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(a) No objects loaded. SSIM: 0.13 (b) Partial FOV loaded. SSIM: 0.85 (c) Full FOV loaded. SSIM: 1

Figure 1: Progressive loading of the Sponza scene.

ABSTRACT
The glTF 2.0 graphics format allows for the API-neutral representa-
tion of 3D scenes consisting of one or multiple textured meshes. It
is currently adopted as one of two file formats for 3D asset interop-
erability by the Metaverse Standards Forum. glTF 2.0 has however
not been designed to be streamable over the network; instead, glTF
2.0 files typically first need to be downloaded fully before their
contents can be rendered locally. This can lead to high start-up
delays which in turn can lead to user frustration. This paper there-
fore contributes a methodology and associated Web-based client,
implemented in JavaScript on top of the three.js rendering engine,
that allows to stream glTF 2.0 files from a content server to the con-
suming client up to the level of individual glTF bufferviews. This in
turn facilitates the progressive client-side rendering of 3D scenes,
meaning that scene rendering can already commence while the
glTF file is still being downloaded. The proposed methodology is
conceptually compliant with the HTTP Adaptive Streaming (HAS)
paradigm that dominates the contemporary market of over-the-top
video streaming. Experimental results show that our methodol-
ogy is most beneficial when network throughput is limited (e.g.,
20Mbps). In all, our work represents an important step towards
making 3D content faster accessible to consuming (Web) clients,
akin to the way platforms like YouTube have brought universal
accessibility for video content.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Computer
systems organization → Client-server architectures; • Networks
→ Application layer protocols; Network performance analysis; Public
Internet.
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1 INTRODUCTION
Themetaverse, an Internet-connected collection of linked 3Dworlds,
is ever-increasing in size and scope. Each such 3D world is popu-
lated with distinct 3D objects, often in the form of textured meshes,
that are located throughout 3D virtual space. The user can view
such worlds on a 2D screen or a VR headset, by rendering the ob-
jects that are currently in the Field Of View (FOV). This FOV is
dependent on the 6 Degrees Of Freedom (6DOF) the user has, which
means it typically changes over time (e.g., due to user navigation
in the virtual world).

Due to the sheer storage requirements this would impose, it is
unrealistic to assume that clients will be able to locally store all the
composing assets of all linked metaverse worlds. As such, solutions
are needed to dynamically transmit 3D assets over the Internet
from a content server to the consuming client. The prototypical
approach to handle this, is to download all involved assets and to
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wait for all those downloads to complete before starting the render-
ing process. However, depending on the file size of the 3D assets
and the prevailing network conditions, this approach might entail
a long start-up delay, which is undesirable from a user experience
perspective and thus holds customer churn risks. A better solution
therefore is to progressively load the 3D world and its composing
assets, such that scene rendering can already start before the 3D
world has been downloaded entirely. Ideally, such progressive load-
ing is FOV-sensitive (i.e., it should prioritize the network delivery
of those 3D assets that are currently visible to the user).

The progressive loading of 3D graphical worlds shows similari-
ties to the way video content streaming is approached in the HTTP
Adaptive Streaming (HAS) paradigm. With HAS, a video file is
temporally segmented in small chunks (typically holding a few
seconds worth of audiovisual content), with the client dynamically
downloading the relevant chunks on an as-needed basis (e.g., due to
playback progress or due to the user seeking in the video playback).
HAS has been designed to be scalable as well as maximally com-
pliant with existing Internet infrastructure. The scalability benefit
derives from the fact that all streaming logic resides at client side,
which allows the video content to be hosted on stateless vanilla
HTTP servers. The Internet infrastructure compliance on the other
hand allows to maximally capitalize on prevailing Web infrastruc-
ture such as Content Delivery Networks (CDN) and load balancers.

The primary contribution of this paper is a conceptual mapping
of the HAS paradigm to the progressive network streaming of 3D
worlds consisting of textured meshes described in the glTF 2.0 file
format1. This mapping is not straightforward due to two essen-
tial differences between HAS video streaming and the progressive
streaming of 3D graphical worlds. First, whereas video is a linear
medium offering only 1 Degree Of Freedom during consumption, 3D
graphical content allows 6DOF consumption (see also earlier); these
additional degrees of freedom considerably complicate the client-
side logic that must decide which content piece to fetch next from
the server. Secondly, with video, once frames have been displayed,
they can often be discarded, as the user will typically not re-visit
them. For 3D meshes on the other hand, client-side asset caching
will likely be beneficial since downloaded assets might be needed at
multiple time instances (e.g., when previously downloaded assets
re-appear in the FOV). Our secondary contribution is the validation
of our proposed methodology via an open-source2 Web implemen-
tation based on three.js3. Via an empiric, testbed-based assessment
spanning a variety of emulated network conditions, we objectively
evaluate our Proof-of-Concept (PoC) Web implementation by com-
paring its performance against the bulk download approach (i.e.,
where the glTF 2.0 scene is fully downloaded before being rendered).

2 RELATEDWORK
This section will briefly review related work. For the sake of com-
prehensiveness, we will first discuss prior art on the non-HAS-like
progressive network streaming of textured meshes described in
graphics formats other than glTF 2.0. Then, we will zoom in on the

1Our choice for the glTF 2.0 format is driven by its recent adoption as a metaverse
standard for 3D asset interoperability [Forum 2023].
2https://github.com/EDM-Research/progressive-gltf2

HAS-like streaming of (non-glTF) textured meshes before conclud-
ing this section with glTF streaming prior art.

2.1 Progressive network streaming of meshes
The use of network streaming to achieve progressive loading of 3D
meshes (both textured and non-textured) is not a new research topic;
see, for example, the review paper by [Maamar et al. 2013] on this
topic. Pioneering work was performed by Hoppe, who introduced
the concept of progressive meshes (PM) that use edge collapsing
and vertex splitting to respectively simplify and refine 3D mesh
fidelity at run time [Hoppe 1996]. Numerous scientific approaches
have adopted Hoppe’s PM concept to achieve dynamic Level of
Detail while streaming 3D models or environments. Three notable
examples are a three-stage progressive transmission scheme that
strives to minimize the distortion of the visible part of the scene [Liu
et al. 2019], a greedy packetization heuristic that decides on the
transmission order of individual vertex split operations such that
intermediate decoded mesh quality is maximized [Cheng and Ooi
2008; Cheng et al. 2007], and a bit-allocation algorithm that aims to
optimally distribute network bandwidth between the geometry and
its mapped texture to maximize the quality of the model displayed
on the client’s screen [Tian and AlRegib 2004]. Over time, there also
appeared progressive loading solutions for textured meshes that
are not based on Hoppe’s progressive meshes concept. For example,
the progressive P3DW file format is optimized for fast client-side
decompression while still achieving decent rate-distortion perfor-
mance [Lavoué et al. 2013], while the SRC container format allows
for interleaved transmission of respectively geometric and texture
data while minimizing the necessary quantity of required HTTP
requests [Limper et al. 2014].

The vast majority of the cited works focus exclusively on the
progressive streaming of singular 3D models. In contrast, our work
is concerned with the progressive loading of 3D scenes that are com-
posed of multiple textured meshes. Our approach currently has no
Level of Detail support; the progressive scene loading is achieved by
dynamically deciding on the transmission order of the composing
scene assets based on run-time heuristics (see Section 3.3).

2.2 HAS(-like) streaming of textured meshes
As stated in Section 1, HTTP Adaptive Streaming (HAS) has be-
come the de facto paradigm for over-the-top network streaming of
audiovisual content due to its ability to run-time adapt to prevailing
networking conditions. HAS has been standardized by ISO/IEC in
the form of MPEG-DASH [ISO/IEC 23009-1 2019; Sodagar 2011].
Zampoglou et al. were the first to appropriate MPEG-DASH for
achieving the quality-adaptive network delivery of textured meshes,
which were in their case specified in the open X3D standard [Zam-
poglou et al. 2018]. This seminal work was improved upon by the
DASH-3D approach by allowing MPEG-DASH clients to selectively
allocate network bitrate to respectively the geometry and textures
of a 3D virtual world represented as a (textured) polygon soup in
the OBJ graphics format [Forgione et al. 2018]. By differentiating
geometry from textures in the client-side network streaming logic,
it becomes feasible to make their bit allocation dependent on their
relative contribution to perceptual scene quality. The Relevance
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ABR technique extends the DASH-3D streaming logic by prioritiz-
ing the download of salient 3D scene assets that will likely attract
most visual attention [Lievens et al. 2021]. Finally, very recently, an
open-source MPEG-DASH-based Web framework for evaluating
metrics and scheduling algorithms in the context of 3D content
streaming has been contributed [Farrugia et al. 2023].

Unlike the just cited works, our approach is only conceptually
compliant with HAS and does not explicitly use the HAS syntax
and semantics under the hood. This is most notably exemplified by
the fact that we do not adopt the HAS manifest format (e.g., MPEG-
DASH MPD files). Instead, we directly work with the glTF 2.0 file
format (see Section 3.2) without the need for an intermediate format
or manifest file. This yields performance benefits by eliminating
overhead. We do however mimic HAS’ defining traits (e.g., use
of HTTP for network transfer, streaming logic residing at client
side, server-side scalability, firewall friendliness, etc). A second
discriminator of our approach compared to the cited works is that
the latter all use graphics formats other than glTF.

2.3 glTF-based 3D network streaming
Just like we do, the VIA (VIsibility-Aware Web-based VR) approach
aims to mitigate the latency penalties that 3D graphics on the Web
incur in naive bulk download scenarios [Slocum et al. 2021]. VIA
does so by splitting the glTF 2.0 file into multiple (binary) files,
where each file groups exactly those data buffers that are needed to
render a single 3D object in the scene. Via an FOV-aware scoring
mechanism, VIA determines what objects to prioritize and then
fetches their dedicated data files first, this way decreasing the FOV
rendering latency. VIA mostly works as an offline pre-processing
step, yielding meta-data that must be stored at server side per in-
dividual scene and per individual FOV. In contrast, our approach
works fully online and can therefore easily and directly adapt to
FOV changes during 3D scene consumption. Three additional yet
less relevant pieces of prior art on glTF network streaming are
the HyperVerse Transfer Protocol (HVTP) that employs glTF 2.0 as
a neutral scene graph to facilitate real-time communication be-
tween heterogeneous rendering engines [Dhanjan and Steed 2021],
a glTF 1.0-based solution for transmitting BIM-like data to X3DOM
clients [Scully et al. 2016], and a Cesium.js-based solution that
exploits glTF 1.0 to stream 3D GIS data that has been spatially
subdivided into 3D cuboids [Schilling et al. 2016].

3 PROOF-OF-CONCEPT
This section provides an overview of the PoC, focusing on how it
achieves progressive scene loading and rendering using the binary
glTF format.

3.1 Binary glTF
The binary glTF format is composed of three parts as shown in
Figure 2. The first part, 12 bytes in size, consists of three uint32’s
specifying (in order), a magic value equal to the ASCII string ‘glTF’,
a version identifier equal to ‘2’ and a length equal to the total length
of the file. These values describe the file as a binary glTF version 2
file of a certain length. Next is the JSON-encoded meta-data chunk,
followed by the binary data chunk. Both these chunks have an eight
byte sub-header, describing two uint32’s specifying the length and

type of the chunk, respectively. The type header field contains
the ASCII representation of either ‘JSON’ or ‘BIN’ (to represent
JSON meta-data and binary data, respectively). A chunk sub-header
is always followed by the chunkdata (with a length equal to the
number of bytes specified in the length field of the sub-header).

For the JSON chunk, the chunkdata encodes a set of lists that
describes a virtual 3D world. These lists are structured in a tree-
like fashion, as shown in Figure 3. Each list contains objects that
have named values containing indexes pointing to objects of other
lists. This index-based structure allows for re-use of, for example, a
texture by two different objects.

The binary chunk contains the mesh and texture data necessary
to render the scene. Because all the structure and meta-data is con-
tained inside the JSON chunk, no structural information is included
in the binary chunk, apart from the 8 byte sub-header.

In glTF, a discrete object inside the 3D world is called a node.
Every node requires a mesh, which in turn requires mesh data and
optional texture data. This mesh and texture data can be found
in the binary chunk (or in external data, but this is not used in
our implementation), in what is known as a bufferview. But, due
to the structurelessness of the binary chunk, we require the JSON
meta-data to point to where the information is stored, and how to
interpret it. Now, because the JSON meta-data tells us what parts
of the binary chunk are needed to render an object, we can exploit
this to only download precisely those parts. This knowledge allows
us to progressively download and draw selected objects instead of
having to wait until the entire scene has been downloaded and then
rendering it as a whole.

3.2 3D mesh streaming pipeline
Using what the binary glTF (glb) file provides, we enumerate below
the details of our proposed pipeline to stream a 3D world that is de-
scribed by a single binary glTF 2.0 file. The pipeline starts when the
Web browser has fetched the necessary HTML and JavaScript files
containing the PoC code and rendering engine code (i.e., three.js).
For reference, Figure 4 gives a more visual indication of the flow.

(1) The client makes a partial HTTP GET-request to fetch the first
20 bytes of the involved glTF file, spanning the 12-byte file
header and the eight-byte sub-header of the first chunk (con-
taining the JSON data).

(2) The client uses the length value in the sub-header of the first
chunk to fetch all the JSON data as well as the eight-byte sub-
header of the next chunk (containing the binary data).

(3) The client allocates a buffer for storing the binary data based
on the length value in the sub-header of the binary data chunk.

(4) The client parses the JSON data into an efficient data structure,
calculates the bounding boxes of every node from the JSON
data and sets up data structures to start fetching binary data,
marking all nodes and bufferviews with the To-Do status. The
client is now ready to fetch binary data.

(5) The list of nodes that have status To-Do are retrieved from the
data structure and a filtering heuristic (see Section 3.3) is applied
to this list. This decides which nodes will be retrieved from the
server in this pass of the pipeline.

(6) Every node in the filtered list gets marked with the status Doing.
A custom JSON chunk is constructed in memory by modifying
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Figure 2: Binary glTF layout [Khronos Group 3D Formats Working Group 2021].

Figure 3: Relations between top-level arrays in glTF as-
sets [Khronos Group 3D Formats Working Group 2021].

the scene description such that it lists only those nodes that
are marked with the status Doing. If this modified JSON chunk
(together with the required binary data) is fed to a rendering
engine, only the listed subset of nodes will be added to the
rendered scene.

(7) Using the data structure from step (4), the necessary parts of
the binary buffer are calculated and put into an HTTP multi-
part byterange request. These bufferviews are marked with the
status Doing.

(*) The path branches here, steps 5-10 repeat until no more
nodes have the status To-Do. The iterations of steps 5-10
continue asynchronously.

(8) After the HTTP request from (7) returns, it is parsed and the
received data is copied into their respective place described
by their bufferviews in the buffer allocated in (3); the involved
bufferviews are marked as Done.

(9) A binary glTF file is constructed in memory by concatenating a
modified 12-byte header with the correct length, the modified
JSON from (6), and the buffer allocated in (3). The resulting
memory block contains precisely the JSON data as well as binary
data needed to render the nodes that were selected in (5).

(10) The outcome of (9) is passed to the client-side render engine.
After rendering, the nodes themselves are marked Done.

(1) Fetch global file header and first sub-header

(2) Fetch JSON and next sub-header

(3) Allocate buffer for binary data

(4) Parse JSON data, perform pre-calculations

(5) Get
nodes with
status To-Do
and filter

(6) Mark selected nodes as Doing,
create modified JSON in memory

($) No more nodes
to load, do not
continue to (6)

(7) Calculate bufferviews for nodes, mark
bufferviews Doing, send out fetch request

(8)Parse response, copy data, mark bufferviews Done

(9) Construct binary glTF in memory

(10) Pass to rendering engine, mark nodes Done

Figure 4: glTF-based 3D mesh streaming pipeline.

Figure 5: Top-down view of a 3D scene. Object A is a green
cube, B a blue sphere, C a red sphere and D a green tetrahe-
dron.
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3.3 Node scheduling heuristics
Our proposed approach achieves progressive 3D scene loading
by dynamically fetching individual assets (i.e., glTF nodes) as op-
posed to integral glTF files. This necessitates client-side heuristics
to quickly calculate in which order nodes (and subsequently buffer-
views) must be downloaded from the content server. It is apparent
that these heuristics have a major impact on the user experience.
For example, an anti-heuristic might prioritize the loading of nodes
that fall outside the user’s current FOV in the 3D scene, which
would lead to a maximal time to interactive and hence a poor user
experience.

In this work, we discern two types of heuristics: ordering and
rate limiting. By using these two types of heuristic in tandem and
tuning them properly, an optimized set of nodes to load can be
found without much computational overhead.

An ordering heuristic sorts the set of not-yet-loaded nodes in
descending order of priority. For example, not using an explicit
ordering heuristic results in implicitly using the ordering in which
nodes are listed in the original glTF file. This typically will not result
in a pleasant experience for the user, since the ordering of the nodes
in the glTF file is often quite random, resulting in nodes popping
in at random places in the 3D scene. Using distance as an ordering
heuristic does allow for a better experience. Users mostly interact
with objects close by in the virtual world; therefore, it makes sense
to install an inversely proportional relationship between an object’s
loading priority and its distance to the virtual camera. In effect, by
calculating the object-to-camera distance and ordering the objects
in terms of increasing distance, users will be able to more quickly
interact with the objects that matter most. Other ordering heuristics
could include the spatial surface of the node in 3D virtual space
(cf. DASH-3D [Forgione et al. 2018]), or semantic importance as
assigned by the author of the scene (cf. [Lievens et al. 2021]).

A rate limiting heuristic takes the list of not-yet-loaded nodes
and filters out the nodes by means of a selection function. This type
of heuristic is paramount in enabling progressive loading, as it only
selects the next needed resources. An example of a relevant rate
limiting heuristic is FOV-based filtering. This means all nodes that
are not currently in view are removed from the list. Calculating
whether a node is in view can be done using either the node’s
bounding box or its center-point (the former is more accurate but
requires more computing power). A FOV-based heuristic can be
tuned by changing the frustum angle to be either narrower or wider
than the camera FOV. With a more narrow-angled frustum, less
objects would be loaded, allowing for less bandwidth usage at the
cost of only showing objects in the center of the view. In contrast,
a wider-angled frustum would load more objects, slightly (pre-
)loading objects that are just outside the view of the camera FOV;
this of course leads to a higher bandwidth usage. In our PoC, the
rate limiting frustum is chosen equal to the camera frustum to strike
a good balance between bandwidth usage and number of objects
loaded. Another example of a rate limiting heuristic is a simple node
cardinality threshold. This heuristic will only keep the first 𝑁 items
in the list of (ordered) nodes. This heuristic can be tuned by using
a dynamic value for 𝑁 , depending on application characteristics
or contextual factors like prevailing network conditions. In our
PoC, this 𝑁 value dynamism is achieved by introducing a second

parameter 𝑀 which act as a multiplier. In particular, after every
download iteration, 𝑁 is replaced by 𝑁 × 𝑀 , allowing for more
nodes to load in the next pass of the pipeline (e.g., for 𝑁 = 50 and
𝑀 = 2, the first pass would download 50 nodes, the second 100, the
third 200, and so on).

To see how these heuristics interact with each other, consider
the simple scene shown in Figure 5. Assume we use the following
heuristics pipeline: FOV-based rate limiting, distance-based order-
ing, and object count rate limiting with 𝑁 = 2 and𝑀 = 1. In a first
pass, objects A-D (each corresponding to a separate glTF node) are
passed to the FOV heuristic. Since object D falls outside the FOV, it
is filtered out, leaving objects A, B and C. This list is then passed to
the distance ordering heuristic, yielding the following prioritization:
A, C, B. Finally, given that the maximum object count is two, B will
be removed from the queue, leaving objects A and C to be queued
for download. In the next pass, only B will be queued for download.
In a third pass, no object would pass the heuristics (due to D falling
outside the FOV); however, a FOV-based heuristic could disable
itself once it detects it would return nothing. This would lead to D
passing the heuristics and getting queued for download.

3.4 Practical example
We now provide a practical example of how the streaming pipeline
functions according to the simple scene shown in Figure 5, using
the same heuristics pipeline as described in Section 3.3 but this time
using parameters 𝑁 = 3 and 𝑀 = 1. The objects in this scene are
built from three simple meshes: a cube, a sphere and a pyramid. The
textures are simple colors: green, blue and red. Assume each mesh
and texture takes up 16kB of data in the binary chunk of the binary
glTF file and is ordered in the file as mentioned (e.g., the cube is
stored in bufferview 0, the color green in bufferview 3). Therefore,
the total size of the binary chunk is 96kB. Also, assume the JSON
file and the sum of all headers amount to 32kB in total (i.e., the data
of the binary chunk starts at byte 32.000), yielding a complete file
size of 128kB. Figure 5 also visualizes the virtual camera pose and
associated FOV, which we assume to remain static for this example
(the actual implementation supports a dynamic camera). It can be
seen that only objects A-C are visible while object D is not in view.

The execution of our streaming pipeline proceeds as follows: ini-
tial steps (1) and (2) are performed as previously described, leading
to HTTP fetch operations resulting in the retrieval of 20 bytes and
31.980 bytes, respectively. In step (3), a binary buffer with a size
of 96 kB is allocated. Step (4) involves parsing the JSON data. For
example, for object A, the bounding box ((1,1,1);(4,4,4)) is calcu-
lated, and a reference to the necessary bufferviews (i.e., 0 and 3)
is cached as well. Similar calculations are performed for the other
objects to determine their respective bounding boxes and necessary
bufferviews. Moving to step (5), since no nodes have been loaded
yet, all nodes are eligible for downloading. Following the heuristics
described in Section 3.3, objects A, B and C are prioritized and
queued for download. Continuing with step (6), a modified JSON
chunk is generated in memory, containing a scene solely consist-
ing of objects A, B, and C. In step (7), the necessary bufferviews
are looked up in the metadata resulting from step (4); in this case,
these are bufferviews 0, 1, 3, 4, and 5 corresponding to the cube and
sphere meshes, and the colors green, blue, and red. Subsequently, a
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multi-part byterange request is constructed, specifying the ranges
32.000-63.999 and 80.000-127.999. Once this request is scheduled,
the next request can be determined. Returning to step (5), all objects
within the FOV are already being processed; only object D remains,
and is thus queued for download. Similarly, in step (6), another
modified JSON chunk is generated, containing only object D. In
step (7) then another request is created; considering that bufferview
4 is already being downloaded as part of the fetching of object B,
only bufferview 2 (related to the pyramid and corresponding to
byterange 64.000-79.999) needs to be retrieved. In the meantime, the
completion of the first request is awaited. Upon completion, step (8)
involves parsing the HTTP response and copying the bufferviews
into their appropriate positions within the buffer generated in step
(3). For instance, the first byterange (32.000-63.999) is copied to the
corresponding byterange (0-31.999) in the buffer. In step (9), the
binary glTF is constructed as described in Section 3.2. Finally, step
(10) involves passing the binary glTF file to the rendering engine,
which triggers the rendering of objects A, B, and C. The same steps
(8-10) are repeated once the second network request has been fully
processed, pertaining to the data necessary for rendering object D.

3.5 Browser and server considerations
As our PoC uses three.js as rendering framework, it relies onWebGL
support in the browser to render the 3Dmeshes. No browser plugins
are needed to make use of our PoC. On the server side no modifi-
cations are necessary, but support for HTTP multi-part byterange
requests is required to be able to fetch parts of a file (as opposed to
integral files). HTTP servers that do not support multi-part HTTP
byterange requests will return the entire file, which would com-
pletely eliminate the progressive streaming benefit.

4 EXPERIMENTAL EVALUATION
This section goes into detail of how our PoC was experimentally
evaluated, followed by a description of the ensuing results.

4.1 Experimental setup
Models. We tested our PoC with the following two 3D scenes:

• forest: a simple scene with flat color textures and 2.372 objects
taken from https://www.kenney.nl/assets; total size: 23MB.

• Sponza: the well-known Sponza scene with detailed textures and
424 objects; total size: 43MB.4

These scenes were chosen as they allow us to evaluate our PoC
with scenes that contain many objects with little textures and
vice-versa. Both model geometries were compressed using Google
Draco [Zhang et al. 2021].

Benchmark. To enable comparative evaluation of our approach,
we utilize a benchmark (BM) test. This BM case is a bulk download
of the entire scene (i.e., glTF file). This data is then passed in its
entirety to the rendering engine, to be displayed in theWeb browser.

Node scheduling heuristics. The following heuristics pipeline is
used: FOV-based rate limiter, distance-based ordering, 𝑁 -based
object count rate limiting with multiplier𝑀 . This pipeline has been

4https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Sponza,
edited so that each conceptual scene object is represented as a separate glTF node.

empirically chosen to have the best overall performance. However,
we will also show the effect of using different values for parameters
𝑁 and 𝑀 . The values 50, 100, 150, 200 and 250 are chosen for 𝑁 ,
while the values 1, 2 and 3 are chosen for𝑀 .

Apparatus. The experiments were run in a testbed consisting of
two PCs that were connected via a gigabit Ethernet link (1Gbps)
by means of a network switch. Those two PCs represented respec-
tively the content server and the consuming client running a Web
browser. The server PC was a Dell Latitude 5411 laptop with an
Intel(R) Core(TM) i5-10400H CPU and 16GB RAM. The server ran a
H2O HTTP server (version 2.3.0-DEV) on Debian 12. The client PC
consisted of a Lenovo Legion desktop with an Intel(R) Core(TM)
i7-9700 CPU, 16GB RAM and an Nvidia GeForce RTX2070 GPU.
Software-wise, the client PC used the Debian 11 Operating System
to run the Firefox Web browser via Playwright V1.27.1. Playwright
is a Web browser automation framework, enabling scripting of
common actions such as loading a webpage, key inputs and tak-
ing screenshots. The latter is necessary for the evaluation metric
described below. The client-side rendering (i.e., inside the Web
browser) was done using three.js; the rest of the client code is
written in JavaScript (transpiled from TypeScript).

Network conditions. Using Linux’s traffic control network emu-
lator (tc-netem), we emulated various network conditions to test
our PoC under. To provide a wide range of conditions, we use 20, 50
or 100 Megabits per second (Mbps) of throughput in combination
with 10, 20 or 50 milliseconds (ms) of latency.

Metrics. To evaluate the performance, we measure the Structural
Similarity Index Metric (SSIM) [Wang et al. 2004] over time. SSIM
is a well-known predictor of perceived quality of digital media by
comparing an image to a reference image. In our case, this image
is a screenshot of the virtual camera view (which will increase
in fidelity as more nodes are being loaded), while the reference
image corresponds with the final resulting view (i.e., once the FOV
has been fully loaded). By taking multiple screenshots during the
streaming process, a plot can be generated showing how the SSIM
evolves over time. The PoC client also reports the times when
the first nodes, the full FOV and the complete scene have been
downloaded and rendered.

Evaluation summary. By testing every combination of parameter,
using 3 repetitions to rule out anomalies, a total of 864 tests are
performed (2 scenes × 3 network throughputs × 3 network latencies
× ((5 𝑁 values × 3𝑀 values) + 1 BM) × 3 repetitions). The selection
of scenes and network conditions gives a broad spectrum of possible
operational conditions of this PoC. In both the PoC and BM, we
keep the camera FOV static to simplify the result analysis.

4.2 Results
We now give the results of our experiments and explain what can
be seen in the SSIM graphs. Figure 1 shows an example loading
sequence of the Sponza scene. The associated SSIM of each image is
mentioned in the caption to aid in comprehending the SSIM graphs.
To further interpret an SSIM plot, the following notions should be
taken into account:

https://www.kenney.nl/assets
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Sponza
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Table 1: Average loading times for forest (PoC vs BM) with
𝑁 = 150,𝑀 = 1.

Network PoC Benchmark
Throughput

(Mbps)
Latency
(ms)

First load
(ms)

Full FOV
(ms)

Full file
(ms)

Full file
(ms)

20
10 3079 5999 11944 11673
20 3229 6204 12243 11757
50 4957 7058 13331 12315

50
10 1682 3070 5851 5458
20 1872 3297 6134 5578
50 2588 4232 7419 6221

100
10 1278 2264 3957 3421
20 1412 2394 4176 3523
50 2240 3384 5504 4231

Table 2: Average loading times for Sponza (PoC vs BM) with
𝑁 = 150,𝑀 = 1.

Network PoC Benchmark
Throughput

(Mbps)
Latency
(ms)

First load
(ms)

Full FOV
(ms)

Full file
(ms)

Full file
(ms)

20
10 17594 17595 20598 20908
20 17742 17743 20811 20988
50 18389 18389 21508 21441

50
10 7973 7973 9497 9451
20 8140 8140 9658 9351
50 8869 8869 10418 10011

100
10 4798 4798 6221 5542
20 4931 4931 6356 5652
50 5742 5742 7218 6277

• A higher SSIM value means the input image (i.e., rendered scene)
more closely resembles the reference (i.e. the fully rendered FOV)

• Every discrete “step” in the SSIM plot is a direct result of our PoC
having downloaded and rendered an additional set of nodes; this
hence shows that a scene is being loaded progressively

• The SSIM plots do not start at 0 due the skybox having an influ-
ence on the SSIM.
Note that slight variations in the test results across repetitions

are due to Operating System background tasks and/or quirks in the
three.js rendering engine. This sometimes leads to longer processing
time and thus a longer time to render than the theoretical lower
bound. Also, three.js sometimes fails to load the full FOV instantly
but instead requires two render steps to show the complete FOV
even though all encompassing objects have already been passed to
the rendering engine. This is exemplified in Figure 8 (right), where
the 𝑁 = 250 lines for the Sponza scene do not directly jump to
SSIM=1 but rather have an intermediate data point at SSIM=0.85,
even though the full FOV only contains 137 objects.

Impact of throughput and latency. Figure 6 (forest scene) and
Figure 7 (Sponza scene) show the SSIM over time for the various
network conditions tested. Parameters 𝑁 = 150 and 𝑀 = 1 were
chosen empirically as they provide average performance for both
scenes. For the forest scene, our PoC substantially outperforms
the BM under every network condition. Outperforming means in
this case: having the fastest full FOV paint, thus the time where
SSIM reaches one. For the Sponza scene, the PoC only outperforms
the BM in the slowest of network conditions; in the other cases,
the BM beats our PoC slightly. However, the PoC still manages
to paint a part of the scene before the BM manages to have the
full file downloaded and rendered (i.e., our POC achieves a faster

Table 3: Impact of parameter 𝑁 on average loading time for
the forest scene with𝑀 = 1, compared to benchmark (BM).

Network N First load Full FOV Full file

Poor
(20Mbps, 50ms)

50 3278 7829 15540
100 3615 7247 13950
150 3869 7058 13331
200 4071 6921 13171
250 4217 6841 12975
BM / / 12315

Good
(100Mbps, 10ms)

50 1111 2737 5159
100 1234 2403 4256
150 1278 2264 3957
200 1318 2185 3847
250 1362 2129 3703
BM / / 3421

Table 4: Impact of parameter𝑀 on average loading time for
the forest scene with 𝑁 = 50, compared to benchmark (BM).

Network M First load Full FOV Full file

Poor
(20Mbps, 50ms)

1 3280 9471 20492
2 3277 7077 13148
3 3276 6939 12980
BM / / 12315

Good
(100Mbps, 10ms)

1 1113 3714 7806
2 1127 2338 3944
3 1093 2159 3728
BM / / 3421

time to interactive). Generally speaking (i.e., for both scenes), the
performance gains of our PoC (relative to the BM) is inversely
proportional to the quality of the network conditions.

It is important to stress that our PoC (in contrast to the BM)
typically has not yet downloaded the entire glTF file at the moment
when it achieves a full FOV. The timings for when the PoC has
the full glTF file downloaded and rendered can be seen in Table 1
and Table 2. It is clear that, for most cases, the BM outperforms the
PoC on this metric. This is due to the additional network round
trips that our PoC incurs compared to one monolithic file download
in the BM approach. However, for the Sponza scene at network
conditions (20Mbps, 10ms) and (20Mbps, 20ms), the PoC slightly
beats the BM. This is due to efficient interleaving of rendering
and ongoing network requests. As networking is asynchronous in
JavaScript, the browser can already render part of the scene while it
is waiting on the next part of the data. As such, the computational
cost of rendering the scene is spread out over time, which offsets
the increased time needed to download the glTF file in multiple
network round trips.

Impact of tuning parameter 𝑁 . Figure 8 shows the impact of
tuning the 𝑁 parameter for the forest and Sponza scenes. Of the
three repititions tested, we show the median result. For each scene,
the lower 𝑁 is, the faster the first paint occurs (i.e., the first jump
in SSIM). This is an expected result, because a lower 𝑁 means less
nodes are loaded per fetch iteration (yielding lower download sizes).
The drawback is that more requests are necessary (and hence more
network round trips) to progressively download the file and thus
render the FOV and full scene. Therefore, by tuning the 𝑁 value,
one can strike a good balance between a fast first paint, a fast full
FOV and a fast full file. Concrete timings for these three events
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Figure 6: Proof-of-Concept (PoC) vs benchmark (BM) under different network conditions for the forest scene. Numbers 0-2
denote repetitions of the same test. Note that the x-axis is consistent in the columns only. Parameters: 𝑁 = 150,𝑀 = 1.

Figure 7: Proof-of-Concept (PoC) vs benchmark (BM) under different network conditions for the Sponza scene. Numbers 0-2
denote repetitions of the same test. Note that the x-axis is consistent in the columns only. Parameters: 𝑁 = 150,𝑀 = 1.

can be seen in Table 3 for the forest scene (the table for the Sponza
scene can be found in Appendix A). The table again emphasises
how the first load time increases as 𝑁 increases, whereas the times
for a full FOV and full file decrease as 𝑁 increases.

The network conditions shown in Figure 8 and in Table 3 are
both extreme ends of the spectrum that we considered in our eval-
uation. This allows us to see how different 𝑁 values behave under

different network conditions. In both network situations, the over-
all shape of the plot is unaffected. The latency mostly increases the
time between consecutive paints, whereas the throughput dictates
the timeframe the paints happen in, while also affecting the time
between consecutive paints.

Impact of tuning parameter 𝑀 . In the previous paragraph, we
showed that setting a low value for 𝑁 allows for a fast first paint
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Figure 8: Impact of parameter 𝑁 (with𝑀 = 1) for the Proof-of-Concept (PoC) vs benchmark (BM) under two extreme network
conditions for the forest (left) and Sponza (right) scenes.

Figure 9: Impact of parameter𝑀 for the Proof-of-Concept (PoC) vs benchmark (BM) under two extreme network conditions for
the forest (left) and Sponza (right) scenes with 𝑁 = 50.

with the drawback of requiring a longer time to complete the full
FOV and file. By tuning 𝑀 > 1, we can have both a fast first
paint time, and a fast full FOV and file time. Figure 9 shows this
behavior for both scenes. For each network condition and scene,
the first paint happens at nearly the same time. This is due to 𝑀

not having an impact on the number of requested nodes in the
first iteration (see Section 3.3). After the first paint, with 𝑀 > 1,
𝑁 does increase in subsequent iterations (i.e., 𝑁 ×𝑀). Subsequent
paints will thus request more nodes, resulting in a higher step in
SSIM value. Especially for the forest scene, where there are many
nodes, the long tail can be eliminated by setting 𝑀 > 1. Due to
node instancing, only minimal extra data is required to render these
numerous nodes from a limited set.

When comparing Table 3 and Table 4, we can see that, when
𝑀 = 3 in the forest scene, the first load time of 𝑁 = 50 can be
attained, while only taking slightly longer than the full FOV and
full file load times of 𝑁 = 250. The Sponza scene also exhibits this
behaviour, but it is less noticeable due it having less objects (the
table for the Sponza scene can be found in Appendix A).

5 CONCLUSION AND FUTUREWORK
With the advent and proliferation of the metaverse, the need for 3D
content delivery over the Internet increases. We have presented a
set of heuristics that aid in efficiency calculating an order for loading
nodes of a binary glTF 2.0 file. By combining these heuristics with
HTTP multi-part byterange requests, we have devised a streaming
pipeline that allows selective downloading and rendering of nodes
within a glTF 2.0 encoded 3D world. Our implementation of this
streaming pipeline is available as an open-source PoC client, built
on top of the three.js library, and designed to run smoothly in any

standard web browser. Our experimental results have shown that
3D worlds in the glTF 2.0 format are suitable for streaming using a
HAS-like approach. Especially for networks with high latency and
low bandwidth, such as mobile 4G networks, the PoC has shown
itself to be the clear winner when comparing FOV paint times.

We propose three significant directions for future exploration.
First, the networking code can be made rendering engine agnostic.
This decoupling will allow for more flexibility when choosing an
underlying render engine. This can be taken a step further, and
the code can be rewritten in another language, to be compiled
to WebAssembly for further performance improvements in the
browser. Other targets could include Unity and Unreal Engine.
Adapting the codebase for these platforms would facilitate seamless
integration of our proposed 3D streaming pipeline. Second, the
heuristics can be further improved upon. By introducing more
refined heuristics, themanual tuning of the parameters𝑁 and𝑀 can
be eliminated, or these parameters could be eliminated completely.
Application-specific heuristics could also be devised and tested.
Third, the networking code can include HTTP (re)-prioritization.
By taking advantage of HTTP/2 and HTTP/3 enhancements in
prioritization, network requests could be sent out in bulk without
having to wait for a prior network request to return a response.
Priority can be assigned and reassigned depending on more refined
heuristics (i.e., up to the level of individual glTF nodes).
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Table 5: Impact of parameter 𝑁 on average loading time for
the Sponza scene with𝑀 = 1.

Network N First load Full FOV Full file

Throughput:
20 Mbps
Latency:
50ms

50 14938 17941 22023
100 18406 18407 21750
150 18389 18389 21508
200 18382 18382 21473
250 18403 18404 21790
BM / / 21441

Throughput:
100 Mbps
Latency:
10ms

50 3930 3930 6809
100 4801 4801 6793
150 4798 4798 6221
200 4783 4784 6209
250 4795 4796 6233
BM / / 5542

Table 6: Impact of parameter𝑀 on average loading time for
the Sponza scene with 𝑁 = 50.

Network M First load Full FOV Full file
Throughput:
20 Mbps
Latency:
50ms

1 14943 17969 23090
2 14876 17935 21275
3 14995 17918 21706
BM / / 21441

Throughput:
100 Mbps
Latency:
10ms

1 3921 3921 8364
2 3945 3945 6238
3 3924 3925 5825
BM / / 5542

A SPONZA TABLES
This section shows Table 5 and Table 6 accompanying Table 3 and
Table 4, respectively. They are shown for completeness sake.


