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Abstract

Microbiome data obtained with amplicon sequencing are considered as compositional data.

It has been argued that these data can be analysed after appropriate transformation to log-

ratios, but ratios and logarithms cause problems with the many zeroes in typical microbiome

experiments. We demonstrate that some well chosen sign and rank transformations also

allow for valid inference with compositional data, and we show how logistic regression and

probabilistic index models can be used for testing for differential abundance, while inheriting

the flexibility of a statistical modelling framework. The results of a simulation study demon-

strate that the new methods perform better than most other methods, and that it is compara-

ble with ANCOM-BC. These methods are implemented in an R-package ‘signtrans’ and can

be installed from Github (https://github.com/lucp9827/signtrans).

Introduction

A microbiome contains the collective genome of microbial cells that interact with a particular

host. The microbiome plays a key role in various host functions contributing to the overall

health and fitness of the host, e.g. the plant microbiome can increase plant growth, stress toler-

ance, and disease resistance [1]. Developments in high-throughput sequencing and new bioin-

formatics tools have already provided a wealth of new knowledge and insights in the human

microbiome. To date, accumulating evidence in human microbiome studies have demon-

strated several associations between disruptions of the human microbiome composition and

pathologic conditions [2].

A very common method to characterize microbial species in the human microbiome is

sequencing the 16S rRNA marker gene. These 16S sequences are clustered into operational

taxonomic units (OTUs) based on high sequence similarity and they are eventually mapped to

reference genomes for the identification of the species. The outcome of the microbiome char-

acterization is a count table with counts related to the abundances of the microbial species in

the sample. Alternatively, an Amplicon Sequence Variants (ASV) analysis can be performed

on the sequencing reads, resulting in an ASV count table. Also these counts are proxies of the
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relative abundances and can be analysed just like the OTU counts. In microbiome studies, the

relative abundances of microbial species can be reported at any taxonomic rank. Instead of

using specific terms like OTU, species or family, which refer to a specific taxonomic rank, we

will use the generic term taxon.

Microbiome data analysis encounters many challenges and despite many recent develop-

ments there is still room for improvement. For example, as a result of high-throughput

sequencing, the data are high-dimensional with up to thousands of taxa, exceeding the number

of samples. Moreover, microbiome data have a compositional structure characterized by a

sum-constraint (the sum of the counts equals a constant). This constraint is a result of

sequencing methods having a fixed upper bound on the number of sequences processed (i.e.

the library size); this library size is hard to control in the laboratory and varies between experi-

ments. Hence, relevant information can only be obtained from the ratios, i.e. the relative abun-

dances. We refer to [3–5] for detailed discussions on this issue. Furthermore, microbiome data

are sparse (many zero abundances), overdispersed due to biological variability, and have vary-

ing library sizes between samples. These characteristics make it difficult to compare samples;

see e.g. [6, 7].

Many statistical methods in microbiome data analysis aim to identify differentially abun-

dant taxa, i.e. taxa that have on average different relative abundances between two or more

conditions. These differentially abundant taxa are of specific interest as they can be used in

intervention studies or as disease biomarkers. The statistical methods must be sufficiently

powerful to be useful, and they should take the structure of the data into account so as to pre-

vent too many false discoveries in this high-dimensional setting.

Nowadays, there are numerous statistical methods available for differential abundance test-

ing. Many classical statistical tests such as the two-sample t-test or the non-parametric Wil-

coxon-Mann-Whitney (WMW) test are still widely used for differential abundance testing.

However, these classical tests do not take the structure of microbiome data into account. Other

differential abundance methods rely on distributional assumptions, e.g. the negative binomial

(NB) or the zero-inflated NB (ZINB); see e.g. [8] and the popular R packages EdgeR [9] and

DESeq2 [10] which are also still frequently used for microbiome data analysis. However, a

recent study by Hawinkel and colleagues [11] demonstrates that these assumptions are violated

for the majority of taxa, which partly explains why (ZI)NB-based methods have problems con-

trolling the false discovery rate (FDR). By removing or adjusting for technical between-sample

variability (e.g. differences in sequencing depths), the sensitivity and FDR control can be

improved. This may be accomplished by controlling for these effects in the statistical model or

by preprocessing the data via a normalization factor. We refer to [12] for a detailed discussion

on the ecological meaning of such normalisation factors.

Another class of methods makes use of compositional data analysis (CoDa) methods, which

form a well-established mathematically supported class of methods for compositional data

[13–15]. Nonetheless, many CoDa methods use log-transforms of (ratios of) counts, which

causes problems due to the sparse nature of microbiome data. ALDEx2 is an example of such a

method for microbiome data analysis [16]. A typical solution exists in adding an arbitrary con-

stant to the count observations before computing the log-ratios, but this is an ad hoc method

that is not supported by theory. The zero-issue and the ad-hoc addition of a constant also

arises in the ANCOM-BC method [17]. This method accounts for the compositionality by

introducing a sampling fraction, which, when the model assumptions hold, allows for infer-

ence at the level of the absolute abundances.

In this paper, we aim to demonstrate that some well chosen sign transformations allow

for valid inference with compositional data. The term “sign transformation” is inspired by

the sign test statistic, which makes use of the “sign” of an observation’s deviation from the
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median. We use sign-transformation in a slightly more general sense: it is a transformation

of one or more observations into a 0/1 outcome. These sign-transformed outcomes are com-

bined with logistic regression and probabilistic index models to provide estimates of infor-

mative parameters and to generate tests for differential abundance, resulting in robust

distribution-free methods that can deal with an excess of zeros and overdispersion. The flexi-

bility of the regression model frameworks allow for inclusion of other factors (e.g. study cen-

ter) or covariates (e.g. age). The resulting estimates and test statistics are related to sign and

rank statistics.

In the methods section, we will present two types of sign-transformations and we refer to

S1 Text to demonstrate that they satisfy the three basic properties that are required for valid

compositional data analysis. Based on these sign transformations, we build semiparametric sta-

tistical models for which we show how the parameters can be estimated and how inference can

be performed (e.g. testing for differential abundance). These will turn out to be easy, because

we can rely on existing implementations of logistic regression (LR) and probabilistic index

models (PIM) [18]. In the following sections, the methods are evaluated in a simulation study

and a case study is presented. All proposed methods are available in the R package signtrans,

which can be installed from https://github.com/lucp9827/signtrans.

Methods

From log-ratios to S-sign and R-sign transformations

We represent the read count of taxon t (t = 1, . . ., m) in sample i (i = 1, . . ., n) as Nit, and the

sum
Pm

t¼1
Nit ¼ Li is referred to as the library size of sample i. Traditional compositional data

analysis (CoDa) transforms the counts to log-ratios of the form ln(Nit/Ri), where Ri can be

either the geometric mean of all counts in sample i, or the count of a single taxon (a reference

taxon). The former transformation is known as the central log-ratio (CLR) and the latter as the

additive log-ratio (ALR). Another choice for Ri can be the arithmetic mean or median of the

counts of a set of reference taxa. Ma and colleagues [19], for example, proposed a network-

based approach for selecting a group of relatively invariant microbial species across samples

and conditions. In other words, they select a group of taxa whose relative abundance or relative

change has low variation across all samples and conditions. These approximately invariant

taxa can be used as reference taxa. To make this more explicit, let T R denote the index set

referring to the reference taxa t 2 T R. We write

Ri ¼ medianfNit : t 2 T Rg:

The reference set of taxa is referred to as the reference frame, as in [20].

The many zero counts in microbiome data, however, jeopardise the log-ratio analyses. The

classical solution exists in adding a constant pseudo-count to all counts, but the pseudo-count

is an arbitrary constant which affects the outcome of the data analysis and hence it may intro-

duce bias into the analysis. The advantage of the log-ratio transforms, however, is that they sat-

isfy the three basic properties required for proper compositional data analysis [21]: (1) scale

invariance; (2) subcompositional coherence; (3) permutation invariance. We refer to [22] for a

detailed discussion on these properties.

We will discuss two types of data transformations. The first, which will be referred to as the

S-sign, is of the form

ISit ¼ IfNit≼Rig ð1Þ
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and the second, which will be referred to as the R-sign, is of the form

IRijt ¼ IfNit=Ri≼Njt=Rjg; ð2Þ

where I {a≼ b} is defined as I {a≼ b} = I {a< b} + 0.5I {a = b}.

The terminology S-sign and R-sign inherit their names from the classical sign (S) and rank

(R) statistics. In particular, a statistic of the form
Pn

i¼1
ISit resembles the sign test statistic (in

which Ri is replaced by the median). The R-signs can be used for constructing rank statistics,

because the rank of the relative abundance Njt/Rj can be written as
Pn

i¼1
IRijt.

In S1 Text, we demonstrate that the use of these sign transformations in combination with

the models and estimators that we propose in the following sections, satisfy the three principles

of compositional data analysis. However, here we will already argue that the sign-transforms

of Eqs (1) and (2) can deal with zero counts. The S-sign does not involve a ratio or a logarithm,

and the R-Sign can be rewritten as IRijt ¼ IfRjNit≼RiNjtg, and so again zeroes do not prohibit its

calculation. Many zeroes, on the other hand, will result in many uninformative sign transforms

(cfr. ties), but this does not invalidate the statistical inference.

Null hypotheses

We will consider four null hypotheses that can be tested with the sign transforms. We will

drop the taxon index t and sample index i for notational comfort. Hence, the notation (N, R,

A, L) refers to the joint distribution of the counts N of a taxon, the median count R of the refer-

ence frame (RF), the 0/1 binary treatment assignment A and the library size L. For expressing

the hypotheses related to the R-signs we will also need (N*, R*, A*, L*), which is independently

distributed, but has the same joint distribution as (N, R, A, L).

In the following paragraphs we formulate several null hypotheses, which will all involve

probabilities of the form P {A≼ B} for a random vector (A, B). In analogy with the definitions

of the signs, this probability is defined as P {A≼ B} = P {A< B} + 0.5P {A = B}. This probability

is known as a probabilistic index. In the following, we will often loosely translate this into the

probability that A is smaller than B. The probabilities involved in the following null hypotheses

also serve as effect sizes. See S2 Text, where we illustrate their interpretation by showing their

relationship to the log fold change (LFC).

Marginal-S null hypothesis.

H0 : PfN≼R j A ¼ 0g ¼ PfN≼R j A ¼ 1g ð3Þ

This hypothesis expresses that the probability that the abundance of the taxon is smaller

than the median abundance in the RF is the same in both treatment groups. The term “mar-

ginal” refers to the fact that the probabilities are not conditional on any sample-specific

covariates.

Marginal-R null hypothesis.

H0 : P
N
R
≼
N∗

R∗
j A ¼ 0;A∗ ¼ 1

� �

¼
1

2
ð4Þ

This hypothesis expresses that the probability that the relative abundance of the taxon in treat-

ment group 0 is smaller than its relative abundance in treatment group 1, equals 50%.

Conditional-S null hypothesis. The conditional-S null hypothesis,

H0 : PfN≼R j A ¼ 0; L ¼ lg ¼ PfN≼R j A ¼ 1; L ¼ lg ð5Þ

for all l, expresses that the probability that the abundance of the taxon is smaller than the

PLOS ONE Simple and flexible sign and rank-based methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0292055 September 26, 2023 4 / 17

https://doi.org/10.1371/journal.pone.0292055


median abundance in the RF is the same in both treatment groups, given that both library

sizes are equal to l.
Conditional-R null hypothesis.

H0 : P
N
R
≼
N∗

R∗
j A ¼ 0;A∗ ¼ 1; L ¼ L∗

� �

¼
1

2
ð6Þ

This hypothesis expresses that the probability that the relative abundance of the taxon in treat-

ment group 0 is smaller than its relative abundance in treatment group 1, equals 50%, given

that the library sizes are equal.

Semiparametric models

We now explain how the hypotheses formulated in the previous subsection can be tested with

the S and R signs. This will involve established models and parameter estimation theory. In the

context of our applications, these models can be considered as semiparametric because they do

not impose strong distributional assumptions on (N, R, A, L) or on (N, R) j (A, L). This will be

explained in some more detail after the models have been introduced.

Logistic regression model for the marginal-S null hypothesis. The marginal-S null

hypothesis (3) can be tested by fitting a logistic regression model with the S-sign transforms as

outcome variables. In particular, logit (P {N≼ R j A}) = β0 + βAA. The original null hypothesis

now becomes H0 : βA = 0. Upon using the S-sign transforms ISi as outcome data, and the corre-

sponding treatment group indicators Ai, all assumptions required for valid inference with the

logistic regression model and maximum likelihood parameter estimation methods, are

satisfied.

Logistic regression model for the conditional-S null hypothesis. The conditional-S null

hypothesis (5) can be tested by fitting a logistic regression model with the S-sign transforms as

outcome variables and A and L as regressors, logit (P {N ≼ R j A, L}) = β0 + βAA + βLL. The

original null hypothesis now becomes H0 : βA = 0. When the linearity and additivity of the

model are correct, all assumptions required for valid inference within the maximum likelihood

framework, are satisfied. The model can be further extended by adding other covariates or fac-

tors (e.g. confounders, blocking or stratification factors). We can thus make use of the flexibil-

ity of the logistic regression framework.

Probabilistic index models for the marginal-R null hypothesis. The marginal-R null

hypothesis (4) can be tested by fitting a probabilistic index model (PIM) [18] with N/R as out-

come variables. In particular, logit PfNR≼
N∗
R∗ j A;A

∗g
� �

¼ bAðA∗ � AÞ. The original null

hypothesis now becomes H0 : βA = 0. Note that considering N/R as outcome variable is equiva-

lent to using the R-sign transforms as pseudo-observations in the estimating equations of the

PIM (see Section 3.1 of [18]).

Probabilistic index models for the conditional-R null hypothesis. The conditional-R

null hypothesis (6) can be tested by fitting a probabilistic index model of the form

logit PfNR≼
N∗
R∗ j A;A

∗; L; L∗g
� �

¼ bAðA∗ � AÞ þ bLðL∗ � LÞ. The original null hypothesis now

becomes H0 : βA = 0. The interpretation of the parameter βA comes from restricting the model

to A = 1, A* = 0 and L = L*, from which we find

expit bAð Þ ¼ P N
R≼

N∗
R∗ j A ¼ 1;A∗ ¼ 0; L ¼ L∗

� �
. The validity of the inference relies on the

additivity and linearity of the model. Also here we can maximally make use of the flexibility of

PIMs, and include extra covariates or factors.

Regression imputation estimators for the marginal-S null hypothesis. A disadvantage

of the conditional approach may be that adding a regressor to a logistic regression model or

PIM does not necessarily increase the power of the test for H0 : βA = 0 [23]. Moreover, these
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models are generally not collapsible [24]. Hence, when further sample-specific covariates are

added to the regression model, the interpretation of the parameter βA will change accordingly.

Moreover, the original research question will often be most naturally translated into the mar-

ginal null hypothesis (3) or (4), irrespective of the presence of covariates in the data set.

In the semiparametric literature estimators have been proposed that allow for the use of

covariates, while still estimating a parameter that has the marginal effect interpretation [25,

26]. These estimators still refer to the marginal effect size, while having increased efficiency by

using the covariate information. Such estimators have been proposed by [27, 28] for logistic

regression models, but they were particularly developed in the context of randomised clinical

trials and their validity depends on the randomisation assumption. With A and L the usual

notation for treatment assignment and library size, respectively, and with X (vector of) other

covariates, the randomisation assumption is equivalent to A⫫ (L, X). Note, however, that in

the context of microbiome studies and in the absence of X, this assumption becomes A⫫ L,

which is satisfied even when the treatment assignment is not random. The reason is that the

library size L is a technical source of variability that does not depend on the treatment

assignment.

This estimator is referred to as the regression imputation (RI) estimator. It uses predictions

from conditional models so that covariate information is used, but the final estimator averages

out the conditioning so that the marginal effect size is still targeted. In the literature, the RI

estimator is known by several alternative names, among which the targeted maximum likeli-

hood estimator [28], standardized estimator [29], and augmented estimator [30]. We imple-

mented the RI estimator of Moore and van der Laan [28]:

1. Fit a logistic regression model with the S-Sign transform as outcome, and with an intercept

and main effects for the treatment indicator A and the library size L. Let p̂ðA; LÞ ¼
expit ðb̂0 þ b̂AAþ b̂LLÞ denote the estimate of the probability P {N ≼ R j A, L}.

2. Let p̂ðaÞ ¼ 1

n

Pn
i¼1

p̂ða; LiÞ, a = 0, 1.

3. The RI estimator of the odds ratio for the marginal effect of the treatment is given by

expðb̂RI
A Þ ¼ ½p̂ð1Þ=ð1 � p̂ð1ÞÞ�=½p̂ð0Þ=ð1 � p̂ð0ÞÞ�.

4. The variance of b̂RI
A is estimated as ŝ2

A ¼
1

n2

Pn
i¼1

IC2

i with

ICi ¼
1

p̂ð1Þð1 � p̂ð1ÞÞ

Ai

d
ðISi � p̂ð1; LiÞÞ þ p̂ð1; LiÞ � p̂ð1Þ

� �

�
1

p̂ð0Þð1 � p̂ð0ÞÞ

1 � Ai

1 � d
ðISi � p̂ð0; LiÞÞ þ p̂ð0; LiÞ � p̂ð0Þ

� �

and d ¼
Pn

i¼1
Ai=n.

Testing for no treatment effect, H0 : b
RI
A ¼ 0, makes use of the test statistic b̂RI

A =ŝA, which is

asymptotically standard normal under the null hypothesis. The variance estimator can be

improved by applying a non-parametric bootstrap procedure to estimate the sampling distri-

bution of b̂RI
A .

Regression imputation estimators for the marginal-R null hypothesis. For PIMs RI

estimators of the marginal effect size have been proposed by Vermeulen, Thas, and Van-

steelandt [31]. Their theory also only holds for random treatment assignment, but, as

before, the condition A⫫ L is sufficient when no other covariates are included and this
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condition always holds in microbiome studies. The estimator of the marginal effect size

b
RI
A ¼ P N

R≼
N∗
R∗ j A ¼ 0;A∗ ¼ 1

� �
and its variance estimator are computed as follows:

1. Fit a PIM with main effects for the treatment indicator A and library size L. Let p̂ðL1; L2Þ ¼

expit ðb̂A þ bLðL2 � L1ÞÞ denote an estimate of the probability

P N
R≼

N∗
R∗ j A ¼ 0;A∗ ¼ 1; L ¼ L1; L∗ ¼ L2

� �
.

2. The marginal effect size is then estimated as

b̂RI
A ¼

1

nðn � 1Þ

Xn

i¼1

X

j6¼i

p̂ðLj; LiÞ:

3. The variance of b̂RI
A is estimated as ŝ2

A ¼
1

n2

Pn
i¼1

ICi with

ICi ¼
1 � Ai

1 � d

1

n � 1

X

j6¼i

Aj:IRij
d

 !

þ
Ai

d

1

n � 1

X

j6¼i

ð1 � AjÞ:IRji
1 � d

 !

� 2b̂RI
A

þðAi � dÞ
1

n � 1

X

j6¼i

p̂ðLi; LjÞ

1 � d
�
p̂ðLj; LiÞ

d

� �" #

where d ¼
Pn

i¼1
Ai=n.

Testing for no treatment effect can be done with the test statistic b̂RI
A =ŝ, which asymptoti-

cally has a standard normal distribution under the null hypothesis.

Some notes on the practical implementation

Selecting an appropriate reference frame in microbiome data is challenging, particularly

because of the typical characteristics of microbiome data (e.g. compositionality, sparsity, over-

dispersion). If prior information exists on taxa that are uniformly distributed across samples

and conditions, and thus do not relate to the condition, these taxa can be used as reference

taxa. However, this information is often not available. For the sign methods, we have chosen

RioNorm2 for selecting the reference frame [19]. RioNorm2 selects a group of taxa for which

the relative abundances have low variation across all samples and conditions, under the

assumption that most taxa are not differentially abundant. It comes with the recommendation

to only use taxa that are present in at least 80% of the samples with an average count larger

than 5. Since this reference count R is by construction very often larger than the count N of an

individual taxon (e.g. a rare taxon), the S-sign I {N≼ R} is very often zero. We, therefore, sug-

gest to normalise the RF count by multiplying R with the median of the read counts of the tar-

get taxon, divided by the median of the counts of the RF.

The S-sign methods are implemented using logistic regression models, which can cause

problems when there is complete or quasi-complete separation. This separation is caused by

the grouping variable A perfectly predicting the outcome variable. A solution to this problem

was fitting logistic regression models using Firth’s bias reduction method [32].

Simulation study

Simulations were used to evaluate the performance of the new methods in terms of the sensi-

tivity, type I error rate and the control of the false discovery rate (FDR).
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All analyses were conducted with R version 4.0.3 [33]. Table 1 in S1 Appendix specifies the

details of the R packages used in this simulation study. Additionally, diagnostic plots of the

SPsimSeq simulated data are provided (Figs 4–11 in S1 Appendix), comparing important char-

acteristics of the simulated data with the source data. Overall, these plots show that the simu-

lated data mimics the source data well. Small differences between the simulated and source

data reflect the settings of the various scenarios, e.g. in setting B, the number of not-differen-

tially abundant taxa was too small in the source data set. It was therefore required to sample

these not-differentially abundant taxa with replacement, which affects the variance of the taxa

abundance levels in the simulated data.

Simulation study set up

As a first simulation framework, we use the SPSimSeq simulation method [34] for simulating

realistic data. This method starts from a real dataset (source data). Our source data originates

from a study on the effect of diet on the human gut microbiome [35], referred to as HGM

data. Only the 1000 most abundant taxa were used to start with.

The HGM data was further preprocessed by filtering out low abundant taxa. Two filtering

strategies were implemented. In setting A, all taxa that were present in at most one sample

were removed, which produced data with high sparsity (±77% of the counts are zero). In set-

ting B, all taxa that were present in at most five samples were removed, resulting in data with

low to moderate sparsity (±39% zeroes). The two preprocessed data sets were used as source

data. SPsimSeq simulates differential abundance in the data by estimating the taxa abun-

dance distributions in the two different groups in the source data. Subsequently, new data

were sampled from each of these distributions. This was done for taxa with an observed log-

fold change in the source data which was at least as large as a predefined threshold (here:

0.5, 1, and 1.5). Sample sizes of 25, 50, and 75 per group were simulated. For each simulation

scenario (i.e. a unique combination of sample size and log-fold change threshold), 100 data

sets were simulated. These data sets had a fixed number of taxa (250) of which 10% was dif-

ferentially abundant, and for the most extreme scenarios, 5% and 20% differential abun-

dance was also considered. See Fig 1 in S1 Appendix for a visualization of the main

simulation design.

In a second set of simulations, microbiome data were generated with the parametric simu-

lation framework of [6]. These parametric simulations were based on the NB distribution, for

which the parameters were estimated by means of maximum likelihood from the source data

for settings A and B. For each simulated data set, parameter values of the NB distribution were

sampled from the pool of estimated parameters. In particular, the mean and overdispersion

parameters were sampled from the same taxon to secure any mean-dispersion relationship,

and the library sizes were sampled with replacement from the observed library sizes of the

source data set. We considered a FC of 1.5 and 5 in scenarios with 10% and 70% differentially

abundant taxa (see S1 Appendix section ‘Negative Binomial Simulation Scenarios’ for more

details). The total number of taxa was fixed at 250. Sample sizes of 25 and 75 per group were

considered. For each unique combination of sample size and fold change, 100 data sets were

simulated. Note that introducing differential abundance in 70% of the taxa violates the

assumption that the majority of taxa are not differentially abundant for RioNorm2. Neverthe-

less, we included these scenarios as not all microbiome data will comply with this assumption.

This analysis thus illustrates the effect of violating the assumption on the performance of the

sign methods.

See Figs 2 and 3 in S1 Appendix for visualisations of the library size and sparsity distribu-

tions of the data for the different simulation frameworks and settings.
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The RF for the sign methods were selected by RioNorm2 with default values in setting B,

but in setting A we adjusted the default settings to only include taxa that were observed in at

least 60% of the samples instead of 80%.

The new methods were compared to the following competitors: WMW test [36], edgeR [9],

DESeq2 [10], metagenomeSeq [37], ALDEx2 [16], corncob [38], ZINQ [39] and ANCOM-BC

[17]. These methods were used with their default settings.

For each simulated data set, taxa that were present in less than 5% of the samples were

trimmed from the data before analysis [40]. All p-values were adjusted with the Benjamini and

Hochberg procedure [41]. The nominal false discovery rate was set at 5% for all analyses.

Results

Since it is not our intention to present an empirical benchmark study for comparing all meth-

ods for testing for DA, but rather to focus on how the new methods compare to the competi-

tors, the results of the empirical FDRs and sensitivities for the various simulation scenarios

and tests are summarised in only a few plots showing the sensitivity versus FDR. We prepared

separate plots for settings A and B of the SPSimSeq (Fig 1) and NB (Fig 2) simulations. More

detailed results are presented in S2 Appendix.

The type I error rate control was also assessed (see Figs 3, 6, 9, 12, 15, 18, 21 and 24 in S2

Appendix). We can see that the new tests control the type I error rate well at the 5% level of sig-

nificance, except in the extreme scenarios of the NB simulations with 70% DA taxa and a

strong compositional effect (FC = 5). In these extreme scenarios also the the competitor tests

have no control over the type I error rate.

For the SPSimSeq simulations, Fig 1 shows that the new methods control the FDR quite

well overall. However, the S-Sign RI method in setting A is a clear exception. Many competi-

tors do not succeed in controlling the FDR; for example, MetagenomeSeq in Setting A has

FDRs of about 75%. Some of the other competitors succeed well in the FDR control: e.g.

ANCOM-BC and the WMW test. The conclusions for the competitors agree with the litera-

ture; see e.g. [6, 42, 43].

In terms of the sensitivity, the R sign methods generally perform better than the S-Sign

methods. The R-sign methods show similar sensitivities as ANCOM-BC and the WMW test.

Note that in discussing the sensitivity, for a fair comparison, we only considered tests with a

reasonable FDR control. The performance of the sign methods also depends on the perfor-

mance of RioNorm2 to select a RF without DA taxa. In Setting B, RioNorm2 had no problems

selecting RFs without DA (Table 2 in S1 Table). In Setting A, RioNorm2 had more difficulties

selecting RFs without DA taxa, which reflects on the reduced sensitivity of the sign methods in

this setting. The impact of the misspecification of the RF was especially noticeable for the S-

sign methods and less for the R-sign methods, as the R-sign methods still have competitive

sensitivities while controlling the FDR.

For the parametric negative binomial simulations, Fig 2 shows that the new methods

again control FDR quite well, with the exception of some of the conditional Sign methods in

the small fold-chance scenarios (FC = 1.5). Among the competitors, metagenomeSeq, edgeR

and ZINQ have very large FDRs; the others show rather good FDR control. However, under

the extreme scenarios with 70% DA (Figs 15 and 18 in S2 Appendix), no competitor nor

sign method controlled the FDR in both settings, which illustrates that all included methods

have difficulties in FDR control when the majority of taxa are differentially abundant. Our

results also show that in the 70% DA case, all selected reference frames contain differential

abundant taxa (see Tables 3 and 4 in S1 Table). This explains the inflated FDR of the sign

methods.
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In terms of sensitivity, the new methods are comparable to the WMW test. The highest

powers are seen for DESeq2, followed by ANCOM-BC. The differences in sensitivity become

smaller as the sample size and the effect size increase. Note that DESeq2 shows here very good

behavior, whereas this was not so under all the SPSimSeq simulations.

In order to ensure the generalizability of the sign methods across different microbiome stud-

ies with varying characteristics, we also applied the SPsimSeq simulation framework to an addi-

tional source dataset from a study on the coinfection of Plasmodium vivax and Soil-Transmitted

Fig 1. Empirical FDRs vs sensitivities of the sign methods and competitors for the various simulation scenarios with SPSimSeq. The top row contains

the results of scenarios with 10% DA taxa. The bottom row contains the results of the most extreme scenarios with 5% and 20% taxa. Left: Setting A (high

sparsity) and Right: Setting B (low sparsity).

https://doi.org/10.1371/journal.pone.0292055.g001
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Helminths [44]. This microbiome dataset comes from a different host (children) and was stud-

ied under different experimental conditions (co-infections versus no infection). Young children

have lower gut microbiome diversity than adults. The results of this additional simulation study

(see S3 Appendix) are very similar to those based on the HGM source data. However, in Setting

A, ANCOM-BC is more sensitive in comparison to the results based on the HGM data. This dif-

ference in sensitivity can be explained by the difference in library size; the HGM dataset and the

new source dataset have a median library size of 1977 and 57735.5, respectively.

Based on all simulations, we can conclude that overall the new methods control the FDR

quite well, with a few exceptions. Among the competitors, only ANCOM-BC, ALDEx2 and

the Wilcoxon rank sum test have overall good FDR control. Note that DESeq2 showed very

good behaviour in the NB simulations, whereas this was not so under all the SPSimSeq simula-

tions. The explanation is that DESeq2 makes use of the NB assumption; see also [6, 11, 45, 46].

The sensitivity of the R-Sign methods is generally higher than for the S-Sign methods, and it is

comparable to the sensitivity of ANCOM-BC in realistic scenarios. However, when the data

has high taxa abundances, ANCOM-BC outperforms the other methods. Among the R-sign

methods, the RI method is often the best, but it may sometimes lose FDR control. We did not

see important differences between the marginal and conditional R-Sign methods.

Case study

In this case study, the application and the interpretation of the new methods are illustrated by

reanalysing 16S rRNA count data of 292 fecal samples collected by [47]. The objective is to

Fig 2. Empirical FDRs vs sensitivities of the sign methods and competitors for the various simulation scenarios with the negative Binomial

distribution. The top row contains the results of scenarios with FC = 1.5, and the bottom row contains the results of scenarios with FC = 5. Left: Setting A

(high sparsity) and Right: Setting B (low sparsity).

https://doi.org/10.1371/journal.pone.0292055.g002
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identify taxa that are differentially abundant between 120 colorectal cancer (CRC) patients and

172 healthy patients.

The analysis is focused on the genus level, and taxa that were present in less than 5% of the

samples were trimmed from the data. We refer to S2 Table for some summary statistics on the

data. All hypothesis tests were performed at the nominal 5% FDR level, and the original p-val-

ues were adjusted by the Benjamini and Hochberg procedure [41]. The selection of the RF was

done by RioNorm2 [19]. The RF contains a group of 4 relatively invariant taxa, which share

the same taxonomic family (Lachnospiraceae). This could imply that they have similar charac-

teristics and can give a biological interpretation to the RF.

The taxon Peptostreptococcus, which was identified as a taxon that is strongly associated

with CRC by [47], is used here to illustrate the interpretation of the effect size parameter βA.

Additionally, we took sample specific variables into account to investigate the effect of the

covariates on the effect sizes. We included the gender of the patients, and the results of a fecal

immunochemical test (FIT) which is a noninvasive colorectal cancer screening test that mea-

sures hidden blood in fecal samples. We applied the S-sign and R-sign methods to test H0 : βA
= 0 versus H1 : βA 6¼ 0. Parameter estimates, standard errors (SE) and adjusted p-values are

presented in Table 1.

First we discuss the results of the marginal S-sign method, which targets a marginal effect

size which is also known as the marginal odds ratio (OR), quantified by

expðbAÞ ¼
PfN≼RjA¼1g=ð1� PfN≼RjA¼1gÞ

PfN≼RjA¼0g=ð1� PfN≼RjA¼0gÞ
. The estimate of the marginal OR equals exp(−3.135) = 0.044

(p< 0.001), indicating a significant difference in the odds of Peptostreptococcus having a

smaller abundance than the adjusted median of the RF, between CRC patients (A = 1) and

healthy patients (A = 0). More specifically, the odds of Peptostreptococcus having a smaller

abundance than the adjusted median of the RF for CRC patients is 96% lower than for healthy

patients. Since the RF is approximately constant between groups, we could say that Peptostrep-
tococcus is more abundant in CRC patients compared to healthy patients, relative to the RF.

The conditional S-sign method was used to take the library size, gender and the results of FIT

into account, which comes with the conditional OR¼ log
PfN≼RjA¼1;L¼l;Gender¼Gender;FIT¼FITg

ð1� PfN≼RjA¼1;L¼l;Gender¼Gender;FIT¼FITgÞ

� �

PfN≼RjA¼0;L¼l;Gender¼Gender;FIT¼FITg
ð1� PfN≼RjA¼0;L¼l;Gender¼Gender;FIT¼FITgÞ

� �

0

@

1

A,

estimated as 0.058 (p< 0.001). This estimated conditional OR can be interpreted as follows:

Peptostreptococcus is more abundant in CRC patients than in healthy patients, relative to the

RF, given that the library sizes, gender and FIT are constant. The RI S-sign method considers

the library size, gender and FIT as auxiliary information, while still providing an estimator of

the marginal effect size, but with potentially increased efficiency (lower variance) as compared

Table 1. Estimates of the effect size parameters βA for the S-sign and R-sign methods (SE and two-sided p-values

are also reported). The S-sign estimates for βA are a result from the ML parameter estimates of the logistic regression

models taking the library size, gender and FIT into account. The estimates of the R-sign methods are a direct result of

fitting PIMs, also taking the library size, gender and FIT into account.

Method Estimate S.E. p-value

S-sign Marginal -3.135 0.671 <0.001

Conditional -2.841 0.698 <0.001

RI -2.797 0.528 <0.001

R-sign Marginal 0.511 0.091 <0.001

Conditional 0.433 0.113 <0.001

RI 0.606 0.021 <0.001

https://doi.org/10.1371/journal.pone.0292055.t001
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to the marginal S-Sign method. The conclusion from this analysis is very similar to the conclu-

sion from the marginal S-sign analysis.

Next we discuss the results from the R-sign methods. The effect size measure for the mar-

ginal R-sign method, also known as the marginal probabilistic index (MPI), is defined as

P{N/R≼ N*/R*|A = 0, A* = 1} = expit (βA). With expit ðb̂AÞ ¼
expðb̂AÞ

1þexpðb̂AÞ
¼ 0:625, we can con-

clude that an CRC patient has an estimated probability of 62.5% to have a higher abundance of

Peptostreptococcus than a healthy patient, relative to RF. The MPI is extended to a conditional

probabilistic index (CPI) which accounts for the library size, gender and FIT results of the

patients, with expit (βA) = P{N/R ≼ N*/R*|A = 0, A* = 1, L = L*, Gender = Gender*, FIT =

FIT*}. The CPI is estimated as 0.61, which is interpreted as follows: with an estimated probabil-

ity of 61% a CRC patient has a higher abundance of Peptostreptococcus than a healthy patient,

relative to the RF and given that the library sizes, gender and FIT coincide. The RI R-sign esti-

mator makes use of the data of the covariates, while still targeting the MPI, but potentially hav-

ing an increased efficiency. The results in Table 1 show that the RI R-sign estimator has indeed

a smaller standard error than the marginal R-sign method, and using the data of the covariates

has no substantial effect on the effect size estimate b̂A.

Finally, we compared the pairwise concordance of the best-behaving competitors from the

simulation study (ANCOM-BC and the WMW test) with the sign methods and some competi-

tors. The pairwise concordance was based on the number of shared discoveries from a set of

top-ranked taxa specified by both methods. The results are shown in S1 and S2 Figs.

Discussion

We have introduced two types of sign transformations for microbiome data. Both transforma-

tions make use of a data-driven set of reference taxa, but can also make use of a user-defined

set of reference taxa. We have chosen for RioNorm2 as a method for for selecting the reference

frame (RF), but our methods are compatible with any RF selection method. The first type of

sign transformation (S-sign) basically is a 0/1 indicator for a taxon count being smaller or

larger than the adjusted median count of the RF. The second type (R-sign) is also a 0/1 indica-

tor, but it compares taxon counts between samples; these R-signs are related to rank methods.

These sign transforms are naturally related to logistic regression models (S-sign) and probabi-

listic index models (R-sign). For both types of signs we have shown that a clever use of these

models allows for (1) valid inference, (2) informative interpretation of parameters, and (3) our

methods inherit the flexibility of these two classes of models (e.g. including covariates, con-

founders, blocking factors, . . .). Moreover, we have proven that these methods possess the

three basic properties (scale invariance, permutation invariance, and sub-compositional coher-

ence) required for proper compositional data analysis.

The simulation study has shown that the choice of the RF may affect the performance of the

sign methods. In particular, for settings with low sparsity and dispersion (evaluated using the

coefficient of variation), RioNorm2 performance was the best. As a result, the sign methods

perform well, and particularly the R-sign methods have similar power compared to the best

competitor. However, RioNorm2 has more difficulty in selecting RFs with no differentially

abundant taxa in settings with high sparsity and dispersion, which is reflected in some power

loss. Nevertheless, the R-sign methods still behave similarly to the best competitor, and the S-

sign methods generally still control the FDR well. It is important to note that when the data

has large taxa abundances and thus a large median library size, ANCOM-BC will outperform

all other methods.

In scenarios where the majority of taxa are differentially abundant and there is a strong

compositional compensation effect, RioNorm2 has problems selecting reference frames with
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no differential abundant taxa, resulting in an inflated FDR. From our simulation results we

also conclude that none of the competitors are valid in this scenario. Recall that the sign meth-

ods can be used with any external method for reference frame identification, including prior

knowledge on stable taxa. This may perhaps leave an opportunity for valid inference.

A limitation of the simulation study is our choice of only using the default settings of all

methods. Optimising or varying the tuning parameters of all methods would bring us too far.

Moreover, default settings are also often used in other benchmarking studies, and they are

often used in practice by typical users of these methods.

An important strength of our approach is that the methods do not require strong distribu-

tional assumptions and they inherit the flexibility of regression models. In the simulation

study we have empirically demonstrated that our methods succeed in controlling the nominal

FDR level, while having competitive sensitivity. Although the methods have been introduced

here for microbiome data analysis, they may also serve other applications that are not limited

to compositional data. For example, the data and problems in differential gene expression

studies (RNASeq) are very similar to those in microbiome studies, but the data are traditionally

not considered compositional.
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