of e.g., skeletal data. The latter is where Ms. Wu’s research comes 

into play. The data will be captured by an RGB-D camera, the Realsense L515. 

 

 

Figure 4: Schematic overview of the intended process for human activity recognition 

 

The first step is to have a good notion of the two doctoral studies involved. This is self-evident 

since this master's project is very dependent on these studies. Next, a literature review is 

conducted.  This literature review is used to gather as much information as possible on the topic of 

‘object affordances’ and ‘6D pose estimation’. This study will mainly focus on leveraging the 

concept of object affordances for activity recognition in human-robot collaborative assembly.  The 

literature study makes it possible to do a listing, study, and comparison between different methods 

to recognise the operator's action performed from object tracking. From this, the most appropriate 

method i.e., the method that meets the previously established requirements, is then chosen. Next, 



19 

 

the selected method will be applied to infer the activity performed by an operator during the 

assembly of a product. The chosen product is the Bourjault ballpoint pen, visualised in Figure 5, 

and will be represented by ArUco markers.  

 

 

Figure 5: Upscaled model of an assembled Bourjault ballpoint pen 

 

An ArUco marker is a specific type of marker used in computer vision and augmented reality 

applications. It is designed as a synthetic square-shaped marker that consists of two main 

components: a wide black border and an inner binary matrix. The black border helps with fast 

detection, while the binary matrix determines its unique identifier. This combination allows for 

quick and accurate marker detection and identification [9]. Figure 6 provides an example of an 

ArUco marker. 

 

 

Figure 6: Example of an ArUco marker [9] 

 

For the implementation, a software program will be written. The chosen coding language will be 

Python and it will be developed in the integrated development environment (IDE) of PyCharm. 

Finally, a test assembly is performed. 
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1.5 Structure of the thesis 
The structure of this paper is as follows. The next chapter conducts a literature study, 

encompassing various topics such as human activity recognition, object affordances, probabilistic 

graphical models, modelling tools, and object detection and tracking methods. In the third section, 

an implementation of a probabilistic logic language called ProbLog, covered in the literature 

study, is discussed. Subsequently, the transition is made from a probabilistic logic language to a 

probabilistic graphical model known as dynamic Bayesian networks, which is also addressed in the 

literature study. The fourth chapter delves into the applied methods, specifically focusing on 

activity recognition in an assembly case by first addressing a subobjective of collision detection 

between two moving objects. Different dynamic Bayesian models are developed in this chapter, 

tailored to their respective applications. Chapter 5 encompasses a series of experiments conducted 

based on the models created in the previous chapter. The subsequent chapter evaluates the results 

obtained from these experiments. To validate the performance of the final model, a seven-fold 

cross-validation is employed to assess accuracy, precision, recall, and F1-score. Chapter 7 

introduces an initial attempt at using six-dimensional pose as input data for activity recognition, 

utilising PPF matching for extracting the pose. Finally, chapter 8 concludes the thesis and provides 

an outlook on future work that can be pursued.  
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2 Literature study 
 

To properly embark on research, it is necessary to conduct a literature study. This involves 

acquiring knowledge about the research topic and reviewing what research within this topic has 

already been conducted. This literature study is structured as follows. In the first section, it 

provides an explanation of what human activity recognition (HAR) entails and subsequently 

clarifies the different steps of HAR. Then, in the next section, the concept of object affordances is 

discussed. In section 3, different probabilistic graphical models are explained. Section 4 deals with 

possible modelling tools that can be used to implement the previously discussed probabilistic 

graphical models. Finally, section 5 offers an overview of possible methods that can be used for 

object detection and tracking. 

 

2.1 Human activity recognition 
The term central to this research is 'human activity recognition'. This kind of recognition is 

necessary to achieve a fluent cooperation between humans and robots e.g., when the robot is able 

to recognise the assembly activity that the operator is performing, it can aid by preparing the next 

task that is most likely going to be performed. HAR usually follows four steps: data acquisition, 

pre-processing, feature extraction and classification. Figure 7 pictures a schematic overview of the 

process involved in HAR. 

 

 

Figure 7: Overview of the human activity recognition process 
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2.1.1 Data acquisition 
In the first step, the data necessary for HAR are acquired. Data acquisition involves recording data 

(or signals) using sensors. These data can then be used and analysed within a process. One 

distinguishes between two different types of sensors used for data acquisition within human 

activity recognition: wearable and external sensors. 

The first type of sensors used for data acquisition are the wearable sensors, also known as 

wearables. Examples of wearables include accelerometers, gyroscopes, magnetometers, etc [10]. 

Another state-of-the-art wearable sensor used for data acquisition for HAR are head-mounted 

glasses that track the operator eye gaze to estimate his/her intension and the activity that is being 

performed [11]. Wearable sensors are able to monitor various human body signals, which makes it 

a fitting data acquisition method to recognise operator activities. The assembly of a product is an 

example in which wearable sensors can be used. By mounting a sensor on the operator’s hand, it is 

possible to track the movement of the hand and therefore identify the assembly step that the 

operator is executing. For example, in an assembly, there is a significant difference in hand motion 

between tightening a bolt and performing a hammering operation. This is where the value of 

wearables that register the motion of the hands and fingers becomes evident. Figure 8 pictures the 

use of a wearable device that tracks the movements of a hand. 

 

 

Figure 8: Wearable sensor for tracking hand activity [12] 
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One of the drawbacks of wearable sensors is that they can only capture data from the actions 

performed by the body parts to which the sensors are attached. To also capture the context in 

which the actions are performed, external sensors can be used. Continuing the example described 

earlier, by using cameras, not only the movements of the operator can be captured, but also the 

effects of these movements on the surroundings, such as the relative displacements of the 

assembly parts in relation to each other. Examples of these kind of sensors are a RGB [13] or RGB-

D camera [8], [14], [15] (which captures depth information as well). Figure 9 provides an overview 

of different sensors available for human activity recognition. 

 

 

Figure 9: Overview of the different types of sensors that can be used for human activity 

recognition 
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2.1.2 Pre-processing 
The data obtained from the sensors is usually noisy and not sufficiently clean to be used in the 

subsequent steps. To clean up this data, pre-processing is performed. What this step exactly 

involves, depends on the input data and the HAR algorithm. For example, three-channel RGB 

colour images may need to be converted to single-channel greyscale images. This way, the amount 

of storage the images take up can be reduced and the colours will not add extra unnecessary 

complexity. Data augmentation is also a common technique used in pre-processing. When using a 

dataset consisting of a number of images, this technique will start duplicating these images and 

slightly modify each copy (e.g., by enlarging/shrinking or rotating). By enlarging the dataset with 

images with slight deviations from the original images, the subsequent recognition algorithm is 

less biased towards the training dataset and more robust against variations in the input data during 

deployment [16]. Figure 10 gives an example of data augmentation applied on two images of a 

butterfly. Once the original data is pre-processed, the noisy-free input can be used in the next 

step. 

 

 

Figure 10: Example of data augmentation [16] 

 

2.1.3 Feature extraction 
Once the data are utilisable, feature extraction will be performed. In this stage, significant features 

that are unique for a specific activity are extracted. Feature extraction can be done using multiple 

methods. With relevance to this research, the different methods will be divided into two 

categories: methods based on human information and those based on object information. 

Multiple methods have been developed for feature extraction based on human information. One 

of these methods is based on using skeleton data. Skeleton data are obtained by observing the 

position and movement of different points on the operator’s hand during assembly such as for 

example in [17]. Depending on the HAR algorithm, the torso, arms and legs can also be tracked 

and used as skeleton data. 
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Feature extraction can also be done based on object information. Instead of using information 

from the operator performing the task, these methods use the info from the objects that are subject 

to the task. One of these methods is based on 2D appearance models, which uses visual object 

tracking [18]. A 2D appearance model is a representation of objects in a two-dimensional space 

based on their visual appearance. It can be utilised to track and monitor the movements or 

changes in the appearance of objects in a video sequence, and does not rely on the operator 

performing the task. Figure 11 provides a representation of how a 2D appearance model is applied 

to track a cartoon image through subsequent frames [19]. 

 

 

Figure 11: Tracking of a cartoon figure through subsequent frames based on its 2D appearance 

model [19] 

 

Following the 2D appearance models, 3D models can also be used for feature extraction [20]. From 

these models, notable features get extracted, such as geometric features, surface properties, and 

point cloud features, in order to recognise these features in an RGB-D image and classify the 

objects that are represented by the models. Feature extraction can also be done by estimating 

6DOF object poses. By detecting the 3D translation and rotation of an object, it is possible to use 

object information as features [21], [22].  

 

2.1.4 Classification 
The final phase in human activity recognition is classification. This involves classifying the 

activity based on the features extracted in the previous step. Multiple techniques are developed for 

this. These techniques can be categorised depending on whether they are model-based or 

learning-based, respectively called model-based and learning-based techniques.  

Model-based techniques used for classification typically involve constructing a mathematical or 

probabilistic model that represents the relationship between input features and output labels [23]. 

A hidden Markov model (HMM) is a technique that can be utilised for model-based classification. 
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A hidden Markov model models a system that contains an unobservable process (the hidden 

layer). The states within this layer cannot be determined directly but have an influence on 

another process with variables that are observable [24]. In the concept of HAR, the hidden layer 

could represent different activities that need to be recognised. On the other hand, the visible layer 

represents the features or sensor data that are directly observable e.g., the movements of the hands 

registered by the wearable sensor depicted in Figure 8. Figure 12 shows the dynamic Bayesian 

network representation of this type of model. The hidden layer contains successive states q. These 

states succeed each other according to a transition matrix A.  The state 𝑞𝑖 is hidden but has an 

effect on the variable 𝑂𝑖 in the observable layer according to the emission matrix B. By applying 

the Forward algorithm onto this HMM, it is possible to predict the probability of hidden state q 

being true given the sequence of previous states O in the observable layer as historical evidence 

[25]. 

 

 

Figure 12: The dynamic Bayesian network representation of a HMM [25] 

 

Another model-based technique for classification is the Support Vector Machine (SVM). The 

concept of SVMs was introduced by Vladimir Vapnik and Corinna Cortes in the 1990s. The basic 

idea behind SVMs is to find an optimal hyperplane that separates data points belonging to 

different classes in a high-dimensional feature space. The hyperplane serves as the decision 

boundary, maximising the separation between classes while maintaining the greatest possible 

distance between data points and the hyperplane. This distance is commonly known as the 

“maximum margin” [26]. In a simple example of HAR, where there are only two possible activities 

and two features, the training data could be labelled and plotted in a two-dimensional space. The 

SVM will then create a line in the two-dimensional space that maximally separates the data 

corresponding to the two activities. Each new activity that is registered will then be labelled as 

either one of the possible activities depending on its relative placement with respect to this line. 

The hyperplane in this example is represented by a line because only two variables/features are 

implemented.  A SVM’s ability to be applied in a higher dimensional space, makes it a fitting 

method to handle a broad range of features [27].  

An example of a learning-based technique for classification is k-Nearest Neighbour (k-NN). In k-

NN, 𝑘 is a variable that states the number of neighbours a point can have. Such a point can 

represent a variety of data elements, e.g., in the context of this paper, a registered human activity 

in feature space. For instance, if 𝑘 is equal to five, the five closest points are considered neighbours 
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to the new data point.  The classification of this new data point depends on the value or label of its 

neighbouring points. [28] 

In [29], multiple machine learning techniques, such as k-NN, SVM and Random Forest are 

compared on their ability to classify human activities that are registered by accelerometers and 

velocity sensors attached to the subject’s at the waist. The research concludes that the SVM 

method has the best precision and recall performance for that application, however, the Random 

Forest method has the best accuracy value and F1-score. [30] uses recurrent neural networks to 

classify assembly activities from different hand gestures recorded by a RGB camera during 

assembly. When only human data from the operator performing an activity is used for 

classification, important information that the external objects involved in the activity might 

provide, is neglected. In order to be able to use this kind of information, classification based on 

object data sounds promising. [22] is an example of using object data for classification of activities. 

In this research, a 3D object tracking algorithm for RGB-D data is employed. This algorithm tracks 

the 6DOF poses of the different objects in order to recognise which activity is performed. The 

final goal of that research was not to assess the performance of activity recognition but to compare 

a child’s capability to perform an assembly alone and in collaboration with a robot. 

Object data is not only useful in human-robot collaboration, but can also be adopted for operator 

guidance during assembly. Arkite’s Human Interface Mate is a product that is already available on 

the market which uses object data to guide its user during assembly. Through a depth camera, the 

HIM checks the presence of all components and tools and whether or not they are in the correct 

place. In addition, the HIM also projects the assembly instructions on the workbench and checks 

if all the assembly steps are correctly performed [31]. Figure 13 provides an example of the usage 

of the HIM for assembly guidance. The HIM projects an image of how the pink cells should be 

placed in the container, what the next step is that the operator should perform, and where all the 

parts are placed [31]. 

 

 

Figure 13: Assembly guidance by the HIM [31] 
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Human and object data can also be combined for classification. [32] uses both action recognition 

based on skeleton data and object tracking in order to learn to recognise human activities. 

 

2.2 Object affordances 
The concept of affordances was first introduced by the psychologist J.J. Gibson. It describes how 

“inherent ‘values’ and ‘meanings’ of things in the environment can be directly perceived and how 

this information can be linked to the action possibilities offered to the organism by the 

environment” [33, p. 1]. 

In robotics, the concept of affordances is used to represent the possible actions that a robot can 

perform on objects in the environment. It does so by identifying the different objects in the 

environment and stating the interdependencies between the properties of the object, the executed 

actions on these objects, and their respective effects. Consequently, affordances are neither 

properties of the objects nor the environment, but of the relations between the objects themselves 

or between an object and the environment. This is illustrated by the following example: 

Left_of(nut, bolt). This example states that the nut is positioned to the left of the bolt—if the 

formula is defined so that the first element is in relation to the second—. The relation Left_of is 

inherent to neither the nut nor the bolt, but is a property of the relation between the two [34].  

 

2.2.1 Propositional affordances 
[7] models affordances as relations between three variables in a robotic environment:  

𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑙}: the set of objects (and their properties) detected by the robot 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}: the set of actions that are available to the robot 

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}: the set of effects after performing the actions on the objects 
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The affordance model allows to predict one of these variables when the other two are given. 

Figure 14 gives a schematic overview of the generic affordance model and the three different 

functions for which it can be used.  

 

 

Figure 14: Example of an affordance model [7] 

 

Consider the following example for action recognition: a robot observes a ball and a box (objects) 

lying separately on a table and being handled by a person. Next, the ball lies in the box (effect). 

From this, the robot can predict that the person has put the ball in the box (action). 

If the affordance model is not provided, the robot usually performs an exploration phase, called 

motor babbling, in order to obtain such a model. During this phase the robot performs its set of 

actions on the different objects in the environment and perceives the effects of its actions. Next, 

the robot undergoes a learning phase in which it learns a model by using the collected samples 

during the exploration phase. Once this phase is completed, the robot developed an affordance 

model [7]. This affordance model uses a propositional representation for object properties, actions, 

and effects. However, this particular model faces challenges when applied to robots because of the 

uncertainty and complexity of the physical aspects involved. Robots interact with the real world 

through sensors, which may introduce noise, and actuators, which may be imprecise or noisy. 

These physical aspects can make it difficult to accurately interpret sensory data, process images 

from cameras, and control the robot's actuators effectively.  

To address this problem, the concept of relational affordances is introduced. Relational affordances 

take into account the relationships and interactions between objects in the environment. Rather 

than relying solely on logical propositions, relational affordances consider the context, spatial 

relations, and dynamics of the environment to determine the potential actions and effects. 
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2.2.2 Relational affordances 
Relational affordances represent an expansion of the previously mentioned affordance model by 

utilising a relational representation instead of a propositional one. In this case, a relational 

affordance refers to a probability distribution that captures the relationships among the variables 

O, A, and E. This distribution, illustrated in Figure 14, P(O, A, E), represents the likelihood of 

different states of the objects, actions, and environments occurring together. Affordance models 

based on propositional affordances are not able to cope with multiple objects interacting with each 

other. This is where relational affordances form the solution. The concept of relational affordances 

is unique because it takes into account the (spatial) relations between different objects. By 

incorporating relational affordances, the model can better handle the uncertainties and 

complexities of physical interactions. It allows the robot to understand how objects relate to each 

other and how their interactions can influence the robot's actions and the overall environment. 

This approach provides a more robust and adaptable framework for robots to perceive and interact 

with their surroundings [7]. 

 

2.3 Probabilistic graphical models 
Probabilistic graphical models (PGMs) are a class of statistical models that use graphical structures 

to represent probabilistic relationships between random variables. Such a model contains two 

types of graphical structures: nodes and edges. A node is a representation of a random variable, 

while an edge represents the dependencies or conditional independencies between these variables. 

PGMs can be categorised into two main types: directed graphical models (DGMs) and undirected 

graphical models (UGMs), respectively known as Bayesian networks (BNs) and Markov random 

fields [35]. 

A PGM allows making predictions about the probability distribution of one or more variables 

given the values of other variables. Inference in PGMs involves calculating the marginal or 

conditional probabilities of the variables. These calculations can be performed using various 

algorithms, such as belief propagation, variational inference, or Markov chain Monte Carlo 

methods [35]. 

Learning in PGMs involves estimating the model parameters based on observed data. Depending 

on whether a DGM or UGM is used, this is done differently. Since a variable in a DGM solely 

depends on the value of its parent variables, learning typically involves estimating the conditional 

probabilities of each variable given its parents in the graph.  In UGMs, it is necessary to estimate 

the potential functions that capture the compatibility between the states of neighbouring variables 

[35].  

The most relevant PGMs to this research are three directed graphical models: standard and 

dynamic Bayesian networks, and hidden Markov models. These will be discussed in the following 

sections. 
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2.3.1 Bayesian networks 
A Bayesian network, also known as a belief network or Bayes net, is a probabilistic graphical 

model that represents knowledge about an uncertain domain. As described earlier, the network is 

composed of nodes and edges, with each node representing a random variable and each edge 

representing the conditional probability for the corresponding random variables [36]. By utilising 

probabilities to represent uncertainties, BNs provide a framework for probabilistic reasoning, 

enabling decision makers to explicitly model and reason about uncertainty. This attribute makes 

BNs highly beneficial for decision making. Figure 15 illustrates an example of the structure of a 

Bayesian network modelling the chance of an alarm going off when a burglary or an earthquake 

occurs and John or Mary calling the authorities in response. 

 

 

Figure 15: Bayesian network model for the burglary-earthquake example [37] 

 

Each node (Burglary, Earthquake, Alarm, JohnCalls and MaryCalls) in the Bayesian network 

corresponds to a specific random variable. The state of each variable is represented by a 

probability distribution e.g., P(Burglary) = 0.001, which states that there is a marginal probability 

of 0.1 percent that a burglary will occur. The edges in the graph indicate the conditional 

dependencies between the variables. These edges are directed from one node to another, 

indicating the parent-child relationship between the two nodes. The child node, the node that is 

pointed towards, represents a random variable whose value depends on the values of its parent 

nodes e.g., P(Alarm|Burglary, Earthquake). A node can be a child to multiple parent nodes and 

parent to multiple child nodes. For example, in the figure above, ‘Alarm’ is a parent node to both 

‘JohnCalls’ and ‘MaryCalls’. The probability distribution of a node for that variable given the 

values of its parent nodes, are represented by conditional probability distribution tables (CPDs). 

The probabilities that the CPDs are composed of can be determined through either expert 

knowledge or data collection. In the former case, an expert provides their expertise and 

knowledge to estimate the probabilities. In the latter case, statistical techniques such as maximum 

likelihood estimation or Bayesian estimation are applied to compute the probabilities based on the 

input data provided. 
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By combining the CPDs of all nodes in the network, it is possible to calculate the joint probability 

distribution of all variables in the network. For example, to calculate the probability of the joint 

event Q: “Burglary=True”, “Earthquake=False”, “Alarm=True”, “JohnCalls=True”, and 

“MaryCalls=False”, the following probabilities are multiplied: P(Burglary=True), 

P(Earthquake=False), P(Alarm=True | Burglary=True, Earthquake=False), P(JohnCalls=True | 

Alarm=True), P(MaryCalls=False | Alarm=True). This gives the following result: 

𝑄 = 0.001 ∗ 0.998 ∗ 0.94 ∗ 0.9 ∗ 0.3 = 0.000253 

This indicates that there is a 0.0253 per cent chance that there is a burglary but no earthquake, the 

alarm goes off, and that John calls the authorities but Mary does not. 

 

2.3.2 Dynamic Bayesian networks 
Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks that are also capable of 

modelling systems that change over time. They are commonly used in engineering to model 

complex systems that involve time-dependent relationships between variables. [38] uses a 

dynamic Bayesian network to select landmarks for mobile robot navigation. Similar to a BN, in a 

DBN, the variables of the system are represented by nodes and the relationships between the 

nodes are represented by edges. However, unlike a static Bayesian network, the edges in a 

dynamic Bayesian network can represent both causal relationships and temporal dependencies 

between variables [39]. Figure 16 provides a general example of a dynamic Bayesian network. The 

causal relationships are represented by the intra-slice arcs and the temporal dependencies are 

presented by the inter-slice arcs. 

 

 

Figure 16: General example of a dynamic Bayesian network [40] 

 

To learn a DBN from data, it is necessary to estimate the conditional probability distributions that 

describe the relationships between the variables at each time-step. This can be done by using 

various techniques, such as the Expectation-Maximization algorithm, which alternates between 
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estimating the hidden variables and updating the parameters of the model, or particle filtering, 

which is a sequential Monte Carlo method that estimates the posterior distribution over the 

hidden variables. Once the DBN is learned, it can be used to make predictions about future states 

of the system, or to infer hidden states based on observed data, or to perform other tasks such as 

decision making.  

Several extensions and variants of DBNs exist, such as dynamic Markov networks, time-varying 

Bayesian networks and continuous-time Bayesian networks. These models allow for more flexible 

and expressive representations of time-dependent processes [41]. 

 

2.3.3 Hidden Markov models 
Hidden Markov models can be thought of as a special case of dynamic Bayesian networks. The 

structure of a HMM consists of a chain of hidden states. Each of the hidden states is connected to 

the next state in the chain through a directed edge. The visible layer, which contains the observed 

data, is then connected to each state through another set of directed edges. Figure 17 illustrates a 

general example of a hidden Markov model. In the visible layer, the possible observable states are 

presented as 𝑜, while the states in the hidden layer are presented as 𝑠. The probability that a state 

𝑠1 transitions into state 𝑠2 is defined as the transition probability 𝑝12, while the probability that 𝑜1 

is observed when 𝑠1 occurs, is defined as 𝜑1. 

 

 

Figure 17: General example of a hidden Markov model [42] 

 

In a HMM, the process of making inferences involves the computation of the posterior 

distribution of the hidden states given the observed data. For Figure 17, this computation can be 

denoted as: 

𝑃(𝑠|𝑜, 𝑝, 𝜑)                                                                    (1) 

This task can be accomplished by using the forward-backward algorithm. This algorithm is a form 

of dynamic programming that calculates the marginal probabilities of each hidden state at each 

time step. To obtain a model that accurately represents the underlying probabilistic structure of 

the data, the HMM undergoes a learning process. This process involves estimating the model’s 

parameters from a given set of observed data. A way to do this is by utilising the Expectation-

Maximization algorithm that was mentioned earlier in section 2.3.2 [43]. 

In order to determine the most likely sequence of hidden states that generated a given sequence of 

observations, a decoding process is performed. This is typically done through the Viterbi 
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algorithm. The principle of the Viterbi algorithm is that it explores the space of possible state 

sequences and selects the one with the highest probability [42]. 

Given a particular HMM, the probability of observing a given sequence of observations can be 

calculated by applying the likelihood computation, also known as the forward algorithm. It 

computes the forward probabilities, which represent the probability of being in a specific hidden 

state at a specific time, taking into account the previous observations and transitions [42]. 

HMMs have a wide range of applications. They are particularly useful in situations where the 

underlying process is not directly observable, but can be inferred from the observed data. Various 

extensions of the basic hidden Markov model exist, such as the auto-regressive hidden Markov 

model [44] and the factorial hidden Markov model [45]. These variations allow for more complex 

and flexible modelling of sequential data. 

 

2.4 Modelling tools 
Probabilistic graphical models are powerful tools for representing and reasoning about uncertain 

knowledge in various fields. However, the actual implementation of these models requires 

specialised software that is capable of efficiently developing and implementing these probabilistic 

models. In this section, an overview of different types of modelling tools is provided. 

Probabilistic logic languages provide a rich and flexible way to specify and reason about 

probabilistic relationships using logical rules. They allow to represent complex dependencies 

between variables, and to perform efficient inference over large-scale models [46]. Python 

libraries, on the other hand, provide a powerful and flexible environment for building and 

analysing probabilistic models. In this section, some of the popular PLLs will be discussed such as 

Distributional Clauses and ProbLog. In addition, some of the popular Python libraries used for 

probabilistic modelling will be discussed including PyMC3, TensorFlow Probability (TFP) and 

pgmpy. 

 

2.4.1 Probabilistic logic languages 
Probabilistic logic languages (PLLs) are programming languages that unify probabilistic modelling 

and traditional general-purpose programming. They are used to create programs that can deal with 

uncertainty making it an important concept in this research. PLLs have the capability to integrate 

logic programming and probability theory, and they can be categorised into two groups: those that 

utilise distributional semantics and those that employ knowledge base model construction. The 

main difference is in their ability to represent uncertainty. In distributional semantics, uncertainty 

is typically represented using probability distributions over the possible values of variables. On the 

other hand, in knowledge base model construction, uncertainty is represented through the 

construction of multiple possible models of the knowledge base [47]. Distributional Clauses and 

ProbLog are both PLLs that follow distributional semantics. 
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Distributional Clauses 

Most probabilistic models used for problems such as state estimation in robotics cannot easily 

represent relational information. This information includes the objects, properties and the 

relations that hold between them. Distributional Clauses is a probabilistic logic language that takes 

this information into account and can deal with hybrid relational domains. In the context of 

distributional clauses, a formula takes the form ℎ~𝐷 ← 𝑏1, … , 𝑏𝑛 where 𝑏1 represents literals and 

~ is a binary predicate expressed in infix notation [48]. The term ℎ refers to the head, while 

𝑏1, … , 𝑏𝑛 corresponds to the body [49]. Figure 18 represents an example of distributional clauses. 

 

 

Figure 18: Example of a Distributional Clauses program [48] 

 

In clause (1), variable 𝑛 is defined as having a Poisson distribution with a mean of 6. Clause (2) 

specifies that the position of 𝑃 is a continuous random variable uniformly distributed between 0 

and 10 ∗ 𝑛, where 𝑃 represents each person identifier ranging from 1 to 𝑛. For instance, if 𝑛 takes 

the value of 2, there will be two distinct random variables 𝑝𝑜𝑠(1) and 𝑝𝑜𝑠(2), each uniformly 

distributed between 0 and 20. Finally, clause (3) models the binary relation ‘left’ between A and B, 

namely person A should be positioned left of person B [48].  

 

ProbLog 

ProbLog is a probabilistic extension of ProLog. ProLog, short for "Programmation en Logique," is a 

logical programming language where program statements are used to represent facts and rules 

related to various problems within a formal logic system. A ProbLog program typically consists of 

a set of rules in the form of clauses: deterministic rules and a set of probabilistic facts that each 

state the probability that it belongs to a sampled logic program. That way, the ProbLog program 

defines a distribution over the different logic programs. Finally, a ProbLog program includes one 

or multiple queries. The probability that such a query is successful in a randomly sampled program 

defines the semantics of ProbLog [50].  
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Consider the following example in order to get a better understanding of how a ProbLog program 

is structured. The example consists of a simplified version of the burglary-earthquake scenario.  

The program is visualised in Figure 19.  

 

 

Figure 19: Example of a ProbLog program for the simplified burglary-earthquake scenario [51] 

 

The first row states a probabilistic fact: there is 70 per cent marginal probability that a burglary 

occurs. An example of a rule being defined in the form of a clause can be seen in line 4. This rule 

defines that there is a probability of 90 per cent that the alarm goes off if a burglary and an 

earthquake occur together. Once these sets of facts and rules are defined, it is possible to use the 

program in order to solve queries. Line 9 gives an example of such a query that asks for the 

probability that a burglary occurs. The program can also be extended by adding evidences. In this 

example, line 8 states that the alarm goes off. This piece of evidence will influence the query in 

line 9. 

 

2.4.2 Python libraries 
PyMC3 is an open-source probabilistic programming framework designed for flexible specification 

of Bayesian statistical models in Python. It has a user-friendly and powerful syntax that makes it 

easy to describe complex models, and it uses advanced algorithms to efficiently sample from these 

models. In PyCM3, it is possible to use probabilistic programming to define, for instance, a 

Bayesian network by specifying the prior distributions and likelihood functions for each node in 

the network. Then, advanced Markov chain Monte Carlo (MCMC) sampling algorithms like the 

No-U-Turn Sampler (NUTS) will be used to generate samples from the posterior distribution of 

the network, allowing to estimate the probability distribution of the nodes given the observed data 

[52]. 

TensorFlow Probability is a Python library build  on TensorFlow. It provides a range of tools for 

constructing and fitting probabilistic models including variational inference and MCMC 

algorithms and optimisers such as Nelder-Mead, BFGS and SGLD. In order to use TPF as a 

modelling tool, first, it is necessary to specify the probabilistic model in terms of its likelihood 

function and prior distributions. Next, TFP’s inference tools are used to fit the model to the data. 

This can be done by using the tools mentioned earlier. Furthermore, TFP provides tools for model 

validation and selection such as Bayesian model averaging [53]. 
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Another Python library for working with PGMs is pgmpy. In pgmpy, the model is first defined. 

This means that the structure of the PGM and the conditional probability distributions that define 

the relationships between the variables is specified. Figure 20 provides a snippet of the burglary-

earthquake Bayesian network implemented in Python through pgmpy. First, the layout of the 

model is constructed by defining the relationships between the nodes. Next, the state probabilities 

for each node is defined.  

 

 

Figure 20: Snippet of the model for the burglary-earthquake example constructed in Python 

through pgmpy 

 

Once the model is created, pgmpy will perform inference on it. This involves computing marginal 

or conditional probabilities of variables in the model given the evidence. Finally, the performance 

of the model can be evaluated by comparing the predicted probabilities to the actual outcomes. By 

using pgmpy, it is easy to define and modify the structure of the models [54]. 

 

2.5 Object detection and tracking 
Object tracking refers to the process of locating and tracking of a specific object in a sequence of 

video frames over time. It is a crucial component of many computer vision systems including 

those used for industrial automation and robotics. This section explores several methods for object 

tracking that can be used to accurately and reliably track the pose of objects in real-time.  

Blob detection is an example of such a method that can be applied for object tracking. It relies on 

isolating an object based on its colour. By applying blob detection to detect an object in successive 

frames, the object can be tracked throughout the frames. This method is especially useful for 

tracking objects that have a distinctive colour. Objects can also be tracked based on a template of 

the object. By creating templates that represent the object and matching this template in video 
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frames in which the objects occur, the position of the objects in that frame can be located. 

Another method for tracking objects is Point Pair Feature (PPF) matching. Instead of focusing on 

the colour of the object, this method identifies and tracks specific geometric features of the object 

by using 3D information from the model and scene. This makes this method more robust than 

colour filtering, as it can be used to track objects even when their colour or appearance changes. 

On the other hand, blob detection based on colour filtering will work better if the depth data 

needed for PPF matching is not available, the depth quality is not good, or if the geometry of the 

object is not distinctive. Finally, several commercially available software solutions for object 

tracking will be examined. These software packages and open source libraries can provide a 

comprehensive and reliable solution for object tracking in industrial automation and robotics 

applications. 

 

2.5.1 Blob detection 
Blob detection is a method widely used for object tracking because of its relatively easy 

implementation. [55] uses blob detection and colour filtering for video surveillance. Firstly, an 

image of the object of interest is captured and a colour histogram is created of the object that 

needs to be tracked. This colour histogram will then be used to identify pixels in subsequent 

frames that match the object’s colour. This can be done by comparing the colour of each pixel in 

the image to the colour histogram and assigning a weight to each pixel based on how well it 

matches the histogram. The pixels with the highest weights are then isolated. Regions of the 

image that contain these isolated pixels are then defined as blobs. These blobs represent the 

objects that are detected. By repeating this process for every subsequent frame, the relevant object 

can be tracked throughout the complete video stream. Figure 21 illustrates the implementation of 

blob detection to detect the position of a red cup in a frame. 

 

 

Figure 21: Image of a red cup (left) and the blob that represents the red cup after colour filtering 

(right) 
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Blob detection through colour filtering does not require complex algorithms or specialised 

equipment, such as an RGB-D camera. This makes it a fast process, which means it could be used 

for real-time object tracking and run on less powerful devices. Unfortunately, colour filtering also 

has its disadvantages. Since the method relies on isolating the object based on its colour, it is not 

an effective method if the object’s colour is similar to the background. Besides, the colour of an 

object registered by the camera can vary based on factors, such as shadows, lighting and 

reflections. Additionally, it is not always possible to track and detect the pose of an object through 

blob detection. If the object has exceptionally distinct dimensions, one could consider 

constructing a bounding box around its blob for pose estimation. 

 

2.5.2 Template matching 
Template matching for object tracking is a technique used to find instances of a specific object or 

pattern within an image. It involves sliding a template, which is a smaller image representing the 

object of interest, across the entire larger image and comparing the template with each 

overlapping portion of the image. The goal is to identify areas in the image that closely resemble 

the template. To perform template matching, a two-dimensional convolution operation is used. 

Convolution is a mathematical operation that combines two matrices by multiplying 

corresponding elements and summing the results. In this case, one matrix represents the image, 

while the other matrix is the template, also known as a convolution kernel [56]. 

The process starts by placing the template on top of the image at a specific location. The 

overlapping region between the template and the image is multiplied element-wise, and the 

resulting values are summed. This sum represents the resemblance or similarity between the 

template and the corresponding portion of the image. The template is then shifted to a new 

position, typically by one or a few pixels, and the process is repeated. By sliding the template 

across the entire image, a similarity map is generated indicating how well the template matches 

each location in the image. To determine the location of the object being tracked, the highest 

similarity score or a predefined threshold can be used. The position with the highest score or the 

locations above the threshold are considered as potential matches [56]. An example of an 

industrial software provided by National Instruments that applies template matching to locate 

objects in an image is illustrated in Figure 22. 

 

 

Figure 22: Example of an industrial software tool for template matching [57] 
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Template matching can be used for various tasks including object detection, recognition, and 

tracking. It is a simple yet an effective method for locating objects within images based on their 

visual similarity to a template. [57] uses template matching to recognise human activities based on 

model postures of the human. Template matching also has some drawbacks. It is a less robust 

method when the lighting alters significantly or the objects appearance changes (e.g., when the 

objects are partly occluded). 

 

2.5.3 Point Pair Feature matching 
Object detection and pose estimation are common challenges in computer vision. These tasks 

often involve locating a specific object within 2D or 3D scenes. Industrial objects are typically 

represented by CAD models or reconstructed in 3D. The goal is to detect instances of the object 

within scenes captured using one or multiple RGB-D cameras. However, in many scenarios of 

robotics and computer vision applications, this information is not sufficient, and additional 

information such as the six-dimensional pose is required. Point Pair Feature matching is a popular 

technique used in computer vision and robotics to obtain these data from a point cloud registered 

by a depth camera [58]. 

The idea behind PPF matching is to compute a set of unique features that capture the local 

geometry of an object in a scene. These features are based on the relative position and orientation 

of pairs of points on the surface of the object. The PPFs consist of three elements per point pair: 

the angles between the normal vectors at the two points, and the distance and angle between the 

projection of the second point onto the plane defined by the first point and its normal vector [58]. 

Once the PPFs are computed for a set of points on the object’s surface, they can be used to match 

the 3D object to the scene. This process involves computing the PPF for each point in the scene 

and finding the closest match in the set of features computed for the object. Once a match is 

found, the relative pose between the object and the camera can be computed using the 

corresponding point pairs [58]. 
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PPF matching is very suitable for environments with complex scenes because of its robustness to 

occlusion and clutter. This is illustrated in Figure 23. The objective is to detect the sculpture of a 

frog in a scene with multiple different sculptures. The green overlay shows the matched 3D model 

in the scene. Even when the frog is occluded, it can still be detected. 

 

 

Figure 23: Implementation of PPF matching to detect the sculpture of a frog in a scene [59].  

 

Finally, it is an accurate method and can handle large variations in object poses making it suitable 

for a wide range of applications in robotics and computer vision. A drawback of the method is that 

it is more complex and computationally expensive than the other previously mentioned, which 

results in significantly higher computation times. 

 

2.5.4 Commercially-available software 
Multiple commercially available software exist for object tracking. These software are often 

designed to be user-friendly and easy to use. Additionally, they typically come with technical 

support and documentation, which is very helpful getting information about the software or when 

running into problems while using it. Finally, these software are typically also thoroughly tested 

and validated by the developers.  

An example of such software is Pickit 3D, a software and hardware package used for robot 

guidance and inspection using 3D vision technology. Pickit 3D makes it possible for a robot 

equipped with a 3D camera to quickly and accurately detect and locate objects. Its software 

provides a user-friendly interface for configuring and calibrating the system and for programming 

the robot to perform specific tasks. The software also includes advanced features, such as collision 

avoidance and path planning [60]. 
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2.5.5 Open source libraries 
Multiple computer vision libraries, such as Point Cloud Library (PCL) and OpenCV, exist as well 

that can be adopted for object tracking. These libraries provide a set of pre-defined algorithms and 

functions that simplify the implementation of computer vision applications.  

Point Cloud Library is an open source software library designed for 3D point cloud processing. It 

provides a set of tools to work with these point clouds, such as algorithms for filtering, 

segmentation, feature extraction, and visualization. PCL also includes support for various sensors 

and data formats commonly used in robotics and computer vision applications. Additionally, it 

provides integration with other libraries, such as OpenCV or ROS, making it a popular choice for 

developing complex robotic and computer vision systems [61]. 

Another open source software library that can be adopted for object tracking is OpenCV. OpenCV 

has a wide range of tools and techniques for object tracking that can be used in a variety of 

applications. OpenCV is a widely used library in industry and academia, which means there are 

plenty of resources, tutorials and examples available. Additionally, OpenCV’s broad range of 

tracking algorithms makes it suitable for almost every type of application. Finally, OpenCV can be 

easily integrated with other libraries such as PCL or TensorFlow, which gives the user the 

possibility to create an optimal system by combining the advantages of multiple computer vision 

libraries [62]. 

 

2.6 Conclusion  
This literature study provides insights in which input data, models, concepts and languages are 

beneficial to this research. To make use of as much data as possible for classification of assembly 

activities, and to make sure no valuable information gets lost, classification based on object data is 

preferred over classification based on human data. Prior to classification, object information—

preferably the objects’ 6DOF poses as they contain a maximum amount of information—will be 

used for feature extraction. In order to retrieve the 6DOF poses, a RGB-D camera needs to be 

employed as it also provides depth data. The concept of object affordances, more specifically 

relational affordances, also plays an important role as it allows modelling the (spatial) relations 

between the different assembly objects. To eventually classify the operator activity, probabilistic 

graphical models could be applied. These models are able to effectively model the uncertainties 

and dependencies present in an assembly task. Bayesian networks are a popular type of 

probabilistic graphical models for activity classification in an assembly case because it represents 

the causal relationship between the variables. To implement these models, modelling tools such as 

probabilistic logic languages could come in handy. Multiple Python libraries exist for this purpose 

as well. Accurate and reliable object tracking is crucial for successful classification of assembly 

activities. Several methods are available for object tracking including colour filtering and Point 

Pair Feature matching. Additionally, there are multiple commercially available solutions for object 

tracking available. 
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3 Implementation probabilistic logic languages 
 

In an assembly task, many factors could influence the assembly process, such as the sequence of 

steps in the assembly process, the behaviour of the operator during assembly, and the physical 

environment of the assembly area. These factors ensure that an assembly procedure will not 

always be performed in the same way, thus introducing a significant level of unpredictability. To 

deal with these uncertainties, Distributional Clauses and ProbLog seemed to be appropriate 

modelling tools because of their abilities to handle uncertainties and probabilistic relationships 

between variables. 

The original idea was to implement Distributional Clauses as the probabilistic logic language for 

creating a model that is capable of classifying the performed assembly activity based on 

information provided by the assembly parts. Unfortunately, during its installation, it was 

discovered that Yap Prolog, which is necessary to run DC, was outdated and no longer 

maintained. ProbLog was selected as a promising alternative. 

 

3.1 Methods 
As a first step towards the goal of this thesis, a ProbLog script was created that could predict the 

probability of two moving objects colliding. This collision between objects is relatable to 

performing a task for the assembly of the Bourjault ballpoint pen, described in section 1.4, such as 

placing the ink cartridge inside the ballpoint pen’s body in which a similar movement is 

performed by the operator. 

 

3.2 Experiments 
Utilising the ProbLog tool, a Python script to calculate the probability of collision between two 

objects was created. 

During a recording of a random movement sequence of the two objects, represented by ArUco 

markers, the 2D coordinates of both objects were extracted for each camera frame. To calculate 

the probability of collision at time 𝑡, the 2D coordinates of both objects at time 𝑡 and 𝑡 − 1 where 

used as input data. Based on these input data, three variables are calculated: the distance between 

the two objects, the angle difference between the direction of movement of object A and the 

orientation of object B relative to object A, and the angle difference between the direction of 

movement of object B and the orientation of object A relative to object B.  
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Figure 24 illustrates this angle difference α. β represents the direction of movement of object A 

and γ represents the orientation of object B relative to object A. 

 

 

Figure 24: Angle difference between the direction of movement of object A and the orientation of 

object B relative to object A 

 

The algorithm to calculate the angle difference is presented in Table 1. The input variables for this 

application are the previous position of object A, the current position of object A, and the position 

of object B. 

 

Table 1: Algorithm to calculate the angle difference between the direction of an object and its goal 

Algorithm 1: angle difference  

1. FUNCTION calculate_angle_difference(previous_position, current_position, goal_position) 

2. 
direction =  tan (

current_position[1] − previous_position[1]

current_position[0] − previous_position[0]
) 

3. 
goal_direction =  tan (

current_position[1] − goal_position[1]

current_position[0] − goal_position[0]
) 

4. angle_difference =  goal_direction − direction 

5. RETURN angle_difference 

6. ENDFUNCTION 
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By combining these three variables through ProbLog, it is possible to infer the probability of 

collision between the two objects through the weighted joint probability of collision based on 

each input variable. Figure 25 gives an overview of the implementation in ProbLog for the 

collision case. 

 

 

Figure 25: Schematic overview of the probabilistic model implemented in ProbLog 

 

3.3 Results 
The use of ProbLog to determine the likelihood of a collision between two objects did not produce 

satisfactory results. Although it suggested a potential collision, it failed to distinguish between an 

actual collision and just two objects crossing each other. This was due to the fact that the variables 

related to the direction of the objects were assigned low weight values in the calculations. 

Increasing the weight of these variables resulted in highly inconsistent and unreliable outcomes. 

Figure 26 and Figure 27 illustrate the results of the ProbLog scripts applied to two scenarios.1 

  

 
1 Videos of all sequences can be found in a Google Drive folder 

https://drive.google.com/drive/u/0/folders/1KbkDVgSeYrAWkPervc41uLJG1q56As10
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In the first case, depicted by Figure 26, two objects crossed each other. In this figure it is visible 

that the probability increases when the two objects are moving towards each other and decreases 

once the objects have passed each other around frame 80, while there actually should be a 

probability close to 0 once the objects have crossed and are moving away from each other. 

 

 

Figure 26: Result of the ProbLog script to calculate the probability of collision for two objects that 

cross each other 

 

Figure 27 illustrates the results when two objects are moving alongside each other. Here, the 

probability remains more or less constant round 50 per cent, while the probability should be lower 

since the objects are not moving towards each other. 

 

 

Figure 27: Result of the ProbLog script to calculate the probability of collision for two objects that 

move parallel to each other in the same direction 

 

Ultimately, while ProbLog appeared to be a viable approach, its implementation in this application 

was unsuccessful. This can be attributed partly to a lack of relevant examples to draw from and a 

prevailing belief that alternative methods would yield better results.  
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4 Methods 
With ProbLog turning out to be an unfitting modelling tool for the targeted application, the 

switch was made to one of the probabilistic graphical models discussed in the literature study, 

called a dynamic Bayesian network. As mentioned in the study, a dynamic Bayesian network is a 

type of probabilistic graphical model that is great at representing knowledge about an uncertain 

domain. Because of this reason, it is implemented in this application, first for the collision case, in 

which the goal is to calculate the probability of collision between two objects, and later for the 

assembly case, in which the goal is to classify the assembly activity that is being performed. 

 

4.1 Collision detection 
To first quickly validate the use of a dynamic Bayesian network, it is first applied on the collision 

case through one of the Python libraries discussed in 2.4.2, called pgmpy. 

 

4.1.1 Dynamic Bayesian network based on absolute variables 
Similar to the ProbLog script in section 3.2, the initial stage involved the development of a model. 

To construct a Bayesian network, an assessment of variables that impact the probability of 

collision is essential. Inspired by the presented ProbLog model, the positions and the relative 

motion directions of the objects were selected as parent nodes. Furthermore, the velocity of each 

object was incorporated as parent nodes as well. The model’s schematic representation is 

illustrated by Figure 28. At any given time 𝑡, the probability of collision, represented by the child 

node, is determined by computing the values of the parent nodes, namely the positions, velocities, 

and motion directions of both objects. 

 

 

Figure 28: Initial model of the dynamic Bayesian network for the collision case 
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4.1.2 Dynamic Bayesian network based on relative variables 
Instead of utilising the objects’ absolute positions, velocities and directions, it is more appropriate 

to take into account the relative values of these variables, as they offer greater predictive capacity 

for detecting a collision between two objects. With this idea in mind, the model depicted in Figure 

29 was conceived. By considering the positions of object 1 and 2 at time 𝑡 and 𝑡 + 1, the relative 

distance, orientation, velocity and motion direction of the two objects are determined. These 

variables serve as parent nodes for the prediction of the relative distance at time 𝑡 + 1, positioned 

in an intermediate layer of the network. The probability of collision, represented by the child 

node, is then determined by assessing the predicted relative distance at the next timestep. 

 

 

Figure 29: Dynamic Bayesian network model taking into account the relative instead of the 

absolute variable values for the collision case 
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Figure 30 illustrates an alternative model proposal for the dynamic Bayesian network. In this 

model, unlike the model of Figure 29, the velocities and motion directions of the two objects at 

time 𝑡 are determined in addition to their relative distance. By taking into account the position, 

velocity and direction, it is possible to approximate the position of each object at time 𝑡 + 1. The 

difference in relative distance between time 𝑡 and 𝑡 + 1, coupled with the relative distance at time 

𝑡 + 1, serve as the parent nodes to ascertain the probability of collision. Because of the promising 

results yielded by the previous model and the fact that the collision case was only an intermediate 

step, this model was not pursued further. 

 

 

Figure 30: Dynamic Bayesian network model for the collision case based on the prediction of the 

positions of the two objects 

 

To prevent having to manually define the probability distribution tables, a new approach was 

applied to compute the CPDs probability values. First, a sequence of two ArUco markers moving 

randomly and possibly colliding is recorded. Then, each frame of a set of frames that represent a 

specific movement (e.g. moving towards each other or moving away from each other), is labelled 

with whether or not the outcome of that movement is a collision. By finally dividing, for each set 

of inputs, the amount of frames with that input and that are labelled with a collision as outcome 

by the total amount of times that that set of input occurs, the CPDs probability values are 

computed. By repeating this process for multiple sequences, more training data will be generated 

and the CPD will become more reliable. This process is formulated by: 

𝑃(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛| 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) =  
#𝑓𝑟𝑎𝑚𝑒𝑠| 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

# 𝑓𝑟𝑎𝑚𝑒𝑠| 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
          (2) 
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4.2 Assembly activity recognition 
After achieving promising results with the final model for collision detection, the focus was 

shifted towards the assembly case, which involves the recognition of the assembly activity being 

performed.  

 

4.2.1 Three-part assembly 
To this end, a model was developed specifically for the assembly of the simplified Bourjault 

ballpoint pen, which comprises three distinct parts: the bottom, body, and cap. The model takes 

inspiration from the collision detection case and employs the relative distance, relative velocity, 

and relative motion direction of the parts as input data. 

To minimise the number of variables involved and thereby reduce the amount of training data 

required for reliable computation of the CPD, only the relative parameters between the primary 

component being manipulated and the remaining parts are considered. Figure 31 provides an 

illustration of the model. 

 

 

Figure 31: Model of the dynamic Bayesian network used for activity recognition in the simplified 

assembly case 
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4.2.2 Complete assembly 
After successful validation of the simplified assembly model through test assemblies, it was 

expanded to encompass the full assembly of the Bourjault ballpoint pen. The full assembly 

comprises six parts: the bottom, ink, cartridge, body, head, and cap. These parts are visualised in 

Figure 32. 

 

 

Figure 32: Assembly parts of the Bourjault ballpoint pen, from left to right: bottom, ink, cartridge, 

body, ballpoint, cap 

 

The depicted model presented in Figure 31 remains unchanged. In an effort to minimise the 

number of variables involved, as opposed to the scenario of the three-part assembly where the 

relative parameters between the primary part and all other parts are considered, only the relative 

parameters between the primary part and parts that bear relevance to it are taken into 

consideration. Table 2 provides the relevant parts for each component of the Bourjault ballpoint 

pen. For instance, incorporating the relative distance, velocity, and direction between the bottom 

and body help to better estimate the assembly activity. However, incorporating the relative 

information between bottom and cap would solely augment the volume of training data required 

for a reliable computation of the CPD, without significantly contributing relevant information. 

 

Table 2: The main parts with their respective relevant parts in the complete assembly case 

Main part Relevant parts 

Bottom Body 

Ink Cartridge 

Cartridge Body, ink 

Body Bottom, cartridge, head 

Head Body, cap 

Cap head 
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5 Experiments 
 

With the introduction of the different models that were constructed in chapter 4, it was decided 

to pursue the model based on relative variable values further in an experimental phase for 

collision detection. In a first attempt, the CPD is manually computed, later  this is done 

automatically through the labelling process. Later, the finalised model depicted by Figure 31, is 

implemented to classify operator activities in an assembly case. First, in an intermediate step, this 

is done for the simplified version of the Bourjault ballpoint pen. Next, the process is expanded for 

the ballpoint pen comprising all six parts.1 

 

5.1 Collision detection 
 

5.1.1 Manual computation of the CPD 
In a first attempt for the collision case, the model from Figure 29 based on the relative variable 

values was implemented in Python using pgmpy. The first step entailed defining the model’s 

structure, which comprised three layers of nodes. In this case, the first layer consists of the 

variables calculated from the input data: the relative distance, orientation, velocity and motion 

direction between the objects. These are the parent nodes of the variable in the intermediate layer: 

the prediction of the relative distance at the subsequent time step. Finally, this variable functions 

as the parent node for the node in the third layer, representing the probability of collision. In 

addition to nodes, a dynamic Bayesian network also consists of edges that represent the 

conditional probabilities between these nodes. These conditional probabilities are defined in 

conditional probability distributions for every child node, given their parent nodes as evidence. At 

this stage in the project, the values of the CPDs were manually established based on the author’s 

experience. This entails defining the probability distribution of the child node for each 

combination of values of the parent nodes. In order to use the relative distance, orientation, 

velocity, and motion direction, the values of these variables need to be discretised. For this 

method of manually defining the CPD, the discretisation needed to be very broad. For the relative 

distance, orientation, velocity and motion direction, the nodes could take on three, four, two, and 

four possible values respectively. The possible values for these nodes are represented in Table 3. 

 

Table 3: Discretisation of the variable values in the first layer for the collision case in which the 

CPD is manually defined 

Relative distance Relative orientation Relative velocity Relative direction 

Far Northern Fast North 

Average Eastern Slow East 

Close Southern  South 

 Western  West 
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The CPD that represents the edge between the first an intermediate layer contains (3 ∗ 4 ∗ 2 ∗ 4 ∗

3) 288 elements. This illustrates that even when the discretisation is performed very broad, the 

CPD already contains a significant amount of elements. For instance, if one wants a finer 

discretisation of the relative orientation and relative motion direction that include the 

intercardinal directions, the CPDs size would increase tremendously and contain 1152 elements, 

and manually defining the CPD would take significantly more time. Table 4 represents a snippet 

of this CPD. 

 

Table 4: Snippet of the CPD between the first and intermediate layer 

 Far Average Close 

Far, northern, fast, north 1 0 0 

Far, northern, fast, east 0.7 0.2 0.1 

Far, northern, fast, south 0.1 0.8 0.1 

Far, northern, fast, west 0.7 0.2 0.1 

Far, northern, slow, north 1 0 0 

Far, northern, slow, east 0.95 0.05 0 

Far, northern, slow, south 0.4 0.55 0.05 

Far, northern, slow, west 0.95 0.05 0 

 

 

5.1.2 Automatic computation of the CPD 
In order to compute the CPD with the method of labelling the data, five random movement 

sequences were recorded. As explained in the previous chapter, each frame is labelled with the set 

of input values and whether or not the object collides at the end of the movement performed in 

that sequence. The set of input variables are slightly different than before: relative distance, 

relative velocity, relative motion direction of object 1 towards object 2 and relative motion 

direction of object 2 towards object 1. Now that the CPD is not defined manually anymore, the 

new automatic method allows for a finer discretisation of these variables. Table 5 represents the 

possible values of each variable. 

 

Table 5: Discretisation of the variable values in the first layer for the collision case in which the 

CPD is automatically constructed 

Relative distance Relative velocity Relative direction 1 Relative direction 2 

Collided Very fast Straight towards Straight towards 

Very close Fast Mostly towards Mostly towards 

Close Normal Slightly towards Slightly towards 

Intermediate Slow Not towards Not towards 

Far Very slow Away Away 

Very far Not moving   

Extremely far    
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Next, for each frame, the set of input values are calculated based on the coordinates of the objects 

in that frame and in the previous frame. Once this is done for every frame in the sequence, every 

frame is also manually labelled with the outcome of the movement sequence in which that frame 

occurred. Table 6 includes a snippet of this operation performed on the first recording of the 

movement sequences. 

 

Table 6: Snippet of manually labelling the training data for collision detection in the collision case 

Frame Set of input variables (rel. dis., rel. vel., rel. dir. 1-2, rel. dir. 2-1) Outcome 

621 Intermediate, very slow, away, not towards No collision 

622 Intermediate, very slow, slightly towards, not towards No collision 

623 Intermediate, very slow, slightly towards, not towards No collision 

624 Intermediate, very slow, slightly towards, not towards No collision 

625 Intermediate, slow, away, slightly towards Collision 

626 Far, slow, straight towards, slightly towards Collision 

627 Far, slow, straight towards, slightly towards Collision 

628 Far, very slow, slightly towards, not towards Collision 

629 Far, slow, straight towards, slightly towards Collision 

630 Far, slow, slightly towards, slightly towards Collision 

631 Far, slow, slightly towards, slightly towards Collision 

  

The CPD can now be constructed by dividing the number of times a set of input variables is 

labelled with a collision by the total number of times that set of input variables occurred in the 

training data, described by Formula 2. Once this is done for all five movement sequences, the 

accuracy of the model can be validated by recording a sixth movement sequence and predicting 

for each frame of that sequence whether or not a collision will occur. 
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5.2 Assembly activity recognition 
 

5.2.1 Three-part assembly 
The dynamic Bayesian network depicted in Figure 31, requires a computation of the CPD, which 

is carried out using the automatic methodology outlined in the preceding section. The input 

variables are discretised according to the specifications provided in Table 7. 

 

Table 7: Discretisation of the input variables for assembly activity recognition 

Main part Relative distance Relative velocity Relative direction 

Cap Connected Moving Towards 

Body Very close Not moving Not towards 

Bottom Close  Away 

 Intermediate   

 Far   

 

The ballpoint pen’s assembly process involves two distinct activities: attaching the bottom to the 

body and placing the cap on the body, leading to six potential assembly states. These states include 

no assembly activity has yet been performed, one of the two activities being performed, one of the 

two activities having just been completed, or the operator moving the parts around. 

To compute the CPD, each frame of a recorded assembly is assigned a label indicating the set of 

input variables and the current state of assembly. By determining the probability of each state of 

assembly for each set of input variables, the CPD can be calculated. Table 8 presents a snippet of 

this operation performed on the frames of a single recorded assembly. Thirty assemblies were 

recorded and labelled as training data for this purpose. 

 

Table 8: Snippet of manually labelling the training data for activity recognition in the three-part 

assembly case 

Frame Set of input variables (main part, rel. dis. 1-2, rel. dis. 1-3, rel. vel. 

1-2, rel. vel. 1-3, rel. dir. 1-2, rel. dir. 1-3) 

State of assembly 

160 Body, connected, intermediate, n. moving, n. moving, away, away Bottom attached 

161 Body, connected, intermediate, n. moving, n. moving, away, away Bottom attached 

162 Body, connected, intermediate, n. moving, n. moving, away, away Bottom attached 

163 Cap, close, intermediate, moving, moving, towards, n. towards Placing cap 

164 Cap, close, intermediate, moving, moving, n. towards, n. towards Placing cap 

165 Cap, close, intermediate, moving, moving, n. towards, n. towards Placing cap 

… … … 

199 Cap, connected, very close, n. moving, n. moving, towards, towards Placing cap 

200 Cap, connected, very close, n. moving, n. moving, towards, towards Completed 

201 Cap, connected, very close, n. moving, n. moving, towards, towards Completed 

202 Cap, connected, very close, n. moving, n. moving, towards, towards Completed 
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5.2.2 Complete assembly 
For the complete assembly of the Bourjault ballpoint pen, the discretisation of the input variables 

remain identical to the discretisation of the input variables in the three-part assembly case, 

illustrated in Table 7. In the complete assembly case, there are five different assembly activities 

that can be performed: loading of the ink, inserting of the cartridge, attaching of the bottom, 

attaching of the head, and placing of the cap. This means that the amount of assembly states 

increases to eleven: no assembly activity has yet been performed, one of the five assembly 

activities is being performed, one of the five activities has just been completed, or parts are being 

moved around. 

In total, 35 assembly sequences were recorded and manually labelled in order to compute the CPD 

and train the model. A snippet of this operation performed on one of the assembly sequences is 

presented in Table 9. 

 

Table 9: Snippet of manually labelling the training data for activity recognition in the six-part 

assembly case 

Frame Set of input variables (main part, rel. dis. 1-2, rel. dis. 1-3, rel. 

dis. 1-4, rel. vel. 1-2, rel. vel. 1-3, rel. vel. 1-4, rel. dir. 1-2, rel. 

dir. 1-3, rel. dir. 1-4) 

State of assembly 

42 Body, intermediate, intermediate, far, n. moving, n. moving, n. 

moving, away, n.towards, away 

No assembly activity 

43 Body, intermediate, intermediate, far, n. moving, n. moving, n. 

moving, n. towards, away, n. towards 

Attaching bottom 

44 Body, intermediate, intermediate, far, n. moving, n. moving, n. 

moving, away, away, away 

Attaching bottom 

… … … 

97 Body, connected, intermediate, intermediate, n. moving, n. 

moving, n. moving, n. towards, n. towards, n. towards 

Attaching bottom 

98 Body, connected, intermediate, intermediate, n. moving, n. 

moving, n. moving, away, away, away 

Bottom attached 

99 Body, connected, intermediate, intermediate, n. moving, n. 

moving, n. moving, away, away, away 

Bottom attached 

… … … 

141 Body, connected, intermediate, intermediate, n. moving, n. 

moving, n. moving, away, away, away 

Bottom attached 

142 Body, connected, intermediate, intermediate, n. moving, n. 

moving, n. moving, away, away, away 

Inserting cartridge 

143 Cartridge, intermediate, intermediate, none, n. moving, 

n.moving, none, away, away, none 

Inserting cartridge 

 

Each part has a different amount of relevant parts. For example, the body has three relevant parts, 

the bottom, the cartridge, and the head, while the ink only has one relevant part, the cartridge. In 

the last row of Table 9, where the main part is the cartridge, there are only two relevant parts, this 

is why ‘rel. dis. 1-4’, ‘rel. vel. 1-4’, and ‘rel. dir. 1-4’ have a value ‘none’. 
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6 Results and discussion 
 

In this chapter, the results of the experiments explained in chapter 5 are presented and discussed. 

First, for the collision case, the model for collision detection based on the manual computation of 

the CPD is reviewed through five possible movement scenarios. Next, with the switch from 

manual to automatic computation, the accuracy of the model was also tested by comparing the 

prediction of collision with whether or not an actual collision occurred.  This methodology is also 

followed for the assembly case with the simplified ballpoint pen. For the activity recognition in 

the assembly of the complete ballpoint pen, a seven-fold cross-validation is performed in order to 

assess the performance of the finalised model. At last, the fully trained finalised model is also 

applied for an additional assembly scenario.1 

 

6.1 Collision detection 
 

6.1.1 Manual computation of the CPD 
For the first attempt at implementing Bayesian networks in Python through pgmpy, five scenarios 

were examined: both a head-to-head and a sideways collision between two objects, two scenarios 

in which the objects move away from each other, once head-to-head and once sideways, and 

finally, two objects crossing over each other. These possible scenarios are illustrated in Figure 33.  

 

 

Figure 33: From left to right: a head-to-head and sideways collision between two objects A and B, 

a head-to-head and sideways separation of A and B, and a cross between A and B 
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The results of these scenarios implemented in the model are visible in Figure 34 to Figure 38. 

 

 

Figure 34: Probability of collision in the scenario where a head-to-head collision occurs 

 

When a head-to-head collision occurred, the probability of collision increases over time. The 

increment happens in large ‘jumps’, this is because of the broad discretisation of the variables. 
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Figure 35: Probability of collision in the scenario where a sideways collision occurs 

 

When a sideways collision occurs, the probability of collision increases as well. A small sudden 

spike is visible in the figure. This is due to a small change in the actual value of one of the 

variables that creates a change in the discrete value of that variable, which results in a sudden 

change of probability. The probability decrease at the end of the experiment is because of a small 

separation after collision. 

 

 

Figure 36: Probability of collision in the scenario where a head-to-head separation occurs 

 

A head-to-head separation of the objects results in a decrease of probability, once again in 

significant jumps.  
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Figure 37: Probability of collision in the scenario where a cross occurs 

 

If the two objects cross each other, it is visible that the probability of collision increases when the 

objects are moving towards each other, but decreases when it becomes apparent that they will 

cross instead of collide. 

 

 

Figure 38: Probability of collision in the scenario where a sideways separation occurs 

 

During a sideways separation of the objects, there is a general decrease in probability as well. Once 

again, there are some sudden spikes visible, this happens for the same reason as mentioned for the 

sideways collision experiment. 
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From these results, it is clear that the program is able to provide a clear notion whether or not the 

objects would collide. The main problem with this approach was that the variables needed a broad 

discretisation, indicated by the mentioned large ‘jumps’ in the results, because of the manual 

definition of the CPDs. In order to be able to use finer discretisation, a different approach was 

necessary. 

 

6.1.2 Automatic computation of the CPD 
In order to test the new model that allowed for finer discretisation of the variables, a new 

movement sequence was recorded and a prediction on whether or not a collision would occur was 

defined through the model. By counting the amount of frames in which the prediction was right, 

and dividing that by the total number of frames, the performance level of the model can be 

measured. This gave an accuracy of 68 per cent. Multiple other methods, such as precision, recall, 

and F1-score, exist for measuring the performance of a model, but since the collision case was only 

an intermediate step and the results were promising, these other methods where not applied. 

 

6.2 Assembly activity recognition 
 

6.2.1 Three-part assembly 
In the simplified assembly case, to assess the model’s efficacy, an additional set of five assemblies 

were recorded for validation purposes. By utilising the trained model to determine the assembly 

activity carried out in each frame and comparing these results with the actual assembly activity 

performed in that frame, the accuracy of the model can be determined. Out of the 1556 frames 

present in the five test assemblies, the model accurately recognised 1141 frames, resulting in an 

overall accuracy rate of 73%.  

 

6.2.2 Complete assembly 
To assess the performance of the obtained model for the complete assembly scenario, a 7-fold 

cross-validation approach was employed. This involved utilising 30 assembly sequences as training 

data and the remaining five sequences as test data to calculate metrics such as accuracy, precision, 

recall, and F1-score. The final model yielded an accuracy of 75 per cent, a precision of 76 per cent, 

a recall of 75 per cent and an F1-score of 74 per cent.  

Furthermore, when the final model trained on all 35 assembly sequences was applied to recognise 

operator activity in an additional assembly sequence, it achieved an accuracy of 77 percent. 
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Figure 39 illustrates the results using bar plots, where each bar plot represents the actual activity 

performed, and each bar in their respective plot represents the amount of times that each activity 

is recognised. For example, in the third plot corresponding to the ‘loading ink’ activity, six frames 

were labelled as ‘no assembly activity’, 92 frames were correctly labelled as ‘loading ink’, 19 frames 

were labelled as ‘ink loaded’, and three frames were labelled as ‘cartridge inserted’. 

 

 

Figure 39: Bar plots for each actual activity in which every bar represents the amount of times that 

an activity is recognised 
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These results can also be presented in a normalised confusion matrix as in Figure 40. The diagonal 

of the confusion matrix indicates that the activity is correctly recognised in most cases. Most of 

the errors occur when the cap is being placed. This will be further discussed later. 

 

 

Figure 40: Row-normalised confusion matrix of the results of the additional assembly sequence 
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Figure 41 offers an alternative representation of the results from the final assembly sequence. In 

this depiction, the probability of each assembly activity occuring is plotted for each frame. The top 

horizontal line corresponds to the actual activity performed at that particular frame. This 

visualisation demonstrates that, on the whole, the actual performed activity alligns well with the 

activity that has the highest probability according to the model. The most significant errors tend 

to occur during transitions between different activities.  

 

 

Figure 41: Representation of the probability that each assembly activity occurs at each frame 

 

An interesting observation from the combination of Figure 39 and Figure 41 is that the accuracy of 

the system improves as the assembly progresses. Even though the current state of assembly is not 

directly taken into account, the relative positioning of the main object in relation to its relevant 

objects indirectly accounts for this. 
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Figure 42 displays a portion of the preceding figure, illustrating the cap placement during 

assembly. This specific step witnessed a significant number of errors. Subsequent investigation 

determined that the cause of these errors stemmed from a notable disparity between the way that 

this activity is performed in this assembly sequence and the ones performed in any of the training 

assembly sequences.  

 

 

Figure 42: Snippet of the probability representation in which the actual performed activity was 

the placing of the cap 
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Figure 43 presents another portion of the assembly sequence, in which the bottom is being 

attached. In this figure, it is noticeable that in the beginning and in the end, the model inferred 

that, respectively, the ink is loaded and the bottom is attached. Interestingly, these activities 

correspond respectively to the preceding and subsequent steps in the assembly sequence. Thus, 

although the validation suggests that these frames are incorrectly classified, they are not entirely 

inaccurate. This occurs in each transition between assembly activities and is one of the main 

reasons for the limited performance scores of the model. 

 

 

Figure 43: Snippet of the probability representation in which the actual performed activity was 

the attaching of the bottom 
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7 6D object pose estimation using PPF matching 
 

The initial aim of the research was to utilise the six-dimensional pose of the assembly parts as 

input data for activity recognition, instead of relying on the ArUco markers used throughout the 

thesis. To extract the six-dimensional poses of the objects during the assembly process, PPF 

matching was employed to obtain the initial pose of each part. 

 

7.1 PPF Data preparation 
This method necessitates a point cloud of the assembly part's model and a point cloud of the scene, 

which represents the initial frame of the assembly sequence. The point cloud of the model was 

acquired from a CAD model using MeshLab, while the scene was obtained from RGB-D data 

captured by the Realsense L515 depth camera. Initially, the Realsense D345 depth camera was 

employed to capture the RGB-D data, but it was later discovered that the camera was 

malfunctioning. 

In an initial attempt to implement PPF matching, the cap's CAD model was converted into a point 

cloud in PLY format using Blender. Figure 44 depicts the original model and the point cloud of the 

cap. However, the points within the point cloud were sparse and irregularly distributed, posing 

challenges for the effective functioning of PPF matching. 

 

 

Figure 44: Original model of the cap (left) and the first point cloud of the cap (right) 
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Initially, the Realsense D345 depth camera was used to record a scene featuring the cap and the 

body of the Bourjault ballpoint pen, as shown in Figure 45. In this image, it is evident that the 

depth camera experienced malfunctions, as indicated by the black areas in the depth image. Figure 

46 displays the point cloud generated from this image, where the dark dots in the depth image are 

not detected and therefore not included as points in the point cloud. 

 

 

Figure 45: Color (left) and depth (right) image of the scene captured by the Realsense D435 depth 

camera 

 

 

Figure 46: Point cloud of the scene captured by the Realsense D345 depth camera 
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During the second attempt, two primary issues required resolution: the need to increase the 

number of points in the model's point cloud, and finding a solution for the dark areas in the scene. 

To address the first issue, the 'octree depth' value in Blender was raised before converting the 

mesh into a point cloud. By doing so, more points were sampled from the model's mesh. The 

outcome of this operation on the cap model is depicted in Figure 47.  

 

 

 

Figure 47: Point cloud of the cap after increasing the point density 

 

To address the problems with the depth camera, a switch was made from using the Realsense 

D435 to the Realsense L515 depth camera. The L515 camera offered improved resolution and no 

longer exhibited the black areas in the depth image. As a result, the point cloud of the scene, 

which showcased the cap and body of the pen placed on a table, is presented in Figure 48. 

 

 

Figure 48: Point cloud of the scene containing the cap and body 
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Regrettably, even after switching to the new model and scene, the PPF matching algorithm 

continued to be ineffective. Upon investigation, it was found that the conversion process from 

mesh to point cloud using Blender was unsuccessful. To address this issue, a different software 

program called FreeCAD was utilised for the conversion. Figure 49 demonstrates the resulting 

point cloud of the cap achieved through this new approach. 

 

 

Figure 49: Point cloud of the cap through FreeCAD 

 

7.2 PPF performance 
Upon incorporating the new model into the PPF matching algorithm along with the scene 

captured by the Realsense L515 depth camera, a match was found between the model and scene. 

This match is depicted in Figure 50.  

 

 

Figure 50: Model and scene matching through the PPF matching algorithm 
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The model of the cap and the cap in the scene still exhibit slight discrepancies. Since PPF 

matching seeks pairs of matches between the model and the entire scene, a potential solution was 

to eliminate irrelevant points in the scene, such as those representing the table. To accomplish 

this, plane segmentation was employed. Plane segmentation involves fitting a plane through the 

point cloud in a manner that minimises the sum of distances between each point and the plane. 

Given the substantial number of points representing the table in comparison to those representing 

the assembly parts, the fitted plane effectively represents the table within the scene. By removing 

each point that intersects and lies in close proximity to the plane, only the points representing the 

assembly parts remain. Figure 51 visually demonstrates this operation implemented on a scene 

featuring the cap resting on a table. 

 

 

Figure 51: Original scene (left) and scene after plane segmentation (right) 

 

  



74 

 

Following the plane segmentation process, there are still some remaining points in the point cloud 

that are not associated with the cap. These extraneous points can be eliminated by employing a 

clustering operation. This operation defines clusters of neighbouring points for each point in the 

point cloud. Two points are considered neighbours if the Euclidean distance between them falls 

below a specified threshold. Any point that does not have a minimum number of neighbours is 

removed from the point cloud. The outcome of this operation, conducted on the scene after plane 

segmentation, is illustrated in Figure 52. Unfortunately, the clustering operation proved to be 

time-consuming, and therefore it was not further applied. 

 

 

Figure 52: Scene after clustering operation 
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Upon utilising PPF matching on the model and scene following the plane segmentation process, 

there was no improvement in pose estimation, as depicted in Figure 53. 

 

 

Figure 53: PPF matching after performing plane segmentation on the scene 

 

Despite making modifications to various variables and properties of both the model and the scene, 

including the size of the model, point density, and conversion method to point cloud, the results 

did not yield further improvement. The main potential reason for this could be the simple shapes 

of the parts. This means that the extracted PPF will not be distinctive enough since PPF matching 

relies on distinctive geometric features. 
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7.3 Manual 6D pose annotation 
An alternative approach to obtain the initial pose of the assembly parts is by employing a 6D 

annotator. This method involves manually aligning the models of the assembly parts with their 

corresponding parts in the scene. The result with the initial pose of the cap, body, and bottom in 

the initial frame through this operation is illustrated in Figure 54. For example, in the right part of 

the figure, the point cloud of the model of the cap is represented by the white dots and is 

manually aligned with the cap in the scene. 

 

 

Figure 54: 6D annotator applied to extract the initial pose for the bottom (left), body (middle), and 

cap (right) 
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8 Conclusion and future outlook 
This master’s thesis develops a model that is able to recognise operator activities in the assembly of 

the Bourjault ballpoint pen through probabilistic modelling and object affordances, in which each 

part of the ballpoint pen is represented by ArUco markers.  

Starting from the literature study, in which first human activity recognition and its components, 

data acquisition, pre-processing, feature extraction, and classification are explained, different 

probabilistic graphical models and probabilistic logic languages are compared. Additionally, 

multiple object detection and tracking methods are discussed and compared. 

After an unsuccessful attempt at implementing two probabilistic logic languages, Distributional 

Clauses and ProbLog, to create a model that can be used to recognise operator activities in an 

assembly case, the transition was made to dynamic Bayesian networks, one of the probabilistic 

graphical models discussed in the literature study, through the pgmpy library. 

The first step involved constructing a DBN model to predict collisions between two ArUco 

markers. Through several iterations, the finalised model incorporated factors such as relative 

distance, orientation, velocity, and motion direction of the objects, providing the probability of 

collision as output. Initially, the conditional probability distribution of the model was manually 

computed with broad variable discretisation, resulting in a general indication of collision 

likelihood but inaccurate probabilities. In a second attempt, the CPD was automatically computed 

using training data, enabling finer variable discretisation and improved results. In this case, the 

model, trained by five movement sequences and validated by an additional movement sequence, 

yielded an accuracy of 68 per cent. 

Encouraged by the promising collision case results, the focus shifted to the assembly case, aiming 

to recognise activities performed during assembly. Initially, a DBN model was developed for the 

assembly of a simplified Bourjault ballpoint pen, consisting of three parts: the bottom, body, and 

cap. Inspired by the collision case, the model considered relative distance, velocity, and motion 

direction between the manipulated main part and other parts. To compute the CPD of the model, 

30 assembly sequences were used a training data. Five additional assembly sequences were used to 

validate the model. Through these five sequences, the model achieved an accuracy of 73 per cent.  

Finally, the model was extended to encompass the complete assembly of the Bourjault ballpoint 

pen, comprising six parts. In this scenario, the input variables were the relative parameters 

between the main part and its relevant counterparts instead of all other parts. The model's 

performance was evaluated through a 7-fold cross-validation, utilising 30 assembly sequences for 

training and five sequences for testing. The final model achieved an accuracy of 75 per cent, a 

precision of 76 per cent, a recall of 75 per cent, and an F1-score of 74 per cent. Moreover, when 

the final model trained on all 35 assembly sequences was applied to recognise operator activity in 

an additional assembly sequence, it achieved an accuracy of 77 per cent. 

For future research, the model can be expanded to utilise the six-dimensional pose of assembly 

parts as input data, replacing the reliance on ArUco markers. The pose of the parts can be 

extracted through algorithms such as PPF matching, which was, unfortunately unsuccessfully, 

attempted in this thesis. Implementing the six-dimensional pose of Bourjault’s ballpoint pen parts 

would enable the model's application in a realistic assembly setting for a real product. 
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