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Abstract

Process mining is a research area that enables businesses to analyze and improve their processes by deriving knowl-
edge from event logs. While pinpointing the causes of, for instance, a negative case outcome can provide valuable
insights for business users, only a limited amount of research has been done to uncover causal relations within the
process mining field while actively distinguishing between correlation and causality. The AITIA-PM algorithm is
one of these research projects. This article updates the AITIA-PM method, which uses causality theory to measure
cause-and-effect relationships in event logs. The system uses probabilistic temporal logic (PTL) to formulate hy-
potheses explicitly and then automatically checks them for causality using available data. More precisely, AITIA-PM
is designed for process mining since it operates directly on event logs, giving users access to the information stored
there, and increasing the scope for meaningful causal analysis in a process mining setting. With this addition, PTL
is emphasized more as a crucial algorithmic component, and the method to control for false discovery rates (FDR)
is adjusted for increased practical use. The case study shows that after the domain expert provides the search space
of hypotheses, the AITIA-PM algorithm can extract valuable cause-effect insights from an event log. The search
space can be flexibly defined, making AITIA-PM a powerful tool for business users. An evaluation on artificial data
proves AITIA-PM is capable of extracting the causal relationships, while a demonstration on the Road Traffic Fines
Management dataset shows the applicability of the algorithm on real data.
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1. Introduction

Process mining is a research domain that enables businesses to analyze and improve their processes by extracting
insights from event logs [1], in which the actual execution of a business process is recorded. This information can
be used for process discovery [2], but in combination with a normative model of how the process should have been
executed, also for conformance checking [3], for example. Merely discovering how the process deviated from the
normative model might not be sufficient for the analyst. Insights into the true causes of those deviations or, in more
general terms, specific events can be of much more interest to the business user. As such, data-driven root cause
analysis in process mining is desirable, despite being a complex task [4].

Previous research has presented methods and techniques to execute data-driven root cause analyses [4, 5, 6, 7].
However, a root cause analysis should be distinct from a correlation analysis. A correlation between a process charac-
teristic and a particular (un)desirable outcome or event does not necessarily imply a cause-effect relation. Many other
factors can be in play. Thus, confounding variables must be acknowledged, and spurious relations must be filtered.
Also, when a technique is performing an actual root cause analysis, it tends to impose heavy restrictions on the data,
e.g., [8] where only linear causal relations are accepted. Recent research tried to tackle these problems [9]. Still,
although the paper claims to be capable of tapping into the vast information in event logs, the theoretical foundations
and empirical demonstration show room for improvement.
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Against this background, this paper proposes an update to the AITIA-PM algorithm from Van Houdt et al. [9].
Inspired by [10, 11], the algorithm is a data-driven way to perform causal analytics, tailored explicitly for process min-
ing event logs. By employing PTL, AITIA-PM can create causal hypotheses very flexibly. Additionally, confounding
factors are explicitly taken into account in the method. Our contributions are best summarized as follows:

• We update the AITIA-PM algorithm on multiple facets, increasing the potential of AITIA-PM for causal anal-
ysis in process mining. This is accomplished by (i) increasing the support of the PTL modeling language to
define cause-effect relations, now specifically tailored to XES event logs, and (ii) proposing a new method to
determine causal significance based on q-values [12, 13]. The main advantage of q-values, being a state-of-the-
art FDR controller, is the better applicability in real-world scenarios where a domain expert might not define a
large set of hypotheses.

• The case study shows that, under the assumption that the domain expert defines the entire search space, one
can easily identify causes for a given effect in a data-driven fashion based on information stored in the event
log while controlling for confounding variables. The domain expert is given full freedom in defining the search
space. The applicability of AITIA-PM is shown on a real-world dataset, and the algorithmic output is also
validated on synthetic data.

The remainder of this paper is structured as follows. Relevant related work is discussed in Section 2. Section 3 then
gives essential background information regarding causality theory and PTL, after which Section 4 explains how the
AITIA-PM taps into the knowledge in event logs using PTL. Furthermore, two case studies are executed in Section 5
which also provide insights into the computational complexity, after which Section 6 dives deeper into the differences
with other techniques and our limitations. Finally, Section 7 concludes the paper.

2. Related Work

Process mining does not restrict a root cause analysis (RCA) to a single family of approaches [9]. Examples are (i)
classification techniques as seen in, for example, [6, 14, 15, 16, 17], and (ii) rule mining algorithms like association
rules [18] and subgroup discovery [19]. Unfortunately, the distinction between correlation and causation receives too
little attention in most applications.

To identify cause-and-effect relationships by testing for Granger causality [8], Hompes et al. [5] suggested a graph-
based method that produced a time series analysis, explicitly taking causation rather than correlation between features
into account. It’s not ideal either, though. Granger causality, as initially conceived, cannot explain instantaneous or
nonlinear causal relationships or confounding effects. Additionally, Maziarz [20] noted that Granger causality makes
several significant assumptions about the underlying data that are rarely realized in practice. Recent research by
Koorn et al. [21], which proposed a novel method to mine statistical relationships between events, specifically for
the healthcare industry, underlined the significance of examining confounding variables. The end-user is explicitly
informed of the confounding factors’ effects, demonstrating how neglecting them can significantly harm the findings
of a causal model.

Qafari and van der Aalst recently presented research on structural equation models for RCA, which was later
expanded with counterfactual reasoning [4, 22]. If available, the domain expert can offer the structure of causal
links. The counterfactual reasoning extension enables the writers to come up with suggestions for how particular
cases should have been handled better to prevent issues in the future [22]. Despite the model’s accuracy, the authors
acknowledge that adopting a machine learning technique carries the danger of receiving incorrect or inaccurate rec-
ommendations or perhaps missing out on the right ones. Narendra et al. [23] demonstrate how to use structural causal
models and counterfactual reasoning to address what-if problems, demonstrating the efficacy of the techniques but
recognizing their lack of intuitiveness. Causal graphs are further used in the work of Leemans and Tax [24], where
the authors specifically stress the difference between association (correlation) and causation. The goal of [24] is to
design a causal method to study dependencies between control-flow decision points. Another interesting application
is the use of process discovery to identify the causes of abnormal machine behavior based on two event logs: a log of
healthy machines and a log of unhealthy machines [25].

In order to establish a definition of causality, several frameworks have been proposed in the literature [26]. The
potential outcomes framework by Rubin [27, 28], also called the Rubin Causal Model (RCM) is a statistical framework
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for analyzing causal effects based on observational data. The model is based on the observation unit getting a treatment
or not after which the alternative futures can be compared. In short: RCM describes how the causal effect of treatment
X versus treatment Y on a particular unit or entity during a specific time interval from t1 to t2 can be understood as
the difference between (i) what would have happened to the unit at t2 if it received treatment X starting at t1, and (ii)
what would have happened at t2 if it received treatment Y starting at t1 [27]. Confounding can be taken into account
by including said confounding variables in the statistical analysis to increase the accuracy of the causal effect under
investigation. However, in RCM a decision implies a causal effect: one decides to apply a treatment or not.

More recently, Pearl introduced a graphical framework of causality [29, 30]. The graphical framework is based on
Bayesian networks capable of representing causal relationships between variables by simulating causal mechanisms
operating in the environment. A key advantage of this approach is the ability to move beyond simple associations,
and by manipulating the model, different scenarios can be tested. Similarly, confounders can be identified. However,
the graphical model assumes all causal relationships are deterministic. This assumption may not hold in all situations
[30]. For more details on defining causality, including other existing frameworks, the interested reader is referred to
[26].

To establish causality, Kleinberg’s causality measure and associated algorithm [10, 11] heavily rely on the philo-
sophical underpinnings of Hume [31] and Suppes [32]. To that end, the algorithm can distinguish genuine causal
relations from spurious ones from data. It is accomplished by using PTL to define hypotheses that are subsequently
tested using statistical significance and probability theory. Additionally, confounding variables are addressed explic-
itly by Kleinberg’s method. As such, the AITIA-PM algorithm opts for Kleinberg’s framework because we retain a
stochastic view of causality, which Pearl’s framework does not allow for. Second, Kleinberg allows for much richer
expressions of causal relations than RCM allows for, given that a cause can also be an observation of multiple events
in the past instead of one treatment. Kleinberg (i) allows for a causal effect to be clearly defined, (ii) shows relatively
low computational complexity while PTL allows to flexibly define causal hypotheses of varying causal complexity,
and (iii) the final output is both statistically significant and highly interpretable. Van Houdt et al. [9] carried out this
algorithm’s first process mining application. In this process mining context, a precise definition of causality is offered,
in contrast to most other existing applications in the domain.

In summary, there are two fundamental issues with the state-of-the-art applications in the process mining literature.
First, causal and correlation analyses can be mixed up far too readily. Classification is frequently used to identify
relations between data attributes, yet, they inherently look for correlation. A precise positioning is lacking in terms
of defining a cause-effect relationship. Second, different strategies have varying degrees of intuitiveness. Machine
learning models may be accurate, but interpretability is often crucial for businesses to trust an analysis technique.

3. Causality and Probabilistic Temporal Logic

To fully understand the design choices made for the AITIA-PM algorithm, one must be up to date on the definitions
of causality and temporal logic as used in our algorithm. This section provides this essential background information.

3.1. Defining Causality
Throughout philosophy, much has been discussed as possible definitions of causality. One proposal of causality

comes from Hume [31]: causality is a regular connection so that C causes E if an event of type E follows every event
of type C. Though this is a reasonable definition, counterexamples can be made against it. For example, “day causes
night” (or vice versa) fits the proposal, yet we would not call day to be a cause of night in reality. This is merely a
natural process. On the other hand, multiple instances of C can lead to one observation of the effect. This raises the
question if each instance of C is still required.

One main strength of this proposed theory is that it allows verification based on empirical data. More recent
theories of causality add a probabilistic view, claiming that a (positive) cause raises the probability of their effects,
e.g., Suppes [32], Eells [33]. As such, this work follows the definition of causality as described in Definition 1. For
more information, the interested reader is referred to [10].

Definition 1. Two properties must hold to establish a causal relationship: (i) the cause must precede the effect in
time (in line with the philosophy of Hume [31]), and (ii) a cause must raise the probability of the effect (in line
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with Suppes [32]). The second property is also known as the prima facie condition. The prima facie condition is
critical when working on sample data.

A pitfall to consider is that in theory, not each causal relationship (significantly) increases the probability of
the effect in reality. For example, a webshop is observing an overwhelming amount of orders (O), which seems to
demotivate their employees, as their productivity (P) has dropped significantly. However, the reality is that the holiday
break (H) is approaching. If the information about the holidays were missing, one would conclude from the data that
getting more orders would cause the decrease of productivity of the employees. When considering the holidays, that
probability increase would no longer be tied to the increasing number of orders the company got. In other words,
there might be a rise in the probability of the effect P without it being caused by O. This is the concept of spurious
causal relations, as a third factor H was at play. Fig. 1 illustrates this concept.

H

O

P

Figure 1: When keeping the common cause fixed, the causal relationship between the increasing number of orders arriving, leading to less
productive employees, would disappear.

Summarized, a spurious causal relation is a cause-effect relation based on observations frequently made together.
However, it is not an actual cause in reality. Screening off is thus required to identify those spurious causal relations
so that the output of a causal analysis algorithm reflects reality as closely as possible. This pitfall thus illustrates
the difference between correlation and causation. A correlation analysis finds associations between data points and
represents them in terms of a number showing both the direction and strength of the relationship. Two attributes can
frequently move in the same direction, but that does not necessarily imply that one causes the other to move along
with it, as the previous example showed.

The second point of interest is the matter around causal chains. In contrast to spurious relations, where two effects
have a common cause, a causal chain describes how one phenomenon C is caused by another B. Yet, the cause of
B could be identified as phenomenon A. In this case, as shown in Fig. 2 where A → B → C, one must ask himself
whether to identify B as the cause of C or claim A as the actual (root) cause. AITIA-PM performs a causal analysis;
if the analyst wishes to perform a root cause analysis, they would have to repeat the procedure.

A B C

Figure 2: In case of a causal chain, it is uncertain how the real cause of C should be defined. One can argue that B is the true cause of C given the
direct link, however, when B is caused by A, A is the indirect cause of C.

3.2. Probabilistic Temporal Logic

PTL is a flexible language that allows the definition of causal relationships [34]. More specifically, it allows
reasoning on the likelihood of an event within a specific time interval. As such, properties should not hold eventually,
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as they are bound in time, so it can be quantified how likely it is to happen. By allowing to freely define the system
states and the kinds of relations between them, PTL is highly flexible in execution.

PTL is based on computational tree logic (CTL) [35]. CTL allows expressing properties such as “for all paths,
the sky is blue”. The sky being blue is a state on the path. In other words, CTL expressions can describe how system
states are related throughout a path.

Definition 2. A state formula is a CTL expression that holds true in a specific state [10, 35]. We propose that
the state of the case can be defined as the sequence of performed activities of the mentioned case, accompanied by
case and event attributes that describe these activities. This definition allows for an evaluation of the case state at
any given time. Standard logical operators, i.e. the AND operator ∧, are utilized to express a state formula. For
instance, to determine if activity Ai was executed by resource R j, we evaluate (Ai ∧ R j).

In process mining, each execution of a case can be considered a path. As such, expressions such as “for each
case, the order value is more than AC50” can be evaluated where the order value of AC50 is a state formula. However,
perhaps the analyst is interested in evaluating an expression under more specific circumstances, like “when an order
is created (O), signing (S) the order must be the next step”. Temporal operators define the degree to which specific
properties must hold throughout a case’s execution.

Definition 3. The temporal operators describe where along the path the properties must hold [10].

• F, finally, at some state on the path, the property will hold.

• G, globally, the property will hold along the entire path.

• X, next, the property will hold at the next state of the path.

• U, until, for two properties, the first holds at every state along the path until at some state the second property
holds.

• W, weak until (also called unless or release), for two properties, the first holds at every state along the path
until a state where the second property holds, with no guarantee that the second property will ever hold (in
which case the first must remain forever true).

The expressions created with these temporal operators are evaluated throughout the execution of a case in the event
log. Such an expression is then called a path formula.

To retake the example of signing S the order O after creating it, this is expressed with the path formula OXS : to
track activity O’s occurrence to check if activity S directly follows it. Every time this pattern is observed for a case,
the expression evaluates to true. However, evaluating expressions describing a state at a specific moment may also be
interesting.

PTL, also called probabilistic computational tree logic (PCTL), expands on the CTL formulas by adding a specific
time dimension during computations. PTL makes the formulas more specific than “a case exists where a property will
hold”. PTL expands it to “these are the time bounds when the property must hold for said case”. The time bounds
allow the computation of probabilities of a state occurring. In other words, PTL enables, by including time dimension,
the description and evaluation of expressions such as (i U≤14 p) ∨ r: a customer receives an invoice (i) and pays the
bill (p) within 14 days, or the customer gets a reminder (r).

To conclude, Hansson and Jonsson [36] introduced the leads-to operator.

Definition 4. The leads-to operator indicates a sequence of events exists, starting from f , leading to g, taking at
most time t:

f ⇝≤t g ≡ [ f → F≤t g]

where f and g are state formulas, in accordance with [36].
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This leads-to operator represents the expectation of one thing leading to another or that there is a series of events
connecting one thing to another. This leads-to formula forms the basis of the AITIA-PM algorithm as each causal
hypothesis will be expressed in the form of c ⇝≤r,≥s e: a logical formula describing the time r by when a potential
cause c should trigger an effect e, or describing the time s by which a case c should trigger the effect e if the occurrence
of c took longer than s [9]. There are several points to note when using PTL in AITIA-PM specifically: (i) in case the
user does not want to restrict the hypothesis in terms of time, the parameter t may be dropped; (ii) the cause and effect
can be represented by both state and path formulas and represent the information to extract from the event log; (iii)
the probabilities are computed on the data and, as such, are not needed to be provided by the user; and finally (iv) ,
AITIA-PM makes use of PTL templates. As such, each part of the hypothesis could also be defined by a set of values.
For example, given the PTL template Ai U≤T A j ⇝ e where Ai = {a1}, A j = {a2, a3} and T = {1, 2, 3}, six hypotheses
would be extracted: one for each combination of values of Ai, A j, and T . This enables the business user to quickly
define a large number of hypotheses at once.

The primary purpose of PTL in the AITIA-PM algorithm is to serve as an easy-to-use language to represent causal
relations. The formulas also allow for testing, including antecedents, consequents, and time bounds. More specifically
for process mining, where AITIA-PM operates, PTL also means a straightforward way to tap into the knowledge in
event logs. In other words, case attributes, event attributes, activity order, etc., can be exploited to form the hypothesis
the business user is genuinely interested in, as PTL provides great freedom. The algorithm design is explained in
Section 4, which will clarify the actual tapping into the event log knowledge.

The above has described PTL as required for fully understanding this paper. The interested reader is referred
to [10] for additional details about PTL.

4. AITIA-PM – Algorithm Design

The AITIA-PM method guides the data-driven discovery of meaningful causes. In summary, AITIA-PM consists
of four different steps, given an event log is loaded: (i) defining the search space, or in other words, defining the
antecedents and consequents of the causal hypotheses, (ii) determining which hypotheses are prima facie causes, (iii)
computing the causal measure for all prima facie causes, and finally (iv) separating the actual causal relations from
the spurious ones utilizing a statistical test. Algorithm 1 summarizes the workflow of the AITIA-PM algorithm and
shows how the input event log and domain knowledge is transformed into the genuine causes of the given effect.

Step 1 – Defining the Search Space
The search space consists of both the antecedent and consequent of a causal hypothesis as described in Section 3.

The domain expert is free in how they are defined. The antecedents are what the domain expert deems as possible
causes for the effect. The effect, in turn, is the consequent of a causal relationship. Both antecedents and consequents
must be inferrable from the event log. As is in line with PTL, each antecedent and consequent can consist of multiple
data points in the event log while giving special attention to the time dimension. In other words, they can be composed
of state and path formulas. By joining the formulas of the antecedent and consequent with the leads-to operator, one
obtains the causal relation that is ready for testing in step 2.

Recall that each relation describes a template of a causal hypothesis. For example, the relation dictates that
the combination of activities (A) and the resources (R) which executed them (antecedent) leads to case delay (D):
(A ∧ R)⇝ D. A and R represent the sets of all activities and resources as observed in the event log. Assume that both
sets have a length of 10. The algorithm would extract all possible combinations in the background, and the analyst
would end up with 100 hypotheses based on that one template.

Step 2 – Testing for Prima Facie Causes
The hypotheses generated in defining the search space contain all combinations of cause-effect the analyst is

interested in. However, they also describe relations that might not meet the prima facie condition. In other words, the
hypothesis might not describe a causal relation in the sample. For a potential cause to be a prima facie cause of the
given effect, it must satisfy the following two conditions:

1. the cause must have occurred before the effect,
2. the cause must increase the probability of the effect occurring.
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Algorithm 1: The AITIA-PM algorithm.

Input : The event log E,
P, a set of PTL templates provided by a Domain Expert

Output : A set of genuine cause-effect relations

1 HypothesesSet← ∅;
2 PrimaFacieCauses← ∅;
3 EpsilonAvgSet← ∅;
4 SignificantCauses← ∅;

/* Step 1 - Defining the Search Space */
5 foreach p ∈ P do
6 H← ExtractHypotheses(p);
7 ∀h ∈ H: add h to HypothesesSet ; /* Each hypothesis consists of a cause c and effect e */

8 end
/* Step 2 - Testing for Prima Facie Causes */

9 foreach (c, e) ∈ HypothesesSet do
10 p1 = P(e|c);
11 p2 = P(e);
12 if p1 > p2 then
13 add (c, e) to PrimaFacieCauses;
14 end
15 end

/* Step 3 - Compute Epsilon Values */
16 foreach (c, e) ∈ PrimaFacieCauses do
17 ∀x ∈ C\{c}: Compute ϵx;
18 Compute ϵavg and add to EpsilonAvgSet;
19 end

/* Step 4 - Determine Causal Significance */
20 foreach ϵavg ∈ EpsilonAvgSet do
21 Compute z-statistic;
22 Compute p-value;
23 end
24 Adjust p-values to q-values;
25 Set α to desired value;
26 foreach q ∈ q-values do
27 if q ≤ α then
28 Add related (c, e) to SignificantCauses;
29 end
30 end
31 return SignificantCauses

These conditions identify the hypotheses which could represent an actual causal relation. However, note that so far,
no filtering on spurious relations has been performed. It is relatively straightforward to compute whether or not a
cause is a prima facie cause for an effect from the event log. Only the hypotheses fulfilling the above requirements are
considered potential genuine causes for the effect.

The following details are needed in order to perform this prima facie test: (i) when and for which cases was the
cause (c) observed, (ii) when and for which cases was the effect (e) observed, and (iii) how often did the effect occur
after the cause given the observations belong to the same case. Then, using the event log L, the prima facie condition
is probabilistically verified as follows:

P(e|c) > P(e) (1)

where

P(e) =
|Le|

|L|
(2)

and
P(e|c) =

|LcFe|

|Lc|
(3)

where |Lc|, |Le|, and |L| represent the number of traces the cause was observed in the event log, the number of traces
the effect was observed in the event log, and the total amount of traces in the event log, respectively. The computation
|LcFe| takes the case ID into account, as each case is considered a path. This computation, therefore, checks if there
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exists a c before e within the same case and if not, the hypothesis is automatically classified as false. For example,
resource Ry is only involved after the case has already produced error E. As such, P(E|Ry) = 0, meaning that Ry

cannot be a prima facie cause of E. More specifically, this count is performed as follows: for every trace, it is checked
if the cause was observed before the effect, no matter the frequencies of the cause or effect. For example, |L(cFe)| for
the trace ⟨c, c, e, e⟩ would return 1.

Step 3 – Calculation of Epsilon Values
Having determined all prima facie causes of the effect of interest, the genuine causes are now to be separated from

the spurious ones. To that end, we use epsilon values to measure causality that can be statistically tested. When a
cause c is present, the measure ϵavg, introduced by Kleinberg [10], estimates the average change in the probability of
an effect e while maintaining a different prima facie cause x constant. In other words, by keeping the other prima
facie causes constant, screening off is performed. The resulting value ϵx(c, e) provides a clear interpretation. Assume
that ϵx(c, e) = 0.50. This is interpreted as “screening off for the other potential cause x, the probability increase of the
effect e caused by cause c equals 50 percentage points”. Similarly, for a negative value, one would interpret the value
as a probability decrease of the effect e given the cause x when screening off. As such, for each other cause x, an ϵx is
calculated, after which the average describes the general impact of c on e.

Formally, given the set C of potential causes and a hypothesis containing a potential cause c and the effect e,
screening off for another potential cause x ∈ C\{c} is performed as follows:

ϵx(c, e) = P(e|c ∧ x) − P(e|¬c ∧ x). (4)

where

P(e|c ∧ x) =
|L(c∧x)Fe|

|Lc∧x|
(5)

and

P(e|¬c ∧ x) =
|L(¬c∧x)Fe|

|L¬c∧x|
(6)

Similar to Eq. (3), the temporal operator F ensures that observations of c and e are only counted when observed within
the same case. |Lc∧x and |L¬c∧x| count the amount of cases both c and x were observed in and the amount of cases c
was not observed but x was, respectively.

Screening off is performed for every x ∈ C\{c} to compute the actual impact c has on the probability of e occurring.
These individual epsilon values are then averaged over the entire set of potential causes as shown in Eq. (7).

ϵavg(c, e) =
∑

x∈C\{c} ϵx(c, e)
|C\{c}|

. (7)

As is the case for ϵx(c, e), ϵavg(c, e) also has a clear interpretation. For the average value, a check is performed for all
confounding factors of c. As such, the interpretation is as follows: the average change in the probability of the effect
occurring when the potential cause is observed while controlling for alternative causal explanations equals ϵavg(c, e)
percentage points.

Step 4 – Determining Causal Significance
Given the epsilon values, expressing the average probability changes of the effect e occurring given the presence or

absence of a prima facie cause c, the real causes and the spurious ones can be distinguished using a statistical method.
The AITIA-PM algorithm does this by utilizing FDR. The FDR is the proportion of erroneously falsely rejected null
hypotheses in a multiple hypothesis testing problem [37].

Several methods to compute the FDR exist in the literature base [38]. Our previous method [9] employed the FDR
controlling technique as described in Efron [39]. Although giving insights into false discoveries, the main limitation
is the need for an adequately large set of hypotheses undergoing testing. As such, in a real-world setting where a
business user might be interested in only testing a few hypotheses, the method of Efron [39] might fail. Therefore,
this work incorporates q-values [12, 13], a Bayesian analog to the p-value, as a replacement to identify the true causes

8



among the spurious ones. In summary, the q-value is a measure of the strength of an observed statistic with respect
to the positive FDR [12, 13]. The positive FDR describes the FDR values conditioned on at least one positive finding
having occurred [13]. As q-values are Bayesian posterior p-values, they can be computed from the original statistics
or their p-values.

Determining the causal significance is then done as follows:

• Compute the z-statistic based on the set of ϵavg: z = (ϵavg − µ)/σ where µ and σ represent the mean and the
standard deviation of the set of ϵavg, respectively;

• Compute the p-value for each z, calculated for an upper-tailed test;

• Compute q-values given the set of p-values;

• Set the significance level to the desired level and separate genuine causes from spurious causes.

The interested reader is referred to the work of Storey [13] for a full explanation of the workings of q-values,
and Korthauer et al. [38] for an in-depth analysis of the performance of different state-of-the-art FDR-controlling
techniques.

5. Case Studies

In this section, a case study is executed on artificially generated data in Section 5.1 to demonstrate the validity of
the AITIA-PM algorithm, followed by a demonstration on real-life data in Section 5.2. Next, Section 5.3 provides
insights into the computational complexity of the algorithm. Finally, the artificial data is also fed to other state-of-the-
art techniques to compare their capabilities with AITIA-PM in Section 5.4.

The source code of AITIA-PM is publicly available via GitHub1. In terms of implementation, steps 1 – 3 are fully
implemented in Python, while step 4 is implemented in R2.

5.1. Case Study 1 – Artificial Data

In order to show that the output of AITIA-PM is reliable, or in other words, that the algorithm is capable of
extracting genuine causal relations from data, an artificial dataset has been generated. This allows control over the
causes in the business process and, as such, it also ensures the expected output can be known in advance. This
is done through the means of business process simulation (BPS). BPS is a technique to model the behavior of a
business process and then emulate that behavior through the use of Discrete Event Simulation (DES) [40, 41]. For the
implementation of the simulation model, the Arena software is chosen3 [42].

The simulated process represents a simplified customer complaint-handling process as visualised in Fig. 3. A total
of 10.000 traces are simulated, of which Table 1 shows the different activities, their frequencies and the resource class
that performs the activity. The activity ‘2nd Opinion Initial Assessment’ is an optional activity executed in each trace
with a probability of 90%. There are no case or event attributes present. In total, there are 15 clerks and 10 analysts
in the system.

The ground truth is imputed in this business process as follows. The effect under investigation are cases where the
activity ‘Unresolved Complaint’ is performed, which is an indication that the complaint was not handled correctly.
The causes inserted in the simulation are the following:

• The activity ‘2nd Opinion Initial Assessment’ was not performed;

• The communication of the initial assessment to the customer was not done within 24 hours of starting the case;

1https://github.com/gregvanhoudt/AITIA-PM
2https://github.com/StoreyLab/qvalue
3https://www.rockwellautomation.com/en-us/products/software/arena-simulation.html
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Figure 3: The simplified customer complaint handling process used for BPS.

Activity Frequency Resource

Create Complaint 10.000 Automated
Log and Document Complaint 10.000 Clerk
Initial Assessment 10.000 Clerk
2nd Opinion Initial Assessment 9.030 Analyst
Communicate Initial Assessment 10.000 Clerk
Investigation and Analysis 10.000 Analyst
Resolution and Follow Up 10.000 Analyst
Unresolved Complaint 2.102 Clerk
Close Complaint 7.898 Clerk

Table 1: An overview of the activities and their frequencies in the simulated event log.

• Analysts 1 and 2 cannot work well with analysts 9 and 10. If either Analyst 1 or 2 performs ‘Investigation and
Analysis’ and either Analyst 9 or 10 subsequently performs ‘Resolution and Follow Up’, the customer would
likely not be happy.

The existence of such cause-effect relations in a trace is not a guarantee for the failure of the complaint handling in
said trace. If any of the aforementioned causes are present in a trace, there is a 75% probability of the complaint
remaining unresolved. If none of these causes are present, on the other hand, then the case always results in success.

The first task is to define the search space. Given the ground truth mentioned above, the search space can be
defined to include said cause-effect relations as well as other confounding factors. The PTL statements provided to
define the search space are as follows:

• G(¬Ai)⇝ e where Ai = {‘2nd Opinion Initial Assessment′};

• F≥T Ai ⇝ e where Ai = {‘Communicate Initial Assessment′} and T = {12, 24, 48}. The lower bounds 12 and
48 are included to introduce confounding factors;

• (Ai ∧ Ra) U(A j ∧ Ra)⇝ e where Ai = {‘Investigation and Analysis′}, A j = {‘Resolution and Follow Up′}, and
Ra =

⋃10
i=1 Analysti . All analyst resources are included to introduce confounding factors;

• For additional confounding, we check for every activity-resource combination: (A∧R)⇝ e where A represents
the complete set of activities and R is the complete set of resources in the simulation model.

These templates return 194 unique hypotheses of causal effects observed in total. Next, these hypotheses must be
tested for the prima facie conditions to filter out the potential causes which do not increase the probability of the effect
in general. From those 194 hypotheses, 52 are deemed prima facie causes of the effect. To recap, a prima facie cause
is a cause that increases the probability of the effect occurring. However, at this stage, no controlling for confounding
factors is done. Confounding is taken into account during the next step, computing epsilon values. Remember
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that each ϵavg quantifies the average impact of each potential cause on the probability of the effect, controlling for
confounding variables. The set of ϵavg also forms the basis of determining causal significance through FDR controlling
in accordance to step 4 of the method.

Table 2 shows the output obtained from the algorithm. As expected, the genuine causes put into the simulation
model fill the top six of the results. As such, one can be sure AITIA-PM will detect and present the genuine causes to
the business user. Furthermore, only the q-values of the six genuine causes are not equal to one. Strictly speaking, only
‘Communicate Initial Assessment not observed within 24 hours’ and ‘2nd Opinion Initial Assessment not observed’
are genuine causes according to the algorithm when using a significance level α < 83.7%. This can be explained by
their much larger epsilon values, mainly. To give a concrete interpretation of the first causal effect found in the data:
when the communication of the initial assessment is not done within 24 hours, the average increase in the probability
of the customer being unhappy and the complaint remaining unresolved is 62.73 percentage points. To conclude this
experiment, the results show AITIA-PM is capable of separating the genuine causes and the confounding factors as
spurious causes.

cause ϵavg q

Communicate Initial Assessment not observed within 24 hours 0.6273 0.0001
2nd Opinion Initial Assessment not observed 0.5066 0.0040
Investigation and Analysis by Analyst 1 - Resolution and Follow Up by Analyst 10 0.2391 0.8370
Investigation and Analysis by Analyst 2 - Resolution and Follow Up by Analyst 9 0.2360 0.8370
Investigation and Analysis by Analyst 2 - Resolution and Follow Up by Analyst 10 0.2348 0.8370
Investigation and Analysis by Analyst 1 - Resolution and Follow Up by Analyst 9 0.2330 0.8370
Resolution and Follow Up - Analyst 10 0.0886 1.0000
Investigation and Analysis by Analyst 9 - Resolution and Follow Up by Analyst 10 0.0880 1.0000
Investigation and Analysis - Analyst 2 0.0767 1.0000
Investigation and Analysis - Analyst 1 0.0666 1.0000
Initial Assessment - Clerk 1 0.0639 1.0000
Initial Assessment - Clerk 1 0.0639 1.0000
Communicate Initial Assessment - Clerk 1 0.0639 1.0000
Communicate Initial Assessment - Clerk 1 0.0639 1.0000
Resolution and Follow Up - Analyst 9 0.0581 1.0000

Table 2: The top 15 causal hypotheses leading to the effect in the artificial data setting, sorted on decreasing epsilon.

As mentioned before, the domain expert is responsible for defining the search space. The assumption is made that
the expert is an all-knowing oracle who does so in a complete fashion. However, in real-life scenarios, it is possible
the real causes are omitted from the search space. In such an event, it would be undesirable to get insights that could
be false in reality. In other words, it is undesired behavior for AITIA-PM to then detect genuine causes which are not
actually genuine.

To that end, the experiment is repeated with one alteration: the six genuine causes are omitted from the search
space. As such, the algorithm is executed on all 10.000 traces, using the same PTL statements, but now with 188
causal hypotheses to start with. From those 188 hypotheses, 46 were now deemed prima facie causes. The results of
this new experiment are shown in Table 3. The table shows that no genuine causes are detected unless the business
user employs a significance level α > 48.08%. As such, one can conclude no true causes are found in the data, which
in this setting, is the expected result.

5.2. Case Study 2 – Road Traffic Fine Management
In this case study, the applicability of AITIA-PM is demonstrated based on the Road Traffic Fine Management

dataset4. In contrast to [9], this case study includes more complex hypotheses for the root-cause analysis. However,
do note that the algorithm is not limited to said hypotheses.

4https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
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cause ϵavg q

Resolution and Follow Up - Analyst 10 0.0990 0.4808
Investigation and Analysis by Analyst 9 - Resolution and Follow Up by Analyst 10 0.0882 0.4808
Investigation and Analysis - Analyst 2 0.0873 0.4808
Investigation and Analysis - Analyst 1 0.0768 0.6752
Resolution and Follow Up - Analyst 9 0.0675 0.7194
Initial Assessment - Clerk 1 0.0648 0.7194
Initial Assessment - Clerk 1 0.0648 0.7194
Communicate Initial Assessment - Clerk 1 0.0648 0.7194
Communicate Initial Assessment - Clerk 1 0.0648 0.7194
Investigation and Analysis by Analyst 9 - Resolution and Follow Up by Analyst 6 0.0613 0.7426
Investigation and Analysis by Analyst 3 - Resolution and Follow Up by Analyst 4 0.0502 0.9470
Investigation and Analysis by Analyst 5 - Resolution and Follow Up by Analyst 6 0.0419 0.9470
Initial Assessment - Clerk 12 0.0406 0.9470
Initial Assessment - Clerk 12 0.0406 0.9470
Communicate Initial Assessment - Clerk 12 0.0406 0.9470

Table 3: The top 15 outputs of AITIA-PM when omitting the true causes put into the data through simulation. Data is sorted on descending epsilon
values.

The Road Traffic Fine Management dataset is extracted from an Italian police force. The information system
supported the management of handling road traffic fines. Some fines are paid on time correctly. For others, legal
actions must be taken. In this case study, we are interested in why fines are sent for credit collection (SCC). Since
the event log spans cases between January 2000 and June 2013, it seems appropriate only to perform the analysis on
recent data. Although data pre-processing is not required for AITIA-PM, log filters are recommended depending on
the context of the study. For this study, we filtered for cases occurring between 1 January 2011 and 18 June 2013 (the
date of the last event).

First, the domain expert needs to define the search space. Again, AITIA-PM assumes the domain expert is an
all-knowing oracle who defines the search space as complete. In other words, no other confounding variables are left
out. For this case study, the domain expert is emulated by the authors. The effect has already been decided as the
activity “Send for Credit Collection”. An analysis of the process in Disco5 has shown that different sequence flows can
be followed, leading to the credit collection activity. For example, not all fines are sent for an appeal to the prefecture.
As such, it may be interesting to know what executed activity most likely leads to credit collection. The executing
resources are added to this, even though a resource is only registered for the “Create Fine” event. Summarized, the
first template is defined as

(A ∧ R)⇝ SCC

where A represents the set of activities, and R represents the set of resources found in the event log. A second theory
is that drivers of a certain vehicle class tend not to pay their fines correctly. In PTL, this template is expressed as

VC⇝ SCC

where VC equals the set of vehicle class attribute values. Third, the drivers are not necessarily to be blamed if the fine
is sent too late. The analysis in Disco showed that, on average, it takes 55,8 days to send out the fine after creating it.
To test this time dimension, an additional template is provided, namely

ACF U≤T AS F ⇝ SCC

where ACF = {‘Create Fine′}, AS F = {‘Send Fine′}, and T = {30, 60}. The set T represents an upper time bound of
30 days and 60 days, respectively. Finally, it seems that, after Insert Fine Notification, three possible paths can follow.

5https://fluxicon.com/disco
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As such, we are interested to know which path of legal action causes credit collection. For that, the following template
is defined:

AIFN X Ap ⇝ SCC

where AIFN = {‘Insert Fine Notification′} and Ap = {‘Appeal to Judge′, ‘Insert Date Appeal to Prefecture′, ‘Add penalty′}.
All the templates mentioned above are filled out and then tested simultaneously. Given the sets already described,

there are 91 unique causal hypotheses. Each of these 91 hypotheses is then tested for the prima facie condition. 80
hypotheses remain, meaning that 80 of the hypotheses’ causes increase the probability of the effect, “send for credit
collection”, occurring. The next step, calculating the epsilon values, quantifies the impact of each potential cause on
said probability increase, used to separate the true causes from the spurious ones through the q-value FDR statistic.
To recap, the FDR computes the proportion of erroneously falsely rejected null hypotheses. As such, the raw epsilon
values ϵ are transformed into q-values in accordance to step 4 of the method.

Table 4 summarizes the results on the Road Traffic Fine Management dataset following the above specifications.
Despite the small number of prima facie causes (80), interpreting the q-values allows us to separate genuine discoveries
from spurious ones. Results show that there are three genuine causes (with a significance level α = 5%) for a fine to
be sent for credit collection, namely (i) that the penalty is added straight after the activity “insert fine notification”,
(ii) that “insert fine notification” was executed, and finally (iii) that a penalty was added. As such, the true causes of
the effect are strongly linked to these two activities. Looking beyond the FDR, other strong candidates were that the
fine was sent later than 30 days after being created, and apparently, drivers of vehicles with class A generally declined
payment. Again, the epsilon values have a clear interpretation. For the first and primary cause, the interpretation is as
follows: when the activity “Add penalty” directly follows the activity “Insert Fine Notification”, the probability of the
effect “Send for Credit Collection” increases by 69.56 percentage points on average after controlling for confounding
variables.

cause ϵavg q

Add penalty directly follows Insert Fine Notification 0.6956 0.0044
Insert Fine Notification 0.6445 0.0059
Add penalty 0.6445 0.0059
Send Fine not observed within 720 hours 0.5409 0.0520
Vehicle Class A 0.5297 0.0529
Send Fine 0.5124 0.0631
Send Fine not observed within 1440 hours 0.4041 0.3830
Vehicle Class C 0.2489 0.9782
Vehicle Class M 0.1796 0.9782
Notify Result Appeal to Offender 0.1508 0.9782
Receive Result Appeal from Prefecture 0.1321 0.9782
Create Fine - 855 0.1261 0.9782
Create Fine - 29 0.1155 0.9782
Create Fine - 46 0.1153 0.9782
Create Fine - 860 0.1048 0.9782

Table 4: Output of the AITIA-PM algorithm as executed on the Road Traffic Fine Management event log. Results are ordered on increasing q-value.
Only the first 15 rows out of 80 are shown.

Table 4 also shows the importance of checking for false discoveries. By solely looking at the epsilon values, it is
not straightforward to define the boundary of genuine cause versus spurious cause. Even though the fine being sent
late still increases the probability of the effect with 54 percentage points on average, giving the impression it has quite
a large impact, the test appoints it as spurious given the other factors at play.

5.3. The Driving Factors of Computation Time

Analyzing factors that influence the computation time of an algorithm is an essential step in understanding its
performance. Highly relevant drivers of the computation time of the algorithm are (i) the number of traces in the event
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log, and (ii) the size of the hypotheses set. Controlling for confounding factors, where each cause-effect relation is
tested controlling for each other potential cause, combined with a hypothesis being checked on the trace level, intro-
duces some computational complexity to the algorithm. This subsection provides an insight into that computational
complexity, more specifically by measuring the computation times under varying numbers of traces (varying from 100
tot 10 000) present in the source data on the one hand, and by altering the size of the search space (varying from 2
to 194) on the other hand. This is presented using the data from the artificial setting in Section 5.1. The computation
times are based on an AMD Ryzen 7 PRO 3700U w/ Radeon Vega Mobile Gfx.

Fig. 4 shows the impact of the amount of traces in the event log. The search space was set to the total set of 194
causal hypotheses already discussed in Section 5.1. As such, creating the search space and performing the inference
is only affected by the total number of traces. One can observe the relation between the computation time and the
number of traces the algorithm is performed on approximates a linear relation. This relationship can be attributed to
the fact that each trace is individually checked for meeting a causal hypothesis or not. As such, the more traces, the
longer the computation takes.
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Figure 4: Keeping the size of the search space constant at 194, a linear relation is discovered between the number of traces in the event log and the
computation time of AITIA-PM.

Similarly, Fig. 5 shows the relation between the search space size and the computation time. Again, an upwards
trend is identified. That can be attributed to the fact that, for each additional hypothesis included, there are additional
confounding factors to control for as well. It is worth noting that the complexity of each causal hypothesis impacts
the computation time, as different hypotheses may require varying levels of computational resources. For example,
detecting a specific activity performed by a given resource is less computationally demanding than detecting a directly-
follows relation with time and resource constraints. Consequently, it is expected to observe fluctuations in the upwards
trend of computation time as the search space increases.

5.4. An Empirical Comparison with Related Work

In order to show the strengths and novelties of AITIA-PM compared to the related work in the domain, the
artificial data will also be fed to comparable causal inference techniques. The starting point in identifying comparable
techniques is the collection of applications discussed in Section 2: the machine learning algorithms [6, 14, 15, 16,
17, 18], process discovery technique [25], causal graph techniques [4, 24], subgroup discovery method [19], and
counterfactual reasoning methods [22, 23].

Several criteria must be met in order to be included in the comparative study:

• The technique must clearly bring insights into causal effects. As such, techniques returning correlations are not
taken into account;

• A clear interpretation of the causal effect is required. The effect of the cause on the effect must be quantified.
In other words, conformance scores or common characteristics do not suffice, as they do not measure the
magnitude of impact of a causal effect;
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Figure 5: Setting the number of traces to a fixed value of 5000, a linear relation is discovered between the size of the search space, in terms of the
number of hypotheses, and the computation time of AITIA-PM.

• The technique must be publicly available.

After taking the above criteria into account, three techniques remain: the causal graph methods of Qafari and van der
Aalst [4] and Leemans and Tax [24], and the counterfactual reasoning mechanism of Qafari and van der Aalst [22].

With respect to the counterfactual reasoning mechanism of Qafari and van der Aalst [22], the implementation
could only operate with numerical data. Given our artificial setting, which resembles a business process as one
would encounter in practice, the data was incompatible with the technique. Consequently, it was no longer taken into
account. Regarding the structural equation modeling technique of Qafari and van der Aalst [4], the technique meets
all selection criteria, however, no output is generated when used on our artificial event log. Consequently, this lack of
output excludes it from the analysis.

The method of Leemans and Tax [24] only requires the event log as input. From the event log, the Visual Miner
[43] is applied first to discover a process model. This process model is shown in Fig. 6. Two decision points are
identified, between which the technique can discover a dependency. It does so by generating a collection of causal
graphs consistent with the observations in the event log. Only two decision points are present in the model, so only
one dependency could be identified. More specifically, the dependency between performing or skipping ‘2nd Opinion
Initial Assessment’ and the case outcome. Table 5 shows the quantification of this dependency: when the 2nd opinion
is skipped in the process, the probability of closing the complaint decreases by 56.8 percentage points. That is also
one of the genuine causes imputed in the event log through BPS, and as such, the algorithm has found one genuine
cause. However, the other imputed causes are not detected by this algorithm, simply because it is limited to detecting
dependencies between decision points in the process.

L

Figure 6: The resulting process model of applying the Visual Miner on the artificially generated data, in which the ground truth is known.

From choice To choice Causal strength

2nd Opinion Initial Assessment, [skip 5] Close Complaint, Unresolved Complaint -0.568

Table 5: Output of Leemans and Tax [24] performed on the artificial data of the customer complaint process. One dependency was found, which is
valid.
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6. Discussion

The case study illustrates the ease of setting up and executing the AITIA-PM algorithm and the interpretability of
results that business users are looking for. While Granger causality imposes heavy assumptions on the data, our
understanding of causality implies that any process mining event log can be used. In contrast to Granger causality,
AITIA-PM can deal with confounding variables and non-stationary data. This makes AITIA-PM a very practically
feasible solution. Additionally, it is shown that AITIA-PM can also tackle a much richer set of hypotheses than other
techniques in the process mining literature.

A more detailed comparison of the potential output sets of different causal inference algorithms in process mining
also shows the advancements made by AITIA-PM in the domain. First, the distinction between causal and correlation
analysis plays a vital role. Classification techniques and machine learning algorithms, i.e. Bozorgi et al. [14], Ferreira
and Vasilyev [15], Böhmer and Rinderle-Ma [18], typically identify correlations between attributes. Although these
techniques can theoretically identify a broad range of potential relationships between attributes, it is difficult to claim
the presence of a genuine causal relation between said attributes. Techniques producing causal graphs, i.e. [4, 24],
do follow a notion of causality theory. However, they are typically more limited in the variety of causal relations
they can discover. Typically, causal graphs can model the causal relations between control-flow decision points [24]
and process features such as activities performed, case attributes, and event attributes [4]. AITIA-PM can go beyond
investigating dependencies between attributes, as different (time) dependencies can be chained together to form a very
complex causal hypothesis, which is one of the main strengths of our technique.

Second, AITIA-PM benefits from domain knowledge, similar to structural equation models [4, 22], for exam-
ple. Without this domain knowledge, however, the authors of [4, 22] acknowledge that using machine learning has
downsides. For example, incorrect recommendations may be obtained. Given the probabilistic approach AITIA-PM
utilizes in combination with the FDR statistic, the odds of identifying wrong causes are minimized while remaining
intuitive. This test for significant causes is also an advantage over mining causal graphs. It must be acknowledged that
if the search space is not defined in full or even defined incorrectly, the algorithm cannot identify the true causes at all.
However, it is shown that AITIA-PM does not return spurious causes as genuine in case the true causes are omitted
from the search space. Naturally, this issue of omitting real causes can be solved by using all information stored in
the event log as the search space, but again, this could be potentially computationally infeasible depending on the size
of the event log and the size of the search space.

When comparing our technique with counterfactual reasoning algorithms, i.e. [22], we note that these methods
are capable of answering what-if questions on the case level. While AITIA-PM provides the causal relations and
the impact of the case on the probability of the effect occurring, this insight originates from the log level. Given the
clear interpretation, the insights are also actionable: one knows which issue to tackle to halt the effect from occurring,
similar to how counterfactual reasoning can answer the what-if question.

As such, AITIA-PM is highly flexible in finding different types of causes of all kinds of complexity through the
use of PTL. The domain expert can steer the inference process by indicating the assumed causal relations along with
confounding factors. Because of the use of PTL and the varying complexity of PTL statements, the potential search
space can be quite vast.

Finally, it should be remembered that event logs carry a case notion, yet different process instances can influence
each other. For example, one case can be put on hold because scarce resources are working on other cases. AITIA-PM
assumes that each case is defined by the events that can cause the effect within that specific case. However, one must
remember that these influences exist. How to handle those influences in such a probabilistic approach requires further
research.

7. Conclusion

This paper extends previous work [9] by updating the causal analysis method in process mining named AITIA-PM.
The update’s contributions mainly lie in (i) including more explicit support for PTL formalisms, (ii) including a new
method to compute the causal significance of cause-effect relations through the use of q-values, making the algorithm
more applicable in real-world scenarios, and (iii) evaluating the algorithm on synthetic data in addition to merely
demonstrating it as was the cause in [9]. AITIA-PM, as such, complements state-of-the-art causal analysis techniques
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as it follows philosophical causality theory and can evaluate causal effects from varying levels of complexity. In con-
trast to other well-known systems, AITIA-PM imposes reasonable assumptions about the necessary data, making it
very adaptable to the needs of a business user and highly practical in actual scenarios. The technique also effectively
addresses confounding factors that can lead to misleading connections by adopting a probabilistic approach and aver-
aging out the probability changes, with the added benefit of being incredibly interpretable, as seen in the case study.
As a result, AITIA-PM continues to be an industry standard for process mining causal analysis.

Several future research challenges are identified in this article. First, a domain expert must define the hypotheses
of interest the algorithm will check. Automatic hypothesis generation could bring insights the domain expert might
need to consider, or even provide the true causal relations the domain expert would discard himself. Second, state
formulas in their current form are binary as they evaluate to true or false. Future work could bring an extension that
supports continuous variables. Third, additional research must be performed on the influences different cases can have
on each other.
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