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Big data is a relatively recent term that has
emerged because of the rapid collection and gen-
eration of data, the increase in storage and

computing capacity, and the rise of a new generation
of machine learning algorithms. It is generally character-
ized by 3 “V’s.” The first “V,” volume, refers to the size
and scale of the data. This can be the number of subjects
(observations) or variables (covariates, features) in the
dataset. Velocity, the second “V,” stands for the rate at
which the data are generated and the speed of analysis.
The final “V,” variety, refers to the variation within a da-
taset and is associated with the noisiness, occurrence of
missing data, or because of differences in the storage
methods.

Specialized and distributed computer architectures
that can provide adequate memory and processing po-
wer are often required to handle extremely large data-
sets. In machine learning (ML), the volume of the
datasets and the increasing number of variables pose
additional issues to the ML algorithms, especially when
the number of variables (features) vastly exceeds the
number of observations. This case is often called the (n
# p)-problem or high-dimensional data; sometimes, it
is called the curse of dimensionality. In what follows,
we present 2 examples of problems regarding high-
dimensional data.

In a previous article of this series,1 the K-nearest-
neighbors algorithm was discussed. One of the main as-
sumptions of this method is that 2 observations have to
be close to each other in every dimension (across each
variable). Adding dimensions (variables) without adding
data reduces the reliability of the algorithm because the
points will lie further apart in the expanded variable
space resulting in empty data regions. To compensate
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for this, the number of observations in the dataset
should be increased accordingly.

We will use a linear regression model to illustrate
another problemwith high dimensionality. Let us denote
by n and p the number of observations and the total
number of variables (p � 1 explanatory variables and
the dependent variable) in a dataset used to fit a linear
regression model. The least-squares method is often
applied to ensure the best fit of the model. A linear com-
bination of the p� 1 explanatory variables is found such
that the residual sum of squares is the smallest. When
the number of observations is less than or equal to the
number of variables (n# p), it is possible to find combi-
nations of the features with the residual sum of squares
equal to zero (see Fig 1), leading to a model that fits the
data perfectly. However, the results of validating such a
model on an independent testing dataset will likely be
poor because of overfitting.2

The curse of dimensionality also holds for classifica-
tion tasks. When adding more explanatory variables to a
dataset, the dimensionality increases to a point in which
the classification problem can be solved perfectly
(without misclassification), even considering the most
straightforward and inflexible models. This principle is
exploited in support vector machines, a technique that
will be discussed in a subsequent article in this series
on ML.

Two approaches can be considered to address the
curse of dimensionality when fitting a model: selection
of only important variables (features) when building
the model or dimension reduction based on data trans-
formations.
FEATURE SELECTION

Apart from feature subset selection methods, a gen-
eral approach to performing feature selection is model
regularization, that is, adding, in the search for the
best-fitting model, a penalty for the number and magni-
tude of the coefficients included in the model.2 For
instance, in the Least Absolute Shrinkage and Selection
Operator (LASSO), the penalty takes the form of the sum
of the absolute values of all coefficients multiplied by a
constant l from the [0, 1] interval. This penalty term is
also known as the shrinkage penalty. LASSO performs
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Fig 1. A, Least-squares fit of a linear regression model when p 5 2 (explanatory variable/feature X1

and dependent/target variable X2) and the number of observations n5 3. The observed values of target
X2 deviate from the regression line (residuals are not equal to zero); hence, the residual sum of squares
is not equal to zero; B, Least-squares fit of a linear regression model when p 5 2 and n 5 2. The
observed values of X2 lie on the regression line (residuals are equal to zero); hence, the residual
sum of squares equals zero; C, Least-squares fit of a linear regression model when p 5 3 (features
X1 and X3 and target X2) and the number of observations n 5 3. The observed values of X2 lie on
the (blue) plane representing the linear combination of X1 and X3 (residuals are equal to zero); hence,
the residual sum of squares equals zero.

Figure 2. LASSO regression model for data in Konstantonis et al.3 The y-axis represents the values of
the coefficients for features included in the model. The x-axis represents the values of ln(l), with
increasing values indicating higher penalties. For larger penalties, fewer nonzero coefficients (ie, fea-
tures) are included in the model. For instance, for ln(l)5�2 (l5 0.14), only 1 coefficient is not equal to
0 (ie, only 1 feature is included in the model). For ln(l)5 �4 (l5 0.02), 6 coefficients are not equal to
0 (ie, 6 features are included in the model).
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feature selection by considering various values of l. The
penalty term is small at low values, and more coefficients
(and features) are allowed to enter the model. However,
when l gets large, the penalty gets larger, and only the
most important features (ie, with nonzero coefficients)
September 2023 � Vol 164 � Issue 3 American
will remain in the model. Through the penalization pro-
cess, LASSO aims to select the most optimal covariate
combination that will produce a final model with high
predictive performance or, equivalently, yield the small-
est test error by tuning the bias-variance trade-off.
Journal of Orthodontics and Dentofacial Orthopedics



Figure 3. Dimension reduction is based on PCA (unsu-
pervised construction of components) and PLS (super-
vised construction of components). The figure illustrates
2 strongly correlated covariates, x and y, and a class label
(I vs II) as a response variable. The classification task is to
discriminate between subjects from class I and II on the
basis of their covariates. For constructing the compo-
nents for PCA, the class labels are disregarded, and the
direction of maximum variance is depicted in blue.
Although this linear combination of x and y describes
most of the variability observed in the data, it is not very
good in discriminating label I from II. PLS considers infor-
mation about the class label when constructing its compo-
nents, such that a maximum separation between the
class labels is possible with only a limited number of com-
ponents (linear combinations of x and y). Green arrow in-
dicates the linear combination with the best discriminatory
power between the class labels.
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To illustrate the LASSO,we use the Konstantonis et al3

dataset to support the extraction or nonextraction
treatment plan. For this binary classification task, 26
cephalometric variables, 6 model measurements, and 2
demographic variables (gender, age) are available. The
result of the LASSO procedure is displayed in Figure 2.
In this example, we combine the LASSO penalty with a lo-
gistic regression model suitable for classification tasks.
The logistic regression model is explained in a subse-
quent article in this series. The y-axis represents the esti-
mated coefficients for the covariates (or features)
included in the regression model. The x-axis represents
the values of ln(l). The lines with different colors show
how the estimated coefficients change with l. In partic-
ular, each line indicates that, as l increases, the estimated
coefficient tends toward zero (it is often said that the co-
efficient is shrunk to zero; hence the name of the pen-
alty). This implies that, with increasing l, the model
will include fewer nonzero coefficients and, conse-
quently, fewer features. In the extreme scenario when l

is very large (right side of Fig 2), the so-called null model
is obtained (ie, a model with no covariates or features
included). On the extreme left side, the penalty is very
small or equal to zero, which reduces the LASSO proced-
ure in this example to simple least square logistic regres-
sion. For instance, Figure 2 indicates that a model with
only 1 nonzero coefficient is obtained for ln(l) 5 �2
(ie, l 5 0.14). This can be seen from the fact that the
red vertical line, drawn at ln(l) 5 �2, crosses only 1
colored curve. It appears that the coefficient corresponds
to the mandibular crowding feature. In contrast, when
ln(l)5 �4 (ie, l5 0.02), a model with 6 nonzero coef-
ficients is obtained because the green vertical line at ln(l)
5 �4 crosses 6 colored curves. The coefficients corre-
spond to the following explanatory variables: mandib-
ular crowding, maxillary crowding, lower lip protrusion,
mandibular incisor position and inclination, overbite,
and overjet. The order in which the coefficients of the co-
variates are set to zero provides some information about
their importance and predictive value. Nonetheless, the
final model and optimal value of lmust be decided using
cross-validation, minimizing the prediction error on the
test set.4 As a result, the LASSO procedure arrives at a se-
lection of covariates in the model that provides the best
predictive performance along with their corresponding
estimated coefficients.
DIMENSION REDUCTION

Instead of selecting explanatory variables (features)
to be entered into the model on the basis of their impor-
tance, we can consider reducing the number of dimen-
sions (features) of the dataset. The 2 most well-known
American Journal of Orthodontics and Dentofacial Orthoped
methods used for this purpose are principal component
analysis (PCA) and partial least squares (PLS).

The main goal of PCA is to create a lower-
dimensional projection of a dataset with a smaller num-
ber of newly created variables that reflect the variability
present in the original dataset.1 Toward this aim, various
linear combinations of all the covariates in the original
dataset are considered, such that the combinations
(called the principal components) “capture” as much
as possible of the total variability of observations in
the dataset, as explained in.1 Next, the regression or clas-
sification problem is solved by relating a small number of
highly-informative principal components to the
response variable. This is called principal components
regression (PCR). Note that this technique is applicable
mainly in the regression context with continuous
explanatory variables (covariates). PCR does not select
any original covariates but considers a linear
ics September 2023 � Vol 164 � Issue 3
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combination of the original covariates (ie, principal
component variables). Therefore, it is difficult to inter-
pret the model when it is based on PCs because they
have no physical meaning. This is also why comparing
with classical variable subselection methods or LASSO
regression is hard.

PCA constructs the components in an unsupervised
manner. In particular, the dependent variable (target or
response) is not used in generating the principal compo-
nents. Therefore, PCR only works well when the depen-
dent variable is associated with the principal
components (which capture only the most variability
among the covariates). Figure 3 presents a counter-
example of such a situation in which the direction of
maximum variability does not coincide with the direc-
tion of the response variable. In other words, the direc-
tion to optimally discriminate between the class labels
is perpendicular to the direction of most variability;
hence PCA regression will perform badly in this case.
PLS also provides a dimension reduction via linear com-
binations of the features, but it uses the information on
the dependent variable to obtain maximum class
discrimination rather than capturing maximum vari-
ability. Thus, PLS will construct the components in a
supervised manner.5

After the first PLS component is computed, the resid-
uals for each feature are calculated. Those residuals can
be interpreted as the variation the model has not yet ex-
plained. The residuals from the first stage can be used to
find the second linear combination of the PLS
September 2023 � Vol 164 � Issue 3 American
component. This process can be performed multiple
times, after which a linear regression model similar to
the PCR is obtained. Figure 3 explains the difference be-
tween PCA and PLS, in which the blue arrow would
constitute the first principal component capturing
most variation in the data disregarding the class labels.
The green arrow would constitute the first PLS compo-
nent that would optimally correlate with the class label
to obtain maximum class discrimination.

When PLS is applied for a single dependent variable
(as in the explanation above), it is often called PLS1,
and when applied to several targets, it is referred to as
PLS2. There exist various extensions of PLS. For instance,
orthogonal PLS aims to reduce model complexity by
removing features unrelated to the response.
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