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Summary. Whenever inference for variance components is required, the choice between one-sided and
two-sided tests is crucial. This choice is usually driven by whether or not negative variance components
are permitted. For two-sided tests, classical inferential procedures can be followed, based on likelihood
ratios, score statistics, or Wald statistics. For one-sided tests, however, one-sided test statistics need to be
developed, and their null distribution derived. While this has received considerable attention in the context
of the likelihood ratio test, there appears to be much confusion about the related problem for the score test.
The aim of this paper is to illustrate that classical (two-sided) score test statistics, frequently advocated in
practice, cannot be used in this context, but that well-chosen one-sided counterparts could be used instead.
The relation with likelihood ratio tests will be established, and all results are illustrated in an analysis of
continuous longitudinal data using linear mixed models.
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1. Introduction
In a variety of applied statistical problems, there is a need
for inference on variance components. This includes a variety
of applied fields, for example, random-effects ANOVA mod-
els (Nelder, 1954), linear mixed models (Verbeke and Molen-
berghs, 2000), generalized linear and nonlinear (mixed) mod-
els (Jacqmin-Gadda and Commenges, 1995), overdispersion
(Cox, 1983; Smith and Heitjan, 1993; Hines, 1997; Lu, 1997),
clustering (Britton, 1997), and homogeneity in stratified anal-
yses (Liang, 1987).

To fix ideas, we will focus on the setting of a relatively
simple linear mixed model, the so-called random-intercepts
model:

Yij = x ′
ijβ + bi + εij , (1)

where Y ij is the response for member j = 1, . . . , ni of clus-
ter i = 1, . . . , N , xij is a vector of known covariate val-
ues, β is a vector of unknown regression coefficients, and
bi ∼N(0, τ 2) is a cluster-specific random effect, assumed to be
independently distributed from the residual-error components
εij ∼ N(0, σ2). Classical inferential procedures are based on
the likelihood of the marginal model, obtained by integrating
(1) over the random effects. Grouping the Y ij into a vector Y i

and assembling the rows xij
′ into a matrix Xi, this marginal

distribution is

Y i ∼ N
(
Xiβ , τ

2Jni
+ σ2Ini

)
, (2)

in which Ini
denotes the identity matrix of dimension ni, and

where Jni
equals the ni × ni matrix containing only ones.

Regarding the variance component τ 2 in the above model,
one can take two views. In the first view, where the focus is
entirely on the resulting marginal model (2), negative values
for τ 2 are perfectly acceptable (Nelder, 1954; Verbeke and
Molenberghs, 2000, Section 5.6.2), since this merely corre-
sponds to the occurrence of negative within-cluster correlation
ρ = τ 2/(τ 2 + σ2). This might occur, for example, in a context
of competition such as when littermates compete for the same
food resources. In such a case, the only requirement is that
τ 2 + σ2 > 0, for V i = τ 2Jni

+ σ2Ini
to be a positive definite,

marginal covariance matrix. Further discussions on negative
variance components can be found in Thompson (1962) and
Searle, Casella, and McCulloch (1992). In the second view,
when the link between the marginal model (2) and its gen-
erating hierarchical model (1) is preserved, thereby including
the concept of random effects bi and perhaps even requiring
inference for them, it is imperative to restrict τ 2 to nonnega-
tive values.

The first situation, which we will term the uncon-
strained case, is standard regarding inference for the variance
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component τ 2. In the second situation (the constrained case),
however, one typically needs one-sided tests of the null hy-
pothesis

H0 : τ 2 = 0 versus HA1 : τ 2 > 0. (3)

As the null hypothesis is now on the boundary of the parame-
ter space, and classical inference no longer holds, appropriate
tailored test statistics need to be developed and the corre-
sponding (asymptotic) null distributions derived.

While this one-sided approach has received considerable at-
tention in the case of the likelihood ratio test (Self and Liang,
1987; Stram and Lee, 1994, 1995), there is still much confu-
sion about the related problem for the score test. For some
uses of a score test in boundary situations, see Liang (1987),
Dean and Lawless (1989), Dean (1992), Gray (1995), Jacqmin-
Gadda and Commenges (1995), Lin (1997), Dean, Ugarte,
and Militino (2001), Gueorguieva (2001), Militino, Ugarte,
and Dean (2001), and Smith and Heitjan (1993). Some au-
thors implicitly take the unconstrained, only two-sided view,
with a few happy exceptions who explicitly adopt a one-
sided approach (Paul and Islam, 1995). Jacqmin-Gadda and
Commenges (1995), le Cessie and van Houwelingen (1995),
Lin (1997), and Dean et al. (2001) do not explicitly specify
the alternative model, thereby implicitly assuming two-sided
alternatives, while clearly being in a one-sided setting. We
hope to illustrate that, when required by the scientific prob-
lem, a fully one-sided approach is both feasible and more ap-
propriate. Silvapulle and Silvapulle (1995) have shown how
a one-sided score test can be defined, both in the scalar as
well as in the vector parameter case. Important related work
is given in Hall and Præstgaard (2001). While these authors
also focus on the restricted score tests in the context of mixed
models, there are three important differences with our take
on the problem. First, Hall and Præstgaard (2001) explicitly
advocate the use of restricted score tests, thereby improving
upon earlier work (Lin, 1997) in terms of efficiency. We point
out that the choice between a constrained/unconstrained set-
ting should be tightly linked to a constrained/unconstrained
alternative space. Second, since our score test statistics fol-
low from the work of Silvapulle and Silvapulle (1995), their
analytic forms are slightly different from those of Hall and
Præstgaard (2001). Indeed, based on the results of Silvapulle
and Silvapulle (1995), who showed that the asymptotic equiv-
alence of the likelihood ratio and score tests holds also in
the constrained case, the null distribution of the one-sided
score test will be derived. Finally, we put a lot of emphasis on
the extension of the well-known asymptotic equivalence of
the likelihood ratio and score tests to the constrained case, as
follows from Silvapulle and Silvapulle (1995). We will argue
that, based on this equivalence, the researcher has full choice
between both testing procedures, and moreover, opting for
a constrained likelihood ratio test has many computational
advantages in practice. Emphasis will be on intuitive expla-
nation of the theoretical results, rather than on mathematical
details.

In Section 2, we continue with our initial model (1), and
we will show how one-sided likelihood ratio and score tests
can be constructed, and the corresponding asymptotic null
distribution will be derived heuristically. Afterwards, in Sec-
tions 3 and 4, more general results will be discussed for the

likelihood ratio test and for the score test, respectively. Note
that our aim is not to argue for or against score tests, but
rather to show how to properly use one-sided score tests for
variance components. Computational issues are discussed in
Section 5. In Section 6, the results will be illustrated in an
analysis of continuous longitudinal measurements, using lin-
ear mixed models, where the need for random effects is to be
tested. Finally, Section 7 summarizes the main results.

2. The Random-Intercepts Model
To introduce our ideas in a simple but generic setting, we con-
tinue the discussion of the random-intercepts model (1). Un-
der the unconstrained parameterization, i.e., the model under
which negative values for τ 2 are allowed, classical inferential
tools are available for testing the general two-sided hypothesis

H0 : τ 2 = 0 versus HA2 : τ 2 �= 0.

Wald, likelihood ratio, and score tests are then asymptoti-
cally equivalent, and the asymptotic null distribution is well
known to be χ2

1 (Cox and Hinkley, 1990). Under the con-
strained model, i.e., the model where τ 2 is restricted to the
nonnegative real numbers, the one-sided hypothesis (3) is the
only meaningful one.

Appropriate test statistics can now be obtained as follows.
Suppressing dependence on the other parameters, let �(τ 2) de-
note the log likelihood, as a function of the random-intercepts
variance τ 2. Further, let τ̂ 2 denote the maximum likelihood
estimate of τ 2 under the unconstrained parameterization. We
first consider the likelihood ratio test, with statistic

TLR = 2 ln

{
maxHA1 �(τ

2)

maxH0 �(τ
2)

}
.

Two cases, graphically represented in Figure 1, can now be
distinguished. Under case A, τ̂ 2 is positive, and the likeli-
hood ratio test statistic is identical to the one that would
be obtained under the unconstrained parameter space for τ 2.
Hence, conditionally on τ̂ 2 ≥ 0, T LR has asymptotic null dis-
tribution equal to the classical χ2

1. Under case B however, we
have that, under HA1 as well as under H0, �(τ

2) is maximized
at τ 2 = 0, yielding T LR = 0. Further note that, underH0, both
cases occur with 50% probability. Hence, the asymptotic null

Figure 1. Graphical representation of two different situa-
tions, when developing one-sided tests for the variance τ 2 of
the random intercepts bi in model (1).
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distribution of T LR is obtained from

P (TLR > c | H0)

= P
(
TLR > c |H0, τ̂

2 ≥ 0
)
P
(
τ̂ 2 ≥ 0 |H0

)
+P

(
TLR > c |H0, τ̂

2 < 0
)
P
(
τ̂ 2 < 0 |H0

)
=

1

2
P
(
χ2

1 > c
)

+
1

2
P
(
χ2

0 > c
)
,

where χ2
0 denotes the distribution with all probability mass

at zero. Hence, the asymptotic null distribution of the one-
sided likelihood ratio test statistic is a mixture of two chi-
squared distributions, with degrees of freedom 0 and 1, and
with equal mixing proportions 1/2. This was one of Stram and
Lee’s (1994, 1995) special cases. Note that, whenever τ̂ 2 ≥ 0,
the observed likelihood ratio test statistic is equal to the one
under the unconstrained model, but the p-value is half the
size of the one obtained from the classical χ2

1 approximation
to the null distribution.

We now consider the score test. The usual form of the test
statistic is given by

TS =

{
∂�(τ 2)

∂τ 2

∣∣∣∣
τ2=0

}2{
−∂

2�(τ 2)

∂τ 2∂τ 2

∣∣∣∣
τ2=0

}−1

. (4)

Nuisance parameters are suppressed from notation, and re-
placed by their maximum likelihood estimates (MLEs). In
the special case of (2) with ni ≡ n, straightforward algebra
produces:

TS =
Nn

2

(C − 1)2

2nC − 1
,

with

C =
1

σ2

1

Nn

N∑
i=1

(
n∑
j=1

yij

)2

,

in which σ2 is replaced by its MLE under the null hypothesis,
σ̂2 say. Without loss of generality, it is assumed that the fixed-
effects parameters are zero. In the reverse case, yij needs to
be replaced with appropriate residuals.

Now, score test (4) implicitly assumes a two-sided alterna-
tive. Hence, the test statistic itself need to be redefined ap-
propriately in order to be able to discriminate between pos-
itive and negative alternative values for τ 2. The same two
cases as for the likelihood ratio test can be considered (see
Figure 1). Under case A, τ̂ 2 is positive, and the positive score
∂�(τ 2)/∂τ 2 at zero is evidence against H0 in favor of the one-
sided alternative HA1. Hence, (4) can be used as test statis-
tic, provided that τ̂ 2 ≥ 0. This implies that, conditionally on
τ̂ 2 ≥ 0 and under H0, our test statistic asymptotically follows
the classical χ2

1 distribution. Under case B, however, the score
at τ 2 = 0 is negative, and can therefore clearly not be used as
evidence against H0 in favor of HA1. Hence, whenever τ̂ 2 is
negative, (4) is no longer meaningful as test statistic. Consid-
ering that a negative score at zero supports the null hypoth-
esis, a meaningful test statistic is obtained from replacing (4)
by

TS =


{
∂�(τ 2)

∂τ 2

∣∣∣∣
τ2=0

}2{
−∂

2�(τ 2)

∂τ 2∂τ 2

∣∣∣∣
τ2=0

}−1

if τ̂ 2 ≥ 0

0 if τ̂ 2 < 0.

(5)

The corresponding asymptotic null distribution is now ob-
tained from

P (TS > c | H0)

= P
(
TS > c |H0, τ̂

2 ≥ 0
)
P
(
τ̂ 2 ≥ 0 |H0

)
+P

(
TS > c |H0, τ̂

2 < 0
)
P
(
τ̂ 2 < 0 |H0

)
=

1

2
P
(
χ2

1 > c
)

+
1

2
P
(
χ2

0 > c
)
,

which is identical to the null distribution derived earlier for
the likelihood ratio test. This heuristic but insightful argu-
ment will be formalized and generalized in Section 4.

Note that in this scalar case, an equivalent test consists
of appropriately standardizing the score function rather than
embedding it in a quadratic form. The choice between cases
A and B then merely becomes a choice between classical two-
sided versus one-sided Z-type test procedures.

3. Likelihood Ratio Tests
When the use of the likelihood ratio test is envisaged, it is now
well known that hypotheses such as (3) pose nonstandard test-
ing problems (Verbeke and Molenberghs, 2000, pp. 64–73).
Such problems have been known for a long time (Chernoff,
1954; Nelder, 1954). Using results of Self and Liang (1987) on
nonstandard testing situations, Stram and Lee (1994, 1995)
have been able to show that the asymptotic null distribution
for the likelihood ratio test statistic for testing hypotheses
of the type (3) is often a mixture of chi-squared distribu-
tions rather than the classical single chi-squared distribution.
For ANOVA models with independent random effects, this
was already briefly discussed by Miller (1977). This compli-
cation cannot be relieved by considering alternative param-
eterizations for the variance components, contradicting the
once popular but false belief that replacing covariance ma-
trices by their Cholesky decomposition was able to turn the
problem in a standard one. Indeed, under the null hypothesis,
the Cholesky decomposition does not map one-to-one onto the
original parameterization.

Stram and Lee (1994, 1995) discuss likelihood ratio tests
for variance components in linear mixed models, which are
generalizations of (1) to models with multiple, possibly cor-
related, random effects. These models typically appear in the
analysis of continuous longitudinal data. Let Yi denote the
ni-dimensional vector of measurements available for subject
i, i = 1, . . . ,N . A general linear mixed model then assumes
that Yi satisfies

Yi = Xiβ + Zibi+ εi, (6)

in which β is a vector of population-average regression coeffi-
cients called fixed effects, and where bi is a vector of subject-
specific regression coefficients. The bi describe how the evo-
lution of the ith subject deviates from the average evolution
in the population. The matrices Xi and Zi are (ni × p) and
(ni × q) matrices of known covariates. The random effects bi

and residual components εi are assumed to be independent,
with distributions N(0, D), and N(0, σ2Ini

), respectively. In-
ference for linear mixed models is based on maximum likeli-
hood or restricted maximum likelihood estimation under the
marginal model for Yi, i.e., the multivariate normal model
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with mean Xiβ , and covariance V i = ZiDZ i′ + σ2Ini
(Laird

and Ware, 1982; Verbeke and Molenberghs, 2000).
Similar to our simpler model (1), the marginal model does

not require D to be positive definite, while a random-effects
interpretation of the model does, corresponding to the un-
constrained and constrained parameterizations, respectively.
As before, inference under the unconstrained model for the
variance components in D can be based on the classical chi-
squared approximation to the null distribution for the likeli-
hood ratio test statistic. Under the constrained model, Stram
and Lee (1994, 1995) have shown that the asymptotic null
distribution for the likelihood ratio test statistic for testing
a null hypothesis, which allows for k correlated random ef-
fects versus an alternative of k + 1 correlated random effects
(with positive semidefinite covariance matrix Dk+1), is a mix-
ture of a χ2

k and a χ2
k+1, with equal probability 1/2. For more

general settings, e.g., comparing models with k and k + k′

(k′ > 1) random effects, the null distribution is a mixture of
χ2 random variables (Raubertas, Lee, and Nordheim, 1986;
Shapiro, 1988), the weights of which can only be calculated
analytically in a number of special cases.

4. Score Tests
Our heuristic arguments in Section 2 have suggested that em-
ployment of score tests for testing variance components under
the constrained parameterization requires replacing the clas-
sical score test statistic by an appropriate one-sided version.
This is where the general theory of Silvapulle and Silvapulle
(1995) on one-sided score tests proves very useful. They con-
sider models parameterized through a vector θ = (λ ′, ψ ′)′,
where testing a general hypothesis of the form

H0 : ψ = 0 versus HA : ψ ∈ C
is of interest. In our context, the alternative parameter space
C equals the nonnegative real numbers (e.g., when testing [3]),
or the set of positive semidefinite covariance matrices D (e.g.,
when testing for the need of variance components in linear
mixed models, Section 3). In general, Silvapulle and Silvapulle
(1995) allow C to be a closed and convex cone in Euclidean
space, with vertex at the origin. The advantage of such a gen-
eral definition is that one-sided, two-sided, and combinations
of one-sided and two-sided hypotheses are included.

Silvapulle and Silvapulle (1995) consider a general class of
score-type test statistics. Applying their theory to our situa-
tion yields the following results. Let the log-likelihood func-
tion be denoted by �(θ). The associated score function equals

SN (θ) =
∂�

∂θ
.

Assume the existence of a nonsingular matrix H(θ) such that,
for N → ∞,

(A1):N−1/2SN (θ)
d→ N{0,H(θ)}

and, for all a ≥ 0,

(A2): sup
||h||≤a

[
N−1/2

{
SN (θ +N−1/2h) − SN (θ)

}
+H(θ)h

]
= op(1).

Further, decompose SN as SN = (S ′
Nλ, S

′
Nψ)′, let Hλλ(θ),

Hλψ(θ), and Hψψ(θ) be the corresponding blocks in H(θ),

and define θH = (λ ′, 0′)′. θH can be estimated by θ̂H =

(λ̂ ′,0′)′, in which λ̂ is the maximum likelihood estimate of λ ,

under H0. Finally, let ZN be equal to ZN = N−1/2SNψ(θ̂H).
A one-sided score statistic can now be defined as

TS := Z ′
NH

−1
ψψ(θ̂H)ZN

− inf
{
(ZN − b)′H−1

ψψ(θ̂H)(ZN − b) | b ∈ C
}
. (7)

Note that our score statistic (5), derived heuristically for the
random-intercepts model, is a special case of the general test
statistic (7). Indeed, when τ̂ 2 is positive, the score at zero
is positive, and therefore in C, such that the infimum in (7)
becomes zero. For τ̂ 2 negative, the score at zero is negative as
well and the infimum in (7) is attained for b = 0, resulting in
TS = 0.

It follows from Silvapulle and Silvapulle (1995) that, pro-
vided regularity conditions (A1) and (A2) hold, for N → ∞,
the likelihood ratio test statistic T LR satisfies T LR = TS + op
(1). Further, if the observed T s equals ts, then the large-
sample p-value equals

p = ξ {ts,Hψψ(θH), C} , (8)

where

ξ(t, B, C) = P[Z ′B−1Z − inf{(Z − b)′B−1(Z − b)|b ∈ C} ≥ t]
and Z ∼N(0, B). Shapiro (1988, equations [3.1] and [3.2]) has
shown that 1 − ξ(t, B, C) equals a weighted sum of chi-squared
probabilities. The results obtained by Stram and Lee (1994,
1995) for the linear mixed model are included in Shapiro’s
results. There are a few additional results available. For ex-
ample, if the null hypothesis allows for k uncorrelated random
effects (with a diagonal covariance matrix Dk) versus the al-
ternative of k + k′ uncorrelated random effects (with diagonal
covariance matrix Dk+k′), the null distribution is a mixture
of the form

k′∑
m=0

2−k′
(
k′

m

)
χ2
m.

Shapiro (1988) shows that, for a broad number of cases, de-
termining the mixture’s weights is a complex and perhaps
numerical task.

The above results show that the equivalence of the score
and likelihood ratio tests not only holds in the two-sided, but
also in the one-sided cases. At the same time, an appropriate
definition of the one-sided score statistic is produced, and its
asymptotic null distribution has been derived. In some cases,
the analytic null distribution is easily obtained through the
results of Stram and Lee (1994, 1995), summarized in Sec-
tion 3, and the equivalence between the likelihood ratio and
score tests.

Finally, it should be emphasized that all above results are
valid provided that the conditions (A1) and (A2) are satis-
fied. In particular, (A2) requires that the score SN exists in
a sufficiently small neighborhood around H0. For example,
in our random-intercepts example (Section 2), it is crucial to
have valid models for sufficiently small but negative values
of τ 2, even in the constrained setting. As a counterexample,
if we were to test H0 :σ2 = 0 versus the one-sided alterna-
tive HA :σ2 > 0 for the variance σ2 in a univariate normal
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N(0, σ2) sample of size N, the score would equal

SN (σ2) =
∂�

∂σ2 = − N

2σ2 +
1

2σ4

N∑
i=1

y2
i ,

which, evaluated at σ2 = 0, yields +∞. Then, the above theory
does not apply here as no negative values for σ2 can ever
yield a valid statistical model for our sample. Hence, in this
example, condition (A2) is no longer satisfied.

5. Computational Issues
In this section, computations for likelihood ratio and score test
statistics will be discussed, for the classical unconstrained as
well as the constrained cases. The relative complexity of all
four cases will be addressed. Here, we focus on the general
concepts, while a particular example using the SAS proce-
dures MIXED and NLMIXED is deferred to the Appendix.

In principle, calculation of the unconstrained likelihood ra-
tio test statistic does not pose any specific complications, pro-
vided both the null and alternative models can be fitted with
standard software, and both log-likelihood values at maxi-
mum are returned, minus twice the difference of which is then
referred to the appropriate chi-squared distribution, to yield
the p-value.

Even in the unconstrained case, the score test calculations
are more involved than their likelihood ratio counterparts,
since the first and second order derivatives of the alternative
log-likelihood function evaluated under the null hypothesis
are required. These cannot easily be obtained in many stan-
dard packages without additional programming. Once these
derivatives have been obtained, they are the straightforward
building blocks for the calculation of the test statistic, while
the p-value is obtained as in the previous case.

The constrained likelihood ratio test statistic can be ob-
tained in the same way as in the unconstrained case, provided
the constraints are properly imposed onto the alternative
model. In many practical situations, this comes down to max-
imizing the likelihood under a positive-definiteness constraint
on a covariance matrix D as, for example, in the linear mixed
model setting. Several routes can be followed. Replacing D by
its Cholesky decomposition (D = L′L) and maximizing over L
rather than D turns the constrained optimization into an un-
constrained one. This route has been proposed by Lindstrom
and Bates (1988). Note that the constrained testing problem
is not turned into an unconstrained one, because the Cholesky
decomposition does not map one-to-one onto the original
parameterization, thus maintaining the need for an appro-
priate testing theory as developed in this article and by Hall
and Præstgaerd (2001). Alternatively, a so-called barrier type
approach can be followed, for example, by adding a penalty a
log{det(D)} to the log-likelihood function, for some prespec-
ified constant a. While a careful consideration of the relative
merits of these and other approaches is important and inter-
esting in its own right, it is beyond the scope of this paper.

The constrained score test statistic (7) is composed of two
parts. The first term is identical to the unconstrained coun-
terpart, while the second term involves a constrained mini-
mization of the quadratic form (ZN − b)′H−1

ψψ(θ̂H)(ZN − b),
which cannot always be done analytically. In such cases, addi-

tional software code needs to be written, invoking numerical
constrained optimization routines.

In both constrained cases, p-value computation is given by
(8) which is a weighted sum of chi-squared probabilities, the
weights of which are known analytically in special (but im-
portant) cases only.

6. Application: The Rat Data
Using a simple case study and a selected set of nested models,
we illustrate likelihood ratio as well as score tests, under both
one-sided and two-sided alternatives, and in cases where a
boundary estimate does and does not occur.

The data considered to this end are from a randomized
longitudinal experiment, previously described and analyzed
by Verdonck et al. (1998), in which 50 male Wistar rats were
randomized to either a control group or one of the two treat-
ment groups where treatment consisted of a low or high dose
of the drug Decapeptyl, which is an inhibitor for testosterone
production in rats. The primary aim of the study was to inves-
tigate the effect of the inhibition of the production of testos-
terone in male Wistar rats on their craniofacial growth. The
treatment started at the age of 45 days, and measurements
were taken every 10 days, with the first observation taken at
the age of 50 days. One of the responses of interest was the
height of the skull, measured as the distance (in pixels) be-
tween two well-defined points on X-ray pictures of the skull,
taken after the rat had been anesthetized. The individual pro-
files are shown in Figure 2. Although rats were scheduled to
be followed up to the age of 110 days, some dropped out pre-
maturely because they did not survive anaesthesia. In fact,
while 50 rats had been randomized at the start of the exper-
iment, only 22 of them survived the first six measurements.
So measurements on only 22 rats were available in the way
anticipated at the design stage.

As before, let Y ij denote the response taken at time
tj , for rat i. Verbeke and Lesaffre (1999) and Verbeke
and Molenberghs (2000) proposed modeling the subject-
specific profiles shown in Figure 2 as linear functions of t =
ln{1 + (Age − 45)/10}. More specifically, their model is of
the form

Yij =


β0 + b1i + (β1 + b2i)tij + εij , if low dose,

β0 + b1i + (β2 + b2i)tij + εij , if high dose,

β0 + b1i + (β3 + b2i)tij + εij , if control.

(9)

Here, β0 is the average response at the time of random-
ization, while β1, β2, and β3 are the average slopes in the
three different treatment groups. Further, the b1i and b2i are
rat-specific intercepts and slopes, representing the natural
heterogeneity between rats with respect to baseline values
and with respect to evolutions over time, respectively. The
above model is an example of linear mixed model (6). As
in our introductory example we have that, strictly speak-
ing, the marginal model does not require D to be posi-
tive definite, as long as the resulting marginal covariance
V i is. Hence, when testing for elements in D, two-sided
tests can be employed. However, they then no longer al-
low the hierarchical interpretation of the model, i.e., the
interpretation in which the variability in the data is be-
lieved to be generated from an underlying random-effects
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Figure 2. Rat Data. Individual profiles for each of the treatment groups in the rat experiment separately.

model as in (9). If underlying random effects are believed to
be latently present, one-sided tests are required.

Several models can now be fitted and compared with one
another. Table 1 summarizes some of the results obtained

Table 1
Rat data. Summary of the results of one as well as two-sided, likelihood ratio as well as score tests for the comparison of a
series of linear mixed models fitted to the rat data. The estimate D̂ denotes the unconstrained maximum likelihood estimate

for the matrix D in the linear mixed model.

LR test Score test

One-sided Two-sided One-sided Two-sided
test statistic test statistic test statistic test statistic

Ref. null-distr. null-distr. null-distr. null-distr.
Model model p-value p-value p-value p-value

1: D = 0
2: D = (d11) 1 1102.7− 928.7 = 174 1102.7− 928.7 = 174 27.15− 0.0 = 27.15 27.15

1
2χ

2
0 + 1

2χ
2
1 χ2

1
1
2χ

2
0 + 1

2χ
2
1 χ2

1

D̂ = (3.44) p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

3: D =

(
d11 0
0 d22

)
2 928.7− 928.7 = 0.0 928.7− 927.4 = 1.3 1.67− 1.67 = 0 1.67

1
2χ

2
0 + 1

2χ
2
1 χ2

1
1
2χ

2
0 + 1

2χ
2
1 χ2

1

D̂ =

(
3.77 0
0 −0.17

)
p = 1.0000 p = 0.2542 p = 1.0000 p = 0.1963

4: D =

(
d11 d12
d12 d22

)
2 928.7− 928.6 = 0.1 928.7− 925.8 = 2.9 2.03− 1.93 = 0.1 2.03

1
2χ

2
1 + 1

2χ
2
2 χ2

2
1
2χ

2
1 + 1

2χ
2
2 χ2

2

D̂ =

(
2.83 0.48
0.48 −0.33

)
p = 0.8515 p = 0.2346 p = 0.8515 p = 0.3624

from fitting and comparing a series of models to the rat data.
Model 1 assumes independent repeated measures and does not
include any random effects; its only variance component is the
common variance σ2. Model 2 includes random intercepts only
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and is therefore an example of (1), assuming all measurements
Y ij within subject i exhibit equal correlation and common
variance. Finally, models 3 and 4 include random linear time-
effects b2i as well, which may (model 3) or may not (model 4)
be correlated with the random intercepts b1i.

Table 1 shows the results of one-as well as two-sided likeli-
hood ratio as well as score tests, for model comparisons 2-1, 3-
2, and 4-2. Comparison 2-1 is standard in the sense that, since
the unconstrained estimate of the random-intercepts variance
d11 under model 2 is positive, the one- and two-sided test
statistics are identical, and only the null distribution is differ-
ent. For comparison 3-2, the unconstrained estimate for the
random-slopes variance d22 is negative, yielding different one-
and two-sided test statistics. For the score test, for example,
the infimum in (7) is attained for b = 0, yielding zero as the
observed value for the one-sided test statistic. For compari-
son 4-2, the infimum in (7) needs to be calculated numerically,
and was found to be equal to 1.93, which is attained for b =
(−0.801, 0.187)′.

In the likelihood ratio case, one might be tempted to com-
bine a constrained calculation of the test statistic with ref-
erence to the classical χ2 null distribution. This, however,
would lead to p-values that are too large. Therefore, the null
hypothesis would be accepted too often, resulting in incor-
rectly simplifying the covariance structure of the model, which
may seriously invalidate inferences, as shown by Altham
(1984).

7. Concluding Remarks
Whenever inference for variance components is of interest,
the choice between one-sided or two-sided tests is crucial, de-
pending on whether negative variance components are deemed
meaningful or not. For two-sided tests, classical inferential
procedures can be followed, based on likelihood ratios, score
statistics, or Wald statistics, which have the same asymptotic
null distributions. For one-sided tests, however, one-sided test
statistics need to be developed and their null distribution de-
rived. In contrast to the case of likelihood ratio tests, this has
thus far not received much attention in the score-test case.
Moreover, there seems to be a lot of confusion as to whether
or not classical score tests are applicable in this setting. Using
heuristic arguments in the context of a simple linear random-
effects model, we have shown why those test statistics are not
appropriate for testing one-sided hypotheses, and how one-
sided versions can be obtained. Then, the general theory of
Silvapulle and Silvapulle (1995) was invoked to derive gen-
eral one-sided score tests for variance components. Further,
the well-known equivalence between two-sided score and like-
lihood ratio tests is shown to hold true for the one-sided coun-
terparts as well.

In general, likelihood ratio tests as well as score tests are
available for testing hypotheses about variance components,
and both procedures are asymptotically equivalent, for one-
sided as well as two-sided tests. The choice between one-sided
and two-sided tests should be entirely driven by the scientific
question, the data analyzed, the models fitted, and the in-
terpretation of the parameters in those models. A frequently
quoted justification for the use of score tests is that they do
not require fitting the alternative model. However, currently
available software easily allows praciticing statisticians to fit

and compare a variety of models containing many variance
components. Moreover, whenever one-sided tests are of in-
terest, the score test may require employing numerical opti-
mization techniques for the calculation of the infimum in (7).
Therefore, it cannot be our intention to advocate the broad
use of score tests for the inference on variance components.
Instead, the aim of this article has been to enhance insight
into the score test and to illustrate the use of score tests in
this context.

We hope to have made clear that one either can take an un-
constrained view, whereupon no additional action is needed
in case variance components are negative, or one takes a con-
strained view and the inferential procedures should be such
that proper constraints are imposed. Then, the statement
made by Brown and Prescott (1999, p. 237), “The usual ac-
tion when a negative variance component estimate is obtained
for a random coefficient would be to refit the model with the
random coefficient removed,” overlooks important issues and
is therefore misleading.
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Résumé

Dès que l’on veut faire de l’inférence sur les composantes de
variance le choix entre les tests unilatéraux et bilatéraux se
pose de façon cruciale. Ce choix est habituellement condi-
tionné suivant que les composantes de variance négatives sont
permises ou pas. Pour des tests bilatéraux, les procédures
inférentielles classiques peuvent être utilisées, basées sur les
ratios de vraisemblance, les statistiques du score ou de Wald.
Pour des tests unilatéraux, cependant, des statistiques de
test unilatérales doivent être mises au point et leurs distribu-
tions sous l’hypothèse nulle déterminées. Alors que cela a fait
l’objet d’une attention considérable pour le test du rapport de
vraisemblance il semble y avoir beaucoup de confusion en ce
qui concerne l’utilisation du test du score. Le but de cet article
est de montrer que la statistique de score classique (bilatérale)
utilisée fréquemment en pratique, ne peut-être utilisée dans
ce contexte mais que des (solutions alternatives) unilatérales
bien choisies peuvent être utilisées à la place. La relation avec
les tests du rapport de vraisemblance sera établie et tous les
résultats seront illustrés par l’analyse de données longitudi-
nales utilisant des modèles linéaires.
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Appendix

Within the context of the case study, we will show how all
four tests discussed in Section 5 can be implemented using
the SAS procedures MIXED and NLMIXED (Version 8.2). In
particular, we will focus on the comparison between models 2
and 4.

Let us consider the likelihood ratio tests first. Fitting
model 4 with random intercepts and random slopes is typ-
ically done using the code (Verbeke and Molenberghs, 2000,
Chapter 8):

proc mixed data = example method = ml;

class treatment rat;

model y = treatment*time / solution;

random intercept time / type = un subject = rat;

run;
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However, it should be noted the SAS procedure MIXED takes
by default a constrained viewpoint that differs not only from
the unconstrained situation, but is also different from the con-
strained formulation considered in this article. Indeed, the
only constraints imposed by SAS are for the variances to be
nonnegative; the resulting covariance matrix can still fail to be
positive semidefinite. A completely unconstrained model can
be fitted by adding the nobound option to the PROC MIXED
statement. The likelihood ratio test statistic then follows from
fitting model 2 as well, which is obtained from deleting the
variable time from the RANDOM statement.

Fitting both models under our constraints is done by re-
placing the type=un option in the RANDOM statement of the
initial program by type=fa0(2) in model 4 and type=fa0(1)

in model 2.
Recall that, for the unconstrained score test, the first-

and second-order derivates of the alternative log-likelihood
need to be evaluated at the MLEs under the null model.
We therefore first fit the null model using the SAS procedure
MIXED, then store the parameter estimates in appropriately
formatted SAS data sets, whereafter the derivatives under the
alternative model are obtained using the NLMIXED proce-
dure. The NLMIXED is particularly convenient since it easily
produces the first and second order derivatives at the maxi-
mum likelihood estimates. To this end, the MLEs under the
null are supplied to NLMIXED as starting values and the pro-
cedure is prevented from iterating. Practically, the results are
obtained using the following code.

proc mixed data = example method = ml nobound;

class treatmet rat;

model y = treatment*time / solution;

random intercept / subject = rat;

ods output covparms = cov;

ods output solutionf = fixed;

run;

data cov; set cov; keep estimate; run;

data cov1; input parameter $; cards;

d11

sigma2

;

run;

data cov; merge cov1 cov; run;

data fixed; set fixed; keep estimate; run;

data fixed1; input parameter $; cards;

beta0

beta1

beta2

beta3

;

run;

data fixed; merge fixed1 fixed; run;

data starting; set fixed cov; run;

proc nlmixed data = test start hess qpoints

= 50 maxiter = 0;

parms d12 = 0 d22 = 1E-10 / data = starting;

mean = beta0 + b1 + b2*time + beta1*tcon + beta2*

thig + beta3*tlow;

model y ~ normal(mean,sigma2);

random b1 b2 ~ normal([0, 0],[d11, d12, d22])

subject = rat;

run;

For the constrained case, the above program is used for
the calculation of the first term in (7), except for the
removal of the nobound option from the PROC MIXED
statement. To execute the constrained minimization of
(ZN − b)′H−1

ψψ(θ̂H)(ZN − b), numerical optimization rou-
tines are often needed. While several routes could be fol-
lowed, we have chosen to use the constrained optimization
features of GAUSS. To this end, the constraints need to be
written in the form of a procedure, with a second proce-
dure containing the objective function. In our example, ZN =
(0.10219, −6.619967)′ and

Hψψ(θ̂H) =

(
16.5355 −9.1388

−9.1388 26.2642

)
.

The code then becomes:

library co;

proc ineqp(b);

local d11, d12, d22, d;

d11=3.4374;

d12=b[1,.];

d22=b[2,.];

d=(d11~d12)|(d12~d22);

retp(minc(eigh(d))-1e-5);

endp;

_co_IneqProc=&ineqp;

proc factor2(b);

local zn, hmat;

zn={0.10219, -6.619967};

hmat={16.5355 -9.1388, -9.1388 26.2642};

retp((zn-b)’*inv(hmat)*(zn-b));

endp;

start={-1,2};

_co_Algorithm=5;

{x,f,g,ret}=co(&functie,start);


